JP2537636B2 - Magnetic assembly and method of manufacturing the same - Google Patents

Magnetic assembly and method of manufacturing the same

Info

Publication number
JP2537636B2
JP2537636B2 JP62216269A JP21626987A JP2537636B2 JP 2537636 B2 JP2537636 B2 JP 2537636B2 JP 62216269 A JP62216269 A JP 62216269A JP 21626987 A JP21626987 A JP 21626987A JP 2537636 B2 JP2537636 B2 JP 2537636B2
Authority
JP
Japan
Prior art keywords
magnet
slot
magnetic
slots
rotor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP62216269A
Other languages
Japanese (ja)
Other versions
JPS6398108A (en
Inventor
ジェリー・ディーン・ロイド
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Emerson Electric Co
Original Assignee
Emerson Electric Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Emerson Electric Co filed Critical Emerson Electric Co
Publication of JPS6398108A publication Critical patent/JPS6398108A/en
Application granted granted Critical
Publication of JP2537636B2 publication Critical patent/JP2537636B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F7/00Magnets
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/22Rotating parts of the magnetic circuit
    • H02K1/27Rotor cores with permanent magnets
    • H02K1/2706Inner rotors
    • H02K1/272Inner rotors the magnetisation axis of the magnets being perpendicular to the rotor axis
    • H02K1/274Inner rotors the magnetisation axis of the magnets being perpendicular to the rotor axis the rotor consisting of two or more circumferentially positioned magnets
    • H02K1/2753Inner rotors the magnetisation axis of the magnets being perpendicular to the rotor axis the rotor consisting of two or more circumferentially positioned magnets the rotor consisting of magnets or groups of magnets arranged with alternating polarity
    • H02K1/276Magnets embedded in the magnetic core, e.g. interior permanent magnets [IPM]
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/12Stationary parts of the magnetic circuit
    • H02K1/17Stator cores with permanent magnets
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/22Rotating parts of the magnetic circuit
    • H02K1/27Rotor cores with permanent magnets
    • H02K1/2706Inner rotors
    • H02K1/272Inner rotors the magnetisation axis of the magnets being perpendicular to the rotor axis
    • H02K1/274Inner rotors the magnetisation axis of the magnets being perpendicular to the rotor axis the rotor consisting of two or more circumferentially positioned magnets
    • H02K1/2753Inner rotors the magnetisation axis of the magnets being perpendicular to the rotor axis the rotor consisting of two or more circumferentially positioned magnets the rotor consisting of magnets or groups of magnets arranged with alternating polarity
    • H02K1/276Magnets embedded in the magnetic core, e.g. interior permanent magnets [IPM]
    • H02K1/2766Magnets embedded in the magnetic core, e.g. interior permanent magnets [IPM] having a flux concentration effect
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K15/00Methods or apparatus specially adapted for manufacturing, assembling, maintaining or repairing of dynamo-electric machines
    • H02K15/02Methods or apparatus specially adapted for manufacturing, assembling, maintaining or repairing of dynamo-electric machines of stator or rotor bodies
    • H02K15/03Methods or apparatus specially adapted for manufacturing, assembling, maintaining or repairing of dynamo-electric machines of stator or rotor bodies having permanent magnets
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K21/00Synchronous motors having permanent magnets; Synchronous generators having permanent magnets
    • H02K21/46Motors having additional short-circuited winding for starting as an asynchronous motor
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K23/00DC commutator motors or generators having mechanical commutator; Universal AC/DC commutator motors
    • H02K23/02DC commutator motors or generators having mechanical commutator; Universal AC/DC commutator motors characterised by arrangement for exciting
    • H02K23/04DC commutator motors or generators having mechanical commutator; Universal AC/DC commutator motors characterised by arrangement for exciting having permanent magnet excitation
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K2201/00Specific aspects not provided for in the other groups of this subclass relating to the magnetic circuits
    • H02K2201/06Magnetic cores, or permanent magnets characterised by their skew
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/49002Electrical device making
    • Y10T29/49009Dynamoelectric machine
    • Y10T29/49012Rotor
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/49002Electrical device making
    • Y10T29/4902Electromagnet, transformer or inductor
    • Y10T29/49075Electromagnet, transformer or inductor including permanent magnet or core
    • Y10T29/49076From comminuted material

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Permanent Field Magnets Of Synchronous Machinery (AREA)
  • Manufacturing Cores, Coils, And Magnets (AREA)
  • Permanent Magnet Type Synchronous Machine (AREA)
  • Magnetic Treatment Devices (AREA)
  • Magnetic Resonance Imaging Apparatus (AREA)
  • Reciprocating, Oscillating Or Vibrating Motors (AREA)
  • Manufacture Of Motors, Generators (AREA)

Abstract

A rotor (85) assembly for a permanent magnet motor includes a set of laminations forming a rotor body, each lamination having a first magnet slot (97) therein. A generally rectangular permanent magnet is disposed in the magnet slot (97), the magnet slot (97) of each lamination being shaped so as to receive the rectangular permanent magnet through all the skewed laminations with a minimum air gap. A method of making an assembly such as a rotor (85) includes the steps of providing an assembly body made of ferromagnetic material defining at least one magnet slot (97) therein. The slot is at least partially filled with a mixture of magnetizable particles in a binder. The mixture is compressed and then cured to bond the magnetizable particles together in the slot (97) and the bonded part icles are then magnetized in the slot (97) to form a magnet in situ in the slot (97) without an air gap.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、電動機、スピーカ等の種々の装置に用いら
れる磁石と磁性板積層体の組合せよりなる磁性組立体に
係る。
The present invention relates to a magnetic assembly including a combination of a magnet and a magnetic plate laminated body used in various devices such as an electric motor and a speaker.

[従来の技術] 例として、同期回転式電動機の回転子組立体は、適当
な強磁性材料から構成された個々の磁性板の積層体を含
んでいる。各磁性板は、回転軸を通す中央孔と、外縁に
隣接する複数個の周縁孔と、それらの中間に形成された
磁石スロットを有する。磁性板の積層体はダイカストモ
ールドのなかに置かれ、溶融アルミニウムがこれを包囲
するように注がれ、周縁孔により形成された通路を満す
溶融アルミニウムの凝固体によって回転子の導体棒が形
成されたまた磁性板が積層体に組合された状態に組立て
られる。磁石スロット内には一般に長方形棒の形状であ
る予め形成された永久磁石が取付けられる。
PRIOR ART By way of example, a rotor assembly for a synchronous rotary electric motor includes a stack of individual magnetic plates constructed of suitable ferromagnetic materials. Each magnetic plate has a central hole through which the rotary shaft passes, a plurality of peripheral holes adjacent to the outer edge, and a magnet slot formed in the middle thereof. A stack of magnetic plates is placed in a die-cast mold, molten aluminum is poured to surround it, and a solidified body of molten aluminum fills the passage formed by the peripheral holes to form the rotor conductor rod. The assembled magnetic plates are assembled into a laminated body. A preformed permanent magnet, generally in the shape of a rectangular rod, is mounted in the magnet slot.

[発明が解決しようとする課題] これらの棒状の永久磁石は磁石スロットの中に取り付
けられ、またその中に適当に固定されなければならな
い。この場合、各磁石の製造誤差及び各磁石スロットの
穿孔誤差に拘らず全ての磁性板の磁石スロット内への磁
石の挿入が妨げられることがないようにするためには、
磁石スロットの標準寸法と磁石の標準寸法との間の差、
即ち両者間に残される隙間の大きさ、はかなり大きくさ
れていなければならない。しかしそのように磁石スロッ
トと磁石の間に大きな隙間が残されることは、積層体の
磁束密度を高める上からも又積層体に磁石を強固に取り
付ける上からも好ましくない。
[Problems to be Solved by the Invention] These rod-shaped permanent magnets must be mounted in a magnet slot and appropriately fixed therein. In this case, in order not to prevent the insertion of the magnets into the magnet slots of all the magnetic plates regardless of the manufacturing error of each magnet and the drilling error of each magnet slot,
The difference between the standard dimensions of the magnet slot and the standard dimensions of the magnet,
That is, the size of the gap left between the two must be considerably large. However, leaving such a large gap between the magnet slot and the magnet is not preferable from the standpoint of increasing the magnetic flux density of the laminated body and firmly attaching the magnet to the laminated body.

本発明は、上記の問題に鑑み、各磁性板の磁石スロッ
トにより形成された磁性板積層体の磁石スロット即ち磁
石組込み空間内に隙間を全く残すことなくを磁石を組込
むことにより、磁性板積層体の磁束密度を高め且磁性板
積層体に磁石を確実に固定することのできる磁石と磁性
板積層体の組合せよりなる磁性組立体及びその製造方法
を提供することを課題としている。
In view of the above problems, the present invention provides a magnetic plate laminate by incorporating magnets without leaving any gaps in the magnet slots of the magnetic plate laminate formed by the magnet slots of each magnetic plate, that is, in the magnet incorporating space. It is an object of the present invention to provide a magnetic assembly comprising a combination of a magnet and a magnetic plate laminated body, which can increase the magnetic flux density and can securely fix the magnet to the magnetic plate laminated body, and a manufacturing method thereof.

[課題を解決するための手段] 上記の課題は、本発明によれば、各々に磁石スロット
が形成されている磁性板を各々の磁石スロットが互いに
実質的に整合し対応する磁石スロットが形成されるよう
積み重ねた磁性板の積層体と、前記積層体の磁石スロッ
ト内に充填された強磁性材の粉末が該スロット内にて硬
化されまた磁化されてなる永久磁石片とを有する磁性組
立体、及び各々が磁石スロットを有する磁性板を各磁石
スロットが互いに実質的に整合するように積み重ねて対
応する磁石スロットが内部に形成された積層体を形成す
る過程と、前記積層体の磁石スロット内に強磁性材の粉
末を充填する過程と、前記積層体の磁石スロット内にて
前記強磁性材の粉末を圧縮し且硬化させて該強磁性材の
固形体を形成する過程と、前記積層体の磁石スロット内
にて前記強磁性材の固形体を磁化する過程とを含む磁性
組立体の製造方法によって達成される。
[Means for Solving the Problem] According to the present invention, the above-mentioned problem is that a magnetic plate having magnet slots formed therein is provided with corresponding magnet slots in which the respective magnet slots are substantially aligned with each other. A magnetic assembly having a stack of magnetic plates stacked in such a manner, and a permanent magnet piece in which powder of a ferromagnetic material filled in a magnet slot of the stack is hardened and magnetized in the slot, And a step of stacking magnetic plates each having a magnet slot so that the magnet slots are substantially aligned with each other to form a laminate having a corresponding magnet slot formed therein; Filling the ferromagnetic material powder, compressing and hardening the ferromagnetic material powder in the magnet slots of the laminate to form a solid body of the ferromagnetic material, and magnet And magnetizing the solid body of ferromagnetic material in the slot.

[発明の作用及び効果] 上記の如く磁性組立体が構成されることにより、磁性
板の積層体内に形成された磁石スロット内の空間は、個
々の磁性板に形成された磁石スロットの形成或いは寸法
に多少の違いがあっても該空間全体が強磁性材の粉末に
より完全に満たされた状態となり、かかる粉末充填剤が
硬化されまた磁化されることにより、積層体内には該積
層体を構成する磁性板のいずれとも密に接触しその間に
高い磁束伝達率を達成する永久磁石片を組込んだ磁石と
磁性板積層体の組立体が得られる。
[Operation and Effect of the Invention] By configuring the magnetic assembly as described above, the space inside the magnet slots formed in the laminated body of magnetic plates is defined by the size or size of the magnet slots formed in each magnetic plate. Even if there is some difference in the above, the entire space is completely filled with the powder of the ferromagnetic material, and the powder filler is hardened and magnetized to form the laminate in the laminate. An assembly of a magnet and a laminate of magnetic plates is obtained, which incorporates permanent magnet pieces that come into close contact with any of the magnetic plates and achieve a high magnetic flux transfer coefficient therebetween.

又、そのような磁性組立体が上記の要領にて製造され
ることにより、磁性板の積み重ねよりなる積層体は強磁
性材の粉末を磁石片に成形する成形型としても機能し、
更にまた該積層体の磁石スロット内にて成形された強磁
性材片を磁化するに当っての導磁体としても機能するの
で、上記の構成を有する磁性組立体は能率よく低価格に
て製造される。
Further, since such a magnetic assembly is manufactured in the above-mentioned manner, the laminated body formed by stacking the magnetic plates also functions as a molding die for molding the powder of the ferromagnetic material into the magnet piece,
Furthermore, since it also functions as a magnetic conductor for magnetizing the ferromagnetic material piece formed in the magnet slot of the laminated body, the magnetic assembly having the above structure is efficiently manufactured at a low price. It

前記磁性板の磁石スロットは各々閉じた孔であり、こ
れらの磁石スロットにより形成された前記積層体内の磁
石スロットはその両端のみにて開いている貫通孔として
形成されてよい。
The magnet slots of the magnetic plate are each closed holes, and the magnet slots in the stack formed by these magnet slots may be formed as through holes that are open only at both ends thereof.

或いは又、前記磁性板の磁石スロットは各々該磁性板
の周縁に開いた孔であり、該孔の開口端は該孔の内部よ
り狭い幅を有し、これらの磁石スロットにより前記積層
体内に形成された磁石スロットはその両端にて開いてい
ると共に該積層体の側壁にも開いており、該積層体内に
形成された磁石スロットの該積層体の側壁への開口部の
幅は該磁石スロットの内部の幅より小さくされていてよ
い。
Alternatively, each of the magnet slots of the magnetic plate is a hole opened in the peripheral edge of the magnetic plate, and the opening end of the hole has a width narrower than the inside of the hole, and these magnet slots form the inside of the laminated body. The magnet slots formed at both ends thereof are also open to the side wall of the laminated body, and the width of the opening of the magnet slot formed in the laminated body to the side wall of the laminated body is determined by the width of the magnet slot of the magnet slot. It may be smaller than the internal width.

[実施例] 以下、図面を参照して本発明を実施例について詳細に
説明する。いくつかの図面を通じて類似の部分には類似
の参照符号が付されている。
[Embodiments] Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings. Similar parts are provided with similar reference numerals throughout the several views.

第1図は永久磁石電動機の一例を示す。この永久磁石
電動機11は固定子15に対して回転するように適当に支え
られた回転子組立体13を含んでいる。回転子13は回転子
軸17を含んでおり、この回転子軸に一連の磁石スロット
を有する磁性板19の積層体が適当に取付けられており、
これらの磁石板積層体に各磁性板の磁石スロットにより
形成された磁石装着用空間に通常複数個(この例では4
個)の長方形永久磁石21が取付けられている。
FIG. 1 shows an example of a permanent magnet motor. The permanent magnet motor 11 includes a rotor assembly 13 suitably supported for rotation with respect to a stator 15. The rotor 13 includes a rotor shaft 17, to which a stack of magnetic plates 19 having a series of magnet slots is suitably attached,
Usually, a plurality of magnet plates (4 in this example) are provided in the magnet mounting space formed by the magnet slots of each magnetic plate in these magnet plate laminated bodies.
Individual rectangular permanent magnets 21 are attached.

積層体19の各々は一連の孔を有する。例えば、磁性板
の全ては中央孔23と、各磁性板の周縁を巡って位置する
複数個(例えば28個)の回転子かごスロット25とを有す
る。かごスロット25と中央孔23との間に、永久磁石を受
け入れるため第3図中に参照符号43を付されている永久
磁石スロットが設けられている。磁石43の間に磁気抵抗
バリヤーを形成する一対のスロット37が設けられてい
る。これらのバリヤーはダイカストプロセスの間にアル
ミニウムで満たされてよい。
Each of the stacks 19 has a series of holes. For example, all of the magnetic plates have a central hole 23 and a plurality (eg 28) of rotor cage slots 25 located around the periphery of each magnetic plate. Between the car slot 25 and the central hole 23 there is provided a permanent magnet slot, designated 43 in FIG. 3, for receiving a permanent magnet. A pair of slots 37 forming a magnetoresistive barrier are provided between the magnets 43. These barriers may be filled with aluminum during the die casting process.

積層板にはほぼV字形の磁石スロット43が形成されて
いる。これらの磁石スロット43により磁性板積層体に形
成される磁石用空間内には、デルコ・レミー(Delco Re
my)によりマグネクェンチ(Magnequench)MQ−1とい
う登録商標で販売されているような収縮の小さい強磁性
材を使用してこの場所で磁石が注型される。この特定の
材料は2%のエポキシ結合剤を有する98%ホウ素−ネオ
ジム−鉄であり、米国特許第4,496,395号明細書に従っ
て製造されていると思われる。この特定の材料は粉末形
態でスロット43のなかに充填され、次いで約66トン/平
方インチ(426トン/cm2)の力で圧縮される。材料は次
いで、磁性板の積層体の中のスロット43の中に固体片と
しての磁性体を形成すべく300゜で硬化される。これ
は、磁石が任意の形状の磁石スロット内にて磁石スロッ
トの形状に合せてその場所で形成されることを可能にす
るだけでなく、磁石を所定の位置に低コスで保持するこ
とを可能にする。磁石スロットのなかで硬化される材料
は硬化プロセス中には磁化されない状態にある。またこ
の強磁石材料は硬化の間にほとんど収縮しない性質を有
する。従って、磁石自体と磁性板41の積層体との間に空
隙なしに磁石が形成される。磁石(但し未だ磁気を帯び
てはいない)が所定の位置に形成された後、磁石は、例
えば二極回転子を形成すべく、その場所で磁化される。
もちろん、回転子に持たせたい特定の磁気的構造に応じ
て種々の酸化方法が用いられてよい。
A substantially V-shaped magnet slot 43 is formed in the laminated plate. In the space for magnets formed in the magnetic plate laminate by these magnet slots 43, Delco Remy (Delco Remy)
The magnet is cast at this location using a low shrinkage ferromagnetic material such as that sold under the registered trademark Magnequench MQ-1 by My). This particular material is 98% boron-neodymium-iron with 2% epoxy binder and is believed to have been manufactured according to US Pat. No. 4,496,395. This particular material is filled into slot 43 in powder form and then compressed with a force of about 66 tons per square inch (426 tons / cm 2 ). The material is then cured at 300 ° to form the magnetic material as a solid piece in the slot 43 in the stack of magnetic plates. This not only allows the magnet to be formed in place within the magnet slot of any shape to match the shape of the magnet slot, but also allows the magnet to be held in place with low cost To The material that is hardened in the magnet slot remains unmagnetized during the hardening process. Further, this strong magnetic material has a property that it hardly shrinks during curing. Therefore, the magnet is formed without a gap between the magnet itself and the laminated body of the magnetic plates 41. After the magnet (but not yet magnetic) is formed in place, the magnet is magnetized in place to form, for example, a dipole rotor.
Of course, various oxidation methods may be used depending on the particular magnetic structure that the rotor is desired to have.

第4図には、本発明の他の一つの実施例による磁性板
が符号51を付して示されている。この磁性板は四つの磁
気抵抗バリヤースロット37を含んでおり、磁気抵抗バリ
ヤースロット37の各対の間に一対の回転子かごスロット
25が配置されている。更に、この磁性板51の参照符号53
を付されている磁石スロットはほぼ円弧状である。この
場合にも第3図で説明した磁石材料が磁性板51の積層体
の弧状スロットの中にその場で充填され、また第3図で
説明したプロセスと同一のプロセスにより弧状スロット
の中で磁石対に形成れる。こうして形成された磁石は任
意の所望の極性を有することができる。例えば、第4図
中の右側の磁石の北極は磁石の孤の外側に位置し、また
左側の磁石の北極は磁石の孤の内側に位置することがで
きる。又本発明により設計者は特定の形状の永久磁石し
か使用できないという制約から免れる。もし設計者が一
つの形態では得られない特定の磁束及び極性を希望する
ならば、市販品として入手可能な永久磁石形状に無関係
に、種々の任意の磁石形態が選定され得る。設計者は、
市販品として入手可能な構成要素から作られ最良の組立
体ではなく、最良の永久磁石組立体を作ることができ
る。
In FIG. 4, a magnetic plate according to another embodiment of the present invention is shown with reference numeral 51. The magnetic plate includes four magnetoresistive barrier slots 37, with a pair of rotor cage slots between each pair of magnetoresistive barrier slots 37.
25 are arranged. Further, reference numeral 53 of the magnetic plate 51
The magnet slots marked with are substantially arcuate. Also in this case, the magnet material described in FIG. 3 is filled in-situ into the arc-shaped slots of the laminated body of the magnetic plates 51, and the magnet is formed in the arc-shaped slots by the same process as that described in FIG. Formed in pairs. The magnet thus formed can have any desired polarity. For example, the north pole of the magnet on the right side in FIG. 4 may be located outside the arc of the magnet, and the north pole of the magnet on the left side may be located inside the arc of the magnet. The invention also frees the designer from the restriction that only permanent magnets of a particular shape can be used. If the designer desires a particular magnetic flux and polarity that is not available in one configuration, various arbitrary magnet configurations can be selected regardless of the commercially available permanent magnet configurations. The designer
The best permanent magnet assembly can be made, rather than the best assembly made from commercially available components.

本発明の更に他の一つ実施例を示す第5図に於ては、
第4図に示されているものと類似の磁性板61は円弧磁石
スロット53の対とその周縁を巡って位置する回転子かご
スロット25の外に、ほぼアンビル形状を有する一対の磁
気抵抗バリヤースロット63を含んでいる。これらの磁気
抵抗バリヤースロットはダイカスト工程の間にアルミニ
ウム又は他の適当な材料で満たされていてよい。その後
に、磁化可能な材料がスロット53のなかへ挿入され、ま
た永久磁石がそのなかに前記のようにその場所にて形成
される。
In FIG. 5 showing still another embodiment of the present invention,
A magnetic plate 61 similar to that shown in FIG. 4 is a pair of magnetoresistive barrier slots having a generally anvil shape outside the rotor cage slot 25 located around the pair of arc magnet slots 53 and their peripheries. Contains 63. These magnetoresistive barrier slots may be filled with aluminum or other suitable material during the die casting process. Thereafter, magnetizable material is inserted into the slot 53 and a permanent magnet is formed therein in situ as described above.

本発明をここまでは回転子組立体に関して説明してき
たが、本発明はそれに限定されない。第6図及び第7図
に示されているように、本発明はダイナモ電気機械用の
固定子組立体に同様に応用可能であり、また一般に任意
の永久磁石組立体に応用可能である。
Although the present invention has been described above with respect to rotor assemblies, the present invention is not so limited. As shown in FIGS. 6 and 7, the present invention is equally applicable to stator assemblies for dynamoelectric machines, and is generally applicable to any permanent magnet assembly.

第6図に示す固定子組立体71は適当な磁性材料の磁性
板73の積層体を含んでいる。各磁性板はそのなかに複数
個のスロット75を形成されており、これらの磁石スロッ
トのなかに、回転子組立体に関して先に説明したよう
に、複数個の永久磁石片77がその場所にて形成される。
第6図に示す実施例に於ては、8個の磁石スロット75に
よる8個の永久磁石片77が示されている。これらは少な
くとも8極の固定子を形成するべく磁化されている。も
ちろん、この数は例示である。任意の所望の数の極がこ
の仕方で形成され得る。固定子71のスロット75は、固定
子組立体の内部中央孔79に開いている点で先の実施例の
磁石スロットと異なっている。磁石スロット75はそれら
の開口部に於て磁石スロットの内部よりも幅が小さく、
従ってこれらの磁石スロット内にて形成された磁石片は
それぞれのスロットの中にそのまま保持されることに注
目されたい。勿論、磁尺片77を形成する時、粉末状材料
が圧縮され又は硬化される間、粉末状材料が磁石スロッ
ト75の内側開口部から流れ出るのを防止すべく或る装置
を設けることは必要である。これと同様に周縁に開いた
磁石スロットを有する形状が、回転子組立体に対しても
使用されてよいことは明らかであろう。いずれの場合に
も磁性板が一つの連続的な部品であること、または磁石
スロットのなかに形成された磁石片がその位置に保持さ
れるように、磁石スロットの形状が形作られていること
が必要である。
The stator assembly 71 shown in FIG. 6 includes a stack of magnetic plates 73 of suitable magnetic material. Each magnetic plate has a plurality of slots 75 formed therein, and within these magnet slots, a plurality of permanent magnet pieces 77 are in place, as previously described for the rotor assembly. It is formed.
In the embodiment shown in FIG. 6, eight permanent magnet pieces 77 with eight magnet slots 75 are shown. These are magnetized to form a stator of at least 8 poles. Of course, this number is exemplary. Any desired number of poles can be formed in this way. The slots 75 of the stator 71 differ from the magnet slots of the previous embodiment in that they open into the internal center hole 79 of the stator assembly. The magnet slots 75 are smaller in width at their openings than inside the magnet slots,
Note, therefore, that the magnet strips formed within these magnet slots are retained in their respective slots. Of course, when forming the ruler piece 77, it is necessary to provide some device to prevent the powdered material from flowing out of the inner opening of the magnet slot 75 while the powdered material is compressed or hardened. is there. It will be apparent that a shape with similarly open peripheral magnetic slots may also be used for the rotor assembly. In each case, the magnetic plate is one continuous piece, or the shape of the magnet slot is shaped so that the magnet pieces formed in the magnet slot are held in that position. is necessary.

第3図ないし第5図に示すような磁性板にて形成され
た積層体の磁石スロットに磁化可能な材料を圧縮充填す
るのに適した装置81が第8図及び第9図に示されてい
る。この装置は横方向の力に抗して第5図中に示されて
いる如き磁性板から作られた回転子85を支える円筒状の
カラー83を含んでいる。磁化可能な材料を圧縮するのに
加えられる力は大きいので、カラー83及び装置81の支持
部材は工具鋼又はそれに類似の材料にて作られているの
が好ましい。カラー83及び回転子85は工具鋼の台87の上
に載せられている。台87は下から回転子85を支えるため
に適当なペデスタル89を含んでいる。回転子85はボルト
91により台87に適当に取付けられている。ボルト91は台
87の底から回転子81の中央部を通って上方に延び、組立
体の頂部に於てねじワッシャ93により締められている。
勿論、この結合は特に強くされる必要はない。何故なら
ば、この結合力は回転子85に与えられる圧縮力と同一方
向に作用するからである。もし必要であれば、ブシュ95
が回転子の中央孔を満たすべくボルト91の周囲に配置さ
れてよい。
An apparatus 81 suitable for compressively filling magnetizable material in the magnet slots of a stack of magnetic plates as shown in FIGS. 3-5 is shown in FIGS. 8 and 9. There is. This device includes a cylindrical collar 83 which bears against a lateral force a rotor 85 made of a magnetic plate as shown in FIG. Since the force applied to compress the magnetizable material is large, the collar 83 and the support member of the device 81 are preferably made of tool steel or similar material. The collar 83 and the rotor 85 are mounted on a tool steel base 87. The pedestal 87 includes a pedestal 89 suitable for supporting the rotor 85 from below. Rotor 85 is bolt
It is properly attached to the base 87 by 91. Bolt 91 is a stand
It extends upwards from the bottom of 87 through the center of rotor 81 and is tightened by screw washers 93 at the top of the assembly.
Of course, this bond need not be particularly strong. This is because this coupling force acts in the same direction as the compressive force applied to the rotor 85. Bush 95 if needed
May be placed around the bolt 91 to fill the center hole of the rotor.

回転子85は一対の磁石スロット97を含んでおり、その
なかに前記の磁化可能な粒子が充填される。装置81は、
磁化可能な材料で満たされたスロット97の中に精密に嵌
合する形状の一対の下方に延びている耳片101を有する
プランジャ99を含んでいる。第9図中に矢印により示さ
れている方向に力が加えられると、磁石スロット97の中
の磁化可能な材料が圧縮される。もし回転子85の磁性板
が捩られていれば、全ての磁化可能な粒子が完全に圧縮
されるようスロット97の頂及び底の双方に適当な形状の
プランジャ99を使用することが望ましい。
The rotor 85 includes a pair of magnet slots 97 in which the magnetizable particles are filled. Device 81
It includes a plunger 99 having a pair of downwardly extending ears 101 shaped to fit precisely into a slot 97 filled with magnetizable material. When a force is applied in the direction indicated by the arrow in FIG. 9, the magnetizable material in magnet slot 97 is compressed. If the magnetic plates of the rotor 85 are twisted, it is desirable to use appropriately shaped plungers 99 on both the top and bottom of the slots 97 so that all magnetizable particles are fully compressed.

以上に示した実施例の回転子はいずれもかご形構造で
あるが、本発明にはそれに限定されない。第10図には、
回転子軸に対する中央孔107及び一対の孤状磁石スロッ
ト109を有するが、かごスロットは有していない適当な
強磁性材料の回転子磁性板105が示されている。この実
施例では、回転子積層体の磁性板は、磁化可能な粉末が
磁石スロット109のなかに充填されて圧縮される前に接
着剤又はその類似物により適当に互いに固定される。
Each of the rotors of the above-described embodiments has a cage structure, but the present invention is not limited thereto. In Figure 10,
A rotor magnetic plate 105 of a suitable ferromagnetic material is shown having a central hole 107 for the rotor axis and a pair of arcuate magnet slots 109, but no cage slots. In this example, the magnetic plates of the rotor stack are suitably secured together by an adhesive or the like before the magnetizable powder is filled into the magnet slots 109 and compressed.

以上の説明から、本発明の種々の目的及び特徴が達成
され、また他の有利な結果が得られることが理解されよ
う。
From the above description, it will be appreciated that the various objects and features of the invention are achieved and other advantageous results attained.

以上に於ては本発明を特定の好ましい実施例について
説明したが、本発明がこれらの実施例に限定されるもの
ではなく、本発明の範囲内にて他に種々の実施例が可能
であることは当業者にとって明らかであろう。
Although the present invention has been described above with reference to particular preferred embodiments, it is not intended that the invention be limited to these embodiments, and various other embodiments are possible within the scope of the invention. It will be apparent to those skilled in the art.

【図面の簡単な説明】 第1図は本発明の対象となる回転子組立体を使用するダ
イナモ電気機械の要部の正面図である。 第2図は第1図に示されている回転子組立体の構造を示
す断面図である。 第3図は第1図及び第2図に示されている如き回転子組
立体を構成する磁性板の一つの実施例を示す平面図であ
る。 第4図は本発明で使用される磁性板の他の一つの実施例
の平面図である。 第5図は本発明で使用される磁性板の更に他の一つの実
施例を示す平面図である。 第6図は本発明により製造される固定子組立体の一つの
実施例を示す平面図である。 第7図は第6図に示す固定子組立体の立面図である。 第8図は第3図ないし第5図に示す磁性板よりなる回転
子積層体の磁石スロット内に充填された強磁性板の粉末
を圧縮するのに使用される装置を示す平面図である。 第9図は第8図の線11−11に沿う断面図である。 第10図は本発明で使用される磁性板の更に他の一つの実
施例を示す平面図である。 11……永久磁石電動機、13……回転子組立体、15……固
定子、17……回転子軸、19……磁性板、23……中央孔、
25……かごスロット、27……磁石スロット、29……端リ
ング、37……磁気抵抗バリヤースロット、41……磁性
板、43……磁石スロット、51……磁性板、53……スロッ
ト、61……磁性板、63……磁気抵抗バリヤースロット、
71……固定子組立体、73……磁性板、75……磁石スロッ
ト、77……磁石片、79……中央孔、81……取付具、83…
…円筒状カラー、85……回転子、87……台、89……ペデ
スタル、91……ボルト、93……ワッシャ、95……ブシ
ュ、97……スロット、99……プランジャ、105……回転
子磁性板、107……中央孔、109……磁石スロット
BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a front view of a main part of a dynamo electric machine using a rotor assembly to which the present invention is applied. FIG. 2 is a sectional view showing the structure of the rotor assembly shown in FIG. FIG. 3 is a plan view showing an embodiment of a magnetic plate constituting the rotor assembly as shown in FIGS. 1 and 2. FIG. 4 is a plan view of another embodiment of the magnetic plate used in the present invention. FIG. 5 is a plan view showing still another embodiment of the magnetic plate used in the present invention. FIG. 6 is a plan view showing one embodiment of the stator assembly manufactured according to the present invention. FIG. 7 is an elevational view of the stator assembly shown in FIG. FIG. 8 is a plan view showing an apparatus used for compressing the powder of the ferromagnetic plate filled in the magnet slot of the rotor laminated body composed of the magnetic plates shown in FIGS. 3 to 5. FIG. 9 is a sectional view taken along the line 11-11 in FIG. FIG. 10 is a plan view showing still another embodiment of the magnetic plate used in the present invention. 11 ...... Permanent magnet motor, 13 ...... Rotor assembly, 15 ...... Stator, 17 ...... Rotor shaft, 19 ...... Magnetic plate, 23 ...... Central hole,
25 …… Car slot, 27 …… Magnetic slot, 29 …… End ring, 37 …… Magnetic resistance barrier slot, 41 …… Magnetic plate, 43 …… Magnetic slot, 51 …… Magnetic plate, 53 …… Slot, 61 ...... Magnetic plate, 63 ...... Magnetic resistance barrier slot,
71 ... Stator assembly, 73 ... Magnetic plate, 75 ... Magnet slot, 77 ... Magnet piece, 79 ... Central hole, 81 ... Fixture, 83 ...
… Cylindrical collar, 85 …… Rotor, 87 …… Stand, 89 …… Pedestal, 91 …… Bolt, 93 …… Washer, 95 …… Bush, 97 …… Slot, 99 …… Plunger, 105 …… Rotating Child magnetic plate, 107 ... central hole, 109 ... magnet slot

Claims (4)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】各々に磁石スロットが形成されている磁性
板を各々の磁石スロットが互いに実質的に整合し対応す
る磁石スロットが形成されるよう積み重ねた磁性板の積
層体と、前記積層体の磁石スロット内に充填された強磁
性材の粉末が該スロット内にて硬化されまた磁化されて
なる永久磁石片とを有する磁性組立体。
1. A laminate of magnetic plates in which magnetic plates each having a magnet slot are stacked so that the magnet slots are substantially aligned with each other and corresponding magnet slots are formed; A magnetic assembly having a permanent magnet piece formed by hardening and magnetizing powder of a ferromagnetic material filled in the magnet slot in the slot.
【請求項2】特許請求の範囲第1項による磁性組立体に
して、前記磁性板の磁石スロットは各々閉じた孔であ
り、これらの磁石スロットにより形成された前記積層体
内の磁石スロットはその両端のみにて開いている貫通孔
として形成されている磁性組立体。
2. A magnetic assembly according to claim 1, wherein the magnet slots of the magnetic plate are closed holes, and the magnet slots formed by the magnet slots are at both ends thereof. A magnetic assembly formed as a through hole that is open only at the.
【請求項3】特許請求の範囲第1項による磁性組立体に
して、前記磁性板の磁石スロットは各々該磁性板の周縁
に開いた孔であり、該孔の開口端は該孔の内部より狭い
幅を有し、これらの磁石スロットにより前記積層体内に
形成された磁石スロットはその両端にて開いていると共
に該積層体の側壁にも開いており、該積層体内に形成さ
れた磁石スロットの該積層体の側壁への開口部の幅は該
磁石スロットの内部の幅より小さい磁性組立体。
3. A magnetic assembly according to claim 1, wherein each magnet slot of said magnetic plate is a hole opened at the peripheral edge of said magnetic plate, and the opening end of said hole is located inside said hole. With a narrow width, the magnet slots formed in the laminate by these magnet slots are open at both ends and also on the side walls of the laminate, and the magnet slots formed in the laminate are A magnetic assembly in which the width of the opening to the sidewall of the stack is less than the width of the interior of the magnet slot.
【請求項4】各々が磁石スロットを有する磁性板を各磁
石スロットが互いに実質的に整合するように積み重ねて
対応する磁石スロットが内部に形成された積層体を形成
する過程と、前記積層体の磁石スロット内に強磁性材の
粉末を充填する過程と、前記積層体の磁石スロット内に
て前記強磁性材の粉末を圧縮し且硬化させて該強磁性材
の固形体を形成する過程と、前記積層体の磁石スロット
内にて前記強磁性材の固形体を磁化する過程とを含む磁
性組立体の製造方法。
4. A process of stacking magnetic plates each having a magnet slot so that the magnet slots are substantially aligned with each other to form a laminate having corresponding magnet slots formed therein, and a step of forming the laminate. Filling the magnet slot with ferromagnetic powder, and compressing and curing the ferromagnetic powder in the magnet slot of the stack to form a solid ferromagnetic body. Magnetizing the solid body of ferromagnetic material in the magnet slots of the stack.
JP62216269A 1986-10-06 1987-08-28 Magnetic assembly and method of manufacturing the same Expired - Lifetime JP2537636B2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US916005 1986-10-06
US06/916,005 US4845837A (en) 1986-10-06 1986-10-06 Method of making permanent magnet assembly

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP6107687A Division JP2513587B2 (en) 1986-10-06 1994-04-22 Magnetic assembly

Publications (2)

Publication Number Publication Date
JPS6398108A JPS6398108A (en) 1988-04-28
JP2537636B2 true JP2537636B2 (en) 1996-09-25

Family

ID=25436552

Family Applications (2)

Application Number Title Priority Date Filing Date
JP62216269A Expired - Lifetime JP2537636B2 (en) 1986-10-06 1987-08-28 Magnetic assembly and method of manufacturing the same
JP6107687A Expired - Lifetime JP2513587B2 (en) 1986-10-06 1994-04-22 Magnetic assembly

Family Applications After (1)

Application Number Title Priority Date Filing Date
JP6107687A Expired - Lifetime JP2513587B2 (en) 1986-10-06 1994-04-22 Magnetic assembly

Country Status (12)

Country Link
US (1) US4845837A (en)
EP (1) EP0265364B1 (en)
JP (2) JP2537636B2 (en)
KR (1) KR960013035B1 (en)
AT (1) ATE87146T1 (en)
BR (1) BR8703971A (en)
CA (1) CA1288796C (en)
DE (1) DE3784831T2 (en)
ES (1) ES2039472T3 (en)
GR (1) GR3007397T3 (en)
IN (1) IN169014B (en)
MX (2) MX161022A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005088806A1 (en) * 2004-03-12 2005-09-22 Daikin Industries, Ltd. Permanent magnet electric motor, driving method and producing method of the motor, refrigerant compressor, and blower

Families Citing this family (79)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5223759A (en) * 1987-12-24 1993-06-29 Seiko Epson Corporation DC brushless motor with solid rotor having permanent magnet
US5023500A (en) * 1989-04-21 1991-06-11 Century Electric, Inc. Stator lamination with alignment structure for controlled skewing
JPH03124249A (en) * 1989-10-02 1991-05-27 Daikin Ind Ltd Rotary electric power machine and manufacture thereof
US5191256A (en) * 1989-12-15 1993-03-02 American Motion Systems Interior magnet rotary machine
US5508576A (en) * 1990-07-12 1996-04-16 Seiko Epson Corporation Rotor for brushless electromotor
DE69128083T2 (en) * 1990-07-12 1998-03-19 Seiko Epson Corp BRUSHLESS MOTOR RUNNER AND MANUFACTURE THEREOF
USRE36367E (en) * 1990-07-12 1999-11-02 Seiko Epson Corporation Rotor for brushless electromotor and method for making same
US5221503A (en) * 1991-10-28 1993-06-22 General Motors Corporation Method for manufacturing a dynamoelectric device
US5510662A (en) * 1993-05-26 1996-04-23 Kabushiki Kaisha Toshiba Permanent magnet motor
US5504424A (en) * 1993-05-28 1996-04-02 Durakool, Inc. Variable reluctance sensor utilizing a magnetic bobbin
EP0729216A3 (en) * 1995-02-21 1998-03-11 Siemens Aktiengesellschaft Hybride excited synchronous machine
EP0748027B1 (en) * 1995-06-07 2006-09-06 General Electric Company Dynamoelectric machine and rotor construction thereof
US5758709A (en) * 1995-12-04 1998-06-02 General Electric Company Method of fabricating a rotor for an electric motor
US5759589A (en) * 1996-03-11 1998-06-02 P. D. George Company Apparatus for encapsulating field windings of rotary electric machines
WO1997037423A2 (en) * 1996-03-29 1997-10-09 AEG Hausgeräte GmbH Turbomachine, especially for a domestic appliance
US5920139A (en) * 1996-03-31 1999-07-06 Sanyo Electric Co. Ltd. Magnet motor stator
JP3734566B2 (en) * 1996-05-13 2006-01-11 株式会社明電舎 Rotating electrical machine rotor
JP3351237B2 (en) * 1996-05-16 2002-11-25 三菱電機株式会社 Permanent magnet type motor
WO1997048171A1 (en) * 1996-06-12 1997-12-18 Fanuc Ltd Method and apparatus for casting conductor of cage rotor for induction motors
US5831367A (en) * 1997-02-13 1998-11-03 Emerson Electric Co. Line-start reluctance motor with grain-oriented rotor laminations
BR9705579A (en) * 1997-09-26 1999-05-11 Brasil Compressores Sa Electric motor rotor and electric motor rotor production method
WO2000008738A1 (en) * 1998-06-10 2000-02-17 Smith Technology Development Llc Axial field electric machine design
SE522370C2 (en) * 1998-06-30 2004-02-03 Abb Ab Method of manufacturing a rotor for an electric alternator and rotor manufactured according to the method
FR2786041B1 (en) * 1998-11-17 2003-01-31 Siemens Automotive Moteurs Ele INDUCTOR STATOR FOR ROTATING ELECTRIC MACHINE, ESPECIALLY FOR ELECTRIC MOTOR
US6340857B2 (en) 1998-12-25 2002-01-22 Matsushita Electric Industrial Co., Ltd. Motor having a rotor with interior split-permanent-magnet
US6133663A (en) * 1999-04-01 2000-10-17 A. O. Smith Corporation Brushless permanent magnet machine
DE60023704T2 (en) * 1999-07-16 2006-08-03 Matsushita Electric Industrial Co., Ltd., Kadoma SYNCHRONOUS MOTOR WITH PERMANENT MAGNETS
KR100370375B1 (en) * 2000-05-01 2003-01-29 장성용 Artificial Nail and Method of Manufacture Thereof
WO2001091139A1 (en) 2000-05-24 2001-11-29 Sumitomo Special Metals Co., Ltd. Permanent magnet including multiple ferromagnetic phases and method for producing the magnet
JP2002010547A (en) * 2000-06-16 2002-01-11 Yamaha Motor Co Ltd Permanent magnet rotor and manufacturing method thereof
US7245054B1 (en) 2000-11-01 2007-07-17 Emerson Electric Co. Permanent magnet electric machine having reduced cogging torque
US7217328B2 (en) * 2000-11-13 2007-05-15 Neomax Co., Ltd. Compound for rare-earth bonded magnet and bonded magnet using the compound
US6487769B2 (en) 2000-11-30 2002-12-03 Emerson Electric Co. Method and apparatus for constructing a segmented stator
US6441530B1 (en) * 2000-12-01 2002-08-27 Petersen Technology Corporation D.C. PM motor with a stator core assembly formed of pressure shaped processed ferromagnetic particles
US6617740B2 (en) * 2000-12-01 2003-09-09 Petersen Technology Corporation D.C. PM motor and generator with a stator core assembly formed of pressure shaped processed ferromagnetic particles
US6597078B2 (en) 2000-12-04 2003-07-22 Emerson Electric Co. Electric power steering system including a permanent magnet motor
US6707209B2 (en) 2000-12-04 2004-03-16 Emerson Electric Co. Reduced cogging torque permanent magnet electric machine with rotor having offset sections
US20020079783A1 (en) * 2000-12-22 2002-06-27 Hopeck James Frederick Air gap winding method and support structure for a superconducting generator and method for forming the same
US6700284B2 (en) 2001-03-26 2004-03-02 Emerson Electric Co. Fan assembly including a segmented stator switched reluctance fan motor
US6584813B2 (en) 2001-03-26 2003-07-01 Emerson Electric Co. Washing machine including a segmented stator switched reluctance motor
US6897591B2 (en) 2001-03-26 2005-05-24 Emerson Electric Co. Sensorless switched reluctance electric machine with segmented stator
US6744166B2 (en) 2001-01-04 2004-06-01 Emerson Electric Co. End cap assembly for a switched reluctance electric machine
US7012350B2 (en) 2001-01-04 2006-03-14 Emerson Electric Co. Segmented stator switched reluctance machine
DE50101980D1 (en) * 2001-02-27 2004-05-19 Grundfos As Process for producing an encapsulated rotor of a permanent magnet motor
WO2002089294A1 (en) * 2001-04-25 2002-11-07 Toshiba Tec Kabushiki Kaisha Dc electric motor
HU227736B1 (en) * 2001-05-15 2012-02-28 Hitachi Metals Ltd Iron-based rare earth alloy nanocomposite magnet and method for producing the same
US6408502B1 (en) * 2001-05-18 2002-06-25 General Electric Company Method for a resilient rotor core assembly
ATE343842T1 (en) * 2001-07-31 2006-11-15 Neomax Co Ltd METHOD FOR PRODUCING A NANOCOMPOSITION MAGNET USING ATOMIZATION METHOD
EP1446816B1 (en) * 2001-11-22 2006-08-02 Neomax Co., Ltd. Nanocomposite magnet
US6663816B2 (en) * 2002-01-31 2003-12-16 General Electric Company Method of making a dynamoelectric machine conductor bar and method of making a conductor bar dynamoelectric machine
GB0202435D0 (en) * 2002-02-02 2002-03-20 Gordon David H Renewable energy resources
US6906443B2 (en) * 2003-04-21 2005-06-14 Eaton Corporation Brushless DC motor with stepped skewed rotor
JP3786946B1 (en) 2005-01-24 2006-06-21 株式会社三井ハイテック Permanent magnet resin sealing method
US7285890B2 (en) * 2005-03-30 2007-10-23 Comprehensive Power, Inc. Magnet retention on rotors
JP4849507B2 (en) * 2005-05-26 2012-01-11 日立アプライアンス株式会社 Self-starting synchronous motor
DE102005047176A1 (en) * 2005-09-30 2007-04-19 Robert Bosch Gmbh Electric synchronous machine and method for its manufacture
US7358637B2 (en) * 2005-11-04 2008-04-15 Canopy Technologies, Llc Method of compressing lamination stacks for permanent magnet rotor
KR20070054374A (en) * 2005-11-23 2007-05-29 주식회사 대우일렉트로닉스 Rotor for an induction motor
US20070132330A1 (en) * 2005-12-12 2007-06-14 Fei Renyan W Fan assemblies employing LSPM motors and LSPM motors having improved synchronization
KR101044034B1 (en) * 2006-01-11 2011-06-23 가부시키가이샤 미츠이하이테크 Method of resin sealing permanent magnets in laminated rotor core
US7923881B2 (en) * 2007-05-04 2011-04-12 A.O. Smith Corporation Interior permanent magnet motor and rotor
DE102008015327B4 (en) * 2008-03-20 2021-05-06 Secop Gmbh Rotor of an electrical machine and motor with such a rotor
DE102008027759A1 (en) * 2008-06-11 2009-12-24 Siemens Aktiengesellschaft Rotor for permanent magnet-actuating dynamo-electric machine, has rotor base body, which has medium for guiding and generating magnetic field
CN201219227Y (en) * 2008-07-30 2009-04-08 无锡东元电机有限公司 Permanent magnet synchronous machine rotor
CN201204529Y (en) * 2008-08-28 2009-03-04 无锡东元电机有限公司 Permanent magnet synchronous motor
CN201294443Y (en) * 2008-12-01 2009-08-19 东元总合科技(杭州)有限公司 Permanent magnet self-startup synchronous motor rotor
DE102009042452A1 (en) * 2009-09-23 2011-03-31 Elektromotorenwerk Grünhain GmbH & Co. KG Cage rotor for electric machines, has rotor made of pierced motor sheet and multiple grooves with arbitrary geometric figure, where end area of grooves pointing to outer circumference of rotor is formed with rare earth material
FR2977409B1 (en) * 2011-06-29 2014-08-08 Faurecia Bloc Avant PROCESS FOR PRODUCING PERMANENT MAGNETS FOR AN ENGINE AND CORRESPONDING MOTOR
US20130162062A1 (en) * 2011-12-22 2013-06-27 Black & Decker Inc. Stator assembly having end cap with polarity keying feature for a power tool
JP2014082843A (en) * 2012-10-15 2014-05-08 Nissan Motor Co Ltd Rotor structure
KR101491934B1 (en) * 2013-12-11 2015-02-10 대성전기공업 주식회사 The rotor of the brushless motor and the manufacturing method thereof
JP6434254B2 (en) * 2014-08-27 2018-12-05 株式会社三井ハイテック Manufacturing method of laminated core and manufacturing apparatus of laminated core
EP3026798B1 (en) 2014-11-25 2020-10-14 Black & Decker Inc. Brushless motor for a power tool
US10786894B2 (en) 2015-10-14 2020-09-29 Black & Decker Inc. Brushless motor system for power tools
JP6410776B2 (en) * 2016-10-06 2018-10-24 本田技研工業株式会社 Rotor manufacturing method
CN108696013A (en) * 2017-04-07 2018-10-23 章宪 AC magnetoelectric machine
US10644576B2 (en) * 2017-12-30 2020-05-05 Abb Schweiz Ag Method for manufacturing an electrical machine
KR20210010316A (en) 2019-07-17 2021-01-27 롬 앤드 하아스 컴패니 Biocide free associative thickener
US11264850B2 (en) * 2019-09-05 2022-03-01 Nidec Motor Corporation Laminated rotor having deflecting magnet retaining prongs and support posts for the prongs

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR963936A (en) * 1950-07-26
US2048161A (en) * 1934-03-29 1936-07-21 Bosch Robert Dynamo-electric machine frame
GB917209A (en) * 1960-09-13 1963-01-30 Allis Chalmers Mfg Co Improved synchronous induction motor
DE1613399C3 (en) * 1967-07-01 1975-09-11 Siemens Ag, 1000 Berlin Und 8000 Muenchen Process for the production of a stator for small machines with permanent magnet excitation
US3564705A (en) * 1967-12-07 1971-02-23 Westinghouse Electric Corp Method for providing oriented pole pieces in a dynamoelectric machine
FR2033663A5 (en) * 1969-02-25 1970-12-04 Jammet Jean
US4255684A (en) * 1979-08-03 1981-03-10 Mischler William R Laminated motor stator structure with molded composite pole pieces
US4434546A (en) * 1979-09-21 1984-03-06 General Electric Company Method of making a core
US4358696A (en) * 1981-08-19 1982-11-09 Siemens-Allis, Inc. Permanent magnet synchronous motor rotor
US4469970A (en) * 1981-12-24 1984-09-04 General Electric Company Rotor for permanent magnet excited synchronous motor
CH653520GA3 (en) * 1983-09-12 1986-01-15
US4568846A (en) * 1983-10-28 1986-02-04 Welco Industries Permanent magnet laminated rotor with conductor bars
JPS61111510A (en) * 1984-03-09 1986-05-29 Toshio Uratani Correctable magnet
JPS60217972A (en) * 1984-04-10 1985-10-31 デンカ製薬株式会社 Vessel for bar magnet
WO1985005507A1 (en) * 1984-05-21 1985-12-05 Sigma Instruments, Inc. Magnetically assisted stepping motor
US4618792A (en) * 1984-09-26 1986-10-21 Westinghouse Electric Corp. Dynamoelectric machine with a laminated pole permanent magnet rotor

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005088806A1 (en) * 2004-03-12 2005-09-22 Daikin Industries, Ltd. Permanent magnet electric motor, driving method and producing method of the motor, refrigerant compressor, and blower

Also Published As

Publication number Publication date
KR880005634A (en) 1988-06-29
GR3007397T3 (en) 1993-07-30
IN169014B (en) 1991-08-17
JP2513587B2 (en) 1996-07-03
US4845837A (en) 1989-07-11
CA1288796C (en) 1991-09-10
JPH07169619A (en) 1995-07-04
EP0265364A1 (en) 1988-04-27
DE3784831T2 (en) 1993-06-24
BR8703971A (en) 1988-05-24
KR960013035B1 (en) 1996-09-25
MX174444B (en) 1994-05-17
ES2039472T3 (en) 1993-10-01
EP0265364B1 (en) 1993-03-17
ATE87146T1 (en) 1993-04-15
DE3784831D1 (en) 1993-04-22
JPS6398108A (en) 1988-04-28
MX161022A (en) 1990-07-09

Similar Documents

Publication Publication Date Title
JP2537636B2 (en) Magnetic assembly and method of manufacturing the same
US4939398A (en) Laminated assemblies with in situ molded magnets
US6043583A (en) Motor structure
US20210152040A1 (en) Hybrid stator core component design for axial flux motor
US6362544B2 (en) Electromagnetic device with embedded windings and method for its manufacture
US5508576A (en) Rotor for brushless electromotor
US3979619A (en) Permanent magnet field structure for dynamoelectric machines
US5369325A (en) Rotor for brushless electromotor and method for making same
US6657328B2 (en) Rotor for electric motor and method of making the same
US7075203B2 (en) Electric motor and method for producing a rotor for such an electric motor
US20150001977A1 (en) Electrical machine
JP6179396B2 (en) Method for manufacturing rotor of rotating electrical machine and rotor
US5890277A (en) Method for manufacturing a claw pole stator structure
CN112602256B (en) Method for producing an electric machine
KR100432954B1 (en) Brushless Direct Current Motor of Radial Core Type Having a Structure of Double Rotors
US3858067A (en) Dynamoelectric machine
US4443934A (en) Method of assembling permanent magnet dc machines
US3488836A (en) Method of making stators for dynamoelectric machines of the permanent magnet type
JPH01270756A (en) Permanent magnet type rotor
CN112821591A (en) Core component of modularized claw pole permanent magnet motor
GB2093278A (en) Electric Motor
JPH0775296A (en) Permanent magnet rotor
JPH01152935A (en) Rotor of dc brushless motor for compressor
CN116868490A (en) Rotary electric machine and method for manufacturing same
JPH01252146A (en) Manufacture of rotor with permanent magnet