JP2528461B2 - High temperature fluid pressure compression method for materials - Google Patents

High temperature fluid pressure compression method for materials

Info

Publication number
JP2528461B2
JP2528461B2 JP62078974A JP7897487A JP2528461B2 JP 2528461 B2 JP2528461 B2 JP 2528461B2 JP 62078974 A JP62078974 A JP 62078974A JP 7897487 A JP7897487 A JP 7897487A JP 2528461 B2 JP2528461 B2 JP 2528461B2
Authority
JP
Japan
Prior art keywords
press
temperature
molded body
punch
fluid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP62078974A
Other languages
Japanese (ja)
Other versions
JPS63242497A (en
Inventor
晋 水沼
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP62078974A priority Critical patent/JP2528461B2/en
Publication of JPS63242497A publication Critical patent/JPS63242497A/en
Application granted granted Critical
Publication of JP2528461B2 publication Critical patent/JP2528461B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B30PRESSES
    • B30BPRESSES IN GENERAL
    • B30B11/00Presses specially adapted for forming shaped articles from material in particulate or plastic state, e.g. briquetting presses, tabletting presses
    • B30B11/001Presses specially adapted for forming shaped articles from material in particulate or plastic state, e.g. briquetting presses, tabletting presses using a flexible element, e.g. diaphragm, urged by fluid pressure; Isostatic presses
    • B30B11/002Isostatic press chambers; Press stands therefor

Landscapes

  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Press Drives And Press Lines (AREA)
  • Press-Shaping Or Shaping Using Conveyers (AREA)
  • Powder Metallurgy (AREA)

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、高温等方圧処理をすることにより、各種被
圧縮材料の主として内面の品質をち密化する方法に関す
るものである。
Description: TECHNICAL FIELD The present invention relates to a method for densifying mainly the inner surface quality of various materials to be compressed by performing a high temperature isotropic pressure treatment.

(従来の技術) 粉末材料を成形し固形物にする方法は数多く知られて
いる。
(Prior Art) There are many known methods for molding a powder material into a solid.

密度を100%もしくはそれに近い値にまで向上させる
ためには、鍛造、圧延、押出しなどにより高温で大きい
圧縮率を与えたり、HIP(熱間等方圧縮)により高温で
高等方圧を加えることが必要である。
In order to improve the density to 100% or a value close to 100%, it is necessary to give a high compressibility at high temperature by forging, rolling, extruding, etc., or to apply high isotropic pressure at high temperature by HIP (hot isotropic compression). is necessary.

複雑な形状をした部品に対しては、アルゴンや窒素ガ
スなどを圧力媒体として用いるHIPが適切であるが、複
雑な機構と高価なガスの使用および長いサイクルタイム
によりコストが高くつくという欠点があり、高級な部品
にしか適用されていないのが現状である。
For parts with complicated shapes, HIP using argon or nitrogen gas as a pressure medium is suitable, but it has the disadvantage of high cost due to complicated mechanism, use of expensive gas and long cycle time. However, it is currently applied only to high-grade parts.

サイクルタイムを大巾に少なくできる方法として、液
圧HIP(特開昭58−22307号公報)などが知られている
が、プレス用容器に用いる材料の耐熱性や、パンチとシ
リンダー部の間の高温液体に対するシール性の問題があ
り、実用化するにはなお多くの改善努力が必要と思われ
る。
Hydraulic HIP (Japanese Patent Laid-Open No. 58-22307) is known as a method that can greatly reduce the cycle time. However, the heat resistance of the material used for the press container and There is a problem of sealing property against high temperature liquid, and it seems that much improvement efforts are required to put it into practical use.

このようなHIPの欠点を取り除くために、擬HIPと総称
される一連の技術が開発された(The International Jo
urnal of Powder Metallurgy and Powder Technology J
ULY 1985)。たとえば、圧力媒体としてセラミツク粒を
使用するセラコン法、高温で流動性をもつ金属、セラミ
ツク粒などの圧力媒体を用いるROC法などがその代表で
ある。
In order to eliminate these drawbacks of HIP, a series of technologies collectively called pseudo-HIP was developed (The International JoP
urnal of Powder Metallurgy and Powder Technology J
ULY 1985). Typical examples thereof include a Ceracon method using ceramic particles as a pressure medium, an ROC method using a pressure medium such as a metal having fluidity at high temperature, and ceramic particles.

圧力媒体としてガラスや低融点金属を液体状態で用い
る場合のシール性や耐熱性を改善する方法として、本発
明者は2つの方法を提案した。そのうちの一つは特願昭
61−315654号(特開昭63−168295号公報)であり上方に
プレス用パンチが摺動するシリンダー部の開放孔をもつ
プレス用容器内に、所要の温度に加熱された被圧縮材料
を装入し、所要の温度に加熱された流体を圧力媒体とし
て等方的にプレス圧縮する際に、パンチと流体の間に比
較的低温の粒状物質の層を存在せしめることにより、少
くとも圧縮初期においてはパンチが流体と接触しないプ
レス圧縮法を提案した。この方法はシール性の問題を解
決するものである。
The present inventor has proposed two methods for improving the sealing property and heat resistance when glass or a low melting point metal is used as a pressure medium in a liquid state. One of them is Sho Akira
No. 61-315654 (Japanese Patent Laid-Open No. 63-168295), in which a material to be compressed heated to a required temperature is placed in a pressing container having an opening hole in a cylinder part on which a pressing punch slides. At the initial stage of compression, at least in the initial stage of compression, a layer of granular material having a relatively low temperature is present between the punch and the fluid when isotropically press-compressing the fluid heated to a required temperature as a pressure medium. Proposed a press compression method in which the punch did not come into contact with the fluid. This method solves the problem of sealability.

第2の方法は特願昭62−3185号(特開昭63−174799号
公報)であり、被加工材料を粒状圧力媒体とともにカプ
セルに封入し、このカプセル構造体を所要の温度に加熱
し、液体状圧力媒体をより低い温度に加熱してプレス用
容器に収納し、被圧縮材料である上記カプセル構造体を
プレス圧縮するものである。
The second method is Japanese Patent Application No. 62-3185 (Japanese Patent Laid-Open No. 63-174799), in which a material to be processed is encapsulated together with a granular pressure medium, and the capsule structure is heated to a required temperature. The liquid pressure medium is heated to a lower temperature and housed in a pressing container, and the capsule structure, which is the material to be compressed, is pressed and compressed.

このときカプセル内の粒状物質は圧力媒体としての作
用と液体状圧力媒体と被加工材料の間の断熱作用の両者
を具備している。この方法はプレス用容器の耐熱性を改
善するものであるが、シール性も向上させるためには、
第1の方法を併用することが望ましい。
At this time, the granular substance in the capsule has both a function as a pressure medium and a heat insulating function between the liquid pressure medium and the material to be processed. This method improves the heat resistance of the press container, but in order to improve the sealing property,
It is desirable to use the first method together.

このようにパンチと液体状圧力媒体の間に粒状物質を
介在させてシール性を向上させることができるが、作業
性が多少悪化するという欠点がある。
As described above, the granular material can be interposed between the punch and the liquid pressure medium to improve the sealing property, but there is a drawback that the workability is slightly deteriorated.

すなわち、良好なシールを実現するためには、上記粒
状物質の層を水平面上で均一な厚みの層にする必要があ
るが、このための均一装入装置や均一攪拌装置が必要に
なる。
That is, in order to realize a good seal, it is necessary to make the layer of the above-mentioned granular material into a layer having a uniform thickness on a horizontal plane, but a uniform charging device and a uniform stirring device for this are required.

(発明が解決しようとする問題点) 本発明は上記粒状物質のプレス用容器内への均一厚み
装入を簡単にするとともに、シールをより完全におこな
う方法の開発を意図したものである。
(Problems to be Solved by the Invention) The present invention is intended to develop a method for simplifying charging of the above-mentioned granular material into a container for pressing with a uniform thickness and performing sealing more completely.

(問題点を解決するための手段) 本発明は、上方にプレス用パンチが摺動するシリンダ
ー部の開放孔をもつプレス用容器内に、所要の温度に加
熱された被圧縮材料を装入し、別途適切な温度に加熱さ
れた流体を圧力媒体として等方的にプレス圧縮する際
に、パンチと流体の間にあらかじめ一体形状に成形した
低温物体である粒状物質の層を介在せしめることを特徴
とする。
(Means for Solving Problems) In the present invention, a material to be compressed heated to a required temperature is charged into a pressing container having an opening hole of a cylinder portion on which a pressing punch slides. , When a fluid heated to an appropriate temperature is isotropically press-compressed as a pressure medium, a layer of granular material, which is a low-temperature object formed in advance as an integral shape, is interposed between the punch and the fluid. And

実用的にはこの低温物体は、高温液体と同じ物質であ
って粒状のものを、予めプレス容器に内接する径を与え
て所望の厚みtを有する形状に成形した成形体とする。
Practically, this low-temperature object is a molded body which is the same substance as the high-temperature liquid and is granular, which is formed in advance into a shape having a desired thickness t by giving a diameter inscribed in the press container in advance.

前述の成形体は粒状物質を焼結したものでも圧縮成形
したものでもよい。又粘結物質で粒状物質を固結し、一
体形状にした成形体でもよい。
The above-mentioned molded body may be one obtained by sintering a granular material or one obtained by compression molding. Further, it may be a molded body in which a granular material is solidified with a caking material to form an integral shape.

以下前記の成形体を本発明においてはプレス成形体と
いう。
Hereinafter, the above-mentioned molded body is referred to as a press molded body in the present invention.

プレス成形体はプレス容器に摺動装入されるが、容器
内側とプレス成形体外径とは、工作上間隙Δgが存在す
る。しかしながら実験によると、パンチの圧縮成形時に
プレス成形体は上下方向の圧縮をうけて、半径方向に偏
平膨脹して、前記間隙Δgは完全に塞がれ、高温液体の
表面全体をおおう能力にすぐれている。
The press-molded body is slidably loaded into a press container, but there is a working gap Δg between the inside of the container and the outer diameter of the press-molded body. However, according to experiments, the press-molded body is compressed in the vertical direction during the compression-molding of the punch, and is flatly expanded in the radial direction to completely close the gap Δg, which is excellent in the ability to cover the entire surface of the high-temperature liquid. ing.

以下本発明を図面により説明する。 The present invention will be described below with reference to the drawings.

第1図は本発明の説明図、第2図は本発明の作動の説
明図である。
FIG. 1 is an explanatory diagram of the present invention, and FIG. 2 is an explanatory diagram of the operation of the present invention.

図において1はプレス容器、2はパンチ、3は被圧縮
材料、4は高温液体、5はプレス成形体、6はパンチ突
部、7はプレス成形体凹部である。
In the figure, 1 is a press container, 2 is a punch, 3 is a material to be compressed, 4 is a high temperature liquid, 5 is a press molded body, 6 is a punch projection, and 7 is a press molded body recess.

被圧縮材料3としては、たとえば金属粉やセラミツク
ス粉などの粉体材料をカプセルに充填したものとか、金
属粉やセラミツクス粉などの粉体材料をプレス機などで
圧縮成形したものなどが用いられることが多い。
As the material to be compressed 3, for example, a material in which a powder material such as metal powder or ceramic powder is filled in a capsule, or a material in which powder material such as metal powder or ceramic powder is compression-molded by a press machine or the like is used. There are many.

プレス成形体5は厚みtを有し、プレス容器1の側壁
1-2との間に間隙Δgをもつてプレス容器内に挿入され
る。プレス成形体5の上面に凹部7を形成して、パンチ
2の突部6と嵌合せしめると加圧を均等に行うに便であ
るが、必ずしもこれに限定されるものではない。
The press molded body 5 has a thickness t, and is a side wall of the press container 1.
It is inserted into the press container with a gap Δg between 1-2. It is convenient to evenly apply the pressure by forming the concave portion 7 on the upper surface of the press-molded body 5 and fitting the concave portion 7 into the protrusion 6 of the punch 2, but the present invention is not limited thereto.

プレス成形体5は通常は常温(室温)でよいが、全体
が液状にならない範囲の高温であつてもよい。8はプレ
ス成形体5の挿入時の高温流体4が急冷されて固体状に
なつた部分であり、高温流体がプレス時上昇するのを防
ぐ作用をする。
The press-molded body 5 may normally be at room temperature (room temperature), but may be at a high temperature within the range where the whole is not liquid. Reference numeral 8 denotes a portion where the high-temperature fluid 4 when the press-molded body 5 is inserted is rapidly cooled and becomes solid, and has a function of preventing the high-temperature fluid from rising during pressing.

パンチ2の加圧操作によつてプレス成形体5とパンチ
2とは一体となるが、圧縮が進むに従いプレス成形体5
は半径方向に偏平膨脹して、Δgは消失する(第2
図)。従つてプレス成形体5は高温流体4を完全に覆う
ことになり、優れたシール性を発揮する。
The press-molded body 5 and the punch 2 are integrated by the pressing operation of the punch 2, but as the compression progresses, the press-molded body 5
Is flatly expanded in the radial direction, and Δg disappears (second
Figure). Therefore, the press-molded body 5 completely covers the high-temperature fluid 4 and exhibits excellent sealing properties.

以上述べた方法では、高温流体と一体化された低温物
体である粒状物質とは材質が同じ必要はないが、作業性
を考えた場合、両者は同一材質である方が便利な場合が
多い。
In the method described above, the material does not have to be the same as that of the granular material that is a low-temperature object integrated with the high-temperature fluid, but in terms of workability, it is often convenient for both to be the same material.

なぜならば、これらの物質をプレス用容器内におい
て、繰り返し使用する場合においても、循環して繰り返
し使用する場合においても、これらの圧力媒体が同じ材
質ならば両者を分離する作業が不要になるからである。
This is because, even when these substances are repeatedly used in the press container or when they are circulated and repeatedly used, if these pressure media are the same material, the work of separating the two becomes unnecessary. is there.

ただしこの場合には、この材質の融点あるいは軟化温
度は、高温流体の温度と粒状物質の温度の中間でなけれ
ばならない。加工温度は被圧縮材がステンレス鋼の場合
700℃から1300℃程度である。したがつてステンレス鋼
の場合を例にとると、この圧力媒体の融点あるいは軟化
温度は700℃から1300℃の間の温度と常温の間の温度と
する必要がある。このような材質の一例としてガラスを
あげることができる。たとえば鉛ソーダガラスの軟化温
度は630℃程度であり、アルミノケイ酸塩ガラスでは920
℃程度である。またもつと高い軟化温度をもつガラスも
多数知られている。
However, in this case, the melting point or softening temperature of this material must be between the temperature of the high temperature fluid and the temperature of the particulate matter. The processing temperature is when the material to be compressed is stainless steel.
It is about 700 ℃ to 1300 ℃. Therefore, taking the case of stainless steel as an example, the melting point or softening temperature of this pressure medium must be between 700 ° C and 1300 ° C and room temperature. Glass can be given as an example of such a material. For example, the softening temperature of lead soda glass is about 630 ° C, and that of aluminosilicate glass is 920 ° C.
It is about ℃. Also, many glasses having a high softening temperature are known.

また、鉛、銅、アルミニウムなどあるいはこれらを主
成分とする合金などの低融点金属も用いることができ
る。
Further, a low melting point metal such as lead, copper, aluminum, or an alloy containing these as the main components can also be used.

つぎに以上のような材質の粒状物質を一体的な構造に
成形する方法について説明する。
Next, a method of forming the granular material having the above-mentioned materials into an integral structure will be described.

1つはこれら粒状物質を冷間でプレスしたあと、適切
な温度で焼結するかあるいはこれら粒状物質をホツトプ
レスにより焼結体にする方法である。
One is a method in which these granular materials are cold pressed and then sintered at an appropriate temperature, or these granular materials are sintered by hot pressing.

この場合あまり高密度にする必要はなく、一体的構造
体としてハンドリングできる程度の軽焼結体にすること
で十分である。またブリケツト状で成形体を構成すれば
かならずしも焼結は必要ではない。
In this case, it is not necessary to make the density very high, and it is sufficient to use a light sintered body that can be handled as an integral structure. Further, if the molded body is formed in the shape of a briquette, it is not always necessary to sinter.

他の1つは、これら粒状物質を適切な粘結性物質で結
合し一体構造にする方法である。たとえば粒状物質とし
てはセラミツクスや高融点金属を用い、粘結性物質とし
ては液体状圧力媒体と同じガラスや低融点金属を用いる
のがよい。これらの粒状物質と粘結性物質の混合および
成形は粘結性物質が混合しやすい温度でおこなう。
The other is a method in which these granular materials are combined with a suitable caking material to form a monolithic structure. For example, it is preferable to use ceramics or a high melting point metal as the granular substance, and use the same glass or low melting point metal as the liquid pressure medium as the caking substance. The mixing and molding of these particulate materials and the caking substance are performed at a temperature at which the caking substance is easily mixed.

この粘結性物質で固結された粒状物質の一体構造物
を、プレス圧縮時に使用するときは、これがハンドリン
グ時に変形しない程度の流動性をもつ状態に加熱してお
くのがよい。
When the monolithic structure of the granular material solidified with the caking material is used at the time of press compression, it is preferable to heat it so that it has a fluidity such that it does not deform during handling.

以下において本発明のプレス成形体の他の適用例を示
す。
Hereinafter, other application examples of the press-formed product of the present invention will be shown.

第3図は溶湯鍛造法による複合ビレツトの製造時への
適用例を示したものである。
FIG. 3 shows an example of application to a composite billet manufactured by the molten metal forging method.

プレス容器1にSiCウイスカーの予備成形体15を加熱
後セツトし、取鍋16からAl合金溶湯14をプレス容器1に
注湯する。ついで粒状Al合金の軽焼結体であるプレス成
形体5を設けて、パンチ2により加圧する。
The SiC whisker preform 15 is heated in the press container 1 and then set, and the molten Al alloy 14 is poured into the press container 1 from the ladle 16. Next, a press-molded body 5 which is a light-sintered body of granular Al alloy is provided and pressed by the punch 2.

本発明によるとプレス成形体5のシール効果によつて
SiCウイスカー成形体に、Al合金を効率よく含浸せしめ
うる。
According to the present invention, the sealing effect of the press-formed product 5
A SiC whisker compact can be efficiently impregnated with an Al alloy.

第4図は静水圧・押出しの一例を示す。 FIG. 4 shows an example of hydrostatic pressure / extrusion.

図においてダイ11にビレツト25をセツトし、流体物質
24、例えばガラスを注湯し、粒状ガラスの軽焼結体であ
るプレス成形体5をセツトする。ポンチ2により加圧す
るときは、ダイ11から成形品26を得るが、プレス成形体
5の優れたシール効果によつて、流体物質24の漏洩はな
い。
As shown in the figure, the die 11 is set with the billet 25 and the fluid substance
24. For example, glass is poured and the press molded body 5 which is a light sintered body of granular glass is set. When the punch 2 pressurizes, the molded product 26 is obtained from the die 11, but due to the excellent sealing effect of the press-molded body 5, the fluid substance 24 does not leak.

(実施例) 粒径−100メツシユのSUS304ステンレス鋼粉を、冷間
プレスで密度70%に圧縮した。この圧縮成形品の寸法は
10mmφ×10mm高さである。
(Example) SUS304 stainless steel powder having a particle size of -100 mesh was compressed to a density of 70% by a cold press. The dimensions of this compression molded product are
It is 10mmφ x 10mm high.

これを第1図で示した方式プレスした。 This was pressed by the system shown in FIG.

高温流体および常温のプレス成形体としては、アルミ
ノケイ酸塩ガラスを利用した。粒状ガラスの粒径は平均
1mm、プレス成形体厚みtは30mmとした。
Aluminosilicate glass was used as the high-temperature fluid and the press-molded body at room temperature. Average particle size of granular glass
The thickness of the press molded body was 1 mm and the thickness t was 30 mm.

高温流体温度は1200℃、プレス圧縮力は40tonであ
る。ただし、パンチ径は40mmφである。また、高温流体
層の高さは100mmである。
The high temperature fluid temperature is 1200 ℃ and the press compression force is 40ton. However, the punch diameter is 40 mmφ. The height of the high temperature fluid layer is 100 mm.

この条件下で1分プレスすることにより、密度がほぼ
100%の成形品が得られた。これはHIPで得られる場合の
内質に対する効果と同じである。
By pressing for 1 minute under these conditions, the density is almost
A 100% molded product was obtained. This is the same effect on the internal quality as obtained with HIP.

(発明の効果) 以上のように、従来のHIPで得られると同程度の内質
をもつ成形品が、1サイクル10分台で得られることが実
証された。これは従来のHIPでは1サイクルが1時間以
上かかつたことと比較すれば格段の効果である。
(Effects of the Invention) As described above, it was demonstrated that a molded product having the same quality as that obtained by the conventional HIP can be obtained in the range of 10 minutes per cycle. This is a remarkable effect compared with the conventional HIP in which one cycle lasted for more than one hour.

更に粒状物質を高温流体の上層とするときは、粒状物
質層の均一を配慮しなければならないが、本発明におい
てはプレス成形体とするので操業が簡易である。
Further, when the particulate matter is used as the upper layer of the high temperature fluid, it is necessary to consider the uniformity of the particulate matter layer, but in the present invention, since it is a press-molded body, the operation is simple.

【図面の簡単な説明】[Brief description of drawings]

第1図は本発明の説明図、第2図は本発明の作用の説明
図、第3図(a),(b)及び第4図は本発明の適用例
の説明図である。 1;プレス容器、2;パンチ 3;被圧縮材料、5;プレス成形体
FIG. 1 is an explanatory diagram of the present invention, FIG. 2 is an explanatory diagram of the operation of the present invention, and FIGS. 3 (a), 3 (b) and 4 are explanatory diagrams of an application example of the present invention. 1; Press container, 2; Punch 3; Material to be compressed, 5; Press molded body

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】上方にプレス用パンチが摺動するシリンダ
ー部の開放孔をもつプレス用容器内に、所要の温度に加
熱された被圧縮材料を装入し、別途適切な温度に加熱さ
れた流体を圧力媒体として等方的にプレス圧縮する際
に、パンチと流体の間に粒状物質を予め一体形状に成形
した成形体を存在せしめることにより、少くとも圧縮初
期においてはパンチが流体と接触しないようにしてプレ
ス圧縮することを特徴とする材料の高温流体圧下圧縮
法。
1. A material to be compressed, which has been heated to a required temperature, is charged into a pressing container having an opening hole of a cylinder part on which a pressing punch slides upward, and separately heated to an appropriate temperature. When a fluid is used as a pressure medium and isotropically compressed, the punch does not come into contact with the fluid at least in the initial stage of compression by allowing a molded body in which a granular material is integrally molded in advance to exist between the punch and the fluid. A high-temperature fluid pressure compression method for materials, which is characterized in that the material is press-compressed in this manner.
【請求項2】予め一体形状に成形した成形体が粘結性物
質で粒状物質を固結した成形体である特許請求の範囲第
1項記載の材料の高温流体圧下圧縮法。
2. A method for compressing a material under high temperature fluid pressure according to claim 1, wherein the molded body which is previously molded into an integral shape is a molded body obtained by consolidating granular substances with a caking substance.
JP62078974A 1987-03-31 1987-03-31 High temperature fluid pressure compression method for materials Expired - Lifetime JP2528461B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62078974A JP2528461B2 (en) 1987-03-31 1987-03-31 High temperature fluid pressure compression method for materials

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62078974A JP2528461B2 (en) 1987-03-31 1987-03-31 High temperature fluid pressure compression method for materials

Publications (2)

Publication Number Publication Date
JPS63242497A JPS63242497A (en) 1988-10-07
JP2528461B2 true JP2528461B2 (en) 1996-08-28

Family

ID=13676873

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62078974A Expired - Lifetime JP2528461B2 (en) 1987-03-31 1987-03-31 High temperature fluid pressure compression method for materials

Country Status (1)

Country Link
JP (1) JP2528461B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE602004008622T2 (en) * 2003-06-20 2008-06-05 CRS Holdings, Inc., Wilmington MANUFACTURE OF METAL TOOLS WITH CONTROLLED POROSITY

Also Published As

Publication number Publication date
JPS63242497A (en) 1988-10-07

Similar Documents

Publication Publication Date Title
US4673549A (en) Method for preparing fully dense, near-net-shaped objects by powder metallurgy
CN1031723C (en) Method of forming compacts
US4601877A (en) Press sintering process for green compacts and apparatus therefor
JP2528461B2 (en) High temperature fluid pressure compression method for materials
Eksi et al. Effect of sintering and pressing parameters on the densification of cold isostatically pressed Al and Fe powders
JP2849710B2 (en) Powder forming method of titanium alloy
US2964400A (en) Method of and apparatus for making articles from powdered metal briquets
JPS61186433A (en) Production of sintered body of aluminum having high strength
CA2298524C (en) Metal powder compression tool
GB2140825A (en) Method of consolidating a metallic or ceramic body
US5623727A (en) Method for manufacturing powder metallurgical tooling
US5985207A (en) Method for manufacturing powder metallurgical tooling
JPH07115231B2 (en) High temperature fluid pressure compression method for materials
JP2672193B2 (en) Hydraulic die compression method
JP2733124B2 (en) High hydrostatic compression of materials
RU2151025C1 (en) Method of manufacturing hot-deformed articles from powder materials
JPH084959B2 (en) High temperature fluid pressure compression method for materials
JP2005272934A (en) Method for manufacturing metal member using fine atomized metal powder, and metal member using fine atomized metal powder
JPH01180908A (en) Method for extrusion-forming rapidly solidified metal powder
JP3322926B2 (en) Manufacturing method of molded body
JPH0763878B2 (en) High temperature triaxial compression method for materials
JPH0348253B2 (en)
JPS61186458A (en) Production of high-strength aluminum alloy member
JPH05195014A (en) Method for hot-forging aluminum alloy powder
JPS6312121B2 (en)