JP2538030Y2 - Mass flow meter - Google Patents

Mass flow meter

Info

Publication number
JP2538030Y2
JP2538030Y2 JP7104191U JP7104191U JP2538030Y2 JP 2538030 Y2 JP2538030 Y2 JP 2538030Y2 JP 7104191 U JP7104191 U JP 7104191U JP 7104191 U JP7104191 U JP 7104191U JP 2538030 Y2 JP2538030 Y2 JP 2538030Y2
Authority
JP
Japan
Prior art keywords
conduit
temperature
temperature sensor
mass flow
tube
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP7104191U
Other languages
Japanese (ja)
Other versions
JPH0514843U (en
Inventor
哲丸 厚浦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Oval Corp
Original Assignee
Oval Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Oval Corp filed Critical Oval Corp
Priority to JP7104191U priority Critical patent/JP2538030Y2/en
Publication of JPH0514843U publication Critical patent/JPH0514843U/en
Application granted granted Critical
Publication of JP2538030Y2 publication Critical patent/JP2538030Y2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Measuring Volume Flow (AREA)

Description

【考案の詳細な説明】[Detailed description of the invention]

【0001】[0001]

【技術分野】本発明は、コリオリ流量計に関し、より詳
細には、コリオリ流量計における導管を該導管の固有振
動数で駆動し、該導管に作用するコリオリの力および導
管の温度を検出し、温度影響を受けない被測定流体の質
量流量および密度を求めるコリオリ流量計において、温
度センサを導管へ介装する温度センサ取付方法に関す
る。
TECHNICAL FIELD The present invention relates to Coriolis flow meters, and more particularly, to driving a conduit in a Coriolis flow meter at the natural frequency of the conduit to detect Coriolis forces acting on the conduit and temperature of the conduit. The present invention relates to a temperature sensor mounting method in which a temperature sensor is interposed in a conduit in a Coriolis flowmeter for determining a mass flow rate and a density of a fluid to be measured which are not affected by temperature.

【0002】[0002]

【従来技術】コリオリ流量計は、被測定流体が流通する
導管の離間した2点を支持点とし、該支持点まわりに駆
動したとき、前記導管に作用するコリオリの力から質量
流量を検知する流量計である。典型的なコリオリ流量計
は、流体の流通する直管又は湾曲管等の振動管に支持点
を設け、該支持点まわりに角速度ωの振動を与えたとき
に流体に作用するコリオリの力が質量流量mに比例する
ことを利用する質量流量計である。前記振動管は直管の
場合は一つの区間を挾んだ2点で支持されるが、湾曲管
の場合は、該湾曲管を外部配管に介装される支持管内に
流れを遮断する支切板を設け、該支切板を挾んで開口す
るように固着支持される。前記湾曲管の支持管への取付
は支持管への固着点を結ぶ線の方向を第1軸とし、該第
1軸に直交する軸を第2軸とした場合、湾曲管は第2軸
に軸対称に配設される。前記湾曲管は第1軸まわりに電
磁石等の駆動手段により一定振幅の正弦状に振動するよ
うに駆動され、その結果、第1軸のまわりにコリオリの
力が発生する。該コリオリの力は湾曲管の第2軸に関す
る対称位置において、湾曲管の静止平面を湾曲管の両腕
が通過する時間差として計測され、該時間差は通常電磁
手段により正弦信号に変換後、両腕で検出された正弦信
号の位相差を求めて、該位相差に比例した質量流量信号
に変換出力される。
2. Description of the Related Art A Coriolis flowmeter has a support point at two separated points of a conduit through which a fluid to be measured flows, and when driven around the support point, detects a mass flow rate from a Coriolis force acting on the conduit. It is total. In a typical Coriolis flowmeter, a support point is provided on a vibrating tube such as a straight tube or a curved tube through which a fluid flows, and when a vibration at an angular velocity ω is given around the support point, the Coriolis force acting on the fluid is a mass. This is a mass flow meter utilizing the fact that it is proportional to the flow rate m. In the case of a straight pipe, the vibrating pipe is supported at two points sandwiching one section, but in the case of a curved pipe, the curved pipe is cut off into a support pipe interposed in an external pipe. A plate is provided and fixedly supported so as to open with the partition plate interposed therebetween. When the bending tube is attached to the support tube, the direction of a line connecting the fixing points to the support tube is defined as a first axis, and the axis perpendicular to the first axis is defined as a second axis. They are arranged axisymmetrically. The bending tube is driven by a driving means such as an electromagnet so as to vibrate sinusoidally with a constant amplitude around the first axis, and as a result, Coriolis force is generated around the first axis. The Coriolis force is measured as a time difference between the two arms of the bending tube passing through the stationary plane of the bending tube at a symmetric position with respect to the second axis of the bending tube. The phase difference of the detected sine signal is obtained, and the sine signal is converted and output as a mass flow rate signal proportional to the phase difference.

【0003】上述のコリオリ流量計は、湾曲管の静止平
面を湾曲管の両腕が通過する時間差として計測され、こ
の時間差測定に基づいて質量流量を求められる。これ
は、湾曲管に作用する第2軸まわりのコリオリの力によ
るモーメントと前記湾曲管の弾性に基づく反発力とが等
しいとした等価式から湾曲管のねじれ角を求め、このね
じれ角が小さいとき、質量流量計が時間差に比例する量
として検知されるという原理に基づくものである。
In the above-mentioned Coriolis flowmeter, the time difference between the two arms of the curved tube passing through the stationary plane of the curved tube is measured, and the mass flow rate is obtained based on the time difference measurement. This is because the torsion angle of the bending tube is obtained from an equivalent equation that assumes that the moment due to the Coriolis force around the second axis acting on the bending tube is equal to the repulsion force based on the elasticity of the bending tube. , The mass flow meter is detected as a quantity proportional to the time difference.

【0004】また、被測定流体の密度は、湾曲管の固有
振動数は該湾曲管のばね定数と該湾曲管の質量および湾
曲管内に含まれる被測定流体の質量の和の比の平方根に
比例するが、湾曲管のばね定数および質量は既知量であ
るから、湾曲管の固有振動数を計測して密度を算出され
る。
The density of the fluid to be measured is such that the natural frequency of the curved tube is proportional to the square root of the ratio of the spring constant of the curved tube to the mass of the curved tube and the mass of the fluid to be measured contained in the curved tube. However, since the spring constant and the mass of the bending tube are known amounts, the natural frequency of the bending tube is measured to calculate the density.

【0005】上述のごとく、質量流量計測および密度計
測においては、湾曲管のヤング率が一定であるときは正
しい値の質量流量および密度が求められるが、湾曲管材
のヤング率は温度に応じて変化する。このため、湾曲管
の管壁面に白金線等の温度センサを固着し、該湾曲管の
温度を計測している。該温度センサの測定温度範囲は被
測定流体の温度範囲に応じて定められるが、被測定流体
の温度範囲は200℃に及ぶことがある。この温度を安
定して測定する温度センサは、白金抵抗素子をセラミッ
クス等の高絶縁無機材基板間に挟持したサンドイッチ構
造のものが用いられ、該温度センサは湾曲管の管壁面に
ガラス繊維からなるテープを捲回することにより圧接さ
せて固着されるが、温度センサと湾曲管との間における
密着性が悪く、接合面に温度勾配を生ずるので充分満足
される精度の温度測定はできなかった。
As described above, in the mass flow rate measurement and the density measurement, when the Young's modulus of the curved tube is constant, the correct values of the mass flow rate and the density are obtained, but the Young's modulus of the curved tube material changes according to the temperature. I do. For this reason, a temperature sensor such as a platinum wire is fixed to the wall surface of the curved tube to measure the temperature of the curved tube. The measurement temperature range of the temperature sensor is determined according to the temperature range of the fluid to be measured, but the temperature range of the fluid to be measured may reach 200 ° C. A temperature sensor that stably measures this temperature has a sandwich structure in which a platinum resistance element is sandwiched between highly insulating inorganic material substrates such as ceramics, and the temperature sensor is made of glass fiber on the wall surface of a curved tube. The tape is pressed and fixed by being wound, but the adhesion between the temperature sensor and the curved tube is poor, and a temperature gradient is generated at the joint surface, so that it was not possible to measure the temperature with a sufficiently satisfactory accuracy.

【0006】[0006]

【目的】本考案は、上述の問題点に鑑みてなされたもの
で、湾曲管の温度を忠実に検知することを可能とする温
度センサの湾曲管への固着方法により、被測定流体の温
度が高温又は低温の場合でも正確な質量流量および密度
を計測できる質量流量計を提供することを目的としてな
されたものである。
SUMMARY OF THE INVENTION The present invention has been made in view of the above-described problems, and a method of fixing a temperature sensor to a curved tube, which enables the temperature of the curved tube to be faithfully detected, allows the temperature of the fluid to be measured to be reduced. It is an object of the present invention to provide a mass flow meter capable of accurately measuring a mass flow rate and a density even at a high temperature or a low temperature.

【0007】[0007]

【構成】本考案は、上記目的を達成するために、被測定
流体が流通する導管と、該導管における離間した2点を
支持する支持手段と、前記導管の支持点まわりに該導管
の固有振動数で駆動する駆動手段と、該駆動手段の駆動
により前記導管に作用するコリオリの力を検知するセン
サと、前記導管に介装され該導管の温度を検知する温度
センサとからなり、前記センサにより検知した前記導管
の温度により該導管のヤング率を温度補正し、コリオリ
の力および前記固有振動数より質量流量および密度を求
める質量流量計において、前記導管の外壁面に温度セン
サを固着後、該温度センサの非固着面と前記導管とを熱
良導性金属テープで捲回したことを特徴としたものであ
る。以下、本考案の実施例に基づいて説明する。
In order to achieve the above object, the present invention provides a conduit through which a fluid to be measured flows, support means for supporting two separated points in the conduit, and natural vibration of the conduit around a support point of the conduit. And a temperature sensor for detecting the Coriolis force acting on the conduit by driving the driver, and a temperature sensor interposed in the conduit to detect the temperature of the conduit. After correcting the Young's modulus of the conduit by the detected temperature of the conduit and obtaining a mass flow rate and a density from the Coriolis force and the natural frequency, a temperature sensor is fixed to an outer wall surface of the conduit. The non-fixed surface of the temperature sensor and the conduit are wound with a thermally conductive metal tape. Hereinafter, an embodiment of the present invention will be described.

【0008】図1は、本考案の質量流量計における一実
施例を説明するための図で、図中、1は支持管、2はフ
ランジ、3は支持板、4は電線取出口、5は基板、5a
は電線孔、6は湾曲管、7は押え板、8は駆動部、9は
コリオリセンサ、10は温度センサ、11はアルミニウ
ムテープ、12はリード線、13はリード線押えテープ
である。
FIG. 1 is a view for explaining an embodiment of the mass flow meter of the present invention. In the figure, 1 is a support tube, 2 is a flange, 3 is a support plate, 4 is a wire outlet, and 5 is an electric wire outlet. Substrate, 5a
Is an electric wire hole, 6 is a curved tube, 7 is a holding plate, 8 is a drive unit, 9 is a Coriolis sensor, 10 is a temperature sensor, 11 is an aluminum tape, 12 is a lead wire, and 13 is a lead wire holding tape.

【0009】図示において、支持管1は、被測流体の流
通する配管(図示せず)に介装するためのフランジ2を
有する管体で、内部に支切板(図示せず)が設けられて
いる。湾曲管6,6はU字管状の中空管で互いに平行な
面となるように押え板7,7に保持され支持管1内に支
切板を挾んで開口し固着される。湾曲管6,6は支切板
を挟んで支持管1に開口するので支持管1の一方のフラ
ンジ2よりに流入する流体は湾曲管6,6に均等に分流
されて他方のフランジ2より流出する。駆動部8は湾曲
管6,6の先端部に各々固着された駆動コイルとプラン
ジャとからなり、湾曲管6,6は軸X−X廻りに近接離
間するような音叉状振動すなわち共振周波数で駆動され
る。コリオリセンサ9,9は湾曲管6,6の両腕の対向
する位置に検出コイルと磁石とを一対として設けられた
センサで、軸Y−Yまわりに発生するコリオリの力を、
湾曲管9,9が静止状態で形成する基準面を該湾曲管
9,9が通過する正弦波形の位相差(時間差)として検
知するためのものである。
In the drawing, a support pipe 1 is a pipe having a flange 2 for interposing a pipe (not shown) through which a fluid to be measured flows, and has a partition plate (not shown) provided therein. ing. The curved tubes 6 and 6 are U-shaped tubular hollow tubes which are held by pressing plates 7 and 7 so as to be parallel to each other and are opened and fixed in the support tube 1 with a partition plate interposed therebetween. Since the curved pipes 6 and 6 open to the support pipe 1 with the partition plate interposed therebetween, the fluid flowing into one of the flanges 2 of the support pipe 1 is equally divided into the curved pipes 6 and 6 and flows out of the other flange 2. I do. The drive section 8 is composed of a drive coil and a plunger fixed to the distal ends of the bending tubes 6 and 6, respectively, and the bending tubes 6 and 6 are driven by a tuning fork-like vibration, that is, a resonance frequency such that the bending tubes 6 approach and separate about the axis XX. Is done. The Coriolis sensors 9, 9 are sensors provided with a pair of a detection coil and a magnet at a position where both arms of the bending tubes 6, 6 oppose each other.
This is for detecting a reference plane formed by the bending tubes 9 and 9 in a stationary state as a phase difference (time difference) of a sine waveform passing through the bending tubes 9 and 9.

【0010】温度センサ10は、白金抵抗線または白金
抵抗箔をセラミックス等の対熱性絶縁基板で挟持してサ
ンドイッチ状にしてリード線を設けたものである。図2
は図1のA部を拡大した図、更に図3は図2の矢印Z方
向からみた図であり、図中、10aは温度センサのリー
ド線で、図1と同じ作用をする部分には等しい符号を付
している。
The temperature sensor 10 is formed by sandwiching a platinum resistance wire or a platinum resistance foil between heat-resistant insulating substrates such as ceramics, and providing a lead wire in a sandwich shape. FIG.
1 is an enlarged view of a portion A in FIG. 1, and FIG. 3 is a view seen from the direction of arrow Z in FIG. 2. In the drawing, reference numeral 10a denotes a lead wire of a temperature sensor, which is equivalent to a portion having the same function as FIG. Signs are attached.

【0011】図示において、押え板7と基板5との区間
において、温度センサ10を湾曲管6の管壁面に密接す
るように、該温度センサ10の非接触面と管壁面とに熱
良導性の、例えばアルミニウム箔テープを捲回して固着
したものである。該温度センサ10のリード線10aは
リード線12に接続され、駆動部8およびコリオリセン
サ9のリード線と共に基板5上にテープ13により係止
される。係止されたリード線12は電線孔5aを通って
電線取出口4より外部のコリオリ流量計変換器(図示せ
ず)に接続される。
In the drawing, in a section between the holding plate 7 and the substrate 5, the non-contact surface of the temperature sensor 10 and the heat conductive property are provided so as to be in close contact with the wall surface of the curved tube 6. For example, an aluminum foil tape is wound and fixed. The lead wire 10 a of the temperature sensor 10 is connected to the lead wire 12, and is locked on the substrate 5 together with the lead wire of the drive unit 8 and the Coriolis sensor 9 by the tape 13. The locked lead wire 12 is connected to an external Coriolis flowmeter converter (not shown) from the wire outlet 4 through the wire hole 5a.

【0012】上述の如く、熱良導性の箔より温度センサ
10を湾曲管6壁面に圧接固着することにより、該湾曲
管6の熱は温度センサ10へ急速に伝導され、温度セン
サ10の内外面より均一に加熱されるので、温度センサ
10は正確に湾曲管6の温度を指示する。実験によれ
ば、流体温度が200℃のとき、湾曲管6と温度センサ
10との温度差は従来は±3℃の変化があったのに対
し、本考案では±0.5℃以下であり、被測定流体の質
量流量および温度影響を大きく受ける密度計測において
も充分満足する誤差値であった。なお、アルミニウムテ
ープ11は、アルミニウムに限らず銅テープ又はアルミ
ニウム箔、銅箔その他熱良導性の薄板であればよい。ま
た、湾曲管は単なる直管であり、所定区間で支持された
導管で、駆動手段,検出手段も図1と等価なものであ
る。コリオリ流量計であれば、本定案の温度センサは適
用できる。
As described above, the temperature sensor 10 is pressed and fixed to the wall surface of the bending tube 6 from the heat conductive foil, so that the heat of the bending tube 6 is rapidly transmitted to the temperature sensor 10 and the temperature sensor 10 The temperature sensor 10 accurately indicates the temperature of the curved tube 6 because the outer surface is uniformly heated. According to the experiment, when the fluid temperature is 200 ° C., the temperature difference between the curved tube 6 and the temperature sensor 10 has been changed by ± 3 ° C. in the past, but is less than ± 0.5 ° C. in the present invention. In addition, the error value was satisfactory even in the density measurement greatly affected by the mass flow rate and the temperature of the fluid to be measured. The aluminum tape 11 is not limited to aluminum, but may be a copper tape, an aluminum foil, a copper foil, or any other thin sheet having good thermal conductivity. The bending tube is a simple straight tube, a conduit supported in a predetermined section, and the driving means and the detecting means are equivalent to those in FIG. If it is a Coriolis flow meter, the temperature sensor of the present invention can be applied.

【0013】[0013]

【効果】以上の説明から明らかなように、本考案による
と、コリオリの力を発生する湾曲管の温度を温度センサ
が忠実に検知するので、被測定流体の温度が高温又は低
温の場合でもコリオリ流量計の振動管のヤング率が温度
補正されて質量流量および密度が正しく演算表示される
ので測定精度が向上する。
As is clear from the above description, according to the present invention, since the temperature sensor faithfully detects the temperature of the curved tube that generates the Coriolis force, even if the temperature of the fluid to be measured is high or low, it can be used. Since the Young's modulus of the vibrating tube of the flow meter is temperature corrected and the mass flow rate and the density are correctly calculated and displayed, the measurement accuracy is improved.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 本考案の質量流量計における一実施例を説明
するための図である。
FIG. 1 is a view for explaining one embodiment of the mass flow meter of the present invention.

【図2】 図1のA部を拡大した図である。FIG. 2 is an enlarged view of a portion A in FIG. 1;

【図3】 図2の矢印Z方向からみた図である。FIG. 3 is a view as seen from an arrow Z direction in FIG. 2;

【符号の説明】[Explanation of symbols]

1…支持管、2…フランジ、3…支持板、4…電線取出
口、5…基板、5a…電線孔、6…湾曲管、7…押え
板、8…駆動部、9…コリオリセンサ、10…温度セン
サ、11…アルミニウムテープ、12…リード線、13
…リード線押えテープ。
DESCRIPTION OF SYMBOLS 1 ... Support pipe, 2 ... Flange, 3 ... Support plate, 4 ... Wire outlet, 5 ... Board, 5a ... Wire hole, 6 ... Curved tube, 7 ... Holding plate, 8 ... Drive part, 9 ... Coriolis sensor, 10 ... temperature sensor, 11 ... aluminum tape, 12 ... lead wire, 13
... Lead wire holding tape.

Claims (1)

(57)【実用新案登録請求の範囲】(57) [Scope of request for utility model registration] 【請求項1】 被測定流体が流通する導管と、該導管に
おける離間した2点を支持する支持手段と、前記導管の
支持点まわりに該導管の固有振動数で駆動する駆動手段
と、該駆動手段の駆動により前記導管に作用するコリオ
リの力を検知するセンサと、前記導管に介装され該導管
の温度を検知する温度センサとからなり、前記センサに
より検知した前記導管の温度により該導管のヤング率を
温度補正し、コリオリの力および前記固有振動数より質
量流量および密度を求める質量流量計において、前記導
管の外壁面に温度センサを固着後、該温度センサの非固
着面と前記導管とを熱良導性金属テープで捲回したこと
を特徴とした質量流量計。
1. A conduit through which a fluid to be measured flows, supporting means for supporting two spaced apart points in the conduit, driving means for driving around a supporting point of the conduit at a natural frequency of the conduit, and driving A sensor for detecting the Coriolis force acting on the conduit by driving the means, and a temperature sensor interposed in the conduit for detecting the temperature of the conduit, and detecting the temperature of the conduit by the sensor to detect the temperature of the conduit. In a mass flow meter that corrects the Young's modulus by temperature and obtains a mass flow rate and a density from the Coriolis force and the natural frequency, after fixing a temperature sensor to an outer wall surface of the conduit, a non-fixed surface of the temperature sensor and the conduit are connected to each other. The mass flowmeter was characterized by being wound with a heat conductive metal tape.
JP7104191U 1991-08-08 1991-08-08 Mass flow meter Expired - Lifetime JP2538030Y2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7104191U JP2538030Y2 (en) 1991-08-08 1991-08-08 Mass flow meter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7104191U JP2538030Y2 (en) 1991-08-08 1991-08-08 Mass flow meter

Publications (2)

Publication Number Publication Date
JPH0514843U JPH0514843U (en) 1993-02-26
JP2538030Y2 true JP2538030Y2 (en) 1997-06-04

Family

ID=13449045

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7104191U Expired - Lifetime JP2538030Y2 (en) 1991-08-08 1991-08-08 Mass flow meter

Country Status (1)

Country Link
JP (1) JP2538030Y2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009051588A1 (en) * 2007-10-15 2009-04-23 Micro Motion, Inc. Vibratory flow meter and method for determining a fluid temperature of a flow material

Also Published As

Publication number Publication date
JPH0514843U (en) 1993-02-26

Similar Documents

Publication Publication Date Title
US10794744B2 (en) Flowmeter sensor with interchangeable flow path and related method
JP4469337B2 (en) Coriolis flow meter diagnostic device and diagnostic method
US5463899A (en) Simultaneous measurement of gas thermal conductivity and mass flow
US6711958B2 (en) Coriolis mass flow rate/density/viscoy sensor with two bent measuring tubes
JP3431923B2 (en) Coriolis flow meter with axially flexible case end
EP1429119A1 (en) Arch-shaped tube type coriolis meter and method of determining shape of the coriolis meter
US7424376B2 (en) Precise pressure measurement by vibrating an oval conduit along different cross-sectional axes
JPH10148554A (en) Flowmeter
JP2538030Y2 (en) Mass flow meter
US6532828B1 (en) Device for temperature compensation in an acoustic flow meter
JP2022180605A (en) Coil transducer for elevated temperature
JPH1130543A (en) Coriolis mass flowmeter
EP1409968A1 (en) Device and method for measuring mass flow of a non-solid medium
JPH08338749A (en) Coriolis flowmeter
JPH0438261Y2 (en)
US8210054B2 (en) Method for installing and operating a mass flowmeter and mass flowmeter
Hsieh et al. Pyroelectric anemometry: vector and swirl measurements
US20230349743A1 (en) Method, system, and electronics for correcting a coriolis flow meter measurement for temperature effects
RU2324150C2 (en) Test unit and diagnosis method for coriolis flow meter
JP3582718B2 (en) Thermal flow meter
JP3873777B2 (en) Thermomechanical analyzer
JP3757559B2 (en) Coriolis mass flow meter
JP2003254807A (en) Thermal sensor, installing method thereof, and mass flowmeter
JPH06129889A (en) Oscillation type measuring apparatus
JPH0299831A (en) Method and device for controlling flow rate in tube

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term