JP2533581B2 - Superlattice mixed crystal method - Google Patents

Superlattice mixed crystal method

Info

Publication number
JP2533581B2
JP2533581B2 JP28726787A JP28726787A JP2533581B2 JP 2533581 B2 JP2533581 B2 JP 2533581B2 JP 28726787 A JP28726787 A JP 28726787A JP 28726787 A JP28726787 A JP 28726787A JP 2533581 B2 JP2533581 B2 JP 2533581B2
Authority
JP
Japan
Prior art keywords
superlattice
mixed
ion
layer
crystal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP28726787A
Other languages
Japanese (ja)
Other versions
JPH01129482A (en
Inventor
丈夫 宮澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP28726787A priority Critical patent/JP2533581B2/en
Publication of JPH01129482A publication Critical patent/JPH01129482A/en
Application granted granted Critical
Publication of JP2533581B2 publication Critical patent/JP2533581B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y20/00Nanooptics, e.g. quantum optics or photonic crystals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/30Structure or shape of the active region; Materials used for the active region
    • H01S5/34Structure or shape of the active region; Materials used for the active region comprising quantum well or superlattice structures, e.g. single quantum well [SQW] lasers, multiple quantum well [MQW] lasers or graded index separate confinement heterostructure [GRINSCH] lasers
    • H01S5/343Structure or shape of the active region; Materials used for the active region comprising quantum well or superlattice structures, e.g. single quantum well [SQW] lasers, multiple quantum well [MQW] lasers or graded index separate confinement heterostructure [GRINSCH] lasers in AIIIBV compounds, e.g. AlGaAs-laser, InP-based laser
    • H01S5/34313Structure or shape of the active region; Materials used for the active region comprising quantum well or superlattice structures, e.g. single quantum well [SQW] lasers, multiple quantum well [MQW] lasers or graded index separate confinement heterostructure [GRINSCH] lasers in AIIIBV compounds, e.g. AlGaAs-laser, InP-based laser with a well layer having only As as V-compound, e.g. AlGaAs, InGaAs
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/20Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers
    • H01S5/2054Methods of obtaining the confinement
    • H01S5/2059Methods of obtaining the confinement by means of particular conductivity zones, e.g. obtained by particle bombardment or diffusion
    • H01S5/2063Methods of obtaining the confinement by means of particular conductivity zones, e.g. obtained by particle bombardment or diffusion obtained by particle bombardment
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/30Structure or shape of the active region; Materials used for the active region
    • H01S5/34Structure or shape of the active region; Materials used for the active region comprising quantum well or superlattice structures, e.g. single quantum well [SQW] lasers, multiple quantum well [MQW] lasers or graded index separate confinement heterostructure [GRINSCH] lasers
    • H01S5/343Structure or shape of the active region; Materials used for the active region comprising quantum well or superlattice structures, e.g. single quantum well [SQW] lasers, multiple quantum well [MQW] lasers or graded index separate confinement heterostructure [GRINSCH] lasers in AIIIBV compounds, e.g. AlGaAs-laser, InP-based laser
    • H01S5/34313Structure or shape of the active region; Materials used for the active region comprising quantum well or superlattice structures, e.g. single quantum well [SQW] lasers, multiple quantum well [MQW] lasers or graded index separate confinement heterostructure [GRINSCH] lasers in AIIIBV compounds, e.g. AlGaAs-laser, InP-based laser with a well layer having only As as V-compound, e.g. AlGaAs, InGaAs
    • H01S5/3432Structure or shape of the active region; Materials used for the active region comprising quantum well or superlattice structures, e.g. single quantum well [SQW] lasers, multiple quantum well [MQW] lasers or graded index separate confinement heterostructure [GRINSCH] lasers in AIIIBV compounds, e.g. AlGaAs-laser, InP-based laser with a well layer having only As as V-compound, e.g. AlGaAs, InGaAs the whole junction comprising only (AI)GaAs

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Nanotechnology (AREA)
  • Optics & Photonics (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Biophysics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Optical Integrated Circuits (AREA)
  • Semiconductor Lasers (AREA)

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、超格子を利用した半導体素子の製造技術で
ある超格子の混晶化法に関するものである。
TECHNICAL FIELD The present invention relates to a superlattice mixed crystallizing method, which is a manufacturing technique of a semiconductor device using a superlattice.

[従来の技術] 混晶化とは、超格子構造を崩し、組成を一様な液晶に
変化させることであり、超格子構造とは異なった物理的
特性を与えることができるので半導体レーザや光導波路
を製作する上で重要なプロセスである。
[Prior Art] Mixed crystal is to break the superlattice structure and change the composition into a uniform liquid crystal, and it is possible to give physical characteristics different from those of the superlattice structure. This is an important process in manufacturing a waveguide.

従来の超格子の混晶化法のひとつとして、室温におい
て特定のイオン種を超格子にイオン注入し、その後、高
温で熱処理するという方法がある。この方法により混晶
化が可能なイオン種は、平山等がJapanese Journal of
Applied Physics(Vol.24(1985),p1498)で報告して
いるように、Si+,Ga+,As+,F+およびB+である。
As one of the conventional superlattice mixed crystallizing methods, there is a method in which a specific ion species is ion-implanted into the superlattice at room temperature and then heat-treated at a high temperature. As for the ionic species that can be mixed crystallized by this method, Hirayama et al.
Si + , Ga + , As + , F + and B + , as reported in Applied Physics (Vol.24 (1985), p1498).

このうちB+は混晶化の能力が低く、B+以外の他のイオ
ン種が熱拡散による混晶化に比較して6倍以上混晶化が
可能であるのに対して、2倍以下の液晶化促進能力しか
なく実用上有効ではない。
Of these, B + has a low capacity for mixed crystallization, and other ionic species other than B + can be mixed 6 times or more as compared with mixed crystallization by thermal diffusion, while less than 2 times It is not practically effective because it has only the ability to promote liquid crystallinity.

この方法の欠点は、実際に混晶化可能な領域は表面か
らたかだか1μmまでの深さであることである。通常用
いられるイオン注入装置で得られる加速エネルギーは50
0kVまでである。実用上有効なイオンのうちで、一番軽
いF+でも500kVのエネルギーにおける射影飛程は6000Å
であり、このためイオンの拡がりやイオン注入後の熱処
理による拡散を考慮しても、表面より1μm以上の深い
位置の混晶化は困難である。
The disadvantage of this method is that the region which can actually be mixed crystallized is a depth of at most 1 μm from the surface. The acceleration energy obtained by a commonly used ion implanter is 50.
Up to 0kV. Among the ions that are practically effective, even the lightest F + has a projective range of 6000 Å at an energy of 500 kV
Therefore, even if the spread of ions and the diffusion due to heat treatment after ion implantation are taken into consideration, it is difficult to form a mixed crystal at a position deeper than 1 μm from the surface.

この欠点を回避し光素子を製作するためには、まず、
結晶層を超格子部分まで成長させ、イオン注入した後に
その上に必要な層を積み上げるという方法がとられてい
る。この技術は再成長法と呼ばれるが、一つの素子を作
るために2回のエピタキシャル成長が必要であるという
欠点がある。さらに、第1回目の成長層の表面がAlGaAs
のようにAlを含む場合には、安定なAl酸化物が表面に形
成されるため、結晶層の再成長が困難であるという欠点
がある。
In order to avoid this defect and manufacture an optical element, first,
A method of growing a crystal layer to a superlattice portion, implanting ions, and then stacking a necessary layer thereon is adopted. Although this technique is called a re-growth method, it has a drawback that it requires two epitaxial growths to form one device. Furthermore, the surface of the first grown layer is AlGaAs
As described above, when Al is contained, a stable Al oxide is formed on the surface, so that there is a drawback that it is difficult to regrow the crystal layer.

超格子の他の結晶化法として、SiO2とSi3N4保護膜と
を用いて超格子を熱処理し、SiO2で覆われた部分だけを
選択的に混晶化する方法がD.G.Deppe等によって、Appli
ed Physics Letter(Vol.49(1986)510)に報告されて
いる。第7図に示すように、この方法は混晶化しようと
する部分をSiO2で、超格子構造を残したい部分をSi3N4
膜で覆い、As雰囲気6中で加熱炉7を用いて熱処理する
方法である。ここで4はAl0.5Ga0.5As/GaAs超格子、5
はGaAs基板である。
As another crystallization method of the superlattice, a method of heat-treating the superlattice using SiO 2 and a Si 3 N 4 protective film and selectively crystallizing only the portion covered with SiO 2 by DGDeppe et al. , Appli
ed Physics Letter (Vol.49 (1986) 510). As shown in FIG. 7, in this method, SiO 2 is used for the portion to be mixed crystal and Si 3 N 4 is used for the portion where the superlattice structure is to be left.
This is a method of covering with a film and performing heat treatment in a heating furnace 7 in an As atmosphere 6. Here, 4 is Al 0.5 Ga 0.5 As / GaAs superlattice, 5
Is a GaAs substrate.

この方法では、深さ1μmにおよぶ深い位置まで混晶
化するが、Si3N4膜により保護した部分3でも混晶化が
進むという欠点がある。例えば、室温でのフォトルミネ
センスの発光波長が7910ÅのAl0.35Ga0.65As/Al0.05Ga
0.95As(80Å)超格子を825℃で10時間熱処理すると、S
iO22で覆った部分4の発光波長は7300Åと短波長側にシ
フトし、混晶化が進行していることがわかる。これと同
時にSi3N4膜で保護した部分3の発光波長も7600Åとな
り混晶化が起きていることを示している。
According to this method, mixed crystals are formed up to a depth as deep as 1 μm, but there is a drawback that the mixed crystals proceed even in the portion 3 protected by the Si 3 N 4 film. For example, room temperature photoluminescence emission wavelength is 7910Å Al 0.35 Ga 0.65 As / Al 0.05 Ga
When 0.95 As (80Å) superlattice is heat-treated at 825 ℃ for 10 hours, S
It can be seen that the emission wavelength of the portion 4 covered with iO 2 2 shifts to the short wavelength side of 7300 Å, and the mixed crystallization progresses. At the same time, the emission wavelength of the part 3 protected by the Si 3 N 4 film also becomes 7600Å, indicating that mixed crystals have occurred.

[発明が解決しようとする問題点] 上述の従来の方法においては、結晶層の再成長が困難
であったり、混晶化を防ぐために保護膜により保護して
混晶化を行う場合には、保護した部分においても混晶化
が進行するという問題点があった。
[Problems to be Solved by the Invention] In the above-mentioned conventional method, when it is difficult to re-grow a crystal layer or to perform mixed crystallization by protecting with a protective film to prevent mixed crystallization, There is a problem that the mixed crystal proceeds even in the protected portion.

本発明の目的は、問題点を解決し、イオン注入による
混晶化技術の利点を生かした混晶化の方法を提供するこ
とにある。
An object of the present invention is to solve the problems and to provide a method of mixed crystallization utilizing the advantages of the mixed crystallization technique by ion implantation.

[問題点を解決するための手段] このような目的を達成するために、本発明は、超格子
構造を有する半導体結晶を混晶化する際、半導体結晶を
加熱した状態で、軽イオンを半導体にイオン注入する。
[Means for Solving Problems] In order to achieve such an object, according to the present invention, when a semiconductor crystal having a superlattice structure is mixed, the semiconductor crystal is heated and light ions are added to the semiconductor. Ion implantation.

[作 用] 本発明ではイオン注入のためのイオン種として軽イオ
ンを用いるため、イオンの射影飛程は著しく大きくな
り、深い位置にイオンを到達させることができる。例え
ば、加速電圧が500kVである場合に、Ga+の射影飛程が0.
19μmであるのに対して、同じ加速電圧におけるH+の射
影飛程は4.4μmとなり、大幅に射影飛程距離を増大さ
せることができる。なお、H,He原子自体には混晶化の能
力がないため、これらの軽イオン種は混晶化のプロセス
には従来から用いられていない。
[Operation] In the present invention, since light ions are used as the ion species for ion implantation, the projective range of the ions is significantly increased, and the ions can reach deep positions. For example, when the acceleration voltage is 500 kV, the projected range of Ga + is 0.
The projection range of H + at the same acceleration voltage is 4.4 μm, whereas the projection range can be greatly increased. Since the H and He atoms themselves do not have the ability to mix crystals, these light ion species have not been conventionally used in the process of mixing crystals.

ところで、バルク半導体には「増速拡散」と呼ばれる
次のような現象がある。これはバルク半導体にH+あるい
はHe+等の軽イオンを照射すると、熱平衡状態より過剰
の空格子点が形成されるという現象である。基板温度が
500℃以下の場合は、この空格子点は凝縮しまうので拡
散の促進には寄与しないが、これ以上の温度においては
構成元素および格子位置に入っている不純物の拡散係数
を104〜108倍も増大させることができる。
By the way, a bulk semiconductor has the following phenomenon called “enhanced diffusion”. This is a phenomenon that when a bulk semiconductor is irradiated with light ions such as H + or He +, excess vacancies are formed from the thermal equilibrium state. Substrate temperature
At 500 ° C or lower, these vacancies condense and do not contribute to promotion of diffusion, but at temperatures higher than this, the diffusion coefficient of the constituent elements and impurities in the lattice position is increased by 10 4 to 10 8 times. Can also be increased.

この現象を超格子に適用することにより、表面より深
い位置まで混晶化させることができるようになった。例
えば、膜厚80ÅのGaAsと膜厚120ÅのAl0.3Ga0.7Asから
なる4周期の超格子層の上部に層厚1μmのAl0.35Ga
0.65Asと1μmのGaAsが載っている場合を考える。イオ
ン種として、H+を用い260kVの加速電圧を印加すると、
射影飛程は2.1μm、その標準偏差は0.25μmとなり、
表面より2μmの所に位置し全厚さ0.1μmの超格子
は、すべてH+の照射にさらされることになる。
By applying this phenomenon to the superlattice, it became possible to form a mixed crystal at a position deeper than the surface. For example, an Al 0.35 Ga layer having a thickness of 1 μm is formed on a 4-period superlattice layer composed of GaAs having a thickness of 80 Å and Al 0.3 Ga 0.7 As having a thickness of 120 Å.
Consider the case where 0.65 As and 1 μm GaAs are mounted. When H + is used as an ion species and an acceleration voltage of 260 kV is applied,
The projective range is 2.1 μm and its standard deviation is 0.25 μm.
All superlattices located 2 μm from the surface and having a total thickness of 0.1 μm will be exposed to H + irradiation.

基板加熱温度およびドーズ量は、Si中の不純物の増速
拡散のデータより決定することができる。増速拡散はSi
基板を用いたマイクロ波領域のトランジスタの形成に応
用されているが、この場合加熱電圧300kV、イオン電流
密度30μA/cm2、基板温度900℃でH+ビームをSiに照射す
ると、Si中のSbの拡散係数は104倍大きくなる。このデ
ータをGaAsおよびAlGaAsのIII族原子(GaおよびAl)に
適用すると、750℃における拡散係数が1.4×10-21(cm2
/s)であるIII族原子の場合、30μA/cm2のH+ビームの照
射で1.4×10-17(cm2/s)に増大することになる。この
状態において1時間イオン注入を続けると拡散長[=2
×{(拡散係数)×(時間)}1/2]は45Åとなり、GaA
s層の厚さが80ÅのGaAs/Al0.3Ga0.7As超格子を混晶化す
ることが可能となる。これはGaAs中に、両側のAl0.3Ga
0.7AsよりAlが拡散してくるからである。なお、基板温
度が750℃と高いため、イオン注入されたH+はただちに
真空中に放出され、試料中には蓄積されることはない。
The substrate heating temperature and the dose amount can be determined from the data of accelerated diffusion of impurities in Si. Enhanced diffusion is Si
It has been applied to the formation of a transistor in the microwave region using a substrate. In this case, when the H + beam was irradiated to Si at a heating voltage of 300 kV, an ion current density of 30 μA / cm 2 , and a substrate temperature of 900 ° C., Sb in Si was The diffusion coefficient of is 10 4 times larger. Applying this data to group III atoms (Ga and Al) in GaAs and AlGaAs, the diffusion coefficient at 750 ° C is 1.4 × 10 -21 (cm 2
/ s) for a group III atom, irradiation with a H + beam of 30 μA / cm 2 increases the concentration to 1.4 × 10 -17 (cm 2 / s). If ion implantation is continued for 1 hour in this state, the diffusion length [= 2
× {(diffusion coefficient) × (time)} 1/2 ] is 45Å,
It is possible to mix GaAs / Al 0.3 Ga 0.7 As superlattice with s-layer thickness of 80Å. This is Al 0.3 Ga on both sides in GaAs.
This is because Al diffuses from 0.7 As. Since the substrate temperature is as high as 750 ° C., the ion-implanted H + is immediately released into the vacuum and is not accumulated in the sample.

[実施例] 以下、図面を参照して本発明を詳細に説明する。第1
図ないし第6図は本発明を用いて、埋め込み型レーザを
製造する際の実施例を示す。
[Examples] Hereinafter, the present invention will be described in detail with reference to the drawings. First
FIG. 6 to FIG. 6 show an embodiment for manufacturing an embedded laser using the present invention.

第1図は1回の成長プロセスで得られた半導体構造の
断面を示す。ここで、8はGaAsキャップ層(Beドープ:
〜2×1018cm-3,層厚:1μm)である。9はAl0.35Ga
0.65Asクラッド層(Beドープ:〜1×1018cm-3,層厚:1
μm)である。10はアンドープGaAs/Al0.3Ga0.7As超格
子であり、単一量子井戸層を形成している。GaAsの層厚
は80Å、Al0.3Ga0.7Asの層厚は120Åであり、4周期と
する。11はAl0.3Ga0.7As光ガイド層(Siドープ:〜1×
1018cm-3,層厚:1μm)である。12はAl0.35Ga0.65Asク
ラッド層(Siドープ:〜1×1018cm-3,層厚:3μm)で
ある。13はGaAs基板(Siドープ:〜1×1018cm-3)であ
る。
FIG. 1 shows a cross section of a semiconductor structure obtained in a single growth process. Here, 8 is a GaAs cap layer (Be-doped:
˜2 × 10 18 cm −3 , layer thickness: 1 μm). 9 is Al 0.35 Ga
0.65 As clad layer (Be doping: ~ 1 × 10 18 cm -3 , Layer thickness: 1
μm). 10 is an undoped GaAs / Al 0.3 Ga 0.7 As superlattice, which forms a single quantum well layer. The layer thickness of GaAs is 80 Å, and the layer thickness of Al 0.3 Ga 0.7 As is 120 Å, which is 4 cycles. 11 is Al 0.3 Ga 0.7 As optical guide layer (Si-doped: ~ 1 ×
10 18 cm -3 , layer thickness: 1 μm). Reference numeral 12 is an Al 0.35 Ga 0.65 As clad layer (Si-doped: up to 1 × 10 18 cm −3 , layer thickness: 3 μm). 13 is a GaAs substrate (Si-doped: ˜1 × 10 18 cm −3 ).

次に第2図に示すような、厚さ1μmのSiO2をプラズ
マCVD法で形成した後、幅5μmのストライプ状のSiO2
マスク14に加工した。
Next, as shown in FIG. 2 , SiO 2 having a thickness of 1 μm is formed by a plasma CVD method, and then SiO 2 in a stripe shape having a width of 5 μm is formed.
Processed into mask 14.

次に、第3図に示すように、厚さ0.1μmのSi3N4膜15
で試料全体を覆い保護膜とした。
Next, as shown in FIG. 3, a Si 3 N 4 film 15 having a thickness of 0.1 μm is formed.
Then, the whole sample was covered with it to form a protective film.

次に、第4図に示すように試料を加熱ヒータ19を用い
て750℃に加熱しながらH+ビーム16をイオン注入した。
イオン注入の条件は、先に説明したように加速電圧260k
V、イオン電流密度30μA/cm2、注入時間1時間である。
この加速電圧は、GaAsキャップ層8、AlGaAsクラッド層
9およびSi3N4保護膜15を通ってH+ビーム16が超格子に
到達する電圧に設定した。この工程によって、SiO2マス
ク14によって覆われていない部分の超格子を混晶化する
ことができた。イオン注入を超格子の混晶化に用いる利
点は、加速電圧、イオン電流および注入時間が正確に制
御できるため、他の方法に比べできあがった構造のばら
つきが小さく抑えられる点である。また、加速電圧によ
ってイオンの深さ分布が制御できるので、ある特定の深
さにある超格子だけを混晶化することも可能となる。
Next, as shown in FIG. 4, the H + beam 16 was ion-implanted while heating the sample to 750 ° C. using the heater 19.
The ion implantation conditions are the acceleration voltage 260k as described above.
V, ion current density 30 μA / cm 2 , injection time 1 hour.
This acceleration voltage was set to a voltage at which the H + beam 16 reaches the superlattice through the GaAs cap layer 8, the AlGaAs cladding layer 9 and the Si 3 N 4 protective film 15. By this step, the superlattice in the portion not covered with the SiO 2 mask 14 could be mixed crystallized. The advantage of using the ion implantation for the mixed crystal of the superlattice is that the acceleration voltage, the ion current, and the implantation time can be accurately controlled, so that the variation in the finished structure can be suppressed as compared with other methods. Further, since the ion depth distribution can be controlled by the accelerating voltage, it becomes possible to form a mixed crystal only in the superlattice at a specific depth.

次にSi3N4保護膜15およびSiO2マスク14を除去し、第
5図に示すようにGaAsキャップ層8をフォトレジスト技
術と選択エッチング液を用いて、混晶化されていない超
格子18の上だけを残してエッチングする。次に、全面を
厚さ0.1μmの絶縁膜であるSi3N4膜20で覆い、続いてフ
ォトレジスト技術を用いてGaAsキャップ層21の部分を除
去してストライプ化し、第5図に示すような構造とす
る。
Next, the Si 3 N 4 protective film 15 and the SiO 2 mask 14 are removed, and the GaAs cap layer 8 is formed into a non-mixed superlattice 18 by using a photoresist technique and a selective etching solution as shown in FIG. Etch leaving only the top. Next, the entire surface is covered with a Si 3 N 4 film 20 which is an insulating film having a thickness of 0.1 μm, and then a portion of the GaAs cap layer 21 is removed by using a photoresist technique to form stripes, as shown in FIG. It has a different structure.

次に、第6図に示すようにCr−AuによるPコンタクト
層22と、AuGeNiによるnコンタクト層23を形成する。最
後に、この試料をへき開し、レーザ端面を形成する。
Next, as shown in FIG. 6, a P contact layer 22 made of Cr—Au and an n contact layer 23 made of AuGeNi are formed. Finally, this sample is cleaved to form a laser end face.

以上のような工程によって作製された構造は、SiO2
スク14によってマスクされたためにH+ビーム16が注入さ
れない部分では、III族原子(GaおよびAl)の拡散長が
0.64Åであり超格子の構造が保たれ、活性層として用い
ることができる。これに対して、SiO2マスク14で覆われ
ていない部分の超格子17はH+ビーム16の照射により混晶
化し、屈折率の低下とエネルギー・ギャップの増大とが
起こる。このため、光の閉じ込めとキャリアの閉じ込め
とが同時に起こり、優れた特性を持つ埋め込みレーザが
作製できた。
In the structure manufactured by the above-described steps, the diffusion length of the group III atoms (Ga and Al) is large in the portion where the H + beam 16 is not injected because it is masked by the SiO 2 mask 14.
Since it is 0.64Å, the structure of the superlattice is maintained and it can be used as an active layer. On the other hand, the portion of the superlattice 17 which is not covered with the SiO 2 mask 14 becomes a mixed crystal due to the irradiation of the H + beam 16, so that the refractive index is lowered and the energy gap is increased. Therefore, the confinement of light and the confinement of carriers occur at the same time, and an embedded laser having excellent characteristics can be manufactured.

本実施例においては、イオン注入に水素イオンを用い
たがヘリウムイオンを用いてもよいことはいうまでもな
い。また、試料の加熱温度は750℃としたが、500〜800
℃の範囲であればよい。さらに、イオン注入の際のイオ
ンの加速電圧は260kVとしたが、1kV以上であればよいこ
とはもちろんである。
Although hydrogen ions are used for ion implantation in this embodiment, it goes without saying that helium ions may be used. The heating temperature of the sample was 750 ℃, but
It may be in the range of ° C. Further, the ion accelerating voltage at the time of ion implantation is 260 kV, but needless to say, it may be 1 kV or more.

[発明の効果] 以上説明したように、本発明においては、軽いイオン
によるイオン注入を利用しているので、制御性に優れて
いるというイオン注入の特質を生かしつつ、深い位置
(1μm以上)の混晶化が可能となる。このため、再成
長技術を必要とせず1度だけのエピタキシャル成長で光
素子が製作できるという効果がある。
[Effects of the Invention] As described above, in the present invention, since ion implantation using light ions is used, while utilizing the characteristic of ion implantation having excellent controllability, it is possible to achieve deep position (1 μm or more) Mixed crystals are possible. Therefore, there is an effect that the optical element can be manufactured by the epitaxial growth only once without the need for the regrowth technique.

また、ある特定の深さの近傍だけを混晶化することも
できるので、三次元立体光素子を形成する基礎技術にな
り得るという効果がある。
Further, since it is possible to form a mixed crystal only in the vicinity of a certain specific depth, there is an effect that it can be a basic technique for forming a three-dimensional stereoscopic optical element.

さらに、電気的に不活性なH+あるいはHe+をイオン注
入に使うので、イオン注入領域の電気的性質が変わらな
いという効果もある。
Furthermore, since electrically inactive H + or He + is used for ion implantation, there is also an effect that the electrical properties of the ion implantation region do not change.

【図面の簡単な説明】[Brief description of drawings]

第1図〜第6図は、本発明を用いて、埋め込み型レーザ
を製作するときの実施例を示す図、 第7図は、従来の混晶化法の説明図である。 8,21……GaAsキャップ層、 9……Al0.35Ga0.65Asクラッド層、 10……アンドープGaAs/Al0.3Ga0.7As超格子、 11……Al0.3Ga0.7As光ガイド層、 12……Al0.35Ga0.65Asクラッド層、 13……GaAs基板、 14……SiO2マスク、 15……Si3N4保護膜、 16……H+ビーム、 17……混晶化された超格子、 18……混晶化されない超格子、 19……加熱ヒータ、 20……Si3N4膜、 22……Cr−Au Pコンタクト層、 23……AuGeNi nコンタクト層。
1 to 6 are views showing an embodiment for manufacturing an embedded laser by using the present invention, and FIG. 7 is an explanatory view of a conventional mixed crystal method. 8,21 ... GaAs cap layer, 9 ... Al 0.35 Ga 0.65 As clad layer, 10 ... undoped GaAs / Al 0.3 Ga 0.7 As superlattice, 11 ... Al 0.3 Ga 0.7 As optical guide layer, 12 ... Al 0.35 Ga 0.65 As clad layer, 13 …… GaAs substrate, 14 …… SiO 2 mask, 15 …… Si 3 N 4 protective film, 16 …… H + beam, 17 …… Mixed crystal superlattice, 18… … Unmixed superlattice, 19 …… heater, 20 …… Si 3 N 4 film, 22 …… Cr-Au P contact layer, 23 …… AuGeNi n contact layer.

Claims (4)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】超格子構造を有する半導体結晶を混晶化す
る際、該半導体結晶を加熱した状態で、軽イオンを前記
半導体にイオン注入することを特徴とする超格子の混晶
化法。
1. A mixed crystal method for a superlattice, which comprises ion-implanting light ions into the semiconductor crystal while the semiconductor crystal having a superlattice structure is mixed, with the semiconductor crystal being heated.
【請求項2】前記加熱温度は500〜800℃であることを特
徴とする特許請求の範囲第1項記載の超格子の混晶化
法。
2. The superlattice mixed crystallization method according to claim 1, wherein the heating temperature is 500 to 800 ° C.
【請求項3】前記軽イオンは、水素イオンあるいはヘリ
ウムイオンであることを特徴とする特許請求の範囲第1
項記載の超格子の混晶化法。
3. The light ion according to claim 1, wherein the light ion is a hydrogen ion or a helium ion.
A method for forming a mixed crystal of a superlattice according to the item.
【請求項4】前記イオン注入を加速電圧1kV以上で行う
ことを特徴とする特許請求の範囲第1項記載の超格子の
混晶化法。
4. The superlattice mixed crystallization method according to claim 1, wherein the ion implantation is performed at an acceleration voltage of 1 kV or more.
JP28726787A 1987-11-16 1987-11-16 Superlattice mixed crystal method Expired - Fee Related JP2533581B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP28726787A JP2533581B2 (en) 1987-11-16 1987-11-16 Superlattice mixed crystal method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP28726787A JP2533581B2 (en) 1987-11-16 1987-11-16 Superlattice mixed crystal method

Publications (2)

Publication Number Publication Date
JPH01129482A JPH01129482A (en) 1989-05-22
JP2533581B2 true JP2533581B2 (en) 1996-09-11

Family

ID=17715190

Family Applications (1)

Application Number Title Priority Date Filing Date
JP28726787A Expired - Fee Related JP2533581B2 (en) 1987-11-16 1987-11-16 Superlattice mixed crystal method

Country Status (1)

Country Link
JP (1) JP2533581B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003515250A (en) * 1999-11-12 2003-04-22 プリンストン・ライトウェーブ・インコーポレイテッド Current diffusion control of semiconductor laser diode

Also Published As

Publication number Publication date
JPH01129482A (en) 1989-05-22

Similar Documents

Publication Publication Date Title
US4751194A (en) Structures including quantum well wires and boxes
JP2686764B2 (en) Method for manufacturing optical semiconductor device
JP2752423B2 (en) Method for diffusing Zn into compound semiconductor
JPH08279649A (en) Semiconductor laser and manufacture thereof
JPH08111560A (en) Semiconductor laser device and manufacture thereof
JPH021387B2 (en)
JPH08148757A (en) Manufacture of semiconductor laser
JP2533581B2 (en) Superlattice mixed crystal method
US5225370A (en) Method of diffusing P type impurity
JP3501676B2 (en) Method for manufacturing semiconductor laser device
JPH0846283A (en) Manufacture of semiconductor laser
JPH0513881A (en) Manufacture of semiconductor laser
JP2757258B2 (en) Superlattice element manufacturing method
JPH0137870B2 (en)
JPS6164183A (en) Manufacture of semiconductor light-emitting element
JPH0131318B2 (en)
JPS6086889A (en) Manufacture of semiconductor laser
JPH0878775A (en) Semiconductor laser device and its manufacture
JP2538613B2 (en) Semiconductor laser and manufacturing method thereof
JPH03159289A (en) Manufacture of semiconductor laser
JPS63224382A (en) Semiconductor laser
JPH0430758B2 (en)
JPH04171782A (en) Compound semiconductor laser
JPH01161847A (en) Manufacture of device
JPS63310189A (en) Manufacture of semiconductor device

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees