JP2529560B2 - Silver-base metal oxide contact material and method for producing the same - Google Patents

Silver-base metal oxide contact material and method for producing the same

Info

Publication number
JP2529560B2
JP2529560B2 JP61295164A JP29516486A JP2529560B2 JP 2529560 B2 JP2529560 B2 JP 2529560B2 JP 61295164 A JP61295164 A JP 61295164A JP 29516486 A JP29516486 A JP 29516486A JP 2529560 B2 JP2529560 B2 JP 2529560B2
Authority
JP
Japan
Prior art keywords
base metal
oxygen
silver
metal oxide
contact material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP61295164A
Other languages
Japanese (ja)
Other versions
JPS63149341A (en
Inventor
博信 山本
貞夫 佐藤
喬 奈良
Original Assignee
株式会社 徳力本店
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社 徳力本店 filed Critical 株式会社 徳力本店
Priority to JP61295164A priority Critical patent/JP2529560B2/en
Publication of JPS63149341A publication Critical patent/JPS63149341A/en
Application granted granted Critical
Publication of JP2529560B2 publication Critical patent/JP2529560B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H1/00Contacts
    • H01H1/02Contacts characterised by the material thereof
    • H01H1/021Composite material
    • H01H1/023Composite material having a noble metal as the basic material
    • H01H1/0237Composite material having a noble metal as the basic material and containing oxides
    • H01H1/02372Composite material having a noble metal as the basic material and containing oxides containing as major components one or more oxides of the following elements only: Cd, Sn, Zn, In, Bi, Sb or Te

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Composite Materials (AREA)
  • Materials Engineering (AREA)
  • Powder Metallurgy (AREA)
  • Manufacture Of Switches (AREA)
  • Contacts (AREA)
  • Conductive Materials (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、従来の銀−金属酸化物接点の製法である
“内部酸化法”とも“粉末冶金法”とも全く異なる新し
い“粒子内近傍酸化焼結法”とも謂うべき製法によって
得られる銀−卑金属酸化物接点材料及びその製造方法に
関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Industrial field of application] The present invention is a completely new "in-particle vicinity oxidation" which is completely different from the "internal oxidation method" and the "powder metallurgy method" which are conventional manufacturing methods of silver-metal oxide contacts. The present invention relates to a silver-base metal oxide contact material obtained by a so-called "sintering method" and a manufacturing method thereof.

〔従来技術とその問題点〕[Prior art and its problems]

従来より電気接点材料としてはいろいろのものが用い
られており、とりわけAg−CdO接点材料が広く用いら
れ、Agに10%CdOを適度に分散させた接点材料は耐溶着
性、耐アーク性、耐消耗性、接触安定性等の諸接点特性
が優れているために各種スイッチ、コンタクター、ブレ
ーカー等、小〜大電流領域に広く用いられてる。近時、
Cdの公害問題が指摘されたのを契機とし、Cdを含有しな
い材質の研究も行われ、AgにLa、Sb、Sn、Zn、Pb、In、
Te等の卑金属の酸化物を配合した接点材料が製法との関
連のもとに相次いで開発された。
Conventionally, various materials have been used as electrical contact materials, in particular Ag-CdO contact materials are widely used, and contact materials in which 10% CdO is appropriately dispersed in Ag are resistant to welding, arc resistance and resistance. It is widely used in small to large current regions such as various switches, contactors and breakers because of its excellent contact characteristics such as wear resistance and contact stability. Recently,
With the pollution problem of Cd pointed out, research on materials not containing Cd was also conducted, and Ag, La, Sb, Sn, Zn, Pb, In,
Contact materials containing oxides of base metals such as Te were developed one after another in connection with the manufacturing method.

このような銀−卑金属酸化物接点材料の製造方法とし
ては、内部酸化法と粉末冶金法とがあるが、現在は量産
品には殆ど内部酸化法が使用されている。
As a method of manufacturing such a silver-base metal oxide contact material, there are an internal oxidation method and a powder metallurgy method, but at present, most of the mass production products use the internal oxidation method.

内部酸化法はAgと溶質金属としての卑金属(例、Cd、
Sb、Sn等)の溶製合金を作り、これを所望の成型体に加
工した後、一般には酸素分圧3atm以上の条件で、通常74
0℃以上の温度で加熱して溶質金属のみを選択的に合金
系外の酸素によって酸化する方法であり、少なくとも塑
性加工ができ、かつ内部酸化が可能であるという組成上
の条件の制約をうける。
Internal oxidation method is based on Ag and base metal as solute metal (eg Cd,
Sb, Sn, etc.) is made into a molten alloy, and this is processed into a desired molded body.
This is a method of heating at a temperature of 0 ° C or higher to selectively oxidize only the solute metal by oxygen outside the alloy system, subject to the compositional conditions that at least plastic working and internal oxidation are possible. .

この内部酸化法では、外部から強制的に酸素を与え
て、銀マトリックス中を拡散する酸素によって、溶質金
属を固相状態で長時間酸化する為、合金内部の溶質金属
の濃度勾配が酸素の拡散方向に対向して、厚さ方向に生
ずる。これは接点特性上極めて不都合なことであるが、
酸化の機構上原理的に避けられない現象である。
In this internal oxidation method, oxygen is forcibly supplied from the outside, and oxygen that diffuses in the silver matrix oxidizes the solute metal in the solid state for a long time.Therefore, the concentration gradient of the solute metal inside the alloy causes the diffusion of oxygen. Opposite the direction, it occurs in the thickness direction. This is extremely inconvenient in terms of contact characteristics,
This is an unavoidable phenomenon in principle due to the mechanism of oxidation.

特に材料の両面より酸化させる両面内部酸化法の場合
には、中心部に濃度ムラが集中し、そこに酸化物の希薄
な層が生ずることはよく知られている処であり(特公昭
60−16505号公報参照)、この希薄層の厚さは溶質金属
の種類、濃度及び酸素分圧や内部酸化温度等によって異
なるが、0.1〜0.3mmにも達し、接点特性を著しく害して
いる。
In particular, in the case of the double-sided internal oxidation method in which the material is oxidized from both sides, it is well known that concentration unevenness is concentrated in the central part and a thin layer of oxide is formed there (Japanese Patent Publication No.
60-16505), the thickness of the dilute layer varies depending on the type and concentration of the solute metal, the oxygen partial pressure, the internal oxidation temperature, etc., but reaches 0.1 to 0.3 mm, significantly impairing the contact characteristics.

この方法では、酸素を外部より接点厚さ全体にわたっ
て拡散させる為、厚さが増せば増すほど、酸化に一層長
時間を要し、しかも酸化の終了点を決めることが困難で
あり、不良率が高い等の生産・品質管理上の欠点をも有
している。
In this method, oxygen is diffused from the outside over the entire contact thickness. Therefore, the thicker the thickness, the longer the oxidation takes, and the more difficult it is to determine the end point of the oxidation. It also has drawbacks such as high production and quality control.

他方、粉末冶金法は、焼結法ともいわれるが、銀粉と
卑金属酸化物粉末とを成型後焼結したり、或いは銀粉と
卑金属粉末とを焼結後に内部酸化するものを総称する
が、これに属するものとしては、 (1) Ag片と卑金属の酸化物粉とを機械的に混合し、
成型の上、焼結する混合焼結法 (2) アトマイズ法、アーク法により製造した未酸化
Ag合金粉を焼結し、これを内部酸化する焼結内部酸化法 (3) 溶製法によって製造したAg合金の板又は線を破
砕し、これらの細片を内部酸化した後、焼結する破砕片
内部酸化焼結法 (4) Ag合金を溶製後、板又は線等に加工後内部酸化
し、このAg−金属酸化物体を破砕したものを焼結する内
部酸化破砕焼結法 等があるが、(1)を除き他の方法はいずれも内部酸化
を利用していることに変わりはない。
On the other hand, the powder metallurgy method, which is also called a sintering method, is a generic term for those that perform sintering after molding silver powder and base metal oxide powder, or internally oxidize silver powder and base metal powder. To belong, (1) mechanically mix Ag pieces and base metal oxide powder,
Mixed sintering method of molding and sintering (2) Unoxidized manufactured by atomizing method and arc method
Sintering internal oxidation method to sinter Ag alloy powder and oxidize it internally (3) Crush the Ag alloy plate or wire produced by the melting method, and internally oxidize these pieces, and then sinter One-side internal oxidative sintering method (4) There is an internal oxidative crushing sintering method, etc. in which Ag alloy is melted, processed into a plate or wire, and then internally oxidized, and this Ag-metal oxide body is crushed and sintered. However, except for (1), all the other methods still utilize internal oxidation.

(1)の場合は典型的粉末冶金法であり、溶製に必要
な大掛りな設備が不要の上、必要な酸化物を調達できれ
ば、合金化や内部酸化上の制約なしに、各種酸化物を用
いることができるという利点はあるが、製造上Ag粉と酸
化物粉との機械的混合工程を省くことができない為、重
力圏で製造する限り、粉末の比重差を解消することは如
何ともなし難く、粒度、粒形の相違等の影響も加わって
均一な混合が難しく、組成上の偏析を生じ易く、しかも
均一な焼結密度を得ることが困難なため、現在では殆ど
用いられていない。
In the case of (1), it is a typical powder metallurgy method, and if large-scale equipment necessary for melting is not required and necessary oxides can be procured, various oxides can be obtained without restrictions on alloying and internal oxidation. Although there is an advantage that can be used, because it is not possible to omit the mechanical mixing step of Ag powder and oxide powder in manufacturing, as long as it is manufactured in the gravity zone, it is not possible to eliminate the difference in specific gravity of the powder. It is difficult to do, uniform mixing is difficult due to the influence of grain size and grain shape, segregation in composition is likely to occur, and it is difficult to obtain a uniform sintered density. .

(2)の場合は内部酸化法の欠点をそのまま受け継ぐ
ことになり、 (3)の場合は手間が掛かる上、破砕されたものは細
片とはいえ、粒体の大きさは0.5mm程度であるので、そ
の内部に生成された酸化物の希薄な層が焼結後に残存
し、好ましくない接点特性を示すことは前記内部酸化法
と同様である。
In the case of (2), the drawbacks of the internal oxidation method are inherited as they are, and in the case of (3), it takes time and labor, and although the crushed pieces are small pieces, the size of the particles is about 0.5 mm. As in the case of the internal oxidation method, a thin layer of the oxide formed therein remains after sintering and exhibits unfavorable contact characteristics.

また、(4)の場合はAg合金を溶解、鋳造、鍛造、塑
性加工によって板または線となし、完全に内部酸化した
後粉砕するという極めて複雑な工程をとる為、コスト的
にも高い。その上機械的粉砕には加工限度があり、粉体
の大きさは0.1mm程度にとどまり、微細粉末とすること
が困難であるばかりでなく、粉砕時には不純物が混入し
易く、諸特性に好かしからざる影響を及ぼすとともに、
内部酸化時の希薄層も破砕されるとはいえ粗粒として混
じり、焼結後の内部組織にもそれが影響して不均一とな
り、異常消耗の原因となる等の欠点を有する。
Further, in the case of (4), the Ag alloy is melted, cast, forged, or formed into a plate by a plastic working to form a plate or wire, and a very complicated process of completely internal oxidizing and then pulverizing is taken, so that the cost is high. In addition, mechanical crushing has processing limits, and the size of the powder is only about 0.1 mm, it is not only difficult to make it into a fine powder, but also impurities are easily mixed during crushing, which is good for various characteristics. With unforeseen effects,
Although the dilute layer at the time of internal oxidation is also crushed, it mixes as coarse particles, and it also affects the internal structure after sintering to make it non-uniform, causing abnormal wear and the like.

一方、接点の利用上の動向に目を向けると、近時各産
業分野における合理化、機械装置の自動化は目覚ましい
発達を遂げているが、これに伴い装置はますます大型
化、複雑化する傾向にあるのに対し、これらの装置の制
御系はむしろ小型化、動作の高頻度化、大容量化が要求
されている、周知の通り機器の頻繁な運転に伴い、その
制御を司るスイッチにあっては、その接点表面が開閉に
伴うアーク熱、ジュール熱によって、稼動時には局部的
に溶融する程の高温に熱せられ、休止時には室温まで降
温することなり、高温と低温の熱サイクルが繰り返され
ることになる。このような状況に、内部酸化を利用した
製法の宿命である酸化物の希薄な層を内部に有する接点
が遭遇すると、頻繁な膨脹、収縮を繰り返し受けること
になり、酸化物希薄層の境界近傍に複雑な応力が集中的
に加わり、接点の表面を凹面にするように弓状の湾曲変
形を生じたり、各応力集中部位にマイクロクラック、ワ
レが発生し、遂には欠落消耗へと発展して行くことにな
る。
On the other hand, looking at trends in the use of contact points, the rationalization in each industrial field and automation of mechanical devices have recently made remarkable progress, but with this trend, devices tend to become larger and more complex. On the other hand, the control system of these devices is rather required to be smaller, more frequent in operation, and larger in capacity. The contact surface is heated by the arc heat and Joule heat associated with opening and closing to a high temperature that melts locally during operation, and the temperature drops to room temperature during rest, which means that high-temperature and low-temperature thermal cycles are repeated. Become. When a contact with a thin oxide layer inside, which is the fate of the manufacturing method utilizing internal oxidation, is encountered in such a situation, it is repeatedly expanded and contracted frequently, and the vicinity of the boundary of the oxide thin layer is encountered. A complex stress is intensively applied to the contacts, causing arcuate curved deformation to make the surface of the contact concave, and microcracks and cracks at each stress concentration site, eventually leading to chipped wear. I will go.

また、接点が通常の消耗を続け、酸化物の希薄層が接
触面に出現するようになると耐溶着性が急激に低下し、
異常消耗或いは溶着を招き、重大な事故に発展すること
がある。
Also, when the contact continues to wear normally, and a thin layer of oxide appears on the contact surface, the welding resistance sharply decreases,
It may lead to abnormal wear or welding, resulting in a serious accident.

さらに、通常の両面内部酸化法による接点では、接点
内部の中心部に存在する希薄層の為、寿命が接点厚さ全
部の消耗を全うすることはできず、寿命が半減してしま
う場合もある。
Furthermore, in the case of a contact made by a normal double-sided internal oxidation method, the life cannot fully consume the contact thickness because the thin layer exists in the center of the contact, and the life may be halved. .

〔発明が解決しようとする問題点〕[Problems to be solved by the invention]

本発明は、前述の如き接点特性を劣化させる酸化物希
薄層の形成を排除し、異常消耗を防止、かつ接点寿命を
延ばすとともに、その信頼性を向上させる目的で、従来
の内部酸化を利用した製法のように焼結時に酸素供給源
を外部に依存することなく、而も従来の粉末冶金法のよ
うに単なる卑金属酸化物粉と銀粉との焼結を行わせるも
のでもなく、焼結と同時に、複合粒子自身がもつ酸素に
より、粉の粒子内における酸化及び又は粒子近傍の他の
粒子の酸化、即ち粒子内近傍で酸化と焼結が行える方法
を開発したものである。
The present invention utilizes the conventional internal oxidation for the purpose of eliminating the formation of the oxide thin layer that deteriorates the contact characteristics as described above, preventing abnormal wear and extending the contact life, and improving the reliability thereof. Unlike the manufacturing method, the oxygen supply source does not depend on the outside at the time of sintering, and it is not a method of simply sintering base metal oxide powder and silver powder like the conventional powder metallurgy method. The present invention has developed a method in which the oxygen contained in the composite particles themselves can oxidize the powder particles and / or oxidize other particles near the particles, that is, oxidize and sinter near the particles.

このように本発明は、“粒子内近傍酸化焼結法”(或
うはインターパーティクル・オキシシンタリング)とで
も呼ばれるべき新しい酸化機構により、接点特性を左右
する酸化物の均一分散性に優れた接点材料を供給するこ
とを目的とするものである。
As described above, the present invention is excellent in the uniform dispersion of oxides that influence the contact characteristics due to the new oxidation mechanism that should be called the “in-particle near-field oxidative sintering method” (or interparticle oxysintering). The purpose is to supply contact material.

〔発明の詳細なる説明〕[Detailed Description of the Invention]

本発明は粉末自体に酸素供給源をもつことにより、従
来法のように酸化に必要な酸素を固相外部の沖合から供
給し、固相内で長い拡散工程をもって酸素を拡散させる
ことによる弊害を排除するため、粉末自体で、而も被酸
化物の極く近傍から酸素を供給したいという発想に基づ
くものである。
According to the present invention, the powder itself has an oxygen supply source, so that oxygen required for oxidation is supplied from offshore outside the solid phase as in the conventional method, and the adverse effect of diffusing oxygen in a long diffusion step in the solid phase is eliminated. This is based on the idea of supplying oxygen from the powder itself in the immediate vicinity of the oxide to be excluded.

また金属酸化物の生成自由エネルギーは温度上昇によ
って低下し、高温では金属はより活性化され、より高次
の酸化物を生成し易く、さらに高温下では酸素圧力が大
きいほど銀中の酸素溶解量は増大するという点に着目し
たものである。
In addition, the free energy of formation of metal oxides decreases with increasing temperature, the metal is more activated at high temperatures, and higher-order oxides are easily generated. At higher temperatures, the larger the oxygen pressure, the more the amount of oxygen dissolved in silver. Is focused on the fact that it increases.

銀単体中の酸素溶解量については多くの研究(例え
ば、H.H.Podgurski & F.N.Davis:Trans.AIME230.731〜
5(1964)、他参照)があり、高温度における状態図の
研究もあるが、本発明のような銀−卑金属合金系におけ
る酸素の挙動に関しては殆ど明らかにされていない。
Many studies have been conducted on the amount of dissolved oxygen in simple substance of silver (eg, HHPodgurski & FNDavis: Trans.AIME230.731 ~
5 (1964), et al.), And there are studies of phase diagrams at high temperatures, but little is known about the behavior of oxygen in a silver-base metal alloy system such as the present invention.

本発明では、銀単体中における酸素の挙動から類推し
て、銀−卑金属合金について、活性度の高い状態、即ち
溶融状態で、かつできるだけ大きい表面積を有する状態
で、酸素と反応させることを考え、この溶融体に高温で
酸素または酸化性ガスを吹きつけることにより、銀−卑
金属合金の液滴を生ぜしめ、それが固化するまでの過
程、即ち溶融体ないし半溶融状態で強制的に卑金属を酸
化し、安定な酸化物を生成させるとともに準安定な高次
の酸化物生成させたり或いはまた酸素を吸蔵せしめ、固
化後の粒子を高温酸化雰囲気中にできるだけ分散させな
がら長く漂わせ飛ばすことで同様に酸化及びまたは酸素
の吸蔵を続行させることにより、粒子の外周部にできる
だけ酸素リッチ、即ちその部分の卑金属に関して、安定
な卑金属酸化物が形成される場合の酸素/卑金属の原子
比と比較して、化学量論的に過剰の酸素を有する状態と
し、粒子の内奥部には酸素リーンな状態、場合によって
は卑金属と結合する酸素が全く無いような状態、すなわ
ち、銀基合金粒子内部に酸素の全くない状態の卑金属、
化学量論的に酸素欠乏の状態の卑金属酸化物を有する部
分及び準安定な高次酸化物を含めた卑金属酸化物及び又
は遊離酸素より成る、化学量論的に酸素をできるだけ過
剰に有する部分をもち、粒子内近傍酸化機能を有する複
合粒子を生成させることに成功したものである。
In the present invention, by analogy with the behavior of oxygen in a simple substance of silver, a silver-base metal alloy is considered to be reacted with oxygen in a highly active state, that is, in a molten state and in a state having as large a surface area as possible, By blowing oxygen or an oxidizing gas to this melt at a high temperature, silver-base metal alloy droplets are generated, and the base metal is forcibly oxidized in the process until it solidifies, that is, in the melt or semi-molten state. However, by generating a stable oxide and metastable high-order oxide, or by occluding oxygen, the particles after solidification are dispersed in a high-temperature oxidizing atmosphere for as long as possible and blown off in the same manner. By continuing oxidation and / or storage of oxygen, oxygen is as rich as possible in the peripheral portion of the particle, that is, stable base metal oxide is formed with respect to the base metal in that portion. When compared to the atomic ratio of oxygen / base metal in the case of the presence of oxygen, a stoichiometrically excess amount of oxygen is provided, and the inner part of the particle is in an oxygen-lean state, and in some cases there is no oxygen binding to the base metal. Such a state, that is, a base metal in a state where there is no oxygen inside the silver-based alloy particles,
Stoichiometrically oxygen-deficient base metal oxides and base metal oxides, including metastable higher oxides, and / or free oxygen, and stoichiometrically oxygen excess as much as possible. In other words, it has succeeded in producing composite particles having an oxidizing function in the vicinity of particles.

この複合粒子はサブミクロンオーダーから数十ミクロ
ンの大きさであるが、これらの粒子についてミクロにみ
れば、酸素濃度分布は不均一なものであり、前述のよう
なAg、卑金属、酸素欠乏の状態及び酸素過剰の準安定な
酸化物を含めた卑金属酸化物、及び又は遊離酸素等より
成るものと考えられ、次工程の接点材料にするための工
程に際しては、存在する遊離酸素、及び又は準安定な高
次の酸化物の分解によって生ずる酸素を、複合粒子中に
未酸化の状態で存在する卑金属、酸素欠乏の状態の卑金
属酸化物または複合粒子の近傍に存在する他の粒子中の
前記卑金属、酸素欠乏の状態の卑金属酸化物を酸化せし
める酸素の供給源として利用することにより、未酸化の
卑金属元素をもつ銀合金粉末に対しても酸化作用をもつ
複合粒子を製造することに成功し、粒子内近傍酸化法利
用の道を拓いたものである。
This composite particle has a size of submicron order to several tens of microns, but when viewed microscopically with respect to these particles, the oxygen concentration distribution is non-uniform, and Ag, base metal, and oxygen-deficient state as described above. And base metal oxides, including metastable oxides with excess oxygen, and / or free oxygen, etc., and in the process of making the contact material in the next process, existing free oxygen and / or metastable Oxygen generated by decomposition of higher oxides, base metal present in the composite particles in an unoxidized state, base metal oxide in the state of oxygen deficiency or the base metal in other particles present in the vicinity of the composite particles, By using oxygen-deficient base metal oxides as a source of oxygen to oxidize, produce composite particles that also have an oxidizing effect on silver alloy powder containing unoxidized base metal elements. Successful bets, in which paved the way for the particles in the vicinity oxidation use.

このような酸素供給源となる酸素を、複合粒子の成分
である卑金属元素に対し、前述のように化学量論的にで
きるだけ過剰に有する部分をもつような複合粒子を生成
せしめるためには、合金成分である卑金属元素はもちろ
ん、噴射する酸化性ガスの濃度・圧力、溶融体温度、液
滴の大きさや飛行滞空酸化時間、酸化温度、固化粒子の
漂飛酸化時間、雰囲気ガス濃度・温度等が複合粒子製造
時の諸条件として考えられるが、本発明においては卑金
属を含有する銀基合金溶融体に酸素又は酸化性ガスを噴
射して複合微粒子を製造するに当り適当な温度に保持さ
れた前記溶湯に酸素又は酸化性ガスを吹付け飛散せしめ
て液滴となし、この液滴が微粒子として固化するまで数
的を高温酸化雰囲気中を飛行せしめるもので、前記諸条
件を勘案して前述のAg、卑金属、酸素欠乏の状態の酸化
物を含めた卑金属酸化物及び又は遊離酸素より成り、加
熱焼結するに当り粒子内近傍酸化作用を発揮することの
できる複合粒子を得るものである。
In order to generate a composite particle having a portion having as much oxygen as stoichiometrically as described above with respect to the base metal element which is a component of the composite particle, the oxygen serving as the oxygen supply source is an alloy. Not only the base metal element as a component, but also the concentration and pressure of the oxidizing gas to be injected, the melt temperature, the size of the droplets and the flight-in-flight oxidation time, the oxidation temperature, the flying oxidation time of the solidified particles, the atmospheric gas concentration and temperature, etc. It can be considered as various conditions at the time of producing the composite particles, but in the present invention, the temperature maintained at an appropriate temperature for producing composite fine particles by injecting oxygen or an oxidizing gas into a silver-based alloy melt containing a base metal. Oxygen or an oxidizing gas is blown to the molten metal to form droplets, which are then allowed to fly in a high-temperature oxidizing atmosphere for several times until they solidify as fine particles. g, a base metal, a base metal oxide including an oxide in an oxygen-deficient state, and / or free oxygen, and obtains composite particles capable of exhibiting an oxidizing effect in the vicinity of particles during heating and sintering.

粒子内近傍酸化工程において、これらの複合粒子は叙
上の如くミクロにもれば酸素の分布が不均一であるが、
圧粉成型後約400〜850℃の温度で約2〜8hで、場合によ
ってはホットプレスを用いるなどして加熱焼結処理する
と、酸素リッチ部の酸素が粒内或いは粒子近傍の酸素リ
ーン部へ移行し、そこの卑金属元素、酸素欠乏の状態の
卑金属酸化物を酸化することにより、均一な酸化物の分
散を実現し、同時に、酸素の拡散に対向して、ミクロな
拡散工程を伴う卑金属の移動が粒子内や粒子間で行われ
るので、粒子間焼結強度の向上に役立つものと考えられ
る。
In the near-particle oxidization process, these composite particles have a non-uniform distribution of oxygen even if they are microscopic as described above.
After powder compaction at a temperature of about 400 to 850 ° C for about 2 to 8 hours, and in some cases by heat sintering using a hot press, the oxygen in the oxygen-rich part is transferred to the oxygen lean part in the grain or in the vicinity of the grain. By migrating and oxidizing the base metal element and the base metal oxide in the state of oxygen deficiency, a uniform oxide dispersion is realized, and at the same time, facing the diffusion of oxygen, the base metal with a micro diffusion process is involved. Since the transfer is carried out within the particles or between the particles, it is considered to be useful for improving the interparticle sintering strength.

以下、実施例により本発明の特徴を説明する。 Hereinafter, the features of the present invention will be described with reference to examples.

実施例 添付図面において、図面は本発明において使用する複
合粒子を製造するのに好適な装置の概略説明図である。
Examples In the accompanying drawings, the drawings are schematic illustrations of an apparatus suitable for producing composite particles used in the present invention.

第1表に示すような組成を有する銀−卑金属合金を電
気炉(図示せず)にて溶解し、溶湯10を保持炉1に収容
する。該保持炉には周囲に加熱要素11を設けるとともに
底部に開孔2を設け、溶湯を適当な温度に保持しつつ、
開孔2より落下せしめる。落下する溶湯は噴霧用ノズル
3より酸素又は酸化性ガスを適当なノズル圧力例えば50
〜100kgf/cm2で吹付けて液滴となし、液滴が微粒子とし
て固化するまでメインチャンバー5において高温酸化雰
囲気中を例えば約600℃の温度で飛行させる。
A silver-base metal alloy having the composition shown in Table 1 is melted in an electric furnace (not shown), and the molten metal 10 is placed in the holding furnace 1. The holding furnace is provided with a heating element 11 on the periphery and an opening 2 at the bottom to keep the molten metal at an appropriate temperature.
Drop it from the hole 2. The molten metal that falls is supplied with oxygen or an oxidizing gas from the atomizing nozzle 3 at an appropriate nozzle pressure, for example, 50.
It is sprayed at -100 kgf / cm 2 to form droplets, and the droplets are flown in a high temperature oxidizing atmosphere in the main chamber 5 at a temperature of, for example, about 600 ° C. until the droplets solidify as fine particles.

溶湯温度、噴射ガスの種類は第1表に示す通りであ
る。
The molten metal temperature and the types of injection gas are as shown in Table 1.

メインチャンバー5中を飛行、固化した微粒子はさら
に必要に応じ、特に粒子が比較的大きい場合には、固化
後の酸化を続行させるために粒子を高温酸化雰囲気中に
漂わせながら落下するように設計された螺旋状の酸化ト
ンネルを備えたサブチャンバー6中を漂飛して収集用ホ
ッパー8に落下、蒐集せしめられる。メインチャンバー
5及びサブチャンバー6には噴霧された液滴が酸素との
反応により発熱し、または加熱されている間に充分に酸
素と結合できる状態で滞空する時間を確保するための飛
行距離調節用の2次噴射ノズル4を適当な位置に配置す
る。
The particles that have been solidified by flying in the main chamber 5 are further designed as needed, especially when the particles are relatively large, they are designed to drop while drifting in a high temperature oxidizing atmosphere in order to continue the oxidation after solidification. It drifts in the sub-chamber 6 provided with the spiral-shaped oxidation tunnel, drops into the collecting hopper 8, and is collected. The main chamber 5 and the sub-chamber 6 are for adjusting the flight distance to secure the time during which the sprayed droplets generate heat due to the reaction with oxygen or stay in a state where they can sufficiently combine with oxygen while being heated. The secondary injection nozzle 4 of is arranged at an appropriate position.

このようにして生成した複合粒子の収率、粒度分布及
び粒状形状を第2表に括めて示す。
The yield, particle size distribution and granular shape of the composite particles thus produced are summarized in Table 2.

上記のようにして得られた複合粒子を、また複合粒子
に未酸化粉粒子を補助的に添加した配合粉の場合(第1
表の実施例8、9参照)はそれらとともに、混合の上、
2.5t/cm2の圧力で50φ×100に成型し、成型材を大気
中で800℃、3〜6時間加熱することにより、粒子内近
傍酸化焼結を行わしめ、ビレットを得た。これを800℃
で熱間押出しを行い、均一に焼結密度を上げるととも
に、厚さ7mmの板とし、その一面にAg板を熱間圧着し、
ろう付け用のAg層を形成した。
In the case of the composite particles obtained as described above, or in the case of the compounded powder in which the unoxidized powder particles are supplementarily added to the composite particles (first
Examples 8 and 9 in the table) together with them, after mixing,
It was molded into 50φ × 100 at a pressure of 2.5 t / cm 2 , and the molded material was heated in the air at 800 ° C. for 3 to 6 hours to oxidize and sinter the vicinity of the particles to obtain a billet. 800 ° C
Hot extruding with a uniform increase in the sintering density, a plate with a thickness of 7 mm, and an Ag plate being hot-pressed on one side of the plate,
An Ag layer for brazing was formed.

次に、当該素材を冷間圧延して厚さ2mmの板とし、こ
れを直径6mmの円盤状に打ち抜いた後、大気中において6
50℃で5時間の安定化処理を施して接点材料を得た。
Next, the material was cold-rolled to form a plate with a thickness of 2 mm, which was punched into a disk with a diameter of 6 mm, and then 6
A contact material was obtained by performing stabilization treatment at 50 ° C. for 5 hours.

上記接点材料の接点特性について、ASTM接点試験機
(AC 200V、60A)により接触抵抗、耐溶着性を調べ、
さらに市販スイッチに実装し実機試験(AC 220V、210
A、通電時間0.1sec、力率0.35)で耐消耗性の評価を行
い、それらを表3に示す。
Regarding the contact characteristics of the above contact materials, the contact resistance and welding resistance were checked using an ASTM contact tester (AC 200V, 60A).
Furthermore, it was mounted on a commercially available switch and tested using an actual device (220 V
A, wear time 0.1 sec, power factor 0.35) were evaluated for wear resistance, and those are shown in Table 3.

複合粒子の成分、特に卑金属元素については、高次の
酸化物を生成する元素であるSb、Sn、In、Mn、Pbを第1
グループとし、高次の酸化物を生成し難し元素及び微量
添加元素であるCd、Zn、Te、La、Fe、Ni、Coを第2グル
ープとし、第1グループに必要に応じて第2グループの
元素を重複添加して用いることにより、表3に示すよう
な優れた接点特性をうることができた。
Regarding the components of the composite particles, especially the base metal element, the first is Sb, Sn, In, Mn, and Pb, which are elements that generate high-order oxides.
Cd, Zn, Te, La, Fe, Ni, Co, which are elements that make it difficult to form higher-order oxides and trace elements, are included in the second group, and the first group is added to the second group as needed. By using the elements added in duplicate, excellent contact characteristics as shown in Table 3 could be obtained.

以上説明したように、本発明は従来の内部酸化法のよ
うに酸素供給源を外部にのみ求めることがなく、外部か
らの酸素原子の拡散機構に支配されて酸化するものでも
なく、粉末自身が酸化機能を有する銀、卑金属、卑金属
酸化物及び又は遊離酸素から成る複合粒子を製造し、こ
れを使用する接点製造工程において主要な酸素供給を自
ら行って粒子内近傍酸化を行わしめるものであるため、
酸化に長時間を要することもなく、接点に内部応力の生
ずるような酸化物の不均一な層が生じることもなく、ま
た焼結性についても粒子間で酸素の拡散に対向するミク
ロな拡散工程による卑金属の移動が粒子間の結合を高
め、加えて未酸化粉粒子の補助的な配合によってもさら
に効果が高められるため、焼結性にも一層優れており、
前述の加熱、冷却の熱サイクルによる膨張、収縮で生ず
る引張、圧縮応力に耐える結合力を発揮するので、前記
欠落消耗現象が抑止され、また接点中心部には勿論内部
に従来のような酸化物希薄層が存在しないばかりか、酸
化物の均一分散性に優れるので、前述のような耐溶着性
の急激な劣化や異常消耗に発展する恐れもなく、寿命も
長くなる上、而も接点材質組成濃度に従来法(内部酸
化)上の制約も全くないので、その選択の幅を広げるこ
とができ、用途に応じた成分濃度を選ぶことが容易であ
るなど幾多の効果を有する。
As described above, the present invention does not require an oxygen supply source only to the outside unlike the conventional internal oxidation method, does not oxidize by being controlled by the diffusion mechanism of oxygen atoms from the outside, and the powder itself is Since it produces composite particles composed of silver, a base metal, a base metal oxide and / or free oxygen having an oxidizing function, and mainly supplies oxygen mainly in the contact manufacturing process using this to oxidize the vicinity of particles. ,
Oxidation does not take a long time, a non-uniform oxide layer that causes internal stress does not occur at the contact, and sinterability is a micro diffusion process that opposes the diffusion of oxygen between particles. The movement of the base metal due to increases the bond between particles, and in addition, the effect is further enhanced by the auxiliary mixing of the unoxidized powder particles, so that the sinterability is further excellent,
Since it exerts the binding force to withstand the tensile and compressive stresses caused by the expansion and contraction due to the heat cycle of heating and cooling as mentioned above, the above-mentioned lacking consumption phenomenon is suppressed, and of course, in the center of the contact, of course, the conventional oxide is used. Not only does it have no thin layer, but also because it has excellent uniform dispersibility of oxides, it does not have the risk of sudden deterioration of welding resistance or abnormal wear as described above, and it has a long life and also has a contact material composition. Since there is no restriction on the concentration by the conventional method (internal oxidation), the range of selection can be widened, and it is possible to easily select the component concentration according to the application, which has various effects.

また、生産性についても従来の内部酸化に要する長い
時間が不要になる上、鋳塊の鍛造、切削、圧延、焼鈍等
の工程も不要になるので、工数の節減、経済的な生産が
可能となる。
In addition, in terms of productivity, the long time required for conventional internal oxidation is not necessary, and the processes such as forging, cutting, rolling, and annealing of the ingot are not necessary, so man-hours can be saved and economical production is possible. Become.

【図面の簡単な説明】[Brief description of drawings]

図面は本発明に使用する複合粒子を製造するのに好適な
装置の概略説明図である。 図中、1……保持炉、2……落下用開孔、 3……噴霧用ノズル、4……2次噴射ノズル、 5……メインチャンバー、 6……サブチャンバー、 7、8……収集用ホッパー。 9……回収用ホッパー、10……溶湯、 11……加熱要素
The drawings are schematic illustrations of an apparatus suitable for producing the composite particles used in the present invention. In the figure, 1 ... Holding furnace, 2 ... Drop opening, 3 ... Spraying nozzle, 4 ... Secondary injection nozzle, 5 ... Main chamber, 6 ... Sub chamber, 7, 8 ... Collection Hopper for. 9: recovery hopper, 10: molten metal, 11: heating element

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 H01H 1/02 H01H 1/02 B 11/04 11/04 D ─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 6 Identification code Internal reference number FI Technical display location H01H 1/02 H01H 1/02 B 11/04 11/04 D

Claims (6)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】銀−卑金属酸化物系の複合粒子からなる銀
−卑金属酸化物接点材料であって、複合粒子の内部に化
学量論的に酸素欠乏の状態の酸化物を含めた卑金属酸化
物及び/又は酸素と結合していない卑金属を包含する
銀、卑金属、卑金属酸化物及び/又は遊離酸素より成
り、卑金属を酸化することによって得られることを特徴
とする銀−卑金属酸化物接点材料。
1. A silver-base metal oxide contact material comprising silver-base metal oxide-based composite particles, the base metal oxide including oxide in a stoichiometrically oxygen-deficient state inside the composite particles. And / or a silver-base metal oxide contact material consisting of silver, including a base metal not bound to oxygen, a base metal, a base metal oxide and / or free oxygen, obtained by oxidizing the base metal.
【請求項2】卑金属が、Sb、Sn、In、Mn及びPbからなる
群から選ばれる少なくとも1種である特許請求の範囲第
(1)項記載の接点材料。
2. The contact material according to claim 1, wherein the base metal is at least one selected from the group consisting of Sb, Sn, In, Mn and Pb.
【請求項3】卑金属が、Sb、Sn、In、Mn及びPbから選ば
れる少なくとも1種と、Cd、Zn、Te、La、Fe、Ni及びCo
からなる群から選ばれる少なくとも1種との混合物であ
る特許請求の範囲第(1)項記載の接点材料。
3. The base metal is at least one selected from Sb, Sn, In, Mn and Pb, and Cd, Zn, Te, La, Fe, Ni and Co.
The contact material according to claim (1), which is a mixture with at least one selected from the group consisting of:
【請求項4】卑金属を含有する銀基合金の溶融体に酸素
又は酸化性ガスを噴射して液滴となし、液滴が微粒子と
して固化するまで前記液滴を高温酸化雰囲気中で飛行さ
せ、固化後も微粒子として高温酸化雰囲気中で漂飛せし
めることを特徴とする、銀−卑金属酸化物系の複合粒子
からなる銀−卑金属酸化物接点材料であって、複合粒子
の内部に化学量論的に酸素欠乏の状態の酸化物を含めた
卑金属酸化物及び/又は酸素と結合していない卑金属を
包含する銀、卑金属、卑金属酸化物及び/又は遊離酸素
より成り、卑金属を酸化することによって得られる銀−
卑金属酸化物接点材料の製造方法。
4. A liquid of a silver-based alloy containing a base metal is jetted with oxygen or an oxidizing gas to form droplets, and the droplets are flown in a high temperature oxidizing atmosphere until the droplets solidify as fine particles, A silver-base metal oxide contact material comprising silver-base metal oxide-based composite particles, characterized by being allowed to drift as fine particles in a high-temperature oxidizing atmosphere even after solidification. Is composed of silver, a base metal, a base metal oxide and / or free oxygen including a base metal oxide including an oxygen-deficient oxide and / or a base metal that is not bound to oxygen, and is obtained by oxidizing a base metal. Silver-
Method for manufacturing base metal oxide contact material.
【請求項5】卑金属が、Sb、Sn、In、Mn及びPbからなる
群から選ばれる少なくとも1種である特許請求の範囲第
(4)項記載の製造方法。
5. The method according to claim 4, wherein the base metal is at least one selected from the group consisting of Sb, Sn, In, Mn and Pb.
【請求項6】卑金属が、Sb、Sn、In、Mn及びPbから選ば
れる少なくとも1種と、Cd、Zn、Te、La、Fe、Ni及びCo
からなる群から選ばれる少なくとも1種の混合物である
特許請求の範囲第(4)項記載の製造方法。
6. The base metal is at least one selected from Sb, Sn, In, Mn and Pb, and Cd, Zn, Te, La, Fe, Ni and Co.
The production method according to claim (4), which is a mixture of at least one selected from the group consisting of:
JP61295164A 1986-12-11 1986-12-11 Silver-base metal oxide contact material and method for producing the same Expired - Lifetime JP2529560B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61295164A JP2529560B2 (en) 1986-12-11 1986-12-11 Silver-base metal oxide contact material and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61295164A JP2529560B2 (en) 1986-12-11 1986-12-11 Silver-base metal oxide contact material and method for producing the same

Publications (2)

Publication Number Publication Date
JPS63149341A JPS63149341A (en) 1988-06-22
JP2529560B2 true JP2529560B2 (en) 1996-08-28

Family

ID=17817073

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61295164A Expired - Lifetime JP2529560B2 (en) 1986-12-11 1986-12-11 Silver-base metal oxide contact material and method for producing the same

Country Status (1)

Country Link
JP (1) JP2529560B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0388973B1 (en) * 1989-03-24 1994-06-15 Mitsubishi Materials Corporation Silver alloy foil for interconnector of solar cell
JP2008303428A (en) * 2007-06-07 2008-12-18 Tanaka Kikinzoku Kogyo Kk Method for manufacturing electric contact material, electric contact material, and thermal fuse
CN105359241A (en) * 2013-06-24 2016-02-24 三菱电机株式会社 Electrical contact material and method for manufacturing same
JP6265934B2 (en) * 2014-04-25 2018-01-24 三菱電機株式会社 Method and apparatus for producing Ag-oxide based electrical contact material

Also Published As

Publication number Publication date
JPS63149341A (en) 1988-06-22

Similar Documents

Publication Publication Date Title
US11565322B2 (en) Additively manufactured component and production method therefor
US3954459A (en) Method for making sintered silver-metal oxide electric contact material
CN100432250C (en) Preparation process of silver tin oxide electric contact material
CN107794389A (en) A kind of silver-tin oxide or indium oxide contact material and preparation method thereof
CN112620640B (en) Preparation method of AgNi electrical contact material based on recycling of AgC scrap
US4452652A (en) Electrical contact materials and their production method
US5360673A (en) Semifinished product for electric contacts made of a composite material based on silver-tin oxide and powdermetallurgical process of making said product
CN101964260B (en) Ag/SnO2 electrical contact material and preparation method thereof
CN101135011A (en) New method for preparing AgSnO2 electrical contact material
US4243413A (en) Integrated Ag-SnO alloy electrical contact materials
JP2529560B2 (en) Silver-base metal oxide contact material and method for producing the same
Zhu et al. Microstructural evolution in direct laser sintering of Cu‐based metal powder
US4452651A (en) Electrical contact materials and their production method
EP0360438A1 (en) Dispersion strengthened materials
CN105200262A (en) Preparation method of silver-based flaky electric contact material high in stannic oxide content
CN102864365A (en) Composite silver stannic oxide electric contact material and preparation method thereof
US3930849A (en) Electrical contact material of the ag-cdo type and method of making same
CN100387378C (en) Electric contactor and alloy for electrode, preparing method thereof
CN101439871B (en) Composite nano SnO2 powdered material and preparation thereof
US5078810A (en) Method of making Ag-SnO contact materials by high pressure internal oxidation
US3199176A (en) Method of manufacturing electrical contacts
US3674446A (en) Electrical contact material
US4908182A (en) Rapidly solidified high strength, ductile dispersion-hardened tungsten-rich alloys
JPS63149301A (en) Composite particle for producing contact material made of silver-base metal oxide and its production
JP2016216775A (en) Ag-ZnO-BASED ELECTRICAL CONTACT MATERIAL AND PRODUCTION METHOD THEREFOR

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term