JP2533633Y2 - AT-cut crystal unit - Google Patents

AT-cut crystal unit

Info

Publication number
JP2533633Y2
JP2533633Y2 JP1987032833U JP3283387U JP2533633Y2 JP 2533633 Y2 JP2533633 Y2 JP 2533633Y2 JP 1987032833 U JP1987032833 U JP 1987032833U JP 3283387 U JP3283387 U JP 3283387U JP 2533633 Y2 JP2533633 Y2 JP 2533633Y2
Authority
JP
Japan
Prior art keywords
crystal
frequency
view
thickness
electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP1987032833U
Other languages
Japanese (ja)
Other versions
JPS63140719U (en
Inventor
亜紀雄 千葉
幹雄 中島
治良 太田
Original Assignee
日本電波工業 株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電波工業 株式会社 filed Critical 日本電波工業 株式会社
Priority to JP1987032833U priority Critical patent/JP2533633Y2/en
Publication of JPS63140719U publication Critical patent/JPS63140719U/ja
Application granted granted Critical
Publication of JP2533633Y2 publication Critical patent/JP2533633Y2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

【考案の詳細な説明】 (考案の利用分野) 本考案は圧電振動子を利用分野とし、特に不活性ガス
イオンを電極表面に照射して周波数を調整した水晶振動
子に関する。
DETAILED DESCRIPTION OF THE INVENTION (Field of Application of the Invention) The present invention relates to a field of application of a piezoelectric vibrator, and more particularly to a crystal resonator whose frequency is adjusted by irradiating an electrode surface with an inert gas ion.

(考案の背景) 水晶振動子例えばATカットの厚みすべり振動子は、温
度特性に優れることもあって、2〜40MHz帯の発振子あ
るいは共振子として多用される。厚みすべり振動子の振
動周波数は大略厚みによって決定されるが、通常では水
晶片の電極上に例えば蒸着により質量を付加し、即ち質
量負荷効果を利用して振動周波数を調整している。
(Background of the Invention) A quartz oscillator, for example, an AT-cut thickness shear oscillator is often used as an oscillator or a resonator in the 2 to 40 MHz band due to its excellent temperature characteristics. The vibration frequency of the thickness-shear vibrator is generally determined by the thickness, but usually, mass is added to the electrode of the crystal blank by, for example, vapor deposition, that is, the vibration frequency is adjusted by using the mass load effect.

(従来技術) 第6図は厚みすべり振動子の一従来例を示す図で、同
図(a)は水晶片の斜視図、同図(b)は同図(a)の
b−b′断面図である。
(Prior Art) FIG. 6 is a view showing a conventional example of a thickness-shear vibrator. FIG. 6 (a) is a perspective view of a crystal blank, and FIG. 6 (b) is a bb ′ cross section of FIG. FIG.

水晶片1は、図示しない結晶軸x、y、zのx軸を中
心としてyからz軸に約35°15′回転して得られるATカ
ット板で、円板状に加工される。両主面には反対方向の
端部外周に引き出し電極2a、2bが延出し、厚みすべり振
動を励起する基礎電極3a、3bが例えばクロムを下地とす
る銀等の蒸着により形成されている。この基礎電極3a、
3bは質量として作用して水晶片1の振動周波数を低下さ
せる。通常では、目的周波数より高めに所定囲内で設定
される。そして、水晶片1の一方の主面にのみ質量とし
て例えば銀を蒸着により付加(以下調整膜4とする)
し、所定の周波数に調整するようにしていた。
The crystal blank 1 is an AT cut plate obtained by rotating the crystal axis x, y, z (not shown) from the y axis to the z axis by about 35 ° 15 ′ about the x axis, and is processed into a disk shape. On both main surfaces, extraction electrodes 2a, 2b extend to the outer periphery of opposite ends, and basic electrodes 3a, 3b for exciting thickness-shear vibration are formed, for example, by vapor deposition of silver or the like using chromium as a base. This basic electrode 3a,
3b acts as a mass and reduces the vibration frequency of the crystal blank 1. Normally, the frequency is set higher than the target frequency within a predetermined range. Then, for example, silver is added as a mass to only one main surface of the crystal blank 1 by vapor deposition (hereinafter, referred to as an adjustment film 4).
Then, the frequency is adjusted to a predetermined frequency.

(従来技術の欠点) ところで、振動周波数を調整する場合、質量の付加は
基礎電極面上に均一に形成されることが理想とされる。
しかしながら、蒸着等のようにマスクを必要とするもの
では、その位置精度に誤差を生ずるため、基礎電極上に
調整膜4を均一に形成することが困難である。例えば、
第7図の平面図に示したように、調整膜4が基礎電極3a
から食み出した場合には、対向する基礎電極間(3aと3
b)の容量に変化を来す。また、基礎電極(3a)上に段
差を生じ、振動特性に劣化例えばクリスタルインピーダ
ンスの低下を来す等の問題があった。
(Defects of the prior art) By the way, when adjusting the vibration frequency, it is ideal that the addition of the mass is formed uniformly on the basic electrode surface.
However, when a mask is required such as vapor deposition, an error occurs in the positional accuracy, so that it is difficult to uniformly form the adjustment film 4 on the base electrode. For example,
As shown in the plan view of FIG. 7, the adjustment film 4 is
If it protrudes from
b) changes the capacity. In addition, there is a problem that a step is generated on the basic electrode (3a) and the vibration characteristics are deteriorated, for example, the crystal impedance is lowered.

(考案の目的) 本考案は、周波数調整による並列容量の変化及び振動
特性の劣化を防止した圧電振動子を提供することを目的
とする。
(Purpose of the Invention) An object of the present invention is to provide a piezoelectric vibrator in which a change in parallel capacitance and a deterioration in vibration characteristics due to frequency adjustment are prevented.

(考案の解決手段) 本考案は、水晶片の両主面に形成した電極の少なくと
も一方の電極表面に不活性ガスイオンを照射して質量を
減じ、周波数の調整を行ったことを解決手段とする。以
下、実施例を説明する。
(Solution of the Invention) The invention solves the problem that at least one electrode surface of the electrodes formed on both main surfaces of the crystal blank is irradiated with inert gas ions to reduce the mass and adjust the frequency. I do. Hereinafter, examples will be described.

(実施例) 第1図乃至第3図は本考案の一実施例を説明する図で
ある。第1図(a)は水晶片の平面図、同図(b)は基
礎電極形成後のa−a′断面図、同図(c)は周波数調
整後の断面図、同図(d)は同図(c)の点線枠(イ)
で示す拡大図、第2図は保持組立て後の水晶振動子の正
断面図、第3図(a)はイオンエッチングの一部構成
図、同図(b)は同図(a)の作用を説明する側面図で
ある。なお、前実施例図と同一部分には同番号を付与し
て説明する。
(Embodiment) FIGS. 1 to 3 are views for explaining an embodiment of the present invention. 1 (a) is a plan view of a crystal blank, FIG. 1 (b) is a sectional view taken along line aa 'after forming a basic electrode, FIG. 1 (c) is a sectional view after frequency adjustment, and FIG. Dotted frame (a) in FIG.
2, FIG. 2 is a front sectional view of the crystal unit after holding and assembling, FIG. 3 (a) is a partial configuration diagram of ion etching, and FIG. 3 (b) shows the operation of FIG. It is a side view explaining. The same parts as those in the previous embodiment are denoted by the same reference numerals and described.

水晶片1は前述同様に結晶軸x、y、zのx軸をyか
らz軸に約35°15′回転した厚みすべり振動が励起され
るATカット板とし、円板状に加工されている。そして、
両主面にはマスクを被せ、反対方向の端部外周部に引き
出し電極2a、2bが延出して対向する基礎電極3a、3bを例
えば銀の蒸着により形成する。このとき、振動周波数は
目的周波数より低くなるように両主面の厚みをt1として
大きく設定される「第1図(a)及び同図(b)」。
As described above, the crystal blank 1 is an AT cut plate in which the thickness shear vibration is excited by rotating the x-axes of the crystal axes x, y, z from y to z-axis by about 35 ° 15 ′, and is processed into a disk shape. . And
Masks are put on both main surfaces, and lead electrodes 2a and 2b extend around the outer periphery of the end in the opposite direction to form opposed base electrodes 3a and 3b by, for example, silver deposition. At this time, the vibration frequency is set larger the thickness of the both main surfaces so as to be lower than the target frequency as t 1 "FIG. 1 (a) and FIG. (B)".

そして、水晶片1は、ベース(5)上に立設した一対
の保持具6の図示されないスリットに両端外周部が電機
的・機械的に接続される。そうして、一方の主面側にイ
オンを照射して基礎電極面3aをエッチングし、その厚み
をt2として振動周波数を高め所定の値に調整する「第1
図(c)」。
The outer peripheral portions of both ends of the crystal blank 1 are electrically and mechanically connected to slits (not shown) of a pair of holders 6 erected on the base (5). Then, by etching the underlying electrode surface 3a by irradiating ions on a principal plane, "first be adjusted to a predetermined value increases the vibration frequency that thickness as t 2
Figure (c).

例えば第3図(a)の点線枠(ロ)で示すイオン化さ
れたアルゴン、チッソ等の不活性ガス雰囲気中に、導電
材からなる陰極板7と陽極板8とを配置し、陰極板7上
に水晶振動子が順次移送されるようにする。なお、水晶
振動子は搬送台9の端子孔10に挿入して保持され、端子
11を通して発振器に接続される。そして、陰極板7と陽
極板8との間に電界を発生「第3図(b)」し、陽極板
8から陰極板7に移動するイオン化ガスを水晶片1の一
方の基礎電極(3a)面に衝突させてエッチングする。従
って、このような方法で振動周波数が調整された水晶振
動子は、一般に水晶片1の外周部のエッチング量が大き
くて角部の稜線がとれ「第1図(d)」、表面を滑らか
にして均一な厚みとなる。なお、第1図(c)では、引
き出し電極の厚みをt1として示したが、実際には同時に
エッチングされるのでt2となる。
For example, a cathode plate 7 and an anode plate 8 made of a conductive material are arranged in an atmosphere of an inert gas such as ionized argon or nitrogen shown by a dotted frame (b) in FIG. The crystal oscillators are sequentially transferred to The quartz oscillator is inserted into and held in the terminal hole 10 of the carrier 9 and the terminal
Connected to the oscillator through 11. Then, an electric field is generated between the cathode plate 7 and the anode plate 8 (FIG. 3 (b)), and the ionized gas moving from the anode plate 8 to the cathode plate 7 is applied to one of the base electrodes (3a) of the crystal blank 1. Etching is performed by colliding with the surface. Therefore, a crystal resonator whose vibration frequency is adjusted by such a method generally has a large etching amount on the outer peripheral portion of the crystal blank 1 so that the ridgeline of the corner can be removed (FIG. 1 (d)) and the surface becomes smooth. And a uniform thickness. In Figure 1 (c), although the thickness of the extraction electrode is shown as t 1, the t 2 because it is etched at the same time in practice.

従って、この水晶振動子では、基礎電極面(3a)上に
周波数調整用の質量を付加する必要がないので、水晶振
動子の振動特性に劣化を来すことがない。そして、対向
する基礎電極(3aと3b)の面積(平面状)が周波数調整
前後において変化しないので、特に並列容量を一定にし
て図示しない発振回路との接続を容易にする。また、不
活性ガスイオンは、電極のエッチレイトが大きく、水晶
片のエッチング量を無視できるので、周波数調整用のマ
スクを必要としない。
Accordingly, in this crystal resonator, it is not necessary to add a frequency adjusting mass on the basic electrode surface (3a), so that the vibration characteristics of the crystal resonator do not deteriorate. Since the area (planar shape) of the opposing base electrodes (3a and 3b) does not change before and after the frequency adjustment, the parallel capacitance is kept constant to facilitate connection to an oscillation circuit (not shown). In addition, since inert gas ions have a large electrode etch rate and can ignore the etching amount of the crystal piece, a mask for frequency adjustment is not required.

(他の実施例) 第4図及び第5図は本考案の他の実施例を説明する図
で、第4図は水晶片の周波数調整後の断面図、第5図は
イオンエッチングの一部構成図である。なお、前実施例
と同一部分には同番号を付与して説明は省略する。
(Other Embodiments) FIGS. 4 and 5 are views for explaining another embodiment of the present invention. FIG. 4 is a cross-sectional view of a crystal piece after frequency adjustment, and FIG. 5 is a part of ion etching. It is a block diagram. The same parts as those in the previous embodiment are denoted by the same reference numerals and description thereof is omitted.

この水晶振動子は、水晶片1に形成された両主面の基
礎電極3a、3bの両方を交互にエッチングして厚みをt2
し、振動周波数の調整を行う(第4図)。例えば水晶片
1の両主面側にイオンガン12を配置し、両主面の基礎電
極3a、3bに交互に不活性ガスイオンを照射して振動周波
数の調整を行う。なお、第4図の引き出し電極2a、2の
厚みt1はイオンガンのビーム幅を小さくすることによ
り、通常ではt2になる。
The crystal oscillator, the thickness and t 2 is etched foundation electrode 3a of the both main surfaces formed on the crystal piece 1, both 3b alternately, adjusting the vibration frequency (Figure 4). For example, ion guns 12 are arranged on both main surfaces of the crystal blank 1, and the base electrodes 3a and 3b on both main surfaces are alternately irradiated with inert gas ions to adjust the vibration frequency. Incidentally, the extraction electrode 2a, 2 of thickness t 1 of Figure 4 is by reducing the beam width of the ion gun, the t 2 in normal.

従って、この水晶振動子は両主面の基礎電極3a、3bの
厚みを約一定にするので、例えばCI値の低下を防止して
振動特性を高めることができる。そして、前実施例と同
様に、マスクを不要にして並列容量を一定にできる。
Accordingly, since the thickness of the base electrodes 3a and 3b on both main surfaces of this crystal resonator is made substantially constant, for example, a decrease in CI value can be prevented and the vibration characteristics can be improved. And, as in the previous embodiment, the parallel capacitance can be made constant without the need for a mask.

(他の事項) なお、上記実施例では水晶振動子をATカットの厚みす
べり振動子として説明したが、これに限らず質量付加効
果を利用して振動周波数を調整する圧電振動子に適用さ
れることはいうまでもなく、更に例えば多重モードを利
用した所謂MCF(Monolithic Crystal Filter)等の共振
子を除外するものでもない。
(Other Matters) In the above embodiment, the quartz oscillator is described as an AT-cut thickness shear oscillator. However, the present invention is not limited to this, and is applied to a piezoelectric oscillator that adjusts an oscillation frequency using a mass addition effect. Needless to say, this does not exclude a resonator such as a so-called MCF (Monolithic Crystal Filter) using a multiple mode.

(考案の効果) 本考案は、水晶片の両主面に形成した電極の少なくと
一方の電極面に不活性ガスイオンを照射して質量を減
じ、周波数の調整を行ったので、周波数調整前後におけ
る並列容量の変化及び振動特性の劣化を防止した圧電振
動子を提供できる。
(Effects of the Invention) In the present invention, at least one of the electrodes formed on both main surfaces of the crystal blank is irradiated with inert gas ions to reduce the mass and adjust the frequency. Thus, it is possible to provide a piezoelectric vibrator in which the change in the parallel capacitance and the deterioration of the vibration characteristics are prevented.

【図面の簡単な説明】[Brief description of the drawings]

第1図乃至第3図は本考案の一実施例を説明する図で、
第1図(a)は水晶片の平面図、同図(b)は基礎電極
形成後のa−a′断面図、同図(c)は周波数調整後の
同断面図、同図(d)は同図(c)の点線枠(イ)で示
す拡大図、第2図は保持組立て後の水晶振動子の正断面
図、第3図(a)はイオンエッチングの一部構成図、同
図(b)は同図(a)の作用を説明する側面図である。 第4図、第5図は本考案の他の実施例を説明する図で、
第4図は水晶片の周波数調整後の断面図、第5図はイオ
ンエッチングの一部構成図である。 第6図、第7図は従来例を説明する水晶振動子の図で、
第6図(a)は水晶片の斜視図、同図(b)は同図
(a)のb−b′断面図、第7図は蒸着による周波数調
整後の水晶片の平面図である。 1……水晶片、2a、2b……引き出し電極、3a、3b……基
礎電極、4……調整膜、5……ベース、6……サポー
タ、7……陰極板、8……陽極板、9……搬送台、10…
…端子孔、11……端子、12……イオンガン。
1 to 3 are views for explaining an embodiment of the present invention.
1 (a) is a plan view of a crystal blank, FIG. 1 (b) is a sectional view taken along line aa 'after forming a basic electrode, FIG. 1 (c) is a sectional view after frequency adjustment, and FIG. FIG. 2 is an enlarged view shown by a dotted frame (a) in FIG. 3C, FIG. 2 is a front sectional view of the crystal unit after holding and assembling, and FIG. 3A is a partial configuration diagram of ion etching. FIG. 2B is a side view for explaining the operation of FIG. 4 and 5 are views for explaining another embodiment of the present invention.
FIG. 4 is a cross-sectional view of the crystal blank after frequency adjustment, and FIG. 5 is a partial configuration diagram of ion etching. FIG. 6 and FIG. 7 are views of a quartz oscillator for explaining a conventional example.
6 (a) is a perspective view of the crystal blank, FIG. 6 (b) is a cross-sectional view taken along the line bb 'of FIG. 6 (a), and FIG. 7 is a plan view of the crystal blank after frequency adjustment by vapor deposition. 1 ... crystal piece, 2a, 2b ... extraction electrode, 3a, 3b ... base electrode, 4 ... adjustment film, 5 ... base, 6 ... supporter, 7 ... cathode plate, 8 ... anode plate, 9 ... Transfer stand, 10 ...
... terminal holes, 11 ... terminals, 12 ... ion gun.

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 昭53−86187(JP,A) 特開 昭52−106288(JP,A) 特開 昭54−48190(JP,A) 特開 昭53−131794(JP,A) ──────────────────────────────────────────────────続 き Continuation of front page (56) References JP-A-53-86187 (JP, A) JP-A-52-106288 (JP, A) JP-A-54-48190 (JP, A) JP-A 53-86190 131794 (JP, A)

Claims (1)

(57)【実用新案登録請求の範囲】(57) [Scope of request for utility model registration] 【請求項1】ATカット水晶振動片の両主面上に対向して
基礎電極を形成してなるATカット水晶振動子において、
前記基礎電極の少なくとも一方の全面は、不活性ガスイ
オンの照射を受け周波数調整のために物理的にエッチン
グされて、元の厚みより薄い平面の基礎電極に形成され
てあることを特徴とするATカット水晶振動子。
1. An AT-cut quartz resonator having a base electrode formed opposite to both principal surfaces of an AT-cut quartz resonator element.
At least one entire surface of the base electrode is irradiated with inert gas ions, physically etched for frequency adjustment, and formed on a flat base electrode thinner than the original thickness. Cut crystal oscillator.
JP1987032833U 1987-03-06 1987-03-06 AT-cut crystal unit Expired - Lifetime JP2533633Y2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1987032833U JP2533633Y2 (en) 1987-03-06 1987-03-06 AT-cut crystal unit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1987032833U JP2533633Y2 (en) 1987-03-06 1987-03-06 AT-cut crystal unit

Publications (2)

Publication Number Publication Date
JPS63140719U JPS63140719U (en) 1988-09-16
JP2533633Y2 true JP2533633Y2 (en) 1997-04-23

Family

ID=30839882

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1987032833U Expired - Lifetime JP2533633Y2 (en) 1987-03-06 1987-03-06 AT-cut crystal unit

Country Status (1)

Country Link
JP (1) JP2533633Y2 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07120914B2 (en) * 1989-03-07 1995-12-20 ミヨタ株式会社 Frequency tuning method for tuning fork type piezoelectric vibrator
JP3157433B2 (en) * 1994-09-30 2001-04-16 トッキ株式会社 Frequency adjustment device
JP3823647B2 (en) * 1999-12-15 2006-09-20 セイコーエプソン株式会社 Frequency adjusting method and processing device for frequency adjustment of piezoelectric vibrator and piezoelectric vibrating piece
JP2006020020A (en) * 2004-07-01 2006-01-19 Nippon Dempa Kogyo Co Ltd Crystal oscillator
JP5088613B2 (en) * 2007-08-06 2012-12-05 セイコーエプソン株式会社 Frequency adjusting method for vibration device, vibration device and electronic device
JP5495080B2 (en) * 2012-09-14 2014-05-21 セイコーエプソン株式会社 Frequency adjusting method for vibration device, vibration device, and electronic device
JP5591977B2 (en) * 2013-04-30 2014-09-17 太陽誘電株式会社 Piezoelectric thin film resonator, filter, duplexer, communication module, and communication device

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5145430A (en) * 1974-10-16 1976-04-17 Nittetsu Kinzoku Kogyo Kk Entosairo niokeru hotsupaakumitatesetsuchiho
JPS5824966B2 (en) * 1975-07-25 1983-05-24 セイコーインスツルメンツ株式会社 AT cut crystal oscillator
JPS5849043B2 (en) * 1976-03-03 1983-11-01 株式会社精工舎 How to fine-tune the frequency of a crystal oscillator
JPS52125292A (en) * 1976-04-14 1977-10-20 Matsushima Kogyo Kk Method of adjusting frequency
JPS5386187A (en) * 1976-12-17 1978-07-29 Citizen Watch Co Ltd Production of crystal vibrator for wristwatch
JPS53116094A (en) * 1977-03-19 1978-10-11 Toshiba Corp Trimming method for elastic surface wave element
JPS53131794A (en) * 1977-04-22 1978-11-16 Citizen Watch Co Ltd Electrode forming method of tuning fork type crystal vibrator
JPS5448190A (en) * 1977-09-22 1979-04-16 Matsushima Kogyo Kk Method of regulating frequency
JPS54156455A (en) * 1978-05-31 1979-12-10 Toshiba Corp Surface acoustic wave element and its trimming method
JPS5685915A (en) * 1979-12-14 1981-07-13 Fujitsu Ltd Frequency adjusting method of thickness slip quartz oscillator

Also Published As

Publication number Publication date
JPS63140719U (en) 1988-09-16

Similar Documents

Publication Publication Date Title
JP3995987B2 (en) Manufacturing method of crystal unit
US7973458B2 (en) Piezoelectric vibrating pieces having progressively narrowed vibrating arms
JP2001196883A (en) Frequency adjustment method for piezo-resonator
US20140152153A1 (en) Piezoelectric resonating device, manufacturing method thereof, piezoelectric resonator, and piezoelectric oscillator
JP4665282B2 (en) AT cut crystal unit
JP2973560B2 (en) Processing method of crystal unit
JP2533633Y2 (en) AT-cut crystal unit
JPWO2006082736A1 (en) Piezoelectric resonator and manufacturing method thereof
US5065066A (en) Piezoelectric resonator
JPH06252691A (en) Crystal vibrator
US4252839A (en) Tuning fork-type quartz crystal vibrator and method of forming the same
US5078834A (en) Method and means for damping modes of piezoelectric vibrators
JP2001257558A (en) Piezoelectric vibrator
JP3475680B2 (en) Frame type crystal resonator and device element using the same
JP3149835B2 (en) Spherical pot for convex processing
JP2001024468A (en) Electrode film structure of piezoelectric oscillator
JPH0637567A (en) Electrode forming method for thick system crystal resonator
JP2003273682A (en) Frequency control method for piezoelectric vibrator, piezoelectric vibrator, and piezoelectric device
JPH0233389Y2 (en)
JPS59218019A (en) Crystal oscillator
JPS59182615A (en) Rectangular at-cut quartz oscillator
JPH01209810A (en) Piezoelectric vibrator and fine adjustment method of its frequency
JP2003115741A (en) Piezoelectric resonator and overtone frequency adjusting method
JPS6192010A (en) Vapor deposition mask
JPH07106893A (en) Frequency adjustment method for piezoelectric resonator