JP2535789B2 - Method for producing superplastic hypereutectic aluminum-silicon powder metallurgy alloy - Google Patents
Method for producing superplastic hypereutectic aluminum-silicon powder metallurgy alloyInfo
- Publication number
- JP2535789B2 JP2535789B2 JP6173279A JP17327994A JP2535789B2 JP 2535789 B2 JP2535789 B2 JP 2535789B2 JP 6173279 A JP6173279 A JP 6173279A JP 17327994 A JP17327994 A JP 17327994A JP 2535789 B2 JP2535789 B2 JP 2535789B2
- Authority
- JP
- Japan
- Prior art keywords
- silicon
- aluminum
- alloy
- powder
- hypereutectic
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Landscapes
- Powder Metallurgy (AREA)
Description
【0001】[0001]
【産業上の利用分野】本発明は、耐摩耗性、機械的強
度、軽量性、低熱膨張率などの特性が格段に優れるとと
もに、それらの特性に加えて超塑性特性を発現し、複雑
形状物品にも適用できるようなアルミニウム−シリコン
系粉末冶金合金の製造方法に関するものである。INDUSTRIAL APPLICABILITY The present invention is remarkably excellent in properties such as abrasion resistance, mechanical strength, light weight, and low coefficient of thermal expansion, and in addition to those properties, superplastic properties are exhibited, and articles of complex shape are formed. The present invention also relates to a method for producing an aluminum-silicon powder metallurgical alloy that can also be applied to.
【0002】[0002]
【従来の技術】アルミニウムにシリコンを共晶点以上、
すなわち11.7wt%以上添加すると、合金の耐摩耗
性が向上するとともに、熱膨張率が鉄合金なみに低下す
る。しかしながら、ほとんどの金属および合金材料は、
これまで溶解鋳造法によって製造され、この溶解鋳造法
では、合金溶湯の凝固速度が遅いため、偏析が生じた
り、粗大組織になるという欠点がある。そして、この溶
解鋳造法によるアルミニウム−シリコン系合金において
は、初晶シリコン粒が粗大に晶出した不均質組織になる
ため、前記の耐摩耗性や低熱膨張率などの特性向上に対
して、添加されたシリコンが十分にその目的を発揮でき
ないという欠点がある。さらに、このように粗大な初晶
シリコン粒を有する不均質組織のアルミニウム−シリコ
ン系合金では、鍛造や圧延のような塑性加工性ならびに
切削性が劣り、種々の機械的性質がシリコンを添加する
ことによって逆に低下する場合もある。2. Description of the Related Art Silicon is added to aluminum above the eutectic point,
That is, when added in an amount of 11.7 wt% or more, the wear resistance of the alloy is improved and the coefficient of thermal expansion is reduced as much as an iron alloy. However, most metal and alloy materials
Up to now, it has been manufactured by a melt casting method. In this melt casting method, since the solidification rate of the molten alloy is slow, there are drawbacks such as segregation and a coarse structure. Then, in the aluminum-silicon alloy by the melt casting method, since the primary crystal silicon grains become a coarsely crystallized heterogeneous structure, in order to improve the characteristics such as the wear resistance and the low thermal expansion coefficient, the addition is made. There is a drawback in that the obtained silicon cannot sufficiently fulfill its purpose. Further, in such an aluminum-silicon alloy having a heterogeneous structure having coarse primary crystal grains, plastic workability such as forging and rolling and machinability are inferior, and various mechanical properties include addition of silicon. On the contrary, it may decrease.
【0003】このようなアルミニウム−シリコン系合金
における各種の問題点を解決するために、粉末を出発原
料とし、これに圧縮成形、焼結などの工程を施して物品
を製造する粉末冶金法の応用が試みられている。この粉
末冶金法によれば、合金溶湯から粉末を製造する場合の
凝固速度を、溶解鋳造法の場合に比べて速くすることが
でき、偏析が生じたり、粗大組織になることを阻止する
ことができる。なぜならば、粉末は溶解鋳造法における
鋳塊に比べて格段にその体積が小さく、凝固速度を速く
できるためである。In order to solve various problems in such an aluminum-silicon alloy, powder is used as a starting material, and powder metallurgy is applied to produce an article by subjecting the powder to steps such as compression molding and sintering. Is being attempted. According to this powder metallurgy method, the solidification rate in the case of producing powder from the molten alloy can be made faster than that in the case of the melt casting method, and it is possible to prevent the occurrence of segregation or the formation of a coarse structure. it can. This is because the powder has a much smaller volume than the ingot in the melt casting method, and the solidification rate can be increased.
【0004】この粉末冶金法によってアルミニウム−シ
リコン系合金における初晶シリコン粒を微細に分散さ
せ、耐摩耗性や低熱膨張率などの特性を向上させた粉末
冶金合金は、コンプレッサー部品、エンジン部材、VT
R用シリンダなどへ適用され、既に一部実用化もなされ
ている。そして、アルミニウム−シリコン系合金粉末か
ら最終製品を得るためには、粉末を固化成形する必要が
あるが、その固化成形技術の一環として焼結鍛造技術が
応用され、最終製品に近い形状に成形する、いわゆるニ
ア・ネット・シェイプ(near net shape)成形が試みら
れている。A powder metallurgy alloy in which primary crystal silicon grains in an aluminum-silicon alloy are finely dispersed by the powder metallurgy method to improve properties such as wear resistance and a low coefficient of thermal expansion are compressor parts, engine parts, and VT.
It has been applied to R cylinders, etc., and has already been partially put into practical use. Then, in order to obtain the final product from the aluminum-silicon alloy powder, it is necessary to solidify and mold the powder, but the sintering forging technology is applied as a part of the solidification and molding technology to form the shape close to the final product. So-called near net shape molding has been attempted.
【0005】しかしながら、アルミニウム−シリコン系
粉末冶金合金の鍛造性は、必ずしも十分なものではな
く、そのため、鍛造時に背圧を作用させて鍛造時のクラ
ックの発生を抑制する方法なども検討されているが、満
足できる程度にその技術が確立されるには至っていな
い。今後より一層求められる複雑形状物品へのアルミニ
ウム−シリコン系粉末冶金合金の適用を考慮した場合、
高温において延性に優れる超塑性特性をアルミニウム−
シリコン系粉末冶金合金に付与することは、種々の複雑
形状物品を、少ない工程、少ない部品点数で、しかも低
容量の成形加工装置でもって製造できることになり、そ
の工業的意義は非常に大きいものである。However, the forgeability of an aluminum-silicon powder metallurgy alloy is not always sufficient, and therefore, a method of applying back pressure during forging to suppress the generation of cracks during forging has been investigated. However, the technology has not been established to a satisfactory degree. Considering the application of aluminum-silicon powder metallurgy alloys to complicated shaped articles that are required even more in the future,
Aluminum has excellent superplasticity characteristics with excellent ductility at high temperatures.
Giving to silicon-based powder metallurgy alloys makes it possible to manufacture various complicated shaped articles with a small number of steps, a small number of parts, and with a low-capacity molding processing device, and its industrial significance is very great. is there.
【0006】[0006]
【発明が解決しようとする課題】かかる観点から、本発
明の技術的課題は、耐摩耗性、低熱膨張率、機械的強度
などに優れるとともに、それらの特性に加えて超塑性特
性を発現するようにした過共晶アルミニウム−シリコン
系粉末冶金合金の製造方法を得ることにある。From this point of view, the technical problem of the present invention is that it is excellent in wear resistance, low coefficient of thermal expansion, mechanical strength, and the like, and at the same time exhibits superplasticity characteristics in addition to those characteristics. To obtain a method for producing a hypereutectic aluminum-silicon powder metallurgy alloy.
【0007】[0007]
【課題を解決するための手段、作用】上記課題を解決す
るため、本発明者が鋭意研究を重ねた結果、従来からの
慣用的な粉末製造法である空気噴霧法やガス噴霧法の場
合よりも、さらに速い冷却速度が達成できる急冷凝固粉
末を出発原料として用い、これに適切な固化成形プロセ
ス、および必要に応じて熱処理を施すことによって、耐
摩耗性、低熱膨張率、機械的強度はもとより、特に超塑
性特性により成形加工性において優れるアルミニウム−
シリコン系粉末冶金合金の製造方法を開発するに至っ
た。Means for Solving the Problems To solve the above problems, the present inventor has conducted extensive studies, and as a result, compared with the conventional conventional powder manufacturing method such as the air atomization method or the gas atomization method. In addition, by using a rapidly solidified powder that can achieve an even faster cooling rate as a starting material, and subjecting this to an appropriate solidification molding process and heat treatment as necessary, wear resistance, low coefficient of thermal expansion, and mechanical strength Aluminum, which has excellent moldability due to superplasticity
We have developed a method for manufacturing silicon powder metallurgy alloys.
【0008】すなわち、本発明の超塑性過共晶アルミニ
ウム−シリコン系粉末冶金合金の製造方法は、基本的に
は、マトリックスであるアルミニウム中に15〜30w
t%のシリコンを含む過共晶組成のアルミニウム−シリ
コン系急冷凝固合金粉末を、104 ℃/sec以上の冷
却速度の下で製造し、これを出発原料として、大気中で
熱間押出し加工を加えて固化成形し、超塑性特性を発現
させることを特徴とするものである。That is, the method of manufacturing the superplastic hypereutectic aluminum-silicon powder metallurgy alloy of the present invention is basically 15 to 30 w in the matrix aluminum.
A hypereutectic aluminum-silicon rapidly solidified alloy powder containing t% of silicon was produced at a cooling rate of 10 4 ° C / sec or more, and this was used as a starting material for hot extrusion in the atmosphere. In addition, it is characterized by being solidified to develop superplasticity.
【0009】本発明の方法をさらに具体的に説明する
と、まず、過共晶アルミニウム−シリコン系粉末冶金合
金において超塑性を発現させるためには、組織が微細・
均質でなければならない。この必須条件を満足させるた
めに、本発明においては出発原料として、過共晶組成の
アルミニウム−シリコン系合金の急冷凝固粉末を採用し
ている。この急冷凝固粉末は、回転円盤アトマイズ法あ
るいはその他の方法により、冷却速度を104 ℃/se
c以上、通常は105 〜104 ℃/secに達するもの
として製造したものであり、このような格段に速い冷却
速度によって得た急冷凝固粉末を用いることにより、従
来の溶解鋳造法では非常に粗大に晶出した初晶シリコン
粒を、ごくごく微細、かつ均質にマトリックス中に分散
させることができる。The method of the present invention will be described in more detail. First, in order to develop superplasticity in a hypereutectic aluminum-silicon powder metallurgy alloy, the structure must be fine.
Must be homogeneous. In order to satisfy this essential condition, a rapidly solidified powder of a hypereutectic aluminum-silicon alloy is used as a starting material in the present invention. This rapidly solidified powder has a cooling rate of 10 4 ° C / se by a rotating disk atomizing method or another method.
c or higher, usually 10 5 to 10 4 ° C./sec., and by using the rapidly solidified powder obtained by such a significantly high cooling rate, the conventional melt casting method is very effective. The coarsely crystallized primary crystal silicon particles can be dispersed in the matrix very finely and uniformly.
【0010】上記アルミニウム−シリコン系合金として
は、一般的に、マトリックスであるアルミニウム中に1
5〜30wt%のシリコンを含む過共晶組成のものを用
いることができるが、上記15〜30wt%のシリコン
とともに、アルミニウムマトリックスの強化のための銅
を1.5〜4wt%、同じくマグネシウムを0.7〜2
wt%添加したものとすることができ、更に、必要に応
じて、0.5〜1wt%のジルコニウム、マンガン、ク
ロム等を添加したものとすることができる。しかしなが
ら、所期の性能を有する過共晶組成のアルミニウム−シ
リコン系合金を得るためには、マトリックスのアルミニ
ウムが63〜82wt%であることが必要である。As the above-mentioned aluminum-silicon alloy, generally, 1 is added to the matrix aluminum.
It is possible to use a hypereutectic composition containing 5 to 30 wt% of silicon, but together with the above 15 to 30 wt% of silicon, 1.5 to 4 wt% of copper for strengthening the aluminum matrix and 0 to magnesium are also used. 7-2
It may be added with wt%, and may be added with 0.5 to 1 wt% of zirconium, manganese, chromium or the like, if necessary. However, in order to obtain a hypereutectic composition aluminum-silicon alloy having desired performance, it is necessary that the matrix aluminum content is 63 to 82 wt%.
【0011】このような出発原料の過共晶アルミニウム
−シリコン系急冷凝固粉末は、真空中で熱間圧縮した後
に、大気中で熱間押出し加工を加えて固化成形し、さら
にマトリックスの強化を図るための熱処理を行うことに
より、超塑性特性を発現した過共晶アルミニウム−シリ
コン系粉末冶金合金を得るが、固化成形プロセスの簡略
化のために、上記真空中での熱間圧縮及び熱間押出し加
工後の熱処理を省略し、大気中での熱間押出し加工のみ
により固化成形プロセスを完了することもできる。Such a hypereutectic aluminum-silicon rapidly solidified powder as a starting material is hot-compressed in a vacuum and then hot-extruded in the air to be solidified to further strengthen the matrix. A hypereutectic aluminum-silicon powder metallurgical alloy exhibiting superplasticity characteristics is obtained by performing a heat treatment for the purpose of, but in order to simplify the solidification forming process, hot compression and hot extrusion in the vacuum are performed. It is also possible to omit the heat treatment after processing and complete the solidification molding process only by hot extrusion in the atmosphere.
【0012】上記真空中で熱間圧縮は、0.1Pa以上
の高真空中、300〜400℃程度の温度範囲におい
て、ホットプレス等により55MPa以上の加圧・圧縮
を施すのが望ましく、次いで行う大気中での熱間押出し
加工は、350〜490℃程度の温度範囲において、5
0以上の押出し比、望ましくは100以上の押出し比の
下で行うものである。得られた押出し材には、時効析出
によるアルミニウムマトリックスの強化を図るために、
合金組成に応じてT6処理などの熱処理を行うことがで
きる。The hot compression in the above vacuum is preferably performed by applying a pressure / compression of 55 MPa or more by hot pressing or the like in a temperature range of 300 to 400 ° C. in a high vacuum of 0.1 Pa or more. Hot extrusion in the atmosphere is performed in a temperature range of about 350 to 490 ° C. for 5 hours.
The extrusion ratio is 0 or more, preferably 100 or more. The extruded material thus obtained, in order to strengthen the aluminum matrix by aging precipitation,
A heat treatment such as T6 treatment can be performed depending on the alloy composition.
【0013】なお、上述したように、固化成形プロセス
の簡略化のために、上記真空中での熱間圧縮及び熱間押
出し加工後の熱処理を省略し、大気中での熱間押出し加
工のみにより固化成形プロセスを完了することができる
が、その場合には、粉末の保存はデシケータ中で行う等
の厳重な管理が望まれる。すなわち、粉末の保存を大気
中等で行っていると、粉末表面には大気中の水分が多量
に吸着し、そのような粉末を脱ガス処理を行わずに直接
押出すと、最悪の場合には、押出し材の内部に欠陥が生
じることがある。これを回避するために、デシケータ、
さらに望ましくは真空デシケータ中での粉末の保存が理
想である。また、熱間押出し加工後の熱処理はマトリッ
クスを強化させるためのものであり、要求される機械的
特性が満たされていなければ熱処理によって機械的特性
を向上させることができる。As described above, in order to simplify the solidification molding process, the heat compression after the hot compression in the vacuum and the heat treatment after the hot extrusion are omitted, and only the hot extrusion in the atmosphere is performed. Although the solidification molding process can be completed, in that case, strict control such as storing the powder in a desiccator is desired. That is, when the powder is stored in the air or the like, a large amount of moisture in the air is adsorbed on the surface of the powder, and if such powder is directly extruded without degassing, in the worst case, , Defects may occur inside the extruded material. To avoid this, a desiccator,
More preferably, storage of the powder in a vacuum desiccator is ideal. Further, the heat treatment after the hot extrusion processing is for strengthening the matrix, and the mechanical properties can be improved by the heat treatment if the required mechanical properties are not satisfied.
【0014】上記のようにして作製された粉末冶金合金
は、450〜500℃程度の適切な加工温度と、8×1
0-4〜10-1s-1のひずみ速度、すなわち加工速度の下
で、成形加工することによって、超塑性を発現させ、複
雑形状物品を製造することができる。The powder metallurgy alloy produced as described above has an appropriate processing temperature of about 450 to 500 ° C. and 8 × 1.
By performing molding at a strain rate of 0 −4 to 10 −1 s −1 , that is, a processing rate, superplasticity can be exhibited and a complex shaped article can be manufactured.
【0015】[0015]
[実施例1]合金組成が、Al−25Si−3Cu−
1.5Mg−1Zrである急冷凝固粉末を、105 〜1
04 ℃/secの冷却速度の下で、回転円盤アトマイズ
法により製造した。得られた粉末を149μm以下に分
級後、2×10-2Paの真空中で、温度390℃、圧力
55MPaの条件下でホットプレスした。その後、温度
495℃、押出し比110の下で熱間押出し加工を行
い、更に、得られた押出し材に対してT6処理(470
℃で1時間保持した後、水冷、次いで175℃で8時間
保持した後に炉冷)を施した。このようにして得られた
過共晶アルミニウム−シリコン系粉末冶金合金のミクロ
組織を図1に、超塑性特性試験における伸びを図2に示
す。[Example 1] The alloy composition was Al-25Si-3Cu-
The rapidly solidified powder of 1.5Mg-1Zr was added to 10 5 to 1
It was manufactured by a rotating disk atomizing method under a cooling rate of 0 4 ° C / sec. After the obtained powder was classified to 149 μm or less, it was hot pressed in a vacuum of 2 × 10 −2 Pa under the conditions of a temperature of 390 ° C. and a pressure of 55 MPa. Then, hot extrusion is performed at a temperature of 495 ° C. and an extrusion ratio of 110, and the obtained extruded material is subjected to T6 treatment (470
After holding at 0 ° C. for 1 hour, water cooling was performed, and then at 175 ° C. for 8 hours and then furnace cooling). The microstructure of the hypereutectic aluminum-silicon powder metallurgical alloy thus obtained is shown in FIG. 1, and the elongation in the superplastic property test is shown in FIG.
【0016】図1の写真中、黒い粒子が初晶シリコン粒
であり、白い部分がマトリックスである。この写真から
明らかなように、得られた過共晶アルミニウム−シリコ
ン系粉末冶金合金では、粒径が2〜4μmである微細な
シリコン粒がアルミニウムマトリックス中に均質に、且
つ方向性を有しないで分散した等方性の組織を呈してい
る。In the photograph of FIG. 1, black particles are primary crystal silicon particles and white portions are matrix. As is clear from this photograph, in the obtained hypereutectic aluminum-silicon powder metallurgy alloy, fine silicon particles having a particle size of 2 to 4 μm are homogeneous in the aluminum matrix and have no directivity. It exhibits a dispersed isotropic structure.
【0017】また、図2から、得られた過共晶アルミニ
ウム−シリコン系粉末冶金合金は、480℃の試験温度
の下では100%に達する伸びを有し、JISに規定さ
れている従来の鋳造法によるアルミニウム−シリコン系
合金鋳物AC3Aの伸び:2%以上を大きく凌駕し、超
塑性特性を有することがわかる。更に、得られた過共晶
アルミニウム−シリコン系粉末冶金合金の室温における
引張強さは、436MPaであり、AC3A合金鋳物の
147MPaを大きく上回っていた。Further, from FIG. 2, the obtained hypereutectic aluminum-silicon powder metallurgy alloy has an elongation reaching 100% under the test temperature of 480 ° C., and the conventional casting stipulated in JIS. It can be seen that the elongation of the aluminum-silicon alloy casting AC3A obtained by the method greatly exceeds 2% or more, and has superplastic characteristics. Furthermore, the tensile strength at room temperature of the obtained hypereutectic aluminum-silicon powder metallurgy alloy was 436 MPa, which was much higher than the 147 MPa of AC3A alloy casting.
【0018】[実施例2]合金組成が、Al−15Si
−1.8Cu−0.9Mg−0.6Zrである急冷凝固
粉末を、実施例1と同様にして回転円盤アトマイズ法で
製造した。また、実施例1と同じ工程により過共晶アル
ミニウム−シリコン系粉末冶金合金を作製した。ただ
し、本実施例ではT6処理は施していない。得られた過
共晶アルミニウム−シリコン系粉末冶金合金について超
塑性特性試験を行った結果の伸びと試験温度の関係を図
3に示す。この試験結果によれば、伸びは試験温度が高
くなるのに伴って向上し、試験温度が500℃の下で3
00%近くの伸びを示している。更に、得られた過共晶
アルミニウム−シリコン系粉末冶金合金の室温における
引張強さは、366MPaであり、AC3A合金鋳物の
147MPaを大きく上回っていた。Example 2 The alloy composition is Al-15Si.
A rapidly solidified powder of -1.8Cu-0.9Mg-0.6Zr was manufactured by a rotating disk atomizing method in the same manner as in Example 1. Further, a hypereutectic aluminum-silicon powder metallurgical alloy was produced by the same process as in Example 1. However, the T6 process is not performed in this embodiment. FIG. 3 shows the relationship between the elongation and the test temperature as a result of the superplasticity characteristic test of the obtained hypereutectic aluminum-silicon powder metallurgy alloy. According to this test result, the elongation increases as the test temperature increases, and when the test temperature is 500 ° C,
It shows a growth of nearly 00%. Furthermore, the tensile strength at room temperature of the obtained hypereutectic aluminum-silicon powder metallurgy alloy was 366 MPa, which was far higher than the 147 MPa of the AC3A alloy casting.
【0019】[実施例3]合金組成がAl−15Si−
1.8Cu−0.9Mg−0.6Zrである実施例2と
同様の急冷凝固粉末(粒径149μm以下)を用い、実
施例1や実施例2とは異なる固化成形プロセスにより、
過共晶アルミニウム−シリコン系粉末冶金合金を作製し
た。すなわち、本実施例における固化成形プロセスは、
粉末を真空ホットプレスで予備成形することなく、粉末
を直接、大気中で押出し加工した。得られた過共晶アル
ミニウム−シリコン系粉末冶金合金の超塑性特性試験に
おける伸びを、初期ひずみ速度との関係で図4に示す。
同図によれば、大幅に簡略化された固化成形プロセスの
下で実施例2の場合よりも大きな伸びを示している。こ
れによって、固化成形プロセスの大幅な簡略化が達成で
きることを確かめることができた。[Example 3] The alloy composition is Al-15Si-
Using the same rapidly solidified powder (particle size 149 μm or less) as in Example 2, which is 1.8Cu-0.9Mg-0.6Zr, by a solidification molding process different from those in Example 1 and Example 2,
A hypereutectic aluminum-silicon powder metallurgical alloy was prepared. That is, the solidification molding process in this example is
The powder was extruded directly in air without preforming the powder with a vacuum hot press. The elongation in the superplastic property test of the obtained hypereutectic aluminum-silicon powder metallurgy alloy is shown in FIG. 4 in relation to the initial strain rate.
According to the figure, under the greatly simplified solidification molding process, a larger elongation than that in the case of Example 2 is shown. By this, it was possible to confirm that a great simplification of the solidification molding process could be achieved.
【0020】[比較例]合金組成がAl−25Si−3
Cu−1.5Mg−1Zrであるインゴットを溶解鋳造
法で作製し、これに実施例1と同様な熱間押出し加工を
施し、次いで、得られたインゴット押出し材にT6処理
(実施例1に同じ)を施した。このインゴット押出し材
について超塑性試験を行い、その伸びを図5に示す。同
図には、実施例3と同じ簡略化された固化成形プロセス
によって得られたAl−25Si−3Cu−1.5Mg
−1Zr粉末冶金合金の伸びも示す。この溶解鋳造法で
作製されたインゴットは、粗大かつ不均質組織を有する
ものであり、これに熱間押出し加工を施しても、やは
り、粉末冶金合金の組織に比べて大幅に粗大、不均質で
あるため、同一の成形加工プロセスを経ても超塑性は全
く示さず、5〜8%の伸びを示すに過ぎなかった。[Comparative Example] The alloy composition is Al-25Si-3.
A Cu-1.5Mg-1Zr ingot was produced by a melt casting method, and subjected to the same hot extrusion processing as in Example 1, and then the obtained ingot extruded material was subjected to T6 treatment (the same as in Example 1). ) Was given. A superplasticity test was performed on this extruded ingot material, and its elongation is shown in FIG. In the figure, Al-25Si-3Cu-1.5Mg obtained by the same simplified solidification molding process as in Example 3.
The elongation of the -1Zr powder metallurgy alloy is also shown. The ingot produced by this melting casting method has a coarse and inhomogeneous structure, and even if it is subjected to hot extrusion processing, it is still significantly coarser and inhomogeneous than the structure of the powder metallurgy alloy. Therefore, even if the same forming process was performed, superplasticity was not exhibited at all, and only elongation of 5 to 8% was exhibited.
【0021】[0021]
【発明の効果】以上に詳述したように、本発明の方法に
よれば、高耐摩耗性、低熱膨張率、高強度などの優れた
特性を有するとともに、超塑性特性を発現する過共晶ア
ルミニウム−シリコン系粉末冶金合金が製造できるた
め、今後より一層求められる複雑形状物品が容易に製造
できることになる。As described in detail above, according to the method of the present invention, a hypereutectic crystal that exhibits excellent characteristics such as high wear resistance, low coefficient of thermal expansion, and high strength, and that exhibits superplasticity characteristics. Since an aluminum-silicon powder metallurgical alloy can be manufactured, it becomes possible to easily manufacture an article having a complicated shape which is required even more in the future.
【図1】本発明方法の実施例1によって作製した過共晶
アルミニウム−シリコン系粉末冶金合金の金属組織を示
す図面代用顕微鏡写真である。FIG. 1 is a drawing-substituting micrograph showing a metal structure of a hypereutectic aluminum-silicon powder metallurgical alloy produced according to Example 1 of the method of the present invention.
【図2】実施例1における過共晶アルミニウム−シリコ
ン系粉末冶金合金の引張試験を行った際の、伸びと初期
ひずみ速度との関係を表す図である。FIG. 2 is a diagram showing the relationship between elongation and initial strain rate when a tensile test is performed on the hypereutectic aluminum-silicon powder metallurgical alloy in Example 1.
【図3】実施例2における過共晶アルミニウム−シリコ
ン系粉末冶金合金の引張試験を行った際の、伸びと試験
温度との関係を表す図である。FIG. 3 is a diagram showing a relationship between elongation and a test temperature when a hypereutectic aluminum-silicon powder metallurgical alloy in Example 2 is subjected to a tensile test.
【図4】実施例3における過共晶アルミニウム−シリコ
ン系粉末冶金合金の引張試験を行った際の、伸びと初期
ひずみ速度との関係を表す図である。FIG. 4 is a diagram showing the relationship between elongation and initial strain rate when a hypereutectic aluminum-silicon powder metallurgical alloy in Example 3 is subjected to a tensile test.
【図5】比較例における過共晶アルミニウム−シリコン
系合金のインゴット押出し材における伸びと初期ひずみ
速度との関係を表す図である。FIG. 5 is a diagram showing a relationship between elongation and an initial strain rate in an ingot extruded material of a hypereutectic aluminum-silicon alloy in a comparative example.
Claims (3)
〜30wt%のシリコンを含む過共晶組成のアルミニウ
ム−シリコン系急冷凝固合金粉末を、104 ℃/sec
以上の冷却速度の下で製造し、これを出発原料として、
大気中で熱間押出し加工を加えて固化成形し、超塑性特
性を発現させることを特徴とする超塑性過共晶アルミニ
ウム−シリコン系粉末冶金合金の製造方法。1. A matrix of 15 in aluminum
A hypereutectic aluminum-silicon rapidly solidified alloy powder containing ˜30 wt% silicon at 10 4 ° C./sec.
Manufactured under the above cooling rate, using this as a starting material,
A method for producing a superplastic hypereutectic aluminum-silicon powder metallurgical alloy, which comprises subjecting to solidification by hot extrusion in air to develop superplasticity.
成のアルミニウム−シリコン系急冷凝固合金粉末とし
て、15〜30wt%のシリコンとともに、アルミニウ
ムマトリックスを強化するための1.5〜4wt%の銅
と0.7〜2wt%のマグネシウムを含む組成のものを
用いることを特徴とする超塑性過共晶アルミニウム−シ
リコン系粉末冶金合金の製造方法。2. The method according to claim 1, wherein the aluminum-silicon rapidly solidified alloy powder having a hypereutectic composition is used in an amount of 1.5 to 4 wt% for strengthening the aluminum matrix together with 15 to 30 wt% of silicon. 2. A method for producing a superplastic hypereutectic aluminum-silicon powder metallurgical alloy, characterized in that a composition containing copper and 0.7 to 2 wt% of magnesium is used.
出発原料である過共晶アルミニウム−シリコン系急冷凝
固粉末を、真空中で熱間圧縮した後に、大気中で熱間押
出し加工を加えて固化成形し、さらにマトリックスの強
化を図るための熱処理を行うことを特徴とする超塑性過
共晶アルミニウム−シリコン系粉末冶金合金の製造方
法。3. The method according to claim 1 or 2, wherein
The hypereutectic aluminum-silicon rapidly solidified powder, which is the starting material, is hot-compressed in a vacuum, then hot-extruded in the air to be solidified, and further heat-treated to strengthen the matrix. A method for producing a superplastic hypereutectic aluminum-silicon powder metallurgical alloy, comprising:
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP6173279A JP2535789B2 (en) | 1994-06-30 | 1994-06-30 | Method for producing superplastic hypereutectic aluminum-silicon powder metallurgy alloy |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP6173279A JP2535789B2 (en) | 1994-06-30 | 1994-06-30 | Method for producing superplastic hypereutectic aluminum-silicon powder metallurgy alloy |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH0813056A JPH0813056A (en) | 1996-01-16 |
JP2535789B2 true JP2535789B2 (en) | 1996-09-18 |
Family
ID=15957510
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP6173279A Expired - Lifetime JP2535789B2 (en) | 1994-06-30 | 1994-06-30 | Method for producing superplastic hypereutectic aluminum-silicon powder metallurgy alloy |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2535789B2 (en) |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2001146576A (en) * | 1999-11-19 | 2001-05-29 | Kansai Paint Co Ltd | Method for storing powder coating material |
CN107058739B (en) * | 2017-01-22 | 2018-08-07 | 哈尔滨理工大学 | A kind of hypereutectic al-si composite material and its manufacturing method, application |
JP7011942B2 (en) * | 2018-01-19 | 2022-02-10 | 昭和電工株式会社 | Aluminum alloy substrate for magnetic recording medium, substrate for magnetic recording medium, magnetic recording medium and hard disk drive |
-
1994
- 1994-06-30 JP JP6173279A patent/JP2535789B2/en not_active Expired - Lifetime
Non-Patent Citations (1)
Title |
---|
NIKKEI MECHANICAL=1984 * |
Also Published As
Publication number | Publication date |
---|---|
JPH0813056A (en) | 1996-01-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4702885A (en) | Aluminum alloy and method for producing the same | |
JPS60228659A (en) | Malleable improvement for nickel base superalloy | |
EP0535593B1 (en) | Method of manufacturing sintered aluminum alloy parts | |
JPH02503331A (en) | Magnesium alloy with high mechanical resistance and manufacturing method by rapid solidification of the alloy | |
JPH0480081B2 (en) | ||
WO2021056806A1 (en) | Aluminum alloy powder and manufacturing method therefor, and aluminum alloy product and manufacturing method therefor | |
JP5772731B2 (en) | Aluminum alloy powder forming method and aluminum alloy member | |
CN114231798A (en) | High-temperature-resistant wear-resistant aluminum alloy material and preparation method and application thereof | |
JP3845035B2 (en) | Method for manufacturing piston for internal combustion engine and piston for internal combustion engine | |
JP2008045157A (en) | Spectacles component made of ultrahigh-tensile aluminum powder alloy and method for producing the same | |
JP2535789B2 (en) | Method for producing superplastic hypereutectic aluminum-silicon powder metallurgy alloy | |
JP2006161103A (en) | Aluminum alloy member and manufacturing method therefor | |
JP2001026835A (en) | Forged part and its production | |
JP4152095B2 (en) | Method for producing semi-molten billet of aluminum alloy for transportation equipment | |
JPH0257121B2 (en) | ||
JPH06228697A (en) | Rapidly solidified al alloy excellent in high temperature property | |
JP3368600B2 (en) | Manufacturing method of high heat resistant aluminum alloy | |
JP3691399B2 (en) | Method for producing hot-worked aluminum alloy powder | |
JP3125042B2 (en) | Method for producing high specific strength type superplastic aluminum-magnesium powder metallurgy alloy | |
JPH1157965A (en) | Production of aluminum alloy casting | |
JP2920205B2 (en) | Method for producing heat-resistant aluminum powder alloy with superplasticity | |
JP3523512B2 (en) | Forging method of magnesium alloy | |
JP2917999B2 (en) | Method for producing high-strength aluminum alloy compact | |
JPH0328336A (en) | Manufacture of aluminum alloy powder sintered parts | |
JP2000210747A (en) | Plastically worked thin formed part of magnesium alloy |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
EXPY | Cancellation because of completion of term |