JP2536257B2 - Determining the life of stationary lead-acid batteries - Google Patents

Determining the life of stationary lead-acid batteries

Info

Publication number
JP2536257B2
JP2536257B2 JP2208823A JP20882390A JP2536257B2 JP 2536257 B2 JP2536257 B2 JP 2536257B2 JP 2208823 A JP2208823 A JP 2208823A JP 20882390 A JP20882390 A JP 20882390A JP 2536257 B2 JP2536257 B2 JP 2536257B2
Authority
JP
Japan
Prior art keywords
impedance
life
battery
value
measured
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2208823A
Other languages
Japanese (ja)
Other versions
JPH0495788A (en
Inventor
彰彦 工藤
健介 弘中
浩司 山口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Resonac Corp
Original Assignee
Shin Kobe Electric Machinery Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Kobe Electric Machinery Co Ltd filed Critical Shin Kobe Electric Machinery Co Ltd
Priority to JP2208823A priority Critical patent/JP2536257B2/en
Publication of JPH0495788A publication Critical patent/JPH0495788A/en
Application granted granted Critical
Publication of JP2536257B2 publication Critical patent/JP2536257B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、据置用鉛蓄電池の寿命判定方法に関するも
のである。
Description: [Industrial application] The present invention relates to a method for determining the life of a stationary lead storage battery.

[従来の技術] 据置用鉛蓄電池の寿命判定方法としては、従来から、
電池の放電容量を実測する方法や電解液比重を測定する
方法が用いられてきた。前者の放電容量を実測する方法
では放電用負荷が大きくなって、測定にも時間と労力と
を必要とする点で実際的でないことから、後者の電解液
比重を測定する方法が最も一般的に行なわれてきた。
[Prior Art] As a method for determining the life of a stationary lead storage battery,
A method of actually measuring the discharge capacity of the battery and a method of measuring the specific gravity of the electrolytic solution have been used. The former method of actually measuring the discharge capacity is not practical in that the load for discharge is large and it requires time and labor for the measurement.Therefore, the latter method of measuring the electrolytic solution specific gravity is the most general. Has been done.

[発明が解決しようとする課題] ところが、陰極吸収式の据置用密閉形鉛蓄電池では、
密閉形であるために電解液比重の測定が困難であるとい
う問題がある。
[Problems to be Solved by the Invention] However, in the cathode absorption type stationary sealed lead-acid battery,
Since it is a closed type, there is a problem that it is difficult to measure the specific gravity of the electrolyte.

本発明の目的は、上記の問題に鑑み、放電容量の実測
や電解液比重の測定を行うことなく、据置用鉛蓄電池の
寿命を判定する方法を提案することにある。
In view of the above problems, an object of the present invention is to propose a method for determining the life of a stationary lead storage battery without actually measuring the discharge capacity or measuring the electrolytic solution specific gravity.

[課題を解決するための手段] 上記の課題を解決するために、本発明に係る据置用鉛
蓄電池の寿命判定方法では、寿命を判定すべき鉛蓄電池
の内部インピーダンスを複数の異なる角周波数で測定す
る。そして極柱、ストラップ、格子体等のインダクタン
ス成分(L)、電解液抵抗(Rs)、電気二重層容量(C
d)、電荷移動抵抗(θ)、ワールブルグ・インピーダ
ンス(W)及びワールブルグ係数(σ)の各要素を用い
て表わした下記(1)式のインピーダンス等価回路の複
素インピーダンスの式に前記角周波数をあてはめて各要
素の値を変えながら計算により求めた合成インピーダン
スと各角周波数で測定した内部インピーダンスとの差が
最小となる各要素の値を決定する。
[Means for Solving the Problem] In order to solve the above problems, in the life determining method for a stationary lead storage battery according to the present invention, the internal impedance of the lead storage battery whose life is to be determined is measured at a plurality of different angular frequencies. To do. Then, the inductance component (L) of the poles, straps, grids, etc., electrolytic solution resistance (Rs), electric double layer capacitance (C)
d), the charge transfer resistance (θ), the Warburg impedance (W), and the Warburg coefficient (σ) are used to apply the angular frequency to the complex impedance equation of the impedance equivalent circuit of Equation (1) below. By changing the value of each element, the value of each element that minimizes the difference between the combined impedance calculated by calculation and the internal impedance measured at each angular frequency is determined.

そして決定した電解液抵抗(Rs)、電気二重層容量
(Cd)、電荷移動抵抗(θ)及びワールブルグ係数
(σ)の少なくとも1つの値を、初期の値と比較するこ
とにより電池の寿命を判定する。
Then, the life of the battery is determined by comparing at least one of the determined electrolytic solution resistance (Rs), electric double layer capacity (Cd), charge transfer resistance (θ) and Warburg coefficient (σ) with the initial value. To do.

[作用] 本発明の寿命判定方法を用いると、前記の等価回路の
複素インピーダンスの式の各要素の算出値の経時変化か
ら、有効反応活物質の量及び表面積、並びに活物質に対
する電解液の拡散状態等の詳細な電池状態に関する情報
を適切に推定できる。これにより、電池の放電容量を実
測することなく、また、据置用密閉形鉛蓄電池のような
電解液の比重測定が困難な電池でも容易・適確に寿命が
判定される。
[Operation] When the life determining method of the present invention is used, the amount and surface area of the effective reaction active material, and the diffusion of the electrolytic solution into the active material are determined from the change over time in the calculated values of the respective elements of the complex impedance equation of the equivalent circuit. It is possible to appropriately estimate detailed information about the battery status such as the status. As a result, the life can be easily and accurately determined without actually measuring the discharge capacity of the battery, and even for a battery such as a stationary sealed lead storage battery in which it is difficult to measure the specific gravity of the electrolyte.

[実施例] 以下、本発明の実施例を図面を参照して説明する。[Embodiment] An embodiment of the present invention will be described below with reference to the drawings.

据置用鉛蓄電池の内部インピーダンスは、第1図に示
したようなインピーダンス等価回路のインピーダンスで
表わされる。同図のLは極柱、ストラップ、格子等のイ
ンダクタンス成分、Rsは電解液の抵抗を主とする純抵抗
成分即ち電解液抵抗、Cdは活物質と電解液の界面の電気
二重層容量、θは活物質と電解液間の電荷の授受即ち移
動反応に伴う電荷移動抵抗、Wは電解液の拡散に伴うワ
ールブルグ・インピーダンスである。
The internal impedance of a stationary lead storage battery is represented by the impedance of an impedance equivalent circuit as shown in FIG. In the figure, L is the inductance component of the poles, straps, lattices, etc., Rs is the pure resistance component mainly consisting of the resistance of the electrolytic solution, that is, the electrolytic solution resistance, Cd is the electric double layer capacitance at the interface between the active material and the electrolytic solution, and θ Is the charge transfer resistance associated with the transfer of charges between the active material and the electrolytic solution, that is, the transfer reaction, and W is the Warburg impedance associated with the diffusion of the electrolytic solution.

この等価回路の合成インピーダンスZは、ワールブル
グ・インピーダンスWのワールブルグ係数をσとする
と、角周波数ωの関数として次式(1)で表わされる。
The combined impedance Z of this equivalent circuit is represented by the following equation (1) as a function of the angular frequency ω, where σ is the Warburg coefficient of the Warburg impedance W.

第2図は据置用鉛蓄電池の内部インピーダンスの実測
値と、上記式で計算した値と実測値との差が最小となる
ように上記式の各要素(Rs,L,Cd,θ,σ,W)を決定して
計算したインピーダンスの軌跡とを併せ示したもので、
一般にコール・コールプロットと呼ばれるものである。
Fig. 2 shows each element of the above formula (Rs, L, Cd, θ, σ, σ, so that the difference between the measured value of the internal impedance of the stationary lead-acid battery and the value calculated by the above formula and the measured value is minimized. W) is also shown together with the locus of impedance calculated and
It is generally called a Cole-Cole plot.

実測した電池は容量が200Ahのもので、測定周波数範
囲は0.1Hz〜1KHZで、この範囲内で21点測定した。同図
に見られるように、周波数が1〜100Hz程度では実測値
と等価回路の計算値とがよく一致し、等価回路の表現が
妥当であることがわかる。
The measured battery had a capacity of 200 Ah, and the measurement frequency range was 0.1 Hz to 1 KHZ, and 21 points were measured within this range. As shown in the figure, when the frequency is about 1 to 100 Hz, the measured value and the calculated value of the equivalent circuit are in good agreement, and it can be seen that the expression of the equivalent circuit is appropriate.

等価回路を構成する前述の電解液抵抗Rs、電気二重層
容量Cd、電荷移動抵抗θ、及びワールブルグ係数σ等の
各要素は、電池が寿命に至る場合、次表に示す原因によ
り変化するものと考えられる。
Each element such as the electrolyte resistance Rs, the electric double layer capacity Cd, the charge transfer resistance θ, and the Warburg coefficient σ that constitute the equivalent circuit, when the battery reaches the end of its life, will change due to the causes shown in the following table. Conceivable.

そこで、数種の異なる角周波数を等価回路のインピー
ダンスにあてはめて各要素の値を変えながら計算により
求めた合成インピーダンスと各角周波数で測定した内部
インピーダンス(実測値)との差が最小となる各要素の
値を決定する。そして各要素の算出値を初期値と比較す
ることにより容易・適確に電池の寿命判定を行うことが
できる。
Therefore, by applying several different angular frequencies to the impedance of the equivalent circuit and changing the value of each element, the difference between the synthetic impedance obtained by calculation and the internal impedance (measured value) measured at each angular frequency is minimized. Determine the value of the element. Then, by comparing the calculated value of each element with the initial value, the life of the battery can be determined easily and accurately.

第3図は電池の内部インピーダンス測定手段の概要を
示したもので、1は被測定電池、3はインピーダンス特
性検出器、2上記両者の間に介挿接続されたポテンショ
スタットである。ポテンショスタットは、ある電位を印
加した時の電流を測定するポテンショモードとある電流
を通電した時の電位を測定するガルバノスタット・モー
ドとを有する。本実施例では、ポテンショスタットをガ
ルバノスタット・モードで用い、周波数分析器3よりポ
テンショスタット2を介して電池1に一定振幅の数種の
異なる周波数の交流電流を流し、ポテンショスタット2
の電流モニタ出力と電圧モニタ出力(試料に通電された
電流と発生する電圧を出力する端子)を周波数特性分析
器3の入力に接続し、電流モニタ出力と電圧モニタ出力
の測定値から、周波数に応じた電池1の内部インピーダ
ンスを求める。
FIG. 3 shows an outline of the internal impedance measuring means of the battery. Reference numeral 1 is a battery to be measured, 3 is an impedance characteristic detector, and 2 is a potentiostat connected between the two. The potentiostat has a potentio mode for measuring a current when a certain potential is applied and a galvanostat mode for measuring a potential when a certain current is applied. In this embodiment, the potentiostat is used in a galvanostat mode, and a frequency analyzer 3 supplies an alternating current of several kinds of different frequencies with a constant amplitude to the battery 1 via the potentiostat 2.
Connect the current monitor output and voltage monitor output (terminals that output the current applied to the sample and the generated voltage) to the input of the frequency characteristic analyzer 3 and change the measured values of the current monitor output and the voltage monitor output to the frequency. The corresponding internal impedance of the battery 1 is obtained.

次に、具体例として200Ahの据置用密閉形鉛蓄電池に
対して高温での加速寿命試験を行い、1〜100Hzの間の1
1種類の周波数で測定した内部インピーダンスの各測定
値を用いて算出した各要素の経時的な推移を第4図〜第
7図に示す。各要素の計算は、非線形最少二乗法の一種
であるマルカート法を用いる。具体的には、等価回路の
各要素に適当な初期値を与え、この要素で計算した各周
波数におけるインピーダンスと、測定値のインピーダン
スの差が最小になるように等価回路の各要素の値を変え
てゆき、差が一定値以下になった場合にこの値を解とす
る方法を用いる。この計算方法及び計算式は当業者に公
知であるため、詳細は省略する。なおこの計算はコンピ
ュータを用いて簡単に行うことができる。
Next, as a specific example, a 200 Ah stationary sealed lead-acid battery is subjected to an accelerated life test at high temperature, and a 1 to 100 Hz
FIGS. 4 to 7 show changes with time of each element calculated using the respective measured values of the internal impedance measured at one frequency. The Marquardt method, which is a kind of nonlinear least squares method, is used to calculate each element. Specifically, give an appropriate initial value to each element of the equivalent circuit, and change the value of each element of the equivalent circuit so that the difference between the impedance at each frequency calculated by this element and the impedance of the measured value is minimized. Then, when the difference becomes a certain value or less, the method of using this value as the solution is used. Since this calculation method and calculation formula are known to those skilled in the art, details thereof will be omitted. Note that this calculation can be easily performed using a computer.

第4図は電解液抵抗Rsの推移、第5図は電気二重層容
量Cdの推移、第6図は電荷移動抵抗θの推移、また第7
図はワールブルグ係数σの推移を示したものである。第
8図は,併せて実測した放電容量の推移を示したもので
ある。
FIG. 4 shows the transition of the electrolytic solution resistance Rs, FIG. 5 shows the transition of the electric double layer capacitance Cd, FIG. 6 shows the transition of the charge transfer resistance θ, and FIG.
The figure shows the transition of the Warburg coefficient σ. FIG. 8 also shows the transition of the actually measured discharge capacity.

第4図に示されるように、電解抵抗液Rsは150日前後
より増大して電解液比重が低下していることが推定さ
れ、第5図に示されるように、電気二重層容量Cdは徐々
に減少して有効活物質の反応面積が減少していることが
推定される。また、第6図に示されるように、200日前
後より電荷移動抵抗θが推定され、第7図に示されるよ
うに、ワールブルグ係数σが200日前後より増大してい
ることから活物質の硫酸鉛化により電解液の活物質への
拡散が悪化していることが推定される。
As shown in FIG. 4, it is estimated that the electrolytic resistance solution Rs is increased from around 150 days and the specific gravity of the electrolytic solution is decreased, and as shown in FIG. 5, the electric double layer capacity Cd is gradually increased. It is presumed that the reaction area of the effective active material is decreased. Further, as shown in FIG. 6, the charge transfer resistance θ was estimated from around 200 days, and as shown in FIG. 7, the Warburg coefficient σ was increased from around 200 days. It is presumed that the diffusion of the electrolytic solution into the active material is deteriorated due to the lead conversion.

他方、第8図に見られるように放電容量の実測値も20
0日前後から容量が急激に低下して230日で寿命終期とな
っている。以上のことから、前述の等価回路の各要素の
いずれか又は全部の計算値をそれぞれの初期値と比較す
ることにより電池の寿命判定を行うことができる。
On the other hand, as shown in Fig. 8, the measured value of the discharge capacity is also 20
The capacity has drastically decreased from around 0 days, and it has reached the end of its life in 230 days. From the above, it is possible to determine the life of the battery by comparing the calculated value of any or all of the elements of the equivalent circuit described above with their respective initial values.

[発明の効果] 以上述べたように、本発明によれば、鉛蓄電池の内部
インピーダンスを種々の異なる角周波数で実測し、極
柱、ストラップ、格子体等のインダクタンス成分
(L)、電解液抵抗(Rs)、電気二重層容量(Cd)、電
荷移動抵抗(θ)、ワールブルグ・インピーダンス
(W)及びワールブルグ係数(σ)の各要素を用いて表
わしたインピーダンス等価回路の複素インピーダンスの
式に角周波数をあてはめて各要素の値を変えながら計算
により求めた合成インピーダンスと各角周波数で測定し
た内部インピーダンスとの差が最小となる各要素の値を
決定し、決定した各要素の算出値を初期値と比較するこ
とにより電池の寿命を判定するので、電池の放電容量を
実測することなく、また据置用密閉形鉛蓄電池のような
電解液の比重測定が困難な電池でも容易且て適確に寿命
判定を行うことができる。更に、上記等価回路の各要素
の算出値の変化より、有効反応活物質の量及び表面積、
並びに活物質に対する電解液の拡散状態等の詳細な電池
状態に関する所要の情報を適切に推定し得る利点があ
る。
[Effects of the Invention] As described above, according to the present invention, the internal impedance of the lead storage battery is measured at various different angular frequencies, and the inductance component (L) of the poles, straps, grids, etc., the electrolyte resistance. (Rs), electric double layer capacitance (Cd), charge transfer resistance (θ), Warburg impedance (W), and Warburg coefficient (σ) The value of each element that minimizes the difference between the calculated synthetic impedance and the internal impedance measured at each angular frequency while changing the value of each element is determined, and the calculated value of each determined element is set to the initial value. Since the life of the battery is determined by comparing with, it is possible to measure the specific gravity of the electrolyte without measuring the discharge capacity of the battery and for the sealed lead acid battery for stationary use. It is possible to perform lifetime determination to an appropriate probability also Te easily 且 flame battery. Further, from the change in the calculated value of each element of the equivalent circuit, the amount and surface area of the effective reaction active material,
In addition, there is an advantage that necessary information regarding a detailed battery state such as a diffusion state of the electrolytic solution with respect to the active material can be appropriately estimated.

【図面の簡単な説明】[Brief description of drawings]

第1図は据置用鉛蓄電池のインピーダンス等価回路を示
す回路図、第2図は据置用鉛蓄電池のインピーダンス実
測値と合成インピーダンスの計算値の軌跡を示す特性曲
線図、第3図は鉛蓄電池の内部インピーダンス測定手段
の概要を示す説明図である。第4図は電解液抵抗Rsの経
時変化を示す、第5図は電気二重層容量Cdの経時変化を
示す、第6図は電荷移動抵抗θの経時変化を示す、第7
図はワールブルグ係数σの経時変化を示す、また第8図
は電池放電容量の経時変化を示す各特性曲線図である。 L……インダクタンス成分、Rs……電解液抵抗、Cd……
電気二重層容量、θ……電荷移動抵抗、W……ワールブ
ルグ・インピーダンス。
FIG. 1 is a circuit diagram showing an impedance equivalent circuit of a stationary lead-acid battery, FIG. 2 is a characteristic curve diagram showing loci of measured impedance values and calculated impedances of the stationary lead-acid battery, and FIG. It is explanatory drawing which shows the outline | summary of an internal impedance measuring means. FIG. 4 shows the change over time of the electrolyte resistance Rs, FIG. 5 shows the change over time of the electric double layer capacitance Cd, and FIG. 6 shows the change over time of the charge transfer resistance θ.
The figure shows the time-dependent change of the Warburg coefficient σ, and FIG. 8 is each characteristic curve diagram showing the time-dependent change of the battery discharge capacity. L: Inductance component, Rs: Electrolyte resistance, Cd:
Electric double layer capacitance, θ ... Charge transfer resistance, W ... Warburg impedance.

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】寿命を判定すべき鉛蓄電池の内部インピー
ダンスを複数の異なる角周波数で測定し、 極柱、ストラップ、格子体等のインダクタンス成分
(L)、電解液抵抗(Rs)、電気二重層容量(Cd)、電
荷移動抵抗(θ)、ワールブルグ・インピーダンス
(W)及びワールブルグ係数(σ)の各要素を用いて表
わした下記のインピーダンス等価回路の複素インピーダ
ンスの式に前記角周波数をあてはめて前記各要素の値を
変えながら計算により求めた合成インピーダンスと前記
各角周波数で測定した前記内部インピーダンスとの差が
最小となる前記各要素の値を決定し、 決定した前記電解液抵抗(Rs)、電気二重層容量(C
d)、電荷移動抵抗(θ)及びワールブルグ係数(σ)
の少なくとも1つの値を、初期の値と比較することによ
り電池の寿命を判定することを特徴とする据置用鉛蓄電
池の寿命判定方法。
1. An internal impedance of a lead-acid battery whose life is to be determined is measured at a plurality of different angular frequencies, and an inductance component (L) of a pole, a strap, a grid, etc., an electrolytic solution resistance (Rs), an electric double layer. The angular frequency is applied to the complex impedance equation of the following impedance equivalent circuit expressed by using the elements of capacitance (Cd), charge transfer resistance (θ), Warburg impedance (W) and Warburg coefficient (σ). Determine the value of each element where the difference between the synthetic impedance obtained by calculation while changing the value of each element and the internal impedance measured at each angular frequency is the minimum, Determined electrolyte resistance (Rs), electric double layer capacity (C
d), charge transfer resistance (θ) and Warburg coefficient (σ)
The method for determining the life of a stationary lead-acid battery is characterized in that the life of the battery is determined by comparing at least one of the values with the initial value.
JP2208823A 1990-08-07 1990-08-07 Determining the life of stationary lead-acid batteries Expired - Fee Related JP2536257B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2208823A JP2536257B2 (en) 1990-08-07 1990-08-07 Determining the life of stationary lead-acid batteries

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2208823A JP2536257B2 (en) 1990-08-07 1990-08-07 Determining the life of stationary lead-acid batteries

Publications (2)

Publication Number Publication Date
JPH0495788A JPH0495788A (en) 1992-03-27
JP2536257B2 true JP2536257B2 (en) 1996-09-18

Family

ID=16562707

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2208823A Expired - Fee Related JP2536257B2 (en) 1990-08-07 1990-08-07 Determining the life of stationary lead-acid batteries

Country Status (1)

Country Link
JP (1) JP2536257B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10819131B2 (en) * 2016-08-01 2020-10-27 Toyota Jidosha Kabushiki Kaisha Regeneration method of nickel-hydrogen battery

Families Citing this family (50)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8872517B2 (en) 1996-07-29 2014-10-28 Midtronics, Inc. Electronic battery tester with battery age input
US8958998B2 (en) 1997-11-03 2015-02-17 Midtronics, Inc. Electronic battery tester with network communication
US6037777A (en) * 1998-09-11 2000-03-14 Champlin; Keith S. Method and apparatus for determining battery properties from complex impedance/admittance
US7446536B2 (en) 2000-03-27 2008-11-04 Midtronics, Inc. Scan tool for electronic battery tester
US7398176B2 (en) 2000-03-27 2008-07-08 Midtronics, Inc. Battery testers with secondary functionality
US8513949B2 (en) 2000-03-27 2013-08-20 Midtronics, Inc. Electronic battery tester or charger with databus connection
DE10021161A1 (en) * 2000-04-29 2001-10-31 Vb Autobatterie Gmbh Method for determining the state of charge and the load capacity of an electric accumulator
US9018958B2 (en) 2003-09-05 2015-04-28 Midtronics, Inc. Method and apparatus for measuring a parameter of a vehicle electrical system
US9255955B2 (en) 2003-09-05 2016-02-09 Midtronics, Inc. Method and apparatus for measuring a parameter of a vehicle electrical system
JP4572518B2 (en) * 2003-09-05 2010-11-04 新神戸電機株式会社 Battery status detection method
US9496720B2 (en) 2004-08-20 2016-11-15 Midtronics, Inc. System for automatically gathering battery information
US8344685B2 (en) 2004-08-20 2013-01-01 Midtronics, Inc. System for automatically gathering battery information
DE102005031254A1 (en) * 2005-07-05 2007-01-18 Robert Bosch Gmbh Method for detecting predefinable sizes of an electrical memory
JP2007333494A (en) * 2006-06-14 2007-12-27 Shikoku Electric Power Co Inc Deterioration diagnosis method of storage battery, and deterioration diagnosis device thereof
US9274157B2 (en) 2007-07-17 2016-03-01 Midtronics, Inc. Battery tester for electric vehicle
GB2463829B (en) 2007-07-17 2012-11-21 Midtronics Inc Battery tester for electric vehicle
JP5040733B2 (en) * 2008-03-05 2012-10-03 日産自動車株式会社 Method for estimating chargeable / dischargeable power of battery
FR2948771B1 (en) * 2009-07-28 2011-08-26 Commissariat Energie Atomique METHOD OF CHARACTERIZING AN ELECTRIC BATTERY
JP5586219B2 (en) * 2009-12-25 2014-09-10 株式会社東芝 Diagnostic device, battery pack, and battery value index manufacturing method
US9588185B2 (en) 2010-02-25 2017-03-07 Keith S. Champlin Method and apparatus for detecting cell deterioration in an electrochemical cell or battery
WO2011109343A2 (en) 2010-03-03 2011-09-09 Midtronics, Inc. Monitor for front terminal batteries
US9229062B2 (en) 2010-05-27 2016-01-05 Midtronics, Inc. Electronic storage battery diagnostic system
US20110300416A1 (en) 2010-06-03 2011-12-08 Bertness Kevin I Battery pack maintenance for electric vehicle
US10046649B2 (en) 2012-06-28 2018-08-14 Midtronics, Inc. Hybrid and electric vehicle battery pack maintenance device
US11740294B2 (en) 2010-06-03 2023-08-29 Midtronics, Inc. High use battery pack maintenance
US9419311B2 (en) 2010-06-18 2016-08-16 Midtronics, Inc. Battery maintenance device with thermal buffer
US9201120B2 (en) 2010-08-12 2015-12-01 Midtronics, Inc. Electronic battery tester for testing storage battery
US20140111220A1 (en) * 2011-05-11 2014-04-24 Emazys Technologies Aps Method for fault diagnosis on solar modules
JP5653881B2 (en) * 2011-10-14 2015-01-14 古河電気工業株式会社 Secondary battery state detection device and secondary battery state detection method
DE112012004706T5 (en) 2011-11-10 2014-08-21 Midtronics, Inc. Battery pack test device
US9851411B2 (en) 2012-06-28 2017-12-26 Keith S. Champlin Suppressing HF cable oscillations during dynamic measurements of cells and batteries
US11325479B2 (en) 2012-06-28 2022-05-10 Midtronics, Inc. Hybrid and electric vehicle battery maintenance device
US9244100B2 (en) 2013-03-15 2016-01-26 Midtronics, Inc. Current clamp with jaw closure detection
US9312575B2 (en) 2013-05-16 2016-04-12 Midtronics, Inc. Battery testing system and method
JP5946436B2 (en) 2013-10-21 2016-07-06 カルソニックカンセイ株式会社 Battery parameter estimation apparatus and parameter estimation method
US10843574B2 (en) 2013-12-12 2020-11-24 Midtronics, Inc. Calibration and programming of in-vehicle battery sensors
US9923289B2 (en) 2014-01-16 2018-03-20 Midtronics, Inc. Battery clamp with endoskeleton design
US10473555B2 (en) 2014-07-14 2019-11-12 Midtronics, Inc. Automotive maintenance system
US10222397B2 (en) 2014-09-26 2019-03-05 Midtronics, Inc. Cable connector for electronic battery tester
US10317468B2 (en) 2015-01-26 2019-06-11 Midtronics, Inc. Alternator tester
US9966676B2 (en) 2015-09-28 2018-05-08 Midtronics, Inc. Kelvin connector adapter for storage battery
WO2017056981A1 (en) * 2015-09-28 2017-04-06 Necエナジーデバイス株式会社 Lithium ion secondary battery, method for producing same, and method for evaluating same
US10608353B2 (en) 2016-06-28 2020-03-31 Midtronics, Inc. Battery clamp
US11054480B2 (en) 2016-10-25 2021-07-06 Midtronics, Inc. Electrical load for electronic battery tester and electronic battery tester including such electrical load
US11513160B2 (en) 2018-11-29 2022-11-29 Midtronics, Inc. Vehicle battery maintenance device
US11566972B2 (en) 2019-07-31 2023-01-31 Midtronics, Inc. Tire tread gauge using visual indicator
US11545839B2 (en) 2019-11-05 2023-01-03 Midtronics, Inc. System for charging a series of connected batteries
US11668779B2 (en) 2019-11-11 2023-06-06 Midtronics, Inc. Hybrid and electric vehicle battery pack maintenance device
US11474153B2 (en) 2019-11-12 2022-10-18 Midtronics, Inc. Battery pack maintenance system
US11486930B2 (en) 2020-01-23 2022-11-01 Midtronics, Inc. Electronic battery tester with battery clamp storage holsters

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10819131B2 (en) * 2016-08-01 2020-10-27 Toyota Jidosha Kabushiki Kaisha Regeneration method of nickel-hydrogen battery

Also Published As

Publication number Publication date
JPH0495788A (en) 1992-03-27

Similar Documents

Publication Publication Date Title
JP2536257B2 (en) Determining the life of stationary lead-acid batteries
Kindermann et al. Long-term equalization effects in Li-ion batteries due to local state of charge inhomogeneities and their impact on impedance measurements
JP2792784B2 (en) How to determine the remaining capacity of the storage battery
US7612532B2 (en) Method for controlling and monitoring using a state estimator having variable forgetting factors
JP3162030B2 (en) Battery capacity measuring method and battery capacity measuring device using voltage response signal of pulse current
US6737831B2 (en) Method and apparatus using a circuit model to evaluate cell/battery parameters
US6495990B2 (en) Method and apparatus for evaluating stored charge in an electrochemical cell or battery
EP3021127A1 (en) Method for estimating state of electricity storage device
JP4638195B2 (en) Battery degradation degree estimation device
US20030173971A1 (en) Electronic battery tester with battery failure temperature determination
JP2008522152A (en) Battery state and parameter estimation system and method
Goud et al. An online method of estimating state of health of a Li-ion battery
US20210057926A1 (en) Method an system for assessing a state of charge/discharge (soc/sod) for an electrochemical cell
JP6337233B2 (en) Battery evaluation method and battery characteristic evaluation apparatus
JP2012225713A (en) Charge rate estimation device
Huet et al. Investigation of the high-frequency resistance of a lead-acid battery
JP5673097B2 (en) Non-aqueous electrolyte secondary battery OCV characteristic estimation method, OCV characteristic estimation apparatus, and power storage system
JP3412355B2 (en) Nickel-based battery deterioration determination method
JP2000100479A (en) Control method for electrochemical element
Sadabadi et al. Development of an electrochemical model for a Lithium Titanate Oxide|| nickel manganese cobalt battery module
KR20150034593A (en) Method and apparatus for state of charge estimation of battery
JPH0821434B2 (en) Method for detecting deterioration of sealed lead-acid battery
JPH11233162A (en) Method for judging life of sealed lead-acid battery
KR20030013215A (en) Capacity Prediction and Screening Method of Battery Using Transient Response Function
JPH08233917A (en) Estimation method of battery capacity using natural logarithm

Legal Events

Date Code Title Description
S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080708

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080708

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090708

Year of fee payment: 13

LAPS Cancellation because of no payment of annual fees