JP2527878B2 - Optical differentiator - Google Patents

Optical differentiator

Info

Publication number
JP2527878B2
JP2527878B2 JP4060444A JP6044492A JP2527878B2 JP 2527878 B2 JP2527878 B2 JP 2527878B2 JP 4060444 A JP4060444 A JP 4060444A JP 6044492 A JP6044492 A JP 6044492A JP 2527878 B2 JP2527878 B2 JP 2527878B2
Authority
JP
Japan
Prior art keywords
receiving element
light receiving
light
bias voltage
reverse bias
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP4060444A
Other languages
Japanese (ja)
Other versions
JPH05264932A (en
Inventor
誠 細田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hamamatsu Photonics KK
Original Assignee
Hamamatsu Photonics KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hamamatsu Photonics KK filed Critical Hamamatsu Photonics KK
Priority to JP4060444A priority Critical patent/JP2527878B2/en
Publication of JPH05264932A publication Critical patent/JPH05264932A/en
Application granted granted Critical
Publication of JP2527878B2 publication Critical patent/JP2527878B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、簡素な構成で光の入射
時に光パルスを出力する光微分器に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an optical differentiator which outputs an optical pulse when light is incident with a simple structure.

【0002】[0002]

【従来の技術】光の入射時に、その入射を検出して短パ
ルスを出力する装置としては、フォトダイオードを検出
器として用い、その検出信号からワンショットをトリガ
するなどのように電気的な短パルスを出力するものが考
えられる。また、電気的な短パルスにかえて光パルスを
得たい場合は、この電気的な短パルスを増幅してレーザ
ダイオードをドライブするなどの方法で光パルスを得る
ことが考えられる。
2. Description of the Related Art As a device for detecting a light incident and outputting a short pulse when the light is incident, a photodiode is used as a detector, and an electrical short circuit such as one-shot triggering from the detection signal is used. A device that outputs a pulse can be considered. When it is desired to obtain an optical pulse instead of an electrical short pulse, it is conceivable to amplify the electrical short pulse and drive the laser diode to obtain the optical pulse.

【0003】[0003]

【発明が解決しようとする課題】前述の方法で、光の入
射時に、その入射を検出して短い光パルスを出力するよ
うな場合、途中で電気的な処理が介在するため、その分
だけ光パルスの出力が遅延することになる。即ち、動作
速度が遅くなる。また、回路構成が複雑であり、例えば
光ICなどに応用することを配慮すると、集積化が非常
に困難である。
According to the above-mentioned method, when the light is detected and the short light pulse is output when the light is incident, an electric process is performed in the middle of the light. The output of the pulse will be delayed. That is, the operation speed becomes slow. In addition, the circuit configuration is complicated, and it is very difficult to integrate in consideration of application to, for example, an optical IC.

【0004】[0004]

【課題を解決するための手段】上記課題を解決するため
に、本発明の光微分器は、逆バイアス電圧が小さくなる
とその吸収波長端が短波長側にシフトする第1の受光素
子と、所定の逆バイアス電圧で第1の受光素子よりも短
い吸収波長端を有するとともに逆バイアス電圧の大きさ
に応じてその吸収波長端が長波長側にシフトする第2の
受光素子とを有し、第1及び第2の受光素子に並列に逆
バイアス電圧を電流制限素子(抵抗,定電流源など)を
介して印加する手段とを有し、第1及び第2の受光素子
いずれかへの入射光が他方を通って微分された光として
出力されることを特徴とする。
In order to solve the above-mentioned problems, the optical differentiator of the present invention comprises a first light receiving element whose absorption wavelength end is shifted to a short wavelength side when the reverse bias voltage becomes small, and a predetermined light receiving element. And a second light receiving element whose absorption wavelength end is shifted to the long wavelength side in accordance with the magnitude of the reverse bias voltage. Means for applying a reverse bias voltage in parallel to the first and second light receiving elements via a current limiting element (resistor, constant current source, etc.), and incident light to either the first or second light receiving element. Is output as light differentiated through the other.

【0005】第1の受光素子は、QCSE効果にて逆バ
イアス電圧が小さくなるとその吸収波長端が短波長側に
シフトする受光素子であり、第2の受光素子は、Wannie
r Stark 効果にて逆バイアス電圧の大きさに応じてその
吸収波長端が長波長側にシフトする受光素子であること
を特徴としても良い。
The first light receiving element is a light receiving element whose absorption wavelength end is shifted to the short wavelength side when the reverse bias voltage becomes small due to the QCSE effect, and the second light receiving element is the Wannie.
It may be characterized in that it is a light receiving element whose absorption wavelength end is shifted to the long wavelength side according to the magnitude of the reverse bias voltage by the r Stark effect.

【0006】[0006]

【作用】本発明の光微分器では、入射光の波長が、第1
の受光素子の吸収波長端の変化する範囲及び第2の受光
素子の吸収波長端の変化する範囲にあると、入射光は第
1の受光素子に吸収されるので、第1の受光素子に光電
流が流れる。この電流による電流制限素子の電圧降下に
より、第1の受光素子の逆バイアス電圧が小さくなる。
これにより、第1の受光素子の吸収波長端が短波長側に
シフトしてゆく。この吸収波長端が入射光の波長よりも
小さくなると、入射光は第1の受光素子を透過する。
In the optical differentiator of the present invention, the wavelength of the incident light is the first
In the range in which the absorption wavelength end of the light receiving element changes and the range in which the absorption wavelength edge of the second light receiving element changes, the incident light is absorbed by the first light receiving element, so that the first light receiving element transmits light. An electric current flows. Due to the voltage drop of the current limiting element due to this current, the reverse bias voltage of the first light receiving element becomes small.
As a result, the absorption wavelength edge of the first light receiving element shifts to the short wavelength side. When the absorption wavelength edge becomes smaller than the wavelength of the incident light, the incident light passes through the first light receiving element.

【0007】一方、第1の受光素子と並列の第2の受光
素子の逆バイアス電圧も小さくなり、第2の受光素子の
吸収波長端が長波長側にシフトしてゆく。この吸収波長
端が入射光の波長よりも長くなると、入射光は第2の受
光素子に吸収される。このように、第1の受光素子から
第2の受光素子へ入射光を吸収される素子が切り替わ
り、そのタイミング差で、入射光が透過する。これによ
って短いパルス光が得られる。
On the other hand, the reverse bias voltage of the second light receiving element in parallel with the first light receiving element also decreases, and the absorption wavelength end of the second light receiving element shifts to the long wavelength side. When the absorption wavelength edge becomes longer than the wavelength of the incident light, the incident light is absorbed by the second light receiving element. In this way, the element that absorbs the incident light is switched from the first light receiving element to the second light receiving element, and the incident light is transmitted with the timing difference. As a result, short pulsed light can be obtained.

【0008】QCSE効果とWannier Stark 効果とを有
する素子を用いた場合、量子効果を用いて上述の動作が
為される。
When an element having the QCSE effect and the Wannier Stark effect is used, the above-mentioned operation is performed by using the quantum effect.

【0009】[0009]

【実施例】本発明の実施例を図面を参照して説明する。Embodiments of the present invention will be described with reference to the drawings.

【0010】図1(a)は、本発明の光微分器を示した
もので、(b)はその等価回路を示したものである。こ
の光微分器は、モノリシックに形成されており、受光素
子部D1,D2に逆バイアス電圧がかかるように並列に
接続し、また、受光素子部D2は受光素子部D1を透過
した光の光路上におかれている。抵抗Rは受光素子部D
1,D2が通電状態となったときに電流を制限するため
の保護抵抗である。光入力Pinが受光素子部D1,D2
を経て光出力POUT として出力されるようになってい
る。
FIG. 1A shows an optical differentiator of the present invention, and FIG. 1B shows its equivalent circuit. This optical differentiator is formed monolithically and is connected in parallel so that a reverse bias voltage is applied to the light receiving element sections D1 and D2, and the light receiving element section D2 is on the optical path of the light transmitted through the light receiving element section D1. It is scented. The resistor R is the light receiving element section D
1 and D2 are protective resistors for limiting the current when they are energized. The optical input P in is the light receiving elements D1 and D2.
And is output as a light output P OUT .

【0011】受光素子部D1,D2は、pinフォトダ
イオードで、そのi層にMQW構造(MUTI-QUANTUM WEL
L ,量子井戸構造)を有し、このi層にはMQW構造の
バリア層が設けられている。受光素子部D1のバリア層
は、図2(a)のように、バリア層が厚く電子が井戸に
局在し井戸の中に準位(井戸準位)を作っている状態と
なっている。このような受光素子部D2に逆バイアス電
圧をかけると、量子準位が変化し実効禁制帯幅が減少す
る。これは量子井戸シュタルク効果(QCSE効果)と
して知られており、一般の半導体でもみられる現象であ
る。これによって受光素子部D2の光吸収特性は、図3
(a)の変化を示すようになっている。この図において
逆バイアス電圧は「V1 >V2 >V3 」で、電圧を減ら
すにつれて吸収波長端は短い方に変化する。
The light receiving element portions D1 and D2 are pin photodiodes, and an MQW structure (MUTI-QUANTUM WEL
L, quantum well structure), and a barrier layer of MQW structure is provided in this i layer. As shown in FIG. 2A, the barrier layer of the light receiving element portion D1 is in a state in which the barrier layer is thick and electrons are localized in the well to create a level (well level) in the well. When a reverse bias voltage is applied to such a light receiving element section D2, the quantum level changes and the effective band gap decreases. This is known as the quantum well Stark effect (QCSE effect), and is a phenomenon also observed in general semiconductors. Accordingly, the light absorption characteristics of the light receiving element section D2 are
The change in (a) is shown. In this figure, the reverse bias voltage is “V 1 > V 2 > V 3 ”, and the absorption wavelength end changes to the shorter side as the voltage is reduced.

【0012】一方、受光素子部D2のバリア層は、図2
(b)のように、電子の波動の広がりに比べて狭く形成
され、電子がトンネル効果により隣の井戸に遷移するよ
うになっている。そのため、電子同士が干渉しあってサ
ブバンドが形成されている。このような受光素子部D2
に逆バイアス電圧をかけると、同様にポテンシャル構造
が変化するのであるが、この場合は、電子がトンネルし
なくなってサブバンドが分裂する。これによって、電子
のエネルギー準位が高くなってブルーシフトする(Wann
ier Stark 効果)。即ち、受光素子部D2の光吸収特性
は、図3の変化を示すようになっている。受光素子部D
2の吸収波長端は、電圧を減らすにつれて吸収波長端は
長い方に変化する。
On the other hand, the barrier layer of the light receiving element portion D2 is formed as shown in FIG.
As shown in (b), it is formed narrower than the spread of the wave of the electron, and the electron transits to the adjacent well by the tunnel effect. Therefore, the electrons interfere with each other to form a subband. Such a light receiving element section D2
When a reverse bias voltage is applied to, the potential structure also changes, but in this case, the electrons do not tunnel and the subband splits. As a result, the electron energy level rises and blue shifts (Wann
ier Stark effect). That is, the light absorption characteristics of the light receiving element section D2 are changed as shown in FIG. Light receiving element D
At the absorption wavelength edge of 2, the absorption wavelength edge changes to the longer side as the voltage is reduced.

【0013】つぎに、この光微分器の動作について説明
する。
Next, the operation of this optical differentiator will be described.

【0014】まず、バイアス電源の電圧V及び抵抗Rを
調整して、バイアス時の受光素子部D2の吸収波長端が
受光素子部D1の吸収波長端よりも短く、逆バイアス電
圧の変化に対する受光素子部D2の吸収波長端の範囲と
受光素子部D2の吸収波長端の範囲とが重なるようにし
ておく。このとき、逆バイアス電圧は電圧V1 となって
いる。
First, by adjusting the voltage V and the resistance R of the bias power source, the absorption wavelength end of the light receiving element portion D2 at the time of bias is shorter than the absorption wavelength end of the light receiving element portion D1, and the light receiving element with respect to the change of the reverse bias voltage. The range of the absorption wavelength end of the portion D2 and the range of the absorption wavelength end of the light receiving element portion D2 are set to overlap with each other. At this time, the reverse bias voltage is the voltage V 1 .

【0015】波長λ0 の光入力Pinが図4点線のような
パルス状に変化して入射すると、はじめは受光素子部D
1に吸収される。光の強度が大きくなるにつれ、受光素
子部D1に流れる電流が増加し、抵抗Rの電圧効果によ
り受光素子部D1,D2の逆バイアス電圧が電圧V1
ら小さくなる。
When the optical input P in of the wavelength λ 0 changes in a pulse shape as shown by the dotted line in FIG.
Is absorbed by 1. As the light intensity increases, the current flowing through the light receiving element section D1 increases, and the reverse bias voltage of the light receiving element sections D1 and D2 decreases from the voltage V 1 due to the voltage effect of the resistor R.

【0016】逆バイアス電圧が電圧V2 近傍になると、
受光素子部D1の吸収波長端が波長λ0 近傍になり、光
入力Pinは受光素子部D1を透過し始める。一方、受光
素子部D2の吸収波長端も波長λ0 近傍になり、光入力
inは受光素子部D2を透過し光出力POUT として出力
され、一部は吸収される(図4実線の光出力POUT の立
上がり)。これによって、受光素子部D2に電流が流れ
はじめ、逆バイアス電圧はより小さくなり、受光素子部
D2の吸収波長端は波長λ0 より長くなって、光入力P
inは受光素子部D2に吸収される。これによって光出力
OUT がなくなり(図4実線の光出力POUT の立下が
り)、最後に、逆バイアス電圧は電圧V3で平衡する。
この平衡状態では、光入力Pinがなくなり受光素子部D
2の光電流がなくなると、逆バイアス電圧が電圧V1
初期状態になる。
When the reverse bias voltage becomes close to the voltage V 2 ,
The absorption wavelength end of the light receiving element portion D1 becomes close to the wavelength λ 0 , and the optical input P in starts to pass through the light receiving element portion D1. On the other hand, the absorption wavelength end of the light receiving element portion D2 is also in the vicinity of the wavelength λ 0 , the optical input P in passes through the light receiving element portion D2 and is output as the optical output P OUT , and part of it is absorbed (the light indicated by the solid line in FIG. 4). Output P OUT rising). As a result, a current starts to flow in the light receiving element portion D2, the reverse bias voltage becomes smaller, the absorption wavelength end of the light receiving element portion D2 becomes longer than the wavelength λ 0 , and the optical input P
in is absorbed by the light receiving element portion D2. This eliminates the light output P OUT (falling of the light output P OUT in the solid line in FIG. 4) and finally the reverse bias voltage is balanced at the voltage V 3 .
In this equilibrium state, the light input P in disappears and the light receiving element D
When the photocurrent of 2 disappears, the reverse bias voltage becomes the initial state of the voltage V 1 .

【0017】このように、逆バイアス電圧と吸収波長端
の変化とによるポジティブフィードバック動作がなさ
れ、光の入射時に短い光パルスを出力する微分回路とし
て動作する。この動作は量子効果によるため、光パルス
の立上がり立ち下がりは非常に急峻である。また、外部
にアンプを付加することなく、回路構成が簡単であり、
集積化が可能になって非常に小型になる。
In this way, the positive feedback operation is performed by the reverse bias voltage and the change of the absorption wavelength end, and it operates as a differentiating circuit which outputs a short optical pulse when light is incident. Since this operation is due to the quantum effect, the rise and fall of the light pulse is very steep. In addition, the circuit configuration is simple without adding an external amplifier,
It can be integrated and becomes very small.

【0018】本発明は前述の実施例に限らず様々な変形
が可能である。
The present invention is not limited to the above-mentioned embodiment, but various modifications can be made.

【0019】例えば、抵抗Rは電流制限用であるから、
これにかえてトランジスタ,FET,で構成された定電
流源としても良い。また、正電圧のバイアスをかけてい
るが、極性をかえて負電圧のバイアスをかけるようにし
ても良い。さらに、図1のように、受光素子部の各層に
平行な方向から光を入射させたが、垂直な方向(図1の
縦方向)から入射させてもよい。また、受光素子部D
1,D2の間にミラーなどをいれるようにしてもよい。
そして、受光素子部D1から光を入射させたが、受光素
子部D2から光を入射させるようにしてもよい。この場
合でも同様の動作をする。
For example, since the resistor R is for current limiting,
Alternatively, a constant current source composed of transistors and FETs may be used. Further, although a positive voltage bias is applied, a negative voltage bias may be applied by changing the polarity. Further, as shown in FIG. 1, the light is incident on each layer of the light receiving element portion in a direction parallel to each layer, but the light may be incident in a vertical direction (vertical direction in FIG. 1). In addition, the light receiving element section D
A mirror or the like may be inserted between 1 and D2.
Then, although the light is incident from the light receiving element portion D1, the light may be incident from the light receiving element portion D2. Even in this case, the same operation is performed.

【0020】[0020]

【発明の効果】以上の通り本発明の光微分器によれば、
第1の受光素子から第2の受光素子へ入射光を吸収され
る素子が切り替わるタイミング差で入射光が透過するた
め、入射光の入ってきたタイミング時に短いパルス光を
得ることができる。特に、構成要素の点数が少なく非常
に簡単な構成で実現することができる。
As described above, according to the optical differentiator of the present invention,
Since the incident light is transmitted at the timing difference at which the element that absorbs the incident light is switched from the first light receiving element to the second light receiving element, a short pulsed light can be obtained at the timing when the incident light enters. In particular, it can be realized with a very simple configuration with a small number of components.

【0021】また、QCSE効果とWannier Stark 効果
とを有する2の素子を用いた場合、その動作が量子効果
でなされるため、非常に高速なものになる。
Further, when the second element having the QCSE effect and the Wannier Stark effect is used, the operation is performed by the quantum effect, so that the operation speed becomes very high.

【図面の簡単な説明】[Brief description of drawings]

【図1】実施例の構成図。FIG. 1 is a configuration diagram of an embodiment.

【図2】i層のバンド図。FIG. 2 is a band diagram of the i layer.

【図3】光吸収特性図。FIG. 3 is a light absorption characteristic diagram.

【図4】出力波形図。FIG. 4 is an output waveform diagram.

【符号の説明】[Explanation of symbols]

D1,D2…受光素子部,R…抵抗。 D1, D2 ... Light receiving element section, R ... Resistor.

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 逆バイアス電圧が小さくなるとその吸収
波長端が短波長側にシフトする第1の受光素子と、 所定の逆バイアス電圧で前記第1の受光素子よりも短い
吸収波長端を有するとともに逆バイアス電圧の大きさに
応じてその吸収波長端が長波長側にシフトする第2の受
光素子と、 前記第1及び第2の受光素子に並列に逆バイアス電圧を
電流制限素子を介して印加する手段とを有し、 前記第1及び第2の受光素子いずれかへの入射光が他方
を通って微分された光として出力されることを特徴とす
る光微分器。
1. A first light-receiving element whose absorption wavelength edge shifts to a shorter wavelength side when the reverse bias voltage becomes smaller, and an absorption wavelength edge shorter than the first light-receiving element at a predetermined reverse bias voltage. A second light receiving element whose absorption wavelength end is shifted to the long wavelength side according to the magnitude of the reverse bias voltage, and a reverse bias voltage is applied in parallel to the first and second light receiving elements via a current limiting element. And an optical differentiator, wherein the incident light on either the first or second light receiving element is output as light differentiated through the other.
【請求項2】 前記第1の受光素子は、QCSE効果に
て逆バイアス電圧が小さくなるとその吸収波長端が短波
長側にシフトする受光素子であり、 前記第2の受光素子は、Wannier Stark 効果にて逆バイ
アス電圧の大きさに応じてその吸収波長端が長波長側に
シフトする受光素子であることを特徴とする請求項1記
載の光微分器。
2. The first light receiving element is a light receiving element whose absorption wavelength end is shifted to a short wavelength side when the reverse bias voltage is reduced by the QCSE effect, and the second light receiving element is the Wannier Stark effect. 2. The optical differentiator according to claim 1, which is a light receiving element whose absorption wavelength end is shifted to the long wavelength side according to the magnitude of the reverse bias voltage.
JP4060444A 1992-03-17 1992-03-17 Optical differentiator Expired - Lifetime JP2527878B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4060444A JP2527878B2 (en) 1992-03-17 1992-03-17 Optical differentiator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4060444A JP2527878B2 (en) 1992-03-17 1992-03-17 Optical differentiator

Publications (2)

Publication Number Publication Date
JPH05264932A JPH05264932A (en) 1993-10-15
JP2527878B2 true JP2527878B2 (en) 1996-08-28

Family

ID=13142460

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4060444A Expired - Lifetime JP2527878B2 (en) 1992-03-17 1992-03-17 Optical differentiator

Country Status (1)

Country Link
JP (1) JP2527878B2 (en)

Also Published As

Publication number Publication date
JPH05264932A (en) 1993-10-15

Similar Documents

Publication Publication Date Title
FR2495870A1 (en) DEVICE FOR PROTECTING A LASER DIODE
JP2527878B2 (en) Optical differentiator
CA2143593A1 (en) Optical Frequency Translator
US6327399B1 (en) Optical devices employing an optical thresholder
JP2562251B2 (en) Optical chopper and pulse light source
JP2000312022A (en) Photodetector and method for driving the same
JP2584167B2 (en) Optical operation storage device
JP5748934B2 (en) Optical pulse generator and optical pulse tester
JP2812494B2 (en) Driving method of optical functional element
JPS6339223A (en) Light receiving device
JPS56104486A (en) Semiconductor laser device
JP3158634B2 (en) High-speed small signal current source
JP2749744B2 (en) Semiconductor optical differentiator
JP2002290168A (en) Optical receiver
JP2991471B2 (en) Light beam detector
JPS5928718A (en) Delay circuit
JPH0434503Y2 (en)
JPH038384A (en) Semiconductor laser device
JPH05264339A (en) Photodetector
JPH01135084A (en) Optical output controlling circuit for semiconductor laser
NL8602304A (en) Optical detector system for magneto-optical recording disc - detects polarisation rotation changes in light reflected from data-carrying track
JPH05114887A (en) Light receiving device
JP2671155B2 (en) Laser modulation circuit
JPS60193385A (en) Photovoltaic element
JPS613485A (en) Laser functional device