JP2532104B2 - Gas detector - Google Patents

Gas detector

Info

Publication number
JP2532104B2
JP2532104B2 JP62227502A JP22750287A JP2532104B2 JP 2532104 B2 JP2532104 B2 JP 2532104B2 JP 62227502 A JP62227502 A JP 62227502A JP 22750287 A JP22750287 A JP 22750287A JP 2532104 B2 JP2532104 B2 JP 2532104B2
Authority
JP
Japan
Prior art keywords
gas detector
oxide
protective layer
gas
electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP62227502A
Other languages
Japanese (ja)
Other versions
JPS6469945A (en
Inventor
健 美濃羽
稔明 近藤
雅彦 山田
治久 塩見
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Niterra Co Ltd
Original Assignee
NGK Spark Plug Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NGK Spark Plug Co Ltd filed Critical NGK Spark Plug Co Ltd
Priority to JP62227502A priority Critical patent/JP2532104B2/en
Publication of JPS6469945A publication Critical patent/JPS6469945A/en
Application granted granted Critical
Publication of JP2532104B2 publication Critical patent/JP2532104B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、例えば内燃機関や各種燃焼機器等のガス成
分の濃度を測定するガス検出器に関する。
TECHNICAL FIELD The present invention relates to a gas detector for measuring the concentration of a gas component in, for example, an internal combustion engine or various combustion equipment.

[従来の技術] 従来、内燃機関や各種燃焼機器等の公害防止,省エネ
ルギー又は工程の細かい管理等を行うために、種々のガ
ス検出器が用いられていた。この種のガス検出器として
は、例えばジルコニア(ZrO2)やチタニア(TiO2)から
なる酸素濃度検出素子の検出ガス側及び基準ガス側の表
面に、電極を備えたものがあり、この電極間に生ずる起
電力や、抵抗の変化を検出することにより、燃焼排ガス
中の酸素濃度の検出を行っていた。
[Prior Art] Conventionally, various gas detectors have been used in order to prevent pollution of an internal combustion engine, various combustion equipment, etc., save energy, and perform fine control of processes. As this type of gas detector, for example, there is one in which electrodes are provided on the surfaces of the oxygen concentration detection element made of zirconia (ZrO 2 ) or titania (TiO 2 ) on the detection gas side and the reference gas side. The oxygen concentration in the combustion exhaust gas was detected by detecting the electromotive force and the change in resistance that occur in the exhaust gas.

そして、この様なガス検出器の検出ガス側の電極を保
護するために、その電極の表面に、化学当量比組成のマ
グネシアアルミナスピネル(MgO・Al2O3)からなる多孔
質のコート層が設けられていた。
Then, in order to protect the electrode on the detection gas side of such a gas detector, a porous coat layer made of magnesia alumina spinel (MgO.Al 2 O 3 ) having a chemical equivalent ratio composition is provided on the surface of the electrode. It was provided.

[発明が解決しようとする問題点] しかしながら、この様な多孔質のコート層は、電極を
保護する機能は優れているが、ガス検出器を使用してい
る内に、燃焼ガス中の鉛,亜鉛,リン又はシリコン等
が、その表面に付着して、目づまりが起こり、その結
果、例えば測定した空燃比の燃料リーン側へのずれ等が
生じ、ガス検出器の機能が低下してしまうと言う問題点
があった。
[Problems to be Solved by the Invention] However, although such a porous coat layer has an excellent function of protecting the electrodes, while a gas detector is used, lead in the combustion gas, It is said that zinc, phosphorus, silicon, etc. will adhere to the surface and cause clogging, resulting in, for example, deviation of the measured air-fuel ratio toward the fuel lean side, which will reduce the function of the gas detector. There was a problem.

[問題点を解決するための手段] かかる問題点を解決するための本発明の構成は、 周囲の環境に応じて電気的特性が変化する検出素子部
と、 該検出素子部の電気的特性の変化を電気信号として取
り出す電極と、 該電極の上面を覆って、電極を保護する少なくとも1
層の多孔質の保護層と、 を備えて、周囲の環境を検出するガス検出器において、 上記保護層のうちの最外層が、スピネル型複酸化物か
ら形成されるとともに、その複酸化物を構成する酸化物
の間の組成比が化学当量比と異なることを特徴とするガ
ス検出器を要旨とする。
[Means for Solving the Problems] The structure of the present invention for solving the above problems includes a detection element unit whose electric characteristics change depending on the surrounding environment, and an electric characteristic of the detection element unit. An electrode for extracting the change as an electric signal, and at least one for protecting the electrode by covering the upper surface of the electrode.
In a gas detector for detecting the surrounding environment, which comprises a porous protective layer of a layer, the outermost layer of the protective layer is formed of a spinel type complex oxide, and the complex oxide is A gas detector is characterized in that a composition ratio between constituent oxides is different from a chemical equivalent ratio.

[作用] 本発明のガス検出器は、その検出素子部が、周囲の環
境に応じて電気的特性が変化するので、その電気的特性
の変化を、電気信号として電極によって取り出し、周囲
の環境を検出する。この電極の上面を覆って、電極を保
護する少なくとも1層の多孔質の保護層が形成されてお
り、この保護層のうちの最外層は、スピネル型複酸化物
から形成されるとともに、その複酸化物を構成する酸化
物の間の組成比が化学当量比と異なるので、スピネル構
造が不安定であり、温度の上昇等の変化とともに、蒸気
圧の高い成分の蒸発が促進される。それにともなって、
多孔質の最外層に付着した検出ガスの成分も、容易に飛
散する。そしてその蒸発によって、最外層の組成が変化
し、残存成分は飛散しやすい状態となるので、多孔質の
最外層に付着した検出ガスの成分は、一層容易に飛散す
る。その結果、最外層ひいては保護層全体が目づまりを
起こしにくくなり、ガス検出器の耐久性が向上する。
[Operation] In the gas detector of the present invention, the electric characteristics of the detection element portion change according to the surrounding environment. Therefore, the change in the electric characteristics is taken out by an electrode as an electric signal to detect the surrounding environment. To detect. At least one porous protective layer that protects the electrode is formed so as to cover the upper surface of the electrode, and the outermost layer of the protective layer is formed of a spinel-type complex oxide and Since the composition ratio between the oxides forming the oxide is different from the chemical equivalent ratio, the spinel structure is unstable, and the evaporation of the component having a high vapor pressure is promoted as the temperature rises. Along with that,
The components of the detection gas attached to the porous outermost layer are also easily scattered. Then, due to the evaporation, the composition of the outermost layer is changed, and the remaining components are easily scattered, so that the components of the detection gas attached to the porous outermost layer are more easily scattered. As a result, the outermost layer and thus the entire protective layer are less likely to be clogged, and the durability of the gas detector is improved.

尚、上記スピネル型複酸化物として、マグネシアスピ
ネル型複酸化物を用いる場合には、マグネシアが蒸発し
易いので好適であり、このマグネシアスピネル型複酸化
物としては、酸化マグネシウムと酸化アルミニウム又は
酸化クロムとを用いることができる。
In addition, when magnesia spinel-type mixed oxide is used as the spinel-type mixed oxide, magnesia is easily evaporated, which is preferable. As this magnesia-spinel-type mixed oxide, magnesium oxide and aluminum oxide or chromium oxide is preferable. And can be used.

[実施例] 以下本発明の第1実施例を図面に従って説明する。[Embodiment] A first embodiment of the present invention will be described below with reference to the drawings.

第1図は本発明の一実施例のガス検出器1であり、こ
のガス検出器1は、検出素子部2として、試験管状に形
成された、安定化及び部分安定化ジルコニア(ZrO2)か
ら成る酸素イオン伝導性の固体電解質層を用い、その内
側(基準ガス側)及び外側(検出ガス側)に、導電性に
富み、かつ検出ガスの触媒作用を有する白金(Pt)電極
4,6を備えたものである。この検出ガス側の電極6の表
面には、化学当量比組成のスピネル(MgO・Al2O3)から
成る多孔質の第1の保護層8が形成され、更にその表面
には、非化学当量比組成のMgO・Al2O3から成る多孔質の
第2の保護層10が形成されている。そして、この検出素
子部2は、Oリング12及びカーボンの充填材14を介し
て、ステンレス製のハウジング16に固定され、検出素子
部2の先端には保護管18がかぶせられている。
FIG. 1 shows a gas detector 1 according to an embodiment of the present invention. The gas detector 1 is made of stabilized and partially stabilized zirconia (ZrO 2 ) formed in a test tube as a detection element unit 2. Platinum (Pt) electrode that is rich in conductivity and has a catalytic action on the detection gas inside (reference gas side) and outside (detection gas side) of the solid electrolyte layer of oxygen ion conductivity
It is equipped with 4,6. A porous first protective layer 8 made of spinel (MgO.Al 2 O 3 ) having a chemical equivalent ratio composition is formed on the surface of the electrode 6 on the detection gas side, and a non-chemical equivalent is further formed on the surface thereof. A porous second protective layer 10 made of MgO.Al 2 O 3 having a specific composition is formed. The detecting element portion 2 is fixed to a stainless steel housing 16 via an O-ring 12 and a carbon filling material 14, and a protective tube 18 is covered on the tip of the detecting element portion 2.

次に、このガス検出器の製造法について説明する。上
記固体電解質層を形成するには、まず、純度99%のZrO2
の原料に、純度99.9%のY2O3を4mol%添加し、湿式にて
粉砕混合し、1300℃にて2時間仮焼結する。次に湿式に
て、粒子の80%が2.5μm以下の粒径になるまで粉砕す
る。次に水溶性バインダを加え、スプレードライにて、
粒径約70μmの球状の2次粒子を形成する。そして所定
の試験管状に成形し、約1500℃で焼成する。
Next, a method for manufacturing this gas detector will be described. To form the solid electrolyte layer, first, 99% pure ZrO 2
4 mol% of Y 2 O 3 having a purity of 99.9% is added to the raw material, and the mixture is pulverized and mixed by a wet method, and temporarily sintered at 1300 ° C. for 2 hours. Next, it is pulverized by a wet method until 80% of the particles have a particle diameter of 2.5 μm or less. Next, add a water-soluble binder and spray dry.
Spherical secondary particles having a particle size of about 70 μm are formed. Then, it is formed into a predetermined test tube and fired at about 1500 ° C.

また上記固体電解質層の検出ガス側の電極6及び基準
ガス側の電極4を形成するには、導電性及び触媒作用を
有するPtを、固体電解質層の表面に化学メッキした後に
熱処理する。
Further, in order to form the detection gas side electrode 6 and the reference gas side electrode 4 of the solid electrolyte layer, Pt having conductivity and catalytic action is chemically plated on the surface of the solid electrolyte layer and then heat treated.

次に、第1の保護層8を形成するには、検出ガス側の
電極6の検出ガスによる劣化を防止する目的で、検出ガ
ス側の電極6の表面に、化学当量比組成のMgO・Al2O3
プラズマ溶射し、多数の微孔を有する厚さ約100μmの
層を形成する。
Next, in order to form the first protective layer 8, in order to prevent the detection gas side electrode 6 from being deteriorated by the detection gas, the surface of the detection gas side electrode 6 is formed of MgO. 2 O 3 is plasma sprayed to form a layer having a large number of micropores and a thickness of about 100 μm.

更に、この第1の保護層8の表面には、第2の保護層
10(第2図)を形成するが、この第2の保護層10の素材
としては、非化学当量比組成のMgO・Al2O3を用いる。こ
の非化学当量比組成として、MgO1-X・Al2O3 1+X又はMgO
1+Y・Al2O3 1-YのX又はYを、X=0.001〜0.03,Y=0.0
01〜0.01の範囲で非化学当量比とした材料を調製し、第
1の保護層8の表面にプラズマ溶射して、多数の微孔を
有する厚さ約25μmの層を形成する。
Further, on the surface of the first protective layer 8, a second protective layer is formed.
10 (FIG. 2) is formed. As the material for the second protective layer 10, MgO.Al 2 O 3 having a non-stoichiometric composition is used. As this non-stoichiometric composition, MgO 1-X・ Al 2 O 3 1 + X or MgO
X or Y of 1 + Y · Al 2 O 3 1-Y , X = 0.001 to 0.03, Y = 0.0
A material having a non-stoichiometric ratio in the range of 01 to 0.01 is prepared and plasma sprayed on the surface of the first protective layer 8 to form a layer having a number of micropores and a thickness of about 25 μm.

次に、上記構成によるガス検出器1の作動及び効果を
説明する。このガス検出器1を例えば自動車の排気管に
取り付けると、このガス検出器1は検出ガス側のガス成
分(CO,HC,O2)の濃度に関係し、検出ガス側の酸素濃度
と基準ガス側の酸素濃度の差に応じて起電力を生じる。
その特性は、空燃比に対しZ型のカーブを描き、理論空
燃比点(空気過剰率λ=1)近傍で急変する。また排気
ガス中のNOX,CO,HCを同時に浄化する三元触媒を使用す
ると、理論空燃比点の近傍では、これらのガス成分を効
率よく減らすことができる。従って、このガス検出器1
を用い、空燃比を検出して、理論空燃比点の近傍にフィ
ードバック制御することにより、効率よく排気ガスの浄
化を行うことができる。そしてこの空燃比の検出の際
に、検出ガスが速やかに保護層を通過して、電極に到達
することにより、上記起電力が、正確かつ迅速に検出ガ
ス側の酸素濃度に対応すれば、それに基づく制御も適切
に行うことができる。
Next, the operation and effect of the gas detector 1 having the above configuration will be described. When the gas detector 1 is attached to, for example, an exhaust pipe of an automobile, the gas detector 1 is related to the concentrations of gas components (CO, HC, O 2 ) on the detection gas side, and the oxygen concentration on the detection gas side and the reference gas. An electromotive force is generated according to the difference in oxygen concentration on the side.
The characteristic draws a Z-shaped curve with respect to the air-fuel ratio and changes rapidly near the theoretical air-fuel ratio point (excess air ratio λ = 1). Further, if a three-way catalyst that simultaneously purifies NO X , CO, and HC in the exhaust gas is used, these gas components can be efficiently reduced near the stoichiometric air-fuel ratio point. Therefore, this gas detector 1
Is used to detect the air-fuel ratio and perform feedback control in the vicinity of the stoichiometric air-fuel ratio point, whereby the exhaust gas can be efficiently purified. And at the time of detection of this air-fuel ratio, the detection gas quickly passes through the protective layer and reaches the electrode, so that if the electromotive force accurately and quickly corresponds to the oxygen concentration on the detection gas side, Based control can also be performed appropriately.

本実施例では、MgO・Al2O3中のMgOとAl2O3との組成比
が、MgO1-X・Al2O3 1+X又はMgO1+Y・Al2O3 1-Yにおい
て、X=0.001〜0.03又はY=0.001〜0.01と、化学当量
比と異なっているので、温度の上昇等の変化によって、
蒸気圧の大きなMgOの蒸発が促進される。それにともな
って、第2の保護層に付着した、燃焼ガス中の鉛,亜
鉛,リン又はシリコン等も容易に飛散するので、第2の
保護層の目づまりを防止することができる。そして、更
に、MgOが蒸発することによって、第2の保護層の組成
が変化し、残存成分が飛散し易いα−Al2O3となって析
出するので、より効果的に、第2の保護層の目づまりを
防止することができる。
In this example, the composition ratio of MgO and Al 2 O 3 in MgO ・ Al 2 O 3 is MgO 1-X・ Al 2 O 3 1 + X or MgO 1 + Y・ Al 2 O 3 1-Y. In the above, since X = 0.001 to 0.03 or Y = 0.001 to 0.01, which is different from the chemical equivalence ratio, due to changes such as temperature rise,
The evaporation of MgO having a high vapor pressure is promoted. Accordingly, lead, zinc, phosphorus, silicon, etc. in the combustion gas attached to the second protective layer are also easily scattered, so that clogging of the second protective layer can be prevented. Further, as MgO evaporates, the composition of the second protective layer changes, and the residual component is precipitated as α-Al 2 O 3 which is easily scattered, so that the second protective layer is more effectively formed. It is possible to prevent clogging of layers.

その結果、第2図に示す様に、長期間ガス検出器を使
用しても、ガス検出器によって得られる空燃比が燃料リ
ーン側にずれるような、耐久性の低下を防止することが
できる。
As a result, as shown in FIG. 2, even if the gas detector is used for a long period of time, it is possible to prevent the deterioration of durability such that the air-fuel ratio obtained by the gas detector shifts to the fuel lean side.

又、他の実施例として、第1実施例のAl2O3とMgOに代
えて、Al2O3とCr2O3を用いてもよい。更に上記実施例で
は検出素子部2にZrO2を用いたが、それ以外に、TiO2
を用いてもよく、第1の保護層8の素材としてAl2O3
を用いてもよい。尚、第1の保護層8及び第2の保護層
10の形成方法としては、プラズマ溶射以外にも、泥漿塗
布や厚膜印刷等によって行ってもよい。
As another embodiment, Al 2 O 3 and Cr 2 O 3 may be used instead of Al 2 O 3 and MgO of the first embodiment. Further, although ZrO 2 is used for the detection element portion 2 in the above-mentioned embodiment, TiO 2 or the like may be used instead of it, and Al 2 O 3 or the like may be used as the material of the first protective layer 8. Incidentally, the first protective layer 8 and the second protective layer
As a method of forming 10, other than plasma spraying, slurry coating, thick film printing, or the like may be used.

次に、上記実施例の効果を確認するために行った実験
例について説明する。
Next, an example of an experiment conducted for confirming the effect of the above-described example will be described.

(実験例) 実験装置は、2.0の自動車用エンジンを用い、ガソ
リン中に、リン,亜鉛,カルシュウムを含有したエンジ
ンオイルを1容量%添加する。そして、ガソリンと空気
とを、理論空燃比で混合し燃焼させる。その燃焼条件と
して、アイドリングを5分間、エンジン回転数6500rpm
に保ち全開運転を15分間行い、これを交互に繰り返す。
(Experimental Example) The experimental apparatus uses a 2.0 automobile engine, and 1 volume% of engine oil containing phosphorus, zinc, and calcium is added to gasoline. Then, gasoline and air are mixed at a stoichiometric air-fuel ratio and burned. As combustion conditions, idling for 5 minutes, engine speed 6500 rpm
Keep full open for 15 minutes and repeat this alternately.

実験に用いるガス検出器1は、第1表に示すように、
Al2O3やMgOの組成を変えたもの、即ち、MgO1-X・Al2O3
1+X又はMgO1+Y・Al2O3 1-YにおけるXやYの値を変えた
ものを用いた。実施例に対応するものとして、No.1〜4
及びNo.6〜8のガス検出器を製造し、比較例としてNo.5
のガス検出器を製造した。そして、耐久試験として、50
0時間運転した後に、測定温度450℃にて空燃比を測定
し、制御空燃比の理論空燃比からの変化の最大値を求め
た。
The gas detector 1 used in the experiment, as shown in Table 1,
The composition of Al 2 O 3 or MgO is changed, that is, MgO 1-X・ Al 2 O 3
1 + X or MgO 1 + Y.Al 2 O 3 1-Y with different values of X and Y was used. Nos. 1 to 4 corresponding to the examples
And No. 6-8 gas detectors were manufactured, and No. 5 was prepared as a comparative example.
Manufactured a gas detector. And as a durability test, 50
After operating for 0 hour, the air-fuel ratio was measured at a measurement temperature of 450 ° C., and the maximum value of the change in the control air-fuel ratio from the theoretical air-fuel ratio was obtained.

この第1表から明らかなように、MgO1-X・Al2O3 1+X
におけるXの値が0.001〜0.03の範囲であれば、特に耐
久試験後の制御空燃比の変化の最大値が0.15〜0.2と小
さく、長時間使用しても制御空燃比がずれることが少な
く好適である。また、MgO1+Y・Al2O3 1-YにおけるYの
値が0.001〜0.01の範囲にあれば、上記と同様に特に耐
久試験後の制御空燃比の変化の最大値が0.15〜0.2と小
さく、長時間使用しても制御空燃比がずれることが少な
く好適である。
As is clear from Table 1 , MgO 1-X・ Al 2 O 3 1 + X
If the value of X in 0.001 to 0.03 is in the range, the maximum value of the change in the controlled air-fuel ratio after the durability test is as small as 0.15 to 0.2, and the controlled air-fuel ratio does not deviate even when used for a long time, which is preferable. is there. Further, if the value of Y in MgO 1 + Y・ Al 2 O 3 1-Y is in the range of 0.001 to 0.01, the maximum value of the change in the control air-fuel ratio after the durability test is 0.15 to 0.2, similarly to the above. It is suitable because it is small and the controlled air-fuel ratio does not shift even when used for a long time.

[発明の効果] 以上説明したように、本発明によれば、ガス検出器
は、その保護層のうちの最外層が、スピネル型複酸化物
から形成されるとともに、その複酸化物を構成する酸化
物の間の組成比が化学当量比と異なるので、その成分の
内、蒸気圧の高い成分が蒸発し、残存成分も蒸発しやす
い状態となる。従って、検出ガスに含まれている成分が
最外層に付着した場合でも、最外層ひいては保護層全体
が目づまりをおこしにくく、ガス検出器の耐久性を向上
することができる。
[Effects of the Invention] As described above, according to the present invention, the outermost layer of the protective layer of the gas detector is formed of the spinel-type mixed oxide and constitutes the mixed oxide. Since the composition ratio between the oxides is different from the chemical equivalent ratio, among the components, the component having a high vapor pressure is vaporized, and the residual component is easily vaporized. Therefore, even if the component contained in the detection gas adheres to the outermost layer, the outermost layer and thus the entire protective layer are less likely to be clogged, and the durability of the gas detector can be improved.

【図面の簡単な説明】[Brief description of drawings]

第1図は本実施例のガス検出器を示す断面図、第2図は
ガス検出器の耐久性能を示す説明図である。 1……ガス検出器、2……検出素子部 4……基準ガス側電極、6……検出ガス側電極 8……第1の保護層、10……第2の保護層
FIG. 1 is a sectional view showing the gas detector of this embodiment, and FIG. 2 is an explanatory view showing the durability performance of the gas detector. 1 ... Gas detector, 2 ... Detection element section 4 ... Reference gas side electrode, 6 ... Detection gas side electrode 8 ... First protective layer, 10 ... Second protective layer

───────────────────────────────────────────────────── フロントページの続き (72)発明者 塩見 治久 愛知県名古屋市瑞穂区高辻町14番18号 日本特殊陶業株式会社内 (56)参考文献 特開 昭61−241657(JP,A) 特開 昭61−37920(JP,A) 特開 昭48−38291(JP,A) ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Haruhisa Shiomi 14-18 Takatsuji-cho, Mizuho-ku, Nagoya-shi, Aichi Japan Special Ceramics Co., Ltd. (56) Reference JP-A-61-241657 (JP, A) JP 61-37920 (JP, A) JP-A-48-38291 (JP, A)

Claims (3)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】周囲の環境に応じて電気的特性が変化する
検出素子部と、 該検出素子部の電気的特性の変化を電気信号として取り
出す電極と、 該電極の上面を覆って、電極を保護する少なくとも1層
の多孔質の保護層と、を備えて、周囲の環境を検出する
ガス検出器において、 上記保護層のうちの最外層が、少なくともその成分の1
種としてスピネル型複酸化物から形成されるとともに、
その複酸化物を構成する酸化物の間の組成比が化学当量
比と異なることを特徴とするガス検出器。
1. A detection element portion whose electric characteristics change according to the surrounding environment, an electrode for taking out a change in the electric characteristics of the detection element portion as an electric signal, and an electrode covering the upper surface of the electrode. A gas detector for detecting the surrounding environment, comprising at least one porous protective layer for protection, wherein the outermost layer of the protective layer is at least one of its components.
Formed from spinel type double oxide as a seed,
A gas detector characterized in that a composition ratio between oxides constituting the double oxide is different from a chemical equivalent ratio.
【請求項2】上記スピネル型複酸化物がマグネシアスピ
ネル型複酸化物である特許請求の範囲第1項記載のガス
検出器。
2. The gas detector according to claim 1, wherein the spinel-type mixed oxide is a magnesia spinel-type mixed oxide.
【請求項3】上記マグネシアスピネル型複酸化物が、酸
化マグネシウムと酸化アルミニウム又は酸化クロムとか
らなる特許請求の範囲第2項記載のガス検出器。
3. The gas detector according to claim 2, wherein the magnesia spinel type double oxide comprises magnesium oxide and aluminum oxide or chromium oxide.
JP62227502A 1987-09-10 1987-09-10 Gas detector Expired - Fee Related JP2532104B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62227502A JP2532104B2 (en) 1987-09-10 1987-09-10 Gas detector

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62227502A JP2532104B2 (en) 1987-09-10 1987-09-10 Gas detector

Publications (2)

Publication Number Publication Date
JPS6469945A JPS6469945A (en) 1989-03-15
JP2532104B2 true JP2532104B2 (en) 1996-09-11

Family

ID=16861898

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62227502A Expired - Fee Related JP2532104B2 (en) 1987-09-10 1987-09-10 Gas detector

Country Status (1)

Country Link
JP (1) JP2532104B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9263603B2 (en) 2009-03-23 2016-02-16 Sharp Kabushiki Kaisha Solar cell with connecting sheet, solar cell module, and fabrication method of solar cell with connecting sheet

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4700214B2 (en) * 2001-03-30 2011-06-15 京セラ株式会社 Oxygen sensor element and manufacturing method thereof

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4838291A (en) * 1971-09-20 1973-06-05
JPS6137920A (en) * 1984-07-31 1986-02-22 Sumitomo Metal Ind Ltd Manufacture of steel pipe having resistance to stripping of scale
JPS61241657A (en) * 1985-04-19 1986-10-27 Nissan Motor Co Ltd Oxygen sensor element

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9263603B2 (en) 2009-03-23 2016-02-16 Sharp Kabushiki Kaisha Solar cell with connecting sheet, solar cell module, and fabrication method of solar cell with connecting sheet

Also Published As

Publication number Publication date
JPS6469945A (en) 1989-03-15

Similar Documents

Publication Publication Date Title
US4863583A (en) Electrode structure of an oxygen sensing element
US6514397B2 (en) Gas sensor
JP3634933B2 (en) Gas sensor
US4225634A (en) Method for manufacturing gas composition detector
EP0310063B1 (en) Sensor for measurement of air/fuel ratio
US5278007A (en) Electrochemical element and method of producing same
US4297192A (en) Catalyst supported oxygen sensor element and a method of manufacturing same
JP3171854B2 (en) Gas sensor
US4584086A (en) Device for detecting concentration of oxygen in exhaust gas
US5538612A (en) Oxygen sensor element
US4786476A (en) Gas sensor element using porously fired mass of titania
US20030230484A1 (en) Co-fired oxygen sensor elements
JP2532104B2 (en) Gas detector
RU2587500C1 (en) Exhaust gas sensor
US4857165A (en) Oxygen sensing element and process of manufacturing the same
JPS61195338A (en) Air fuel ratio sensor
JP3762016B2 (en) Gas sensor
JPH09113480A (en) Oxygen sensor element
JP2637593B2 (en) Activation method of oxygen sensor element
JP2599788B2 (en) Electrochemical element
JPH0668479B2 (en) Oxygen concentration detector
JPH0778483B2 (en) Oxygen detector
JPH087178B2 (en) Oxygen sensor
JPH05256816A (en) Oxygen sensor and its manufacture
JP2592510B2 (en) Oxygen sensor element

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees