JP2537725B2 - Control method of injection molding machine - Google Patents

Control method of injection molding machine

Info

Publication number
JP2537725B2
JP2537725B2 JP3355863A JP35586391A JP2537725B2 JP 2537725 B2 JP2537725 B2 JP 2537725B2 JP 3355863 A JP3355863 A JP 3355863A JP 35586391 A JP35586391 A JP 35586391A JP 2537725 B2 JP2537725 B2 JP 2537725B2
Authority
JP
Japan
Prior art keywords
pressure
circuit
oil
meter
injection
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP3355863A
Other languages
Japanese (ja)
Other versions
JPH0732438A (en
Inventor
伸之 中村
淳 小出
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissei Plastic Industrial Co Ltd
Original Assignee
Nissei Plastic Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissei Plastic Industrial Co Ltd filed Critical Nissei Plastic Industrial Co Ltd
Priority to JP3355863A priority Critical patent/JP2537725B2/en
Publication of JPH0732438A publication Critical patent/JPH0732438A/en
Application granted granted Critical
Publication of JP2537725B2 publication Critical patent/JP2537725B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は油圧回路により多段式の
油圧シリンダを駆動制御する射出成形機の制御方法に関
する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for controlling an injection molding machine in which a hydraulic circuit drives and controls a multistage hydraulic cylinder.

【0002】[0002]

【従来技術及び課題】従来、多段式の油圧シリンダを備
えた射出成形機は、実開平2−146017号公報及び
特公昭59−15295号公報で知られており、前者の
射出成形機はスクリュの軸心に対して対称となる位置に
並列に配置した対をなす単一油圧シリンダを、スクリュ
に複数対連結したものであり、また、後者の射出成形機
は段階的に径寸法の異なる数種のラムをその径寸法の大
きな順に連続させ、このラムとシリンダにより構成した
作用室を円筒状に形成するとともに、各作用室にそれぞ
れ油の流入管を接続して方向制御弁に導き、それぞれの
作用室に同時に、或いは各作用室に時間差を設けて油を
圧入し、油圧シリンダを作動させるようにしたものであ
る。
2. Description of the Related Art Conventionally, an injection molding machine equipped with a multi-stage hydraulic cylinder is known from Japanese Utility Model Laid-Open No. 2-146017 and Japanese Patent Publication No. 59-15295, and the former injection molding machine is a screw type. Multiple pairs of single hydraulic cylinders, which are arranged in parallel at positions symmetrical with respect to the axis, are connected to the screw.The latter injection molding machine has several different diameters in stages. The rams are connected in the order of increasing diameter, and the working chamber composed of this ram and the cylinder is formed into a cylindrical shape.At the same time, an oil inflow pipe is connected to each working chamber to guide it to the directional control valve. Oil is press-fitted into the working chambers at the same time or with a time difference between the working chambers to operate the hydraulic cylinders.

【0003】ところで、通常、金型キャビティに樹脂を
充填する射出工程では、スクリュに対する速度制御を行
っており、速度の大きさは射出圧力の可変に基づいて制
御される。一方、金型キャビティ内に流入した樹脂は外
側(スキン層)ほど早く硬化が進行し、金型キャビティ
内における樹脂の流動状態は一定とはならない。このた
め、射出圧力の大きさは樹脂の流動状態に応じて変動す
ることになり、成形品質も大きく左右される。即ち、樹
脂の流動状態に応じて樹脂に対する残留応力が変化し、
反りや歪等の成形不良の発生原因となる。
By the way, usually, in the injection process of filling the resin into the mold cavity, the speed of the screw is controlled, and the magnitude of the speed is controlled based on the variable injection pressure. On the other hand, the resin that has flowed into the mold cavity is cured more rapidly toward the outside (skin layer), and the resin flow state in the mold cavity is not constant. For this reason, the magnitude of the injection pressure varies depending on the flow state of the resin, and the molding quality is greatly influenced. That is, the residual stress on the resin changes according to the flow state of the resin,
This causes molding defects such as warpage and distortion.

【0004】しかし、多段式の油圧シリンダを採用した
従来の射出成形機における制御方法は圧力変化がステッ
プ状となるため、高精度かつ安定な圧力制御を行うこと
ができず、成形品質を高めるにも限界があった。
However, in the conventional control method in the injection molding machine which employs the multi-stage hydraulic cylinder, the pressure change is stepped, so that the pressure control cannot be performed with high accuracy and stability, and the molding quality is improved. There was a limit.

【0005】本発明はこのような従来技術に存在する課
題を解決したものであり、多段式の油圧シリンダを用い
た場合でも、高精度かつ安定した圧力制御を行って成形
品質の向上を図れることができるとともに、圧力制御を
メータイン回路とメータアウト回路で分担したため、油
圧回路全体の簡素化を図れる射出成形機の制御方法の提
供を目的とする。
The present invention has solved the problems existing in the prior art as described above. Even when a multi-stage hydraulic cylinder is used, it is possible to perform pressure control with high accuracy and stability to improve molding quality. In addition, since the pressure control is shared by the meter-in circuit and the meter-out circuit, it is an object of the present invention to provide a control method for an injection molding machine that can simplify the entire hydraulic circuit.

【0006】[0006]

【課題を解決するための手段】本発明に係る射出成形機
の制御方法は、油圧回路10により多段式の油圧シリン
ダ2を駆動制御するに際し、油圧回路10のメータイン
回路12を構成する切換弁V1、V2、V3、V4、V
5、V6、V7を制御することにより、多段式の油圧シ
リンダ2における複数の油室Ca、Cb、Cc、Cdの
一又は二以上を選択して圧油を供給し、射出圧力Pの大
きさを段階的に切換えるとともに、油圧シリンダ2から
の戻り油の圧力を可変する油圧回路10のメータアウト
回路11を構成する圧力制御弁11p、11mを制御す
ることにより、メータイン回路12で切換えた各射出圧
力Pの大きさを連続的に可変して射出圧力全体の直線性
制御を行うようにしたことを特徴とする。
A control method for an injection molding machine according to the present invention is a switching valve V1 forming a meter-in circuit 12 of a hydraulic circuit 10 when a hydraulic circuit 10 drives and controls a multi-stage hydraulic cylinder 2. , V2, V3, V4, V
By controlling 5, V6, V7, one or more of the plurality of oil chambers Ca, Cb, Cc, Cd in the multistage hydraulic cylinder 2 is selected to supply the pressure oil, and the magnitude of the injection pressure P is increased. From the hydraulic cylinder 2
The return oil pressure control valve constituting the meter-out circuit 11 of a hydraulic circuit 10 for varying the pressure of 11p, by controlling the 11m, continuously variable size of each injection pressure P is switched by the meter circuit 12 Linearity of injection pressure
It is characterized in that control is performed .

【0007】[0007]

【作用】本発明に係る射出成形機の制御方法によれば、
油圧回路10のメータイン回路12側では、切換弁V
1、V2、V3、V4、V5、V6、V7を制御するこ
とにより、多段式の油圧シリンダ2における複数の油室
Ca、Cb、Cc、Cdの一又は二以上を選択して圧油
を供給でき、これにより、射出圧力P、即ち、スクリュ
に対する出力F〔kg〕の大きさを段階的に切換えるこ
とができる。
According to the control method of the injection molding machine of the present invention,
On the meter-in circuit 12 side of the hydraulic circuit 10, the switching valve V
By controlling 1, V2, V3, V4, V5, V6, V7, one or more of the plurality of oil chambers Ca, Cb, Cc, Cd in the multi-stage hydraulic cylinder 2 is selected to supply the pressure oil. Therefore, the injection pressure P, that is, the magnitude of the output F [kg] with respect to the screw can be changed stepwise.

【0008】例えば、受圧面積Sa〔cm2〕を有する
第一の油室Ca、受圧面積Sb〔cm2〕を有する第二
の油室Cb、受圧面積Sc〔cm2〕を有する第三の油
室Cc、受圧面積Sd〔cm2〕を有する逆方向の圧力
を発生する第四の油室Cdが存在し、かつこれらの関係
をSd<Sa<Sb<Scに構成するとともに、受圧面
積Sa〔cm2〕と油圧回路10の油圧Pi〔kg/c
2〕の積をFa〔kg〕、受圧面積Sb〔cm2〕と油
圧Pi〔kg/cm2〕の積をFb〔kg〕、受圧面積
Sc〔cm2〕と油圧Pi〔kg/cm2〕の積をFc
〔kg〕、受圧面積Sd〔cm2〕と油圧Pi〔kg/
cm2〕の積をFd〔kg〕とすれば、スクリュ3に対
する出力として、F1=Fa−Fd、F2=Fa、F3
=Fb−Fd、F4=Fb、F5=Fa+Fb−Fd、
F6=Fa+Fb、F7=Fc−Fd、F8=Fc、F
9=Fa+Fc−Fd、F10=Fa+Fc、F11=
Fb+Fc−Fd、F12=Fb+Fc、F13=Fa
+Fb+Fc−Fd、F14=Fa+Fb+Fcの十四
通りの大きさ、換言すれば異なる十四通りの射出圧力を
選択できる。
For example, a first oil chamber Ca having a pressure receiving area Sa [cm 2 ], a second oil chamber Cb having a pressure receiving area Sb [cm 2 ] and a third oil having a pressure receiving area Sc [cm 2 ]. There is a chamber Cc and a fourth oil chamber Cd that has a pressure receiving area Sd [cm 2 ] and generates a reverse pressure, and the relationship between them is Sd <Sa <Sb <Sc, and the pressure receiving area Sa [ cm 2 ] and the hydraulic pressure Pi of the hydraulic circuit 10 [kg / c
m 2 ] product is Fa [kg], pressure receiving area Sb [cm 2 ] and hydraulic pressure Pi [kg / cm 2 ] product is Fb [kg], pressure receiving area Sc [cm 2 ] and hydraulic pressure Pi [kg / cm 2] ] Of Fc
[Kg], pressure receiving area Sd [cm 2 ] and hydraulic pressure Pi [kg /
If the product of cm 2 ] is Fd [kg], the output to the screw 3 is F1 = Fa−Fd, F2 = Fa, F3.
= Fb-Fd, F4 = Fb, F5 = Fa + Fb-Fd,
F6 = Fa + Fb, F7 = Fc−Fd, F8 = Fc, F
9 = Fa + Fc−Fd, F10 = Fa + Fc, F11 =
Fb + Fc-Fd, F12 = Fb + Fc, F13 = Fa
It is possible to select fourteen different sizes of + Fb + Fc-Fd and F14 = Fa + Fb + Fc, in other words, fourteen different injection pressures.

【0009】一方、油圧回路10のメータアウト回路1
1側では、圧力制御弁11p、11mを制御することに
より、戻り油の圧力を制御でき、これにより、メータイ
ン回路12で切換えた各出力F1…(射出圧力P)の大
きさを連続的に可変できる。即ち、各出力F1…(射出
圧力P)において背圧制御が可能となり、メータイン回
路12側における圧力を一定にしても各出力F1…(射
出圧力P)に対して連続した直線性制御を行うことがで
きる。
On the other hand, the meter-out circuit 1 of the hydraulic circuit 10
On the 1st side, the pressure of the return oil can be controlled by controlling the pressure control valves 11p and 11m, whereby the output F1 ... (Injection pressure P) switched by the meter-in circuit 12 can be continuously varied in magnitude. it can. That is, back pressure control is possible at each output F1 ... (Injection pressure P), and continuous linearity control is performed for each output F1 ... (Injection pressure P) even if the pressure on the meter-in circuit 12 side is constant. You can

【0010】[0010]

【実施例】次に、本発明に係る好適な実施例を挙げ、図
面に基づき詳細に説明する。
Next, preferred embodiments according to the present invention will be described in detail with reference to the drawings.

【0011】まず、本発明に係る制御方法を実施できる
射出成形機の構成について、図1を参照して説明する。
First, the structure of an injection molding machine capable of implementing the control method according to the present invention will be described with reference to FIG.

【0012】図中、符号1は射出成形機であり、特に、
射出装置の一部を示す。3はスクリュであり、その先端
側は不図示の加熱筒に挿通するとともに、スクリュ3の
後端はスクリュ駆動機構Eにより支持する。スクリュ駆
動機構Eは筒状のケーシングブロック21を備え、この
ケーシングブロック21の後端はオイルモータ支持ブロ
ック22により閉塞する。なお、ケーシングブロック2
1の後部は多段式の油圧シリンダ2を構成する。
In the figure, reference numeral 1 is an injection molding machine, and in particular,
A part of an injection device is shown. Reference numeral 3 denotes a screw, the front end side of which is inserted into a heating cylinder (not shown), and the rear end of the screw 3 is supported by a screw drive mechanism E. The screw drive mechanism E includes a tubular casing block 21, and the rear end of the casing block 21 is closed by an oil motor support block 22. The casing block 2
The rear part of 1 constitutes a multistage hydraulic cylinder 2.

【0013】8は外シリンダ部であり、この外シリンダ
部8の内方には隙間G2を介して内シリンダ部9を同軸
上に配する。内シリンダ部9の後端はオイルモータ支持
ブロック22に一体形成し、これにより、外シリンダ部
8の後部8nと内シリンダ部9の後部9nは結合したシ
リンダブロック7として構成される。
Reference numeral 8 denotes an outer cylinder portion, and an inner cylinder portion 9 is coaxially arranged inside the outer cylinder portion 8 via a gap G2. The rear end of the inner cylinder portion 9 is integrally formed with the oil motor support block 22, so that the rear portion 8n of the outer cylinder portion 8 and the rear portion 9n of the inner cylinder portion 9 are configured as a coupled cylinder block 7.

【0014】一方、6は筒状の外ピストン部であり、こ
の外ピストン部6の内方には隙間G1を介して内ピスト
ン部5を同軸上に配する。外ピストン部6の前部6tは
内ピストン部5の前部5tに対してベアリング23、2
4を介して回動自在に結合し、これにより、ピストンブ
ロック4を構成する。そして、内シリンダ部9は隙間G
1に挿入するとともに、外ピストン部6は隙間G2に挿
入する。
On the other hand, 6 is a cylindrical outer piston portion, and the inner piston portion 5 is coaxially arranged inside the outer piston portion 6 with a gap G1. The front part 6t of the outer piston part 6 has bearings 23, 2 with respect to the front part 5t of the inner piston part 5.
It is rotatably coupled via 4 and thereby constitutes the piston block 4. The inner cylinder portion 9 has a gap G.
1 and the outer piston portion 6 is inserted into the gap G2.

【0015】以上の構成により、内ピストン部5の後方
には第一の油室Caが、内シリンダ部9の前方には第二
の油室Cbが、外ピストン部6の後方には第三の油室C
cが、外ピストン部本体6uの前方における外ピストン
部6と外シリンダ部8間には逆方向の圧力を作用させる
第四の油室Cdがそれぞれ設けられる。この場合、油室
Caの受圧面積Sa、油室Cbの受圧面積Sb、油室C
cの受圧面積Sc及び油室Cdの受圧面積Sdの大きさ
は、Sd<Sa<Sb<Scの関係であり、望ましく
は、Sa:Sd=2:1、Sb:Sd=4:1、Sc:
Sd=8:1となるように選定する。
With the above construction, the first oil chamber Ca is located behind the inner piston part 5, the second oil chamber Cb is located in front of the inner cylinder part 9, and the third oil chamber Cb is located behind the outer piston part 6. Oil chamber C
A fourth oil chamber Cd for applying a pressure in the opposite direction is provided between the outer piston portion 6 and the outer cylinder portion 8 in front of the outer piston portion main body 6u. In this case, the pressure receiving area Sa of the oil chamber Ca, the pressure receiving area Sb of the oil chamber Cb, the oil chamber C
The pressure receiving area Sc of c and the pressure receiving area Sd of the oil chamber Cd have a relationship of Sd <Sa <Sb <Sc, and desirably Sa: Sd = 2: 1, Sb: Sd = 4: 1, Sc. :
It is selected so that Sd = 8: 1.

【0016】また、ピストンブロック4は外シリンダ部
8の前端8fから前方に突出させ、内ピストン部5の前
端5fにはスクリュ3の後端を結合する。一方、オイル
モータ支持ブロック22の後端面にはオイルモータ25
を取付けるとともに、同モータ25の回転シャフト25
sはオイルモータ支持ブロック22の中心を貫通させ、
さらに、油室Caを通して、内ピストン部5の後端5r
にスプライン機構26により結合する。
The piston block 4 projects forward from the front end 8f of the outer cylinder portion 8, and the rear end of the screw 3 is connected to the front end 5f of the inner piston portion 5. On the other hand, the oil motor 25 is provided on the rear end surface of the oil motor support block 22.
The rotation shaft 25 of the motor 25
s penetrates the center of the oil motor support block 22,
Further, the rear end 5r of the inner piston portion 5 is passed through the oil chamber Ca.
Is connected by a spline mechanism 26.

【0017】よって、射出用駆動系を構成する油圧シリ
ンダ2を作動制御すれば、スクリュ3を進退制御できる
とともに、計量用駆動系を構成するオイルモータ25を
作動制御すれば、スクリュ3を回転制御できる。
Therefore, if the hydraulic cylinder 2 constituting the injection drive system is operated and controlled, the screw 3 can be moved forward and backward, and if the oil motor 25 constituting the metering drive system is operated and controlled, the screw 3 is rotationally controlled. it can.

【0018】他方、各油室Ca、Cb、Cc及びCdに
は油圧回路10を接続する。この場合、油室Ca、C
b、Ccにはメータイン回路12を、油室Cdにはメー
タアウト回路11をそれぞれ接続する。メータイン回路
12側は、油圧ポンプ31、油タンク32、四ポート切
換弁V1、V2、V3、V4、V6、V7、三ポート切
換弁V5、リリーフ弁33、34を備えるとともに、メ
ータアウト回路11側はメインリリーフ弁(圧力制御
弁)11m、パイロットリリーフ弁(電磁比例圧力制御
弁)11pを備え、図1に示すように接続する。
On the other hand, a hydraulic circuit 10 is connected to each oil chamber Ca, Cb, Cc and Cd. In this case, oil chambers Ca, C
The meter-in circuit 12 is connected to b and Cc, and the meter-out circuit 11 is connected to the oil chamber Cd. The meter-in circuit 12 side includes a hydraulic pump 31, an oil tank 32, four-port switching valves V1, V2, V3, V4, V6, V7, a three-port switching valve V5, relief valves 33, 34, and the meter-out circuit 11 side. Is provided with a main relief valve (pressure control valve) 11m and a pilot relief valve (electromagnetic proportional pressure control valve) 11p, which are connected as shown in FIG.

【0019】また、メータアウト回路11は演算処理部
35を備え、演算処理部35の入力側には、油圧ポンプ
31の吐出ラインに接続した油圧センサ36及び設定部
37を接続するとともに、演算処理部35の出力側はア
ンプ38を介してパイロットリリーフ弁11pの制御入
力側に接続する。この場合、設定部37において射出圧
力Pを設定すれば、演算処理部35は切換弁制御指令を
出力して各切換弁V1〜V7を切換制御するとともに、
圧力制御指令を出力してメータアウト回路11のパイロ
ットリリーフ弁11pを可変制御する。
Further, the meter-out circuit 11 is provided with an arithmetic processing unit 35, and an oil pressure sensor 36 and a setting unit 37 connected to the discharge line of the hydraulic pump 31 are connected to the input side of the arithmetic processing unit 35, and the arithmetic processing is performed. The output side of the portion 35 is connected to the control input side of the pilot relief valve 11p via the amplifier 38. In this case, if the setting unit 37 sets the injection pressure P, the arithmetic processing unit 35 outputs a switching valve control command to control switching of the switching valves V1 to V7, and
A pressure control command is output to variably control the pilot relief valve 11p of the meter-out circuit 11.

【0020】次に、本発明に係る制御方法を含む射出成
形機1の全体的な動作について説明する。
Next, the overall operation of the injection molding machine 1 including the control method according to the present invention will be described.

【0021】まず、油圧回路10により、各油室Ca、
Cb、Cc、Cdの一又は二以上を選択して圧油を供給
すれば、スクリュ3に対する出力として、F1=Fa−
Fd、F2=Fa、F3=Fb−Fd、F4=Fb、F
5=Fa+Fb−Fd、F6=Fa+Fb、F7=Fc
−Fd、F8=Fc、F9=Fa+Fc−Fd、F10
=Fa+Fc、F11=Fb+Fc−Fd、F12=F
b+Fc、F13=Fa+Fb+Fc−Fd、F14=
Fa+Fb+Fcの十四通りの大きさを選択できる。こ
の場合、出力Faの大きさは油室Caの受圧面積Saと
油圧回路10の油圧Piの積(Sa×Pi)、出力Fb
の大きさは油室Cbの受圧面積Sbと油圧Piの積(S
b×Pi)、出力Fcの大きさは油室Ccの受圧面積S
cと油圧Piの積(Sc×Pi)、出力Fdの大きさは
油室Cdの受圧面積Sdと油圧Piの積(Sd×Pi)
となり、Fdは負方向に発生する。
First, by the hydraulic circuit 10, each oil chamber Ca,
If one or more of Cb, Cc and Cd are selected and pressure oil is supplied, the output to the screw 3 is F1 = Fa−
Fd, F2 = Fa, F3 = Fb−Fd, F4 = Fb, F
5 = Fa + Fb−Fd, F6 = Fa + Fb, F7 = Fc
-Fd, F8 = Fc, F9 = Fa + Fc-Fd, F10
= Fa + Fc, F11 = Fb + Fc-Fd, F12 = F
b + Fc, F13 = Fa + Fb + Fc-Fd, F14 =
Fourteen sizes of Fa + Fb + Fc can be selected. In this case, the magnitude of the output Fa is the product of the pressure receiving area Sa of the oil chamber Ca and the hydraulic pressure Pi of the hydraulic circuit 10 (Sa × Pi), and the output Fb.
Is the product of the pressure receiving area Sb of the oil chamber Cb and the oil pressure Pi (S
b × Pi), the size of the output Fc is the pressure receiving area S of the oil chamber Cc
The product of c and the oil pressure Pi (Sc × Pi), and the magnitude of the output Fd is the product of the pressure receiving area Sd of the oil chamber Cd and the oil pressure Pi (Sd × Pi).
And Fd is generated in the negative direction.

【0022】図2は各出力F1〜F14を選択するに際
して切換制御する各切換弁V1〜V7の制御マトリクス
であり、○印は各切換弁V1〜V7を図1において対応
するシンボルa側又はシンボルb側に切換えることを意
味する。一例として、出力F1を選択した場合には、切
換弁V1はシンボルa側に、切換弁V2はシンボルb側
に、切換弁V3はシンボルb側に、切換弁V4はシンボ
ルb側に、切換弁V5はシンボルb側に、切換弁V6は
シンボルa側に、切換弁V7はシンボルb側にそれぞれ
切換えられる。その他の出力モードにおいても、図2に
示す制御マトリクスに従って各切換弁V1〜V7が同様
に切換制御される。
FIG. 2 is a control matrix of the switching valves V1 to V7 that are switched and controlled when selecting the outputs F1 to F14, and the circles indicate the switching valves V1 to V7 in FIG. This means switching to the b side. As an example, when the output F1 is selected, the switching valve V1 is on the symbol a side, the switching valve V2 is on the symbol b side, the switching valve V3 is on the symbol b side, and the switching valve V4 is on the symbol b side. V5 is switched to the symbol b side, switching valve V6 is switched to the symbol a side, and switching valve V7 is switched to the symbol b side. In the other output modes, the switching valves V1 to V7 are similarly switched and controlled according to the control matrix shown in FIG.

【0023】他方、図3は縦軸を射出圧力P〔kg/c
2〕、横軸をスクリュ3に対する出力F〔kg〕とし
た特性図であり、射出圧力Pに対応する出力Fの大きさ
を示す。即ち、図2に示す制御マトリクスに従って各切
換弁V1〜V7を切換制御すれば、出力Fは図3に示す
ように段階的に変化することを表している。一例とし
て、射出圧力P6を指定すれば、出力F6を出力し、こ
の際、図2におけるF6に対応して各切換弁V1〜V7
が切換制御される。なお、射出圧力P6の大きさはF6
/Ss(Ss:加熱筒断面積)となり、他の射出圧力P
1…とともに、予め設定部37において指定又は選択可
能に設定されている。
On the other hand, in FIG. 3, the vertical axis represents the injection pressure P [kg / c
m 2 ], a horizontal axis is an output F [kg] with respect to the screw 3, and is a characteristic diagram showing the magnitude of the output F corresponding to the injection pressure P. That is, if the switching valves V1 to V7 are switch-controlled in accordance with the control matrix shown in FIG. 2, the output F changes stepwise as shown in FIG. As an example, if the injection pressure P6 is specified, the output F6 is output, and at this time, the switching valves V1 to V7 corresponding to F6 in FIG.
Are switched and controlled. The magnitude of the injection pressure P6 is F6.
/ Ss (Ss: heating cylinder cross-sectional area) and other injection pressure P
1 and the like are set in advance in the setting unit 37 so as to be designated or selectable.

【0024】また、メータアウト回路11を構成するメ
インリリーフ弁11m及びパイロットリリーフ弁11p
により、戻り油の背圧制御を行えば、射出圧力Pに対し
て連続した直線性制御を行うことができる。図3におけ
る直線状に表した一次関数特性はこのような制御を行う
場合である。即ち、一例として、図3に示す射出圧力P
xを指定すれば、演算処理部35からは切換弁制御指令
が出力し、図2におけるF6に対応して各切換弁V1〜
V7が切換制御される。一方、演算処理部35は図3に
示す一次関数特性に従って、メータアウト回路11にお
ける戻り油の背圧を演算し、対応する圧力制御指令をア
ンプ37を介してパイロットリリーフ弁11pに付与
し、同リリーフ弁11Pを可変制御する。これにより、
スクリュ3に対する出力の大きさはFxとなる。このよ
うに、選択した各出力Fにおいて背圧制御を併用するた
め、射出圧力Pに対する連続した直線性制御を容易に行
うことができる。
The main relief valve 11m and the pilot relief valve 11p which constitute the meter-out circuit 11 are also provided.
Thus, by controlling the back pressure of the return oil, it is possible to perform continuous linearity control with respect to the injection pressure P. The linear function characteristic expressed in a straight line in FIG. 3 is a case where such control is performed. That is, as an example, the injection pressure P shown in FIG.
If x is designated, the switching valve control command is output from the arithmetic processing unit 35, and the switching valves V1 to V1 corresponding to F6 in FIG.
V7 is switch-controlled. On the other hand, the arithmetic processing unit 35 calculates the back pressure of the return oil in the meter-out circuit 11 according to the linear function characteristic shown in FIG. 3, and gives a corresponding pressure control command to the pilot relief valve 11p via the amplifier 37. The relief valve 11P is variably controlled. This allows
The magnitude of the output to the screw 3 is Fx. Thus, since the back pressure control is also used for each selected output F, continuous linearity control with respect to the injection pressure P can be easily performed.

【0025】以上、実施例について詳細に説明したが、
本発明はこのような実施例に限定されるものではない。
例えば、多段式の油圧シリンダは例示に限らず、他の形
式により構成した任意の多段式の油圧シリンダに適用で
きる。その他、細部の構成、形状等において、本発明の
要旨を逸脱しない範囲で任意に変更できる。
The embodiment has been described in detail above.
The present invention is not limited to such an embodiment.
For example, the multi-stage hydraulic cylinder is not limited to the example, and can be applied to any multi-stage hydraulic cylinder configured in another form. In addition, the detailed configuration, shape, and the like can be arbitrarily changed without departing from the scope of the present invention.

【0026】[0026]

【発明の効果】このように、本発明に係る射出成形機の
制御方法は、油圧回路のメータイン回路を構成する切換
弁を制御することにより、多段式の油圧シリンダにおけ
る複数の油室の一又は二以上を選択して圧油を供給し、
射出圧力の大きさを段階的に切換えるとともに、油圧シ
リンダからの戻り油の圧力を可変する油圧回路のメータ
アウト回路を構成する圧力制御弁を制御することによ
り、メータイン回路で切換えた各射出圧力の大きさを連
続的に可変して射出圧力全体の直線性制御を行うように
したため、多段式の油圧シリンダを用いた場合でも、高
精度かつ安定した圧力制御を行って成形品質の向上を図
れるとともに、圧力制御をメータイン回路とメータアウ
ト回路で分担したため、油圧回路全体の簡素化を図れる
という顕著な効果を奏する。
As described above, the control method for the injection molding machine according to the present invention controls one or more of the plurality of oil chambers in the multi-stage hydraulic cylinder by controlling the switching valve forming the meter-in circuit of the hydraulic circuit. Select two or more to supply pressure oil,
The injection pressure can be changed stepwise and the hydraulic pressure
By controlling the pressure control valve that constitutes the meter-out circuit of the hydraulic circuit that varies the pressure of the return oil from the Linda, the magnitude of each injection pressure switched in the meter-in circuit can be continuously varied to Since linearity control is performed , even if a multi-stage hydraulic cylinder is used, high-precision and stable pressure control can be performed to improve molding quality, and pressure control is shared by the meter-in circuit and meter-out circuit. The remarkable effect that the entire hydraulic circuit can be simplified.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明に係る制御方法を実施する射出成形機の
一部断面を含む部分構成図、
FIG. 1 is a partial configuration diagram including a partial cross section of an injection molding machine that implements a control method according to the present invention;

【図2】出力に対する各切換弁の制御マトリクス図、FIG. 2 is a control matrix diagram of each switching valve with respect to output,

【図3】射出圧力に対する出力の関係を示す特性図、FIG. 3 is a characteristic diagram showing the relationship between output and injection pressure,

【符号の説明】[Explanation of symbols]

2 油圧シリンダ 10 油圧回路 11 メータアウト回路 11p 圧力制御弁 11m 圧力制御弁 12 メータイン回路 V1… 切換弁 Ca… 油室 2 hydraulic cylinder 10 hydraulic circuit 11 meter-out circuit 11p pressure control valve 11m pressure control valve 12 meter-in circuit V1 ... switching valve Ca ... oil chamber

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 油圧回路により多段式の油圧シリンダを
駆動制御する射出成形機の制御方法において、油圧回路
のメータイン回路を構成する切換弁を制御することによ
り、多段式の油圧シリンダにおける複数の油室の一又は
二以上を選択して圧油を供給し、射出圧力の大きさを段
階的に切換えるとともに、前記油圧シリンダからの戻り
油の圧力を可変する油圧回路のメータアウト回路を構成
する圧力制御弁を制御することにより、メータイン回路
で切換えた各射出圧力の大きさを連続的に可変して射出
圧力全体の直線性制御を行うことを特徴とする射出成形
機の制御方法。
1. A method for controlling an injection molding machine in which a hydraulic circuit drives and controls a multi-stage hydraulic cylinder, wherein a plurality of oils in the multi-stage hydraulic cylinder are controlled by controlling a switching valve that constitutes a meter-in circuit of the hydraulic circuit. Select one or more chambers to supply pressure oil, change the injection pressure stepwise, and return from the hydraulic cylinder.
By controlling the pressure control valve that constitutes the meter-out circuit of the hydraulic circuit that changes the oil pressure, the injection pressure switched by the meter-in circuit can be continuously changed in magnitude and injected.
A method for controlling an injection molding machine, characterized in that linearity control of the entire pressure is performed .
JP3355863A 1991-12-20 1991-12-20 Control method of injection molding machine Expired - Fee Related JP2537725B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3355863A JP2537725B2 (en) 1991-12-20 1991-12-20 Control method of injection molding machine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3355863A JP2537725B2 (en) 1991-12-20 1991-12-20 Control method of injection molding machine

Publications (2)

Publication Number Publication Date
JPH0732438A JPH0732438A (en) 1995-02-03
JP2537725B2 true JP2537725B2 (en) 1996-09-25

Family

ID=18446114

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3355863A Expired - Fee Related JP2537725B2 (en) 1991-12-20 1991-12-20 Control method of injection molding machine

Country Status (1)

Country Link
JP (1) JP2537725B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3537541B2 (en) * 1995-06-12 2004-06-14 東芝機械株式会社 Hydraulic control of injection molding machine

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6251417A (en) * 1985-08-30 1987-03-06 Hitachi Ltd Precision injection molder
JPH02147227A (en) * 1988-11-29 1990-06-06 Toshiba Mach Co Ltd Injection apparatus of injection molding machine
JPH05338Y2 (en) * 1989-05-12 1993-01-07

Also Published As

Publication number Publication date
JPH0732438A (en) 1995-02-03

Similar Documents

Publication Publication Date Title
JP3285295B2 (en) Die casting machine injection equipment
US5336462A (en) Mold-closing apparatus for injection-molding machine
US3732887A (en) Flow-pressure control valve system
JPH0631427A (en) Method and device for process control of die-cast machine
US5832805A (en) Method and apparatus for controlling speed of hydraulic cylinder
JP2537725B2 (en) Control method of injection molding machine
GB1402837A (en) Hydraulic power boost mechanism
JPH07100344B2 (en) Injection molding machine
US3908377A (en) Control system for a hydrostatic transmission
JPS56135363A (en) Master cylinder of brake
US5474733A (en) Screw driving method for injection molding machine
GB2099610A (en) A control device for the hydraulic circuit of an injection moulding machine
JPH07100343B2 (en) Injection molding machine
JPH0220842B2 (en)
JPH0818360B2 (en) Injection molding machine
JPH0716984B2 (en) Injection molding machine
US4215623A (en) Hydraulic velocity and acceleration control system
JP2652321B2 (en) Hydraulic circuit flow control device
JP3165874B2 (en) Injection pressure selection mechanism of injection molding machine
SU1624210A1 (en) Electrohydraulic booster
SU1135929A1 (en) Hydraulic servo drive
SU665123A1 (en) Hydraulic drive
RU1794780C (en) Positive-displacement steering gear of vehicle
JP2001311401A (en) Controlling method and device for hydraulic servo valve, and driving method and device for hydraulic cylinder
US3043275A (en) Device for control of fluid flow rate

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees