JP2538480B2 - Charging circuit - Google Patents

Charging circuit

Info

Publication number
JP2538480B2
JP2538480B2 JP4113989A JP11398992A JP2538480B2 JP 2538480 B2 JP2538480 B2 JP 2538480B2 JP 4113989 A JP4113989 A JP 4113989A JP 11398992 A JP11398992 A JP 11398992A JP 2538480 B2 JP2538480 B2 JP 2538480B2
Authority
JP
Japan
Prior art keywords
voltage
converter
secondary battery
charging
digital signal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP4113989A
Other languages
Japanese (ja)
Other versions
JPH05300665A (en
Inventor
村 浩 志 古
田 雅 行 富
松 篤 若
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NITSUTSUKO KK
Nippon Telegraph and Telephone Corp
Original Assignee
NITSUTSUKO KK
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NITSUTSUKO KK, Nippon Telegraph and Telephone Corp filed Critical NITSUTSUKO KK
Priority to JP4113989A priority Critical patent/JP2538480B2/en
Publication of JPH05300665A publication Critical patent/JPH05300665A/en
Application granted granted Critical
Publication of JP2538480B2 publication Critical patent/JP2538480B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Charge And Discharge Circuits For Batteries Or The Like (AREA)

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は充電回路に関し、特に構
成を簡略化し、特性を安定化した充電回路に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a charging circuit, and more particularly to a charging circuit having a simplified structure and stabilized characteristics.

【0002】[0002]

【従来の技術】コードレス電話機等の携帯型各種装置に
おいては、充電型二次電池が内蔵されており、該二次電
池をより高電圧の直流電源により充電する。図2には、
従来のこの種充電回路の一例が示されている。二次電池
BATの入力端子T1とT2には直流電源Eが充電回路
を介して接続されている。直流電源Eには、抵抗R11
とフォトカプラ11の発光側が接続され、抵抗R11に
は抵抗R12とトランジスタ10の直列回路が並列接続
されている。二次電池BATの端子T1とT2間には、
サーミスタTH2と可変抵抗器VRと抵抗R14の直列
回路が並列接続されている。サーミスタTH2は二次電
池BATの温度特性補償用であり、可変抵抗器VRの可
動端子からは、二次電池BATの充電電圧をモニタする
ための電圧検出器VDが接続されている。また、直流電
源Eの両端には並列にフォトカプラ11の受光側と抵抗
R15の直列回路が接続され、それらの接続点が端子T
3に接続されている。直流電源Eの電圧は、二次電池B
ATの充電終止電圧Vfよりも高い電圧値に設定されて
いる。
2. Description of the Related Art Various portable devices such as cordless telephones have a built-in rechargeable secondary battery, and the secondary battery is charged by a higher voltage DC power supply. In Figure 2,
An example of a conventional charging circuit of this type is shown. A DC power source E is connected to the input terminals T1 and T2 of the secondary battery BAT via a charging circuit. The DC power source E has a resistor R11
Is connected to the light emitting side of the photocoupler 11, and a series circuit of a resistor R12 and the transistor 10 is connected in parallel to the resistor R11. Between the terminals T1 and T2 of the secondary battery BAT,
A series circuit of the thermistor TH2, the variable resistor VR, and the resistor R14 is connected in parallel. The thermistor TH2 is for compensating the temperature characteristic of the secondary battery BAT, and a voltage detector VD for monitoring the charging voltage of the secondary battery BAT is connected from the movable terminal of the variable resistor VR. Further, a series circuit of a photodetector 11 and a resistor R15 is connected in parallel to both ends of the DC power source E, and the connection point between them is a terminal T.
Connected to 3. The voltage of the DC power supply E is the secondary battery B
It is set to a voltage value higher than the end-of-charge voltage Vf of AT.

【0003】二次電池BATを充電するため、端子T1
とT2間が充電回路を介して直流電源E側に接続される
と、フォトカプラ11の発光側に電流が流れ、発光側の
発光素子が発光し、受光側の受光素子に電流が流れ、ま
た、端子T3の電位が低下する。この状態変化によっ
て、二次電池BATの接続状態が検出される。電圧検出
器VDは、入力側Iの電位が予め定められた閾値以下の
ときに出力側Oは接地Gと同電位となり、該閾値以上の
ときは接地に対してハイインピーダンスとなる。つま
り、電圧検出器VDは、二次電池BATの充電電位をモ
ニタし、充電電圧が上記閾値に対応する所定電位(例え
ば、充電終止閾値Vdet)以下であるとスイッチング
トランジスタ10のコレクタエミッタ間を導通状態と
し、直流電源Eと端子T1間の合成抵抗を抵抗R11と
R12の合成抵抗として合成抵抗を低下させる。その結
果、二次電池BATに供給する電流が増大し、高速充電
が行われる。一方、検出電圧が充電終止閾値Vdet以
上のときは、過充電を防止するために、トランジスタ1
0をカットオフ状態とし、抵抗R11で定まる少ない電
流で充電される。ここで、ボリュームVRは、電圧検出
器VDのバラツキを補正するための調整用である。
In order to charge the secondary battery BAT, the terminal T1
When T2 and T2 are connected to the DC power source E side via the charging circuit, current flows to the light emitting side of the photocoupler 11, the light emitting element on the light emitting side emits light, and current flows to the light receiving element on the light receiving side. , The potential of the terminal T3 decreases. The connection state of the secondary battery BAT is detected by this state change. The voltage detector VD has the same potential as the ground G on the output side O when the potential on the input side I is less than or equal to a predetermined threshold value, and has high impedance with respect to ground when the potential on the input side I is greater than or equal to the threshold value. That is, the voltage detector VD monitors the charging potential of the secondary battery BAT, and when the charging voltage is equal to or lower than a predetermined potential (for example, the charge end threshold Vdet) corresponding to the above threshold, the collector and the emitter of the switching transistor 10 are electrically connected. Then, the combined resistance between the DC power source E and the terminal T1 is set as the combined resistance of the resistors R11 and R12 to lower the combined resistance. As a result, the current supplied to the secondary battery BAT increases, and high-speed charging is performed. On the other hand, when the detected voltage is equal to or higher than the charge end threshold Vdet, the transistor 1 is used to prevent overcharge.
0 is set to the cutoff state, and charging is performed with a small current determined by the resistor R11. Here, the volume VR is for adjustment for correcting the variation of the voltage detector VD.

【0004】[0004]

【発明が解決しようとする課題】上述のように、従来の
充電回路は、可変抵抗VRの電圧を電圧検出器VDで検
出することにより、二次電池BATの充電電圧をモニタ
しており、充電電圧が低い、つまり充電初期には高速充
電を行うために、トランジスタ10をON動作(同通状
態)させて直流電源Eと二次電池BAT間に抵抗R11と
R12の並列抵抗を挿入して大充電電流を流すようにして
いる。また、充電電圧が上昇して充電末期に至ったとき
には、過充電時の発熱を防止するため、トランジスタ1
0をOFF動作させて抵抗R11のみを直流電源Eと二次
電池BAT間に挿入して充電電流を低減させている。
As described above, the conventional charging circuit monitors the charging voltage of the secondary battery BAT by detecting the voltage of the variable resistor VR with the voltage detector VD, and charging is performed. The voltage is low, that is, in order to perform high-speed charging at the initial stage of charging, the transistor 10 is turned on (in the same state), and a parallel resistor of resistors R11 and R12 is inserted between the DC power source E and the secondary battery BAT. The charging current is made to flow. In addition, when the charging voltage rises to reach the end of charging, the transistor 1 is used to prevent heat generation during overcharging.
0 is turned off and only the resistor R11 is inserted between the DC power source E and the secondary battery BAT to reduce the charging current.

【0005】しかしながら、図2に示す如く、従来の充
電回路では、フォトカプラ11により充電状態が確認さ
れているが、このフォトカプラ11の発光ダイオードの
電圧降下分(通常、1.3V程度)だけ電圧が低下する
ため、直流電源Eとしては二次電池BATの充電電圧よ
りも高い電圧を発生させ得る電源を用意しなければなら
ない。また、トランジスタ10の動作を制御するため電
圧検出器VDの閾値のバラツキ補償面でボリュームVR
を調整しなければならない。更に、クリップ等の導体物
が接触したりする等の外部要因により充電端子T1とT2
間が短絡した場合には、充電電圧が異常に低下し、トラ
ンジスタ10は導通状態を維持するために過大な電流を
消費してしまい、直流電源容量を不必要に大きくする必
要がある。
However, as shown in FIG. 2, in the conventional charging circuit, the charge state is confirmed by the photocoupler 11, but only the voltage drop of the light emitting diode of the photocoupler 11 (usually about 1.3 V). Since the voltage decreases, a power source that can generate a voltage higher than the charging voltage of the secondary battery BAT must be prepared as the DC power source E. In addition, in order to control the operation of the transistor 10, the volume VR is compensated in terms of compensating for variations in the threshold of the voltage detector VD.
Must be adjusted. Furthermore, the charging terminals T1 and T2 may be affected by external factors such as contact of a conductor such as a clip.
If a short circuit occurs between them, the charging voltage drops abnormally, the transistor 10 consumes an excessive amount of current in order to maintain the conductive state, and it is necessary to unnecessarily increase the DC power supply capacity.

【0006】そこで、本発明の目的は、簡単な構成で、
且つ特性の安定化を可能とする充電回路を提供すること
にある。
Therefore, an object of the present invention is to provide a simple structure,
Another object of the present invention is to provide a charging circuit capable of stabilizing the characteristics.

【0007】[0007]

【課題を解決するための手段】前述の課題を解決するた
め、本発明による充電回路は、定電圧の直流電源が接続
される入力端子と二次電池が接続される出力端子に接続
され、その抵抗値が可変な抵抗手段と、前記入力端子の
電圧をデジタル信号に変換する第1のA/Dコンバータ
と、前記出力端子の電圧をデジタル信号に変換する第2
のA/Dコンバータと、前記第1と第2のA/Dコンバ
ータからのデジタル信号に基づいて前記出力端子への前
記二次電池の接続有無の判断を行う制御手段と、を備え
て構成される。また、本発明の他の態様による充電回路
は、定電圧の直流電源が接続される入力端子と二次電池
が接続される出力端子に接続され、その抵抗値が可変な
抵抗手段と、前記入力端子の電圧をデジタル信号に変換
する第1のA/Dコンバータと、前記出力端子の電圧を
デジタル信号に変換する第2のA/Dコンバータと、前
記第1と第2のA/Dコンバータからのデジタル信号に
基づいて、前記抵抗手段の抵抗値の切り替え及び前記出
力端子への前記二次電池の接続有無判断の少なくとも一
方を行う制御手段と、前記入力端子の並列に接続された
抵抗とサーミスタの直列回路と、前記抵抗とサーミスタ
の接続点の電圧をデジタル信号に変換する第3のA/D
コンバータと、を備え、前記第3のA/Dコンバータか
らのデジタル信号に基づいて周囲温度を検出し、前記充
電回路系の温度補償を行うように構成されている。
In order to solve the above-mentioned problems, a charging circuit according to the present invention is connected to an input terminal to which a constant voltage DC power source is connected and an output terminal to which a secondary battery is connected. A resistance means having a variable resistance value, a first A / D converter for converting the voltage of the input terminal into a digital signal, and a second A / D converter for converting the voltage of the output terminal into a digital signal.
A / D converter, and control means for determining whether or not the secondary battery is connected to the output terminal based on digital signals from the first and second A / D converters. It A charging circuit according to another aspect of the present invention is connected to an input terminal to which a constant-voltage DC power source is connected and an output terminal to which a secondary battery is connected, and a resistance means having a variable resistance value, and the input terminal. From a first A / D converter that converts the voltage of the terminal into a digital signal, a second A / D converter that converts the voltage of the output terminal into a digital signal, and the first and second A / D converters. Control means for switching at least one of the resistance value of the resistance means and determining whether or not the secondary battery is connected to the output terminal based on the digital signal, and a resistor and a thermistor connected in parallel to the input terminal. And a third A / D for converting the voltage at the connection point of the resistor and the thermistor into a digital signal
A converter, and is configured to detect the ambient temperature based on the digital signal from the third A / D converter and perform temperature compensation of the charging circuit system.

【0008】[0008]

【作用】本発明では、充電時の各種状態をA/Dコンバ
ータにより得られる各部デジタル信号に基づいて判定
し、判定結果に応じて最適な制御を行うことにより、フ
ォトカプラや可変抵抗等を不要とし、回路構成を簡略化
するとともに特性を安定化している。
According to the present invention, various states at the time of charging are determined based on the digital signals of respective parts obtained by the A / D converter, and optimal control is performed according to the determination result, thereby eliminating the need for a photocoupler or variable resistor. The circuit configuration is simplified and the characteristics are stabilized.

【0009】[0009]

【実施例】次に、本発明について図面を参照しながら説
明する。図1は、本発明による充電回路の一実施例を示
す回路図である。本実施例は、二次電池BATが接続さ
れた充電端子T1とT2及び直流電源E間には、図2に示
す従来回路と同様な、抵抗R1とR2の並列回路が挿入さ
れ、抵抗R2には直列にトランジスタ1が接続され、ベ
ースに接続された抵抗R3を介して供給される制御信号
によるトランジスタ1のON/OFF動作により抵抗R
2を抵抗R1に並列接続するか否かが制御、調整されてい
る。また、直流電源Eに並列に、サーミスタTH1と抵
抗R4の直列回路が接続されている。直流電源Eの電圧
は、二次電池BATの充電終止電圧よりも高く設計され
ている。二次電池BATの電圧と直流電源Eの電圧との
電位差により、抵抗R1または抵抗R1とR2の並列抵抗
を通して異なる電流値の充電電流I0が流れる。サーミ
スタTH1、抵抗R3及びR4に流れる電流は、充電電流
I0に比べて十分小さい値になるように設計されてい
る。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Next, the present invention will be described with reference to the drawings. FIG. 1 is a circuit diagram showing an embodiment of a charging circuit according to the present invention. In this embodiment, a parallel circuit of resistors R1 and R2 similar to the conventional circuit shown in FIG. 2 is inserted between the charging terminals T1 and T2 to which the secondary battery BAT is connected and the DC power source E, and is connected to the resistor R2. Is connected to the transistor 1 in series, and the resistor R is turned on / off by the control signal supplied through the resistor R3 connected to the base.
It is controlled and adjusted whether or not 2 is connected in parallel with the resistor R1. Further, a series circuit of the thermistor TH1 and a resistor R4 is connected in parallel with the DC power source E. The voltage of the DC power source E is designed to be higher than the end-of-charge voltage of the secondary battery BAT. Due to the potential difference between the voltage of the secondary battery BAT and the voltage of the DC power source E, a charging current I0 having a different current value flows through the resistor R1 or the parallel resistor of the resistors R1 and R2. The current flowing through the thermistor TH1 and the resistors R3 and R4 is designed to be sufficiently smaller than the charging current I0.

【0010】本実施例では、上記回路の各部の電圧をA
/Dコンバータ内蔵マイクロプロセッサ2でモニタして
以下に述べる各種動作制御を行う。第1のA/Dコンバ
ータ21は、直流電源Eの電圧をデジタル変換してマイ
クロプロセッサ24に供給する。第2のA/Dコンバー
タ22は、二次電池BATの充電電圧をデジタル変換
し、また、第3のA/Dコンバータ23は、温度により
抵抗値が線形に変化するサーミスタTH1と温度による
抵抗値の変化が少ない抵抗R4によって分圧された直流
電源Eの電圧をデジタル変換してマイクロプロセッサ2
4に供給する。
In this embodiment, the voltage of each part of the above circuit is set to A
The microprocessor 2 with a built-in / D converter monitors and performs various operation controls described below. The first A / D converter 21 digitally converts the voltage of the DC power supply E and supplies it to the microprocessor 24. The second A / D converter 22 digitally converts the charging voltage of the secondary battery BAT, and the third A / D converter 23 uses a thermistor TH1 whose resistance value changes linearly with temperature and a resistance value with temperature. Of the voltage of the DC power source E divided by the resistor R4 whose change of
4

【0011】本実施例の充電回路を使用するにあたり、
各回路のバラツキの補正のために予め初期値をマイクロ
プロセッサ24のメモリに登録する必要がある。端子T
1及びT2から二次電池BATを開放した状態にて第1の
A/Dコンバータ21と第2のA/Dコンバータ22に
て各電圧を入力し、デジタル変換した値をそれぞれD1a
及びD2aとしてマイクロプロセッサ24のメモリに記憶
する。また、周囲温度をある特定の条件にした上で第3
のA/Dコンバータ23にて電圧を入力し、デジタル変
換した値をD3aとしてマイクロプロセッサ24のメモリ
に記憶する。端子T1及びT2に二次電池BATが接続さ
れているか否かの判定は以下のようなマイクロプロセッ
サ24の演算で行れる。判定の時に入力した第1のA/
Dコンバータ21と第2のA/Dコンバータ22のデジ
タル変換値D1b及びD2bとすると、上記初期値D1a及び
D2aを用いて、直流電源Eと二次電池BATの電位差、
即ち充電電流I0に比例する値をΔDとすると、 ΔD=(D1a−D1b)−(D2a−D2b) として求められる。二次電池BATの接続の有無の判定
は、予め決めておく判定閾値ΔD0との比較となり、 ΔD>ΔD0 の時に二次電池BATが接続されていると判定する。こ
こで、直流電源Eの負荷安定度が十分高ければ、D1a=
D1bとなり第1のA/Dコンバータ21は不要となる
が、そのような直流電源Eは実際には高価なものとなる
ため、本実施例では、第1のA/Dコンバータ21を使
用して直流電源Eの負荷変動をも補正している。
In using the charging circuit of this embodiment,
It is necessary to register the initial value in the memory of the microprocessor 24 in advance in order to correct the variation of each circuit. Terminal T
With the secondary battery BAT opened from 1 and T2, each voltage is input by the first A / D converter 21 and the second A / D converter 22, and the digitally converted values are respectively D1a
And D2a in the memory of the microprocessor 24. Also, after setting the ambient temperature to a certain condition, the third
The voltage is input by the A / D converter 23, and the digitally converted value is stored in the memory of the microprocessor 24 as D3a. Whether or not the secondary battery BAT is connected to the terminals T1 and T2 can be determined by the calculation of the microprocessor 24 as follows. The first A / entered at the time of judgment
If the digital conversion values D1b and D2b of the D converter 21 and the second A / D converter 22 are used, the potential difference between the DC power source E and the secondary battery BAT is calculated using the initial values D1a and D2a.
That is, assuming that a value proportional to the charging current I0 is ΔD, ΔD = (D1a−D1b) − (D2a−D2b) is obtained. Whether or not the secondary battery BAT is connected is determined by comparison with a predetermined determination threshold ΔD0, and when ΔD> ΔD0, it is determined that the secondary battery BAT is connected. Here, if the load stability of the DC power source E is sufficiently high, D1a =
Although the first A / D converter 21 is no longer necessary because it becomes D1b, such a DC power source E is actually expensive, so in the present embodiment, the first A / D converter 21 is used. The load fluctuation of the DC power source E is also corrected.

【0012】次に、充電終止電圧の判定と充電電流切替
動作について説明する。二次電池BATの充電が終了す
るまでは、トランジスタ1を導通状態として充電電流を
大きくし、充電完了後は過充電防止のために、充電電流
を二次電池BATの接続の有無の判定に必要な程度まで
少なくすることが必要である。判定の時に入力した第2
のA/Dコンバータ22のデジタル変換値をD2bとする
と、二次電池BATの充電電圧VBATは直流電源Eの電
圧VEと前述の初期値D2aを用いて、次式にて算出す
る。 VBAT=E・(D2b/D2a) また、充電電流の切替の閾値である充電終止電圧VDET
は周囲温度Tによって変化するため、Tの関数として表
される。 VDET=f(T) ここで、周囲温度Tは、判定時に入力した第3のA/D
コンバータ23のデジタル変換値D3bと前述の初期値D
3aと係数kによって次式にて算出する。ここで、係数k
は、サーミスタTH1の温度係数に基づいて得られる係
数である。 T=k(D3b−D3a) 以上のように求められた、充電電圧VBATと充電終止電
圧VDETを比較し、 V BAT>V DET の条件を満たすときに、マイクロプロセッサ24はトラ
ンジスタ1をカットオフする。更に、二次電池BATの
特性上、充電電流が減少すると充電電圧が低下するた
め、充電電流減少直後にVBAT<VDETとなり、再度充電
電流を増加すると発振を起こすため、充電電流を増加す
る際の判定条件は VBAT<VDET−α として、α分のヒステリシスをもたせる必要がある。
Next, the determination of the charge end voltage and the charge current switching operation will be described. Until charging of the secondary battery BAT is completed, the transistor 1 is made conductive to increase the charging current, and after the completion of charging, the charging current is necessary to determine whether or not the secondary battery BAT is connected to prevent overcharging. It is necessary to reduce it to a certain degree. Second entered at the time of judgment
Assuming that the digital conversion value of the A / D converter 22 is D2b, the charging voltage VBAT of the secondary battery BAT is calculated by the following equation using the voltage VE of the DC power source E and the above-mentioned initial value D2a. VBAT = E · (D2b / D2a) Also, the charge end voltage VDET, which is the threshold for switching the charging current.
Can be expressed as a function of T because it varies with the ambient temperature T. VDET = f (T) where the ambient temperature T is the third A / D input at the time of determination.
The digital conversion value D3b of the converter 23 and the above-mentioned initial value D
It is calculated by the following equation using 3a and the coefficient k. Where the coefficient k
Is a coefficient obtained based on the temperature coefficient of the thermistor TH1. T = k (D3b-D3a) The charging voltage VBAT and the charging end voltage VDET obtained as described above are compared, and when the condition of VBAT> VDET is satisfied, the microprocessor 24 cuts off the transistor 1. . Further, due to the characteristics of the secondary battery BAT, the charging voltage decreases when the charging current decreases, so VBAT <VDET immediately after the charging current decreases, and oscillation occurs when the charging current increases again. The judgment condition is VBAT <VDET-α, and it is necessary to provide a hysteresis for α.

【0013】また、充電端子の短絡を保護する動作が次
のようにして行われる。前述のVBAT<VDET−αの条件
で充電電流を増加すると、端子T1,T2間を短絡した時
の電源電流が過大となり、直流電源Eの電流容量及び抵
抗R1及びR2の定格電力を大きくする必要が生じる。そ
こで、短絡検出閾値Vsを予め決めておき、 VBAT<Vs の条件にて、トランジスタ1をカットオフし、短絡電流
の減少を図っている。以上のように、本実施例では、各
電圧の判定をマイクロプロセッサのソフトウェアに委ね
ることにより、短絡防止等の機能の追加、及び充電特性
の異なる二次電池を使用した際の判定閾値の変更など
が、プログラムの変更で対応でき、ハードウェアの簡素
化と共有化が図れる。
The operation of protecting the charging terminal from a short circuit is performed as follows. If the charging current is increased under the condition of VBAT <VDET-α, the power supply current when the terminals T1 and T2 are short-circuited becomes excessive, and the current capacity of the DC power supply E and the rated power of the resistors R1 and R2 must be increased. Occurs. Therefore, the short-circuit detection threshold Vs is determined in advance, and the transistor 1 is cut off under the condition of VBAT <Vs to reduce the short-circuit current. As described above, in the present embodiment, by entrusting the determination of each voltage to the software of the microprocessor, a function such as a short circuit prevention is added, and the determination threshold value when a secondary battery having a different charging characteristic is used is changed. However, it can be handled by changing the program, and the hardware can be simplified and shared.

【0014】以上の実施例において、電圧検出精度はA
/Dコンバータの分解能は通常8bitのものが一般的
であり、量子化誤差を1bitとしても、A/Dコンバ
ータの基準電圧を128分割した値までの精度を有す
る。A/Dコンバータの基準電圧を直流電源Eの電圧と
等しい5Vとすると、約40mVの精度で電圧の判定が
可能となる。従来技術で使用している電圧検出器のバラ
ツキは約200mVであるため、ボリュームによる微調
整が必要であったが、その問題は殆どなくなる。更に、
近年A/Dコンバータ内蔵のマイクロプロセッサが安価
になっており、本発明の優位性が発揮される。
In the above embodiments, the voltage detection accuracy is A
The resolution of the A / D converter is generally 8 bits, and even if the quantization error is 1 bit, the accuracy is up to a value obtained by dividing the reference voltage of the A / D converter into 128. When the reference voltage of the A / D converter is set to 5V which is equal to the voltage of the DC power source E, the voltage can be determined with an accuracy of about 40 mV. Since the variation of the voltage detector used in the conventional technique is about 200 mV, fine adjustment by the volume is necessary, but the problem is almost eliminated. Furthermore,
In recent years, microprocessors with a built-in A / D converter have become inexpensive, and the superiority of the present invention is demonstrated.

【0015】[0015]

【発明の効果】以上説明したように、本発明による充電
回路は、充電時の各種状態をA/Dコンバータにより得
られる各部デジタル信号に基づいて判定し、判定結果に
応じて最適な制御を行っているので、従来の如く、フォ
トカプラや可変抵抗等が不要となり、回路構成が簡略化
され、特性の安定化を図ることができた。
As described above, the charging circuit according to the present invention determines various states during charging based on the digital signals of the respective parts obtained by the A / D converter, and performs the optimum control according to the determination result. Therefore, unlike the prior art, a photocoupler, a variable resistor, etc. are not required, the circuit configuration is simplified, and the characteristics can be stabilized.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明は充電回路の一実施例を示す回路図であ
る。
FIG. 1 is a circuit diagram showing an embodiment of a charging circuit.

【図2】従来の充電回路の一例を示す回路図である。FIG. 2 is a circuit diagram showing an example of a conventional charging circuit.

【符号の説明】[Explanation of symbols]

1,10 トランジスタ 2 A/Dコンバータ内蔵マイクロプロセ
ッサ 21〜23 A/Dコンバータ 24 マイクロプロセッサ
1,10 Transistor 2 Microprocessor with A / D converter 21-23 A / D converter 24 Microprocessor

───────────────────────────────────────────────────── フロントページの続き (72)発明者 若 松 篤 東京都千代田区内幸町1丁目1番6号 日本電信電話株式会社内 (56)参考文献 特開 平4−178121(JP,A) ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Atsushi Wakamatsu 1-1-6 Uchisaiwaicho, Chiyoda-ku, Tokyo Inside Nippon Telegraph and Telephone Corporation (56) Reference JP-A-4-178121 (JP, A)

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】定電圧の直流電源が接続される入力端子と
二次電池が接続される出力端子に接続され、その抵抗値
が可変な抵抗手段と、 前記入力端子の電圧をデジタル信号に変換する第1のA
/Dコンバータと、 前記出力端子の電圧をデジタル信号に変換する第2のA
/Dコンバータと、 前記第1と第2のA/Dコンバータからのデジタル信号
に基づいて前記出力端子への前記二次電池の接続有無の
判断を行う制御手段と、 を備えて成ることを特徴とする充電回路。
1. A resistance means connected to an input terminal to which a constant-voltage DC power source is connected and an output terminal to which a secondary battery is connected, the resistance value of which is variable, and the voltage at the input terminal is converted into a digital signal. First A to do
/ D converter, and a second A for converting the voltage of the output terminal into a digital signal
/ D converter, and control means for determining whether or not the secondary battery is connected to the output terminal based on digital signals from the first and second A / D converters. And charging circuit.
【請求項2】定電圧の直流電源が接続される入力端子と
二次電池が接続される出力端子に接続され、その抵抗値
が可変な抵抗手段と、 前記入力端子の電圧をデジタル信号に変換する第1のA
/Dコンバータと、 前記出力端子の電圧をデジタル信号に変換する第2のA
/Dコンバータと、 前記第1と第2のA/Dコンバータからのデジタル信号
に基づいて、前記抵抗手段の抵抗値の切り替え及び前記
出力端子への前記二次電池の接続有無判断の少なくとも
一方を行う制御手段と、 前記入力端子の並列に接続された抵抗とサーミスタの直
列回路と、 前記抵抗とサーミスタの接続点の電圧をデジタル信号に
変換する第3のA/Dコンバータと、 を備え、前記第3のA/Dコンバータからのデジタル信
号に基づいて周囲温度を検出し、前記充電回路系の温度
補償を行うことを特徴とする充電回路。
2. A resistance means, which is connected to an input terminal to which a constant-voltage DC power source is connected and an output terminal to which a secondary battery is connected, and whose resistance value is variable, and a voltage at the input terminal to a digital signal. First A to do
/ D converter, and a second A for converting the voltage of the output terminal into a digital signal
/ D converter, and based on the digital signal from the first and second A / D converter, at least one of the switching of the resistance value of the resistance means and the presence or absence of the connection of the secondary battery to the output terminal Control means for performing, a series circuit of a resistor and a thermistor connected in parallel to the input terminal, a third A / D converter for converting the voltage at the connection point of the resistor and the thermistor into a digital signal, A charging circuit, which detects an ambient temperature based on a digital signal from a third A / D converter and performs temperature compensation of the charging circuit system.
JP4113989A 1992-04-07 1992-04-07 Charging circuit Expired - Lifetime JP2538480B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4113989A JP2538480B2 (en) 1992-04-07 1992-04-07 Charging circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4113989A JP2538480B2 (en) 1992-04-07 1992-04-07 Charging circuit

Publications (2)

Publication Number Publication Date
JPH05300665A JPH05300665A (en) 1993-11-12
JP2538480B2 true JP2538480B2 (en) 1996-09-25

Family

ID=14626276

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4113989A Expired - Lifetime JP2538480B2 (en) 1992-04-07 1992-04-07 Charging circuit

Country Status (1)

Country Link
JP (1) JP2538480B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004180470A (en) * 2002-11-29 2004-06-24 Max Co Ltd Charging circuit of electric double layer capacitor

Also Published As

Publication number Publication date
JPH05300665A (en) 1993-11-12

Similar Documents

Publication Publication Date Title
KR920009364B1 (en) Device for controlling charge
US5506490A (en) Method and apparatus for determining external power supply type
US5861733A (en) Battery charger
US6989981B2 (en) Battery over voltage and over protection circuit and adjustable adapter current limit circuit
JP3305257B2 (en) Charge / discharge control circuit, rechargeable power supply device and control method therefor
JPH10136578A (en) Battery charge device
US7663346B2 (en) Battery charger for preventing both overshoot charging current and overcharged battery voltage during charging mode transition
US7612539B2 (en) Battery charger circuits using constant current/constant voltage mode using maintenance offset currents and methods of operating the same
CN111934404B (en) Charging circuit
EP0863597A1 (en) Power supply
US6239581B1 (en) Battery state monitoring circuit and battery device
JPH0687632B2 (en) Control device for vehicle alternator
JP2538480B2 (en) Charging circuit
JP3096535B2 (en) Method and apparatus for charging secondary battery
US7560899B1 (en) Circuit and method for adjusting safety time-out with charge current
GB2321140A (en) Battery charger control responsive to ambient temperature
JP4379558B2 (en) Secondary battery protection circuit
JPH11258280A (en) Voltage detector for secondary battery and secondary battery device
JP3483399B2 (en) Charging device
JP4066189B2 (en) AC adapter and charging method thereof
JP2995142B2 (en) Series battery charger
JPH05308733A (en) Charging circuit system and charger
JP4407157B2 (en) Power supply device and power supply method
JP3389158B2 (en) Isolated switching power supply control circuit
KR100285727B1 (en) Battery charging circuit

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20070708

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080708

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090708

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100708

Year of fee payment: 14

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110708

Year of fee payment: 15

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110708

Year of fee payment: 15

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120708

Year of fee payment: 16

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120708

Year of fee payment: 16