JP2527527B2 - Method and apparatus for pressure determination and occlusion detection in syringe pumps - Google Patents

Method and apparatus for pressure determination and occlusion detection in syringe pumps

Info

Publication number
JP2527527B2
JP2527527B2 JP5236740A JP23674093A JP2527527B2 JP 2527527 B2 JP2527527 B2 JP 2527527B2 JP 5236740 A JP5236740 A JP 5236740A JP 23674093 A JP23674093 A JP 23674093A JP 2527527 B2 JP2527527 B2 JP 2527527B2
Authority
JP
Japan
Prior art keywords
syringe
pressure
force
plunger
predetermined
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP5236740A
Other languages
Japanese (ja)
Other versions
JPH07289638A (en
Inventor
ナッセ・ジュボー
ジャン−クロード・ロドレー
Original Assignee
ベクトン・ディッキンソン・アンド・カンパニー
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ベクトン・ディッキンソン・アンド・カンパニー filed Critical ベクトン・ディッキンソン・アンド・カンパニー
Publication of JPH07289638A publication Critical patent/JPH07289638A/en
Application granted granted Critical
Publication of JP2527527B2 publication Critical patent/JP2527527B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M5/00Devices for bringing media into the body in a subcutaneous, intra-vascular or intramuscular way; Accessories therefor, e.g. filling or cleaning devices, arm-rests
    • A61M5/14Infusion devices, e.g. infusing by gravity; Blood infusion; Accessories therefor
    • A61M5/142Pressure infusion, e.g. using pumps
    • A61M5/145Pressure infusion, e.g. using pumps using pressurised reservoirs, e.g. pressurised by means of pistons
    • A61M5/1452Pressure infusion, e.g. using pumps using pressurised reservoirs, e.g. pressurised by means of pistons pressurised by means of pistons
    • A61M5/1456Pressure infusion, e.g. using pumps using pressurised reservoirs, e.g. pressurised by means of pistons pressurised by means of pistons with a replaceable reservoir comprising a piston rod to be moved into the reservoir, e.g. the piston rod is part of the removable reservoir
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M2205/00General characteristics of the apparatus
    • A61M2205/33Controlling, regulating or measuring
    • A61M2205/332Force measuring means
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M2205/00General characteristics of the apparatus
    • A61M2205/70General characteristics of the apparatus with testing or calibration facilities

Landscapes

  • Health & Medical Sciences (AREA)
  • Vascular Medicine (AREA)
  • Engineering & Computer Science (AREA)
  • Anesthesiology (AREA)
  • Biomedical Technology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Hematology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Infusion, Injection, And Reservoir Apparatuses (AREA)

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は一般的に、注射器ポンプ
の注入ラインにおける閉塞を検出することに関するもの
である。特に、本発明は、注入ラインに閉塞が存在して
いるか否かを決定するために新規のアルゴリズムを利用
したプログラム可能の注射器ポンプに関する。
FIELD OF THE INVENTION This invention relates generally to detecting blockages in the injection line of syringe pumps. In particular, the present invention relates to programmable syringe pumps that utilize a novel algorithm to determine if an infusion line is occluded.

【0002】[0002]

【従来の技術】注射器ポンプは注射器から患者へ流体を
汲出する装置である。注射器はポンプに位置され、注入
ラインを介して患者に接続される。患者への注入投薬過
程の間、注入ラインに閉塞が発生する可能性がある。そ
のような状況は気が付かなければ患者に傷害を加える可
能がある。
A syringe pump is a device that pumps fluid from a syringe to a patient. The syringe is located on the pump and is connected to the patient via an infusion line. Infusion into a patient During the course of medication, an infusion line may become occluded. Such situations can injure the patient if not noticed.

【0003】注入ラインの閉塞は、注射器ポンプのプッ
シャと注射器プランジャとの間の力を、注射器中の圧力
の増加により増大させる。従来技術においては、注入ラ
インの閉塞は、注射器ポンプのプッシャとプランジャと
の間の力がばねの所定の力を上廻ると崩れる予負荷のば
ねによって検出されてきた。このような状態になるとス
イッチを起動させ、使用者に注意を喚起するか、あるい
は注射器ポンプを遮断する。
Blockage of the infusion line increases the force between the pusher of the syringe pump and the syringe plunger by increasing the pressure in the syringe. In the prior art, blockage of the infusion line has been detected by a preloaded spring that collapses when the force between the syringe pump pusher and the plunger exceeds a predetermined force of the spring. When this happens, the switch is activated to alert the user or shut off the syringe pump.

【0004】さらに複雑な注射器ポンプでは力トランス
ジューサによってプッシャとプランジャとの間の力をモ
ニタする。応急処置を要する閉塞に対応する注射器にお
ける力の増加量は注射器によって変動する。このため、
力が圧力に変換される。この変換は以下の式を使用する
ことにより注射器の摩擦力と断面積とを考慮している。
In more complex syringe pumps, a force transducer monitors the force between the pusher and the plunger. The amount of force increase in a syringe that corresponds to an obstruction that requires first aid varies with the syringe. For this reason,
Force is converted to pressure. This conversion takes into account the frictional force and cross-sectional area of the syringe by using the following equation:

【0005】[0005]

【数1】P=(F−Ff)/A 但し、P=注射器中の流体の圧力 F=トランスジューサによって測定される押圧力 Ff=注射器内の摩擦力 A=注射器の断面積 注射器内の摩擦力と注射器の断面積は一定と想定する。
しかしながら実際には、(1)注射器内の摩擦力は一定
でなく圧力と共に変動する。(2)注射器の断面積も圧
力と共に変動しうる。従って、従来技術による力から圧
力への変換は極めて正確とはいえない。
P = (F−Ff) / A where P = pressure of fluid in syringe F = pressing force measured by transducer Ff = friction force in syringe A = cross sectional area of syringe friction force in syringe And the cross-sectional area of the syringe is assumed to be constant.
However, in reality, (1) the frictional force within the syringe is not constant and varies with pressure. (2) The cross-sectional area of the syringe can also change with pressure. Therefore, the force-to-pressure conversion of the prior art is not very accurate.

【0006】[0006]

【発明が解決しようとする課題】本発明は注射器のプラ
ンジャに加えられる力を検出するためにトランスジュー
サを有する注射器ポンプを提供することである。
SUMMARY OF THE INVENTION The present invention is to provide a syringe pump having a transducer for detecting the force exerted on the syringe plunger.

【0007】[0007]

【課題を解決するための手段】検出された力は、注射器
内の摩擦力を補正し、経験的に導出したスケール係数に
より、検出された力ををスケールするアルゴリズムによ
り注射器内の圧力を計算するために用いられる。スケー
ル係数は注射器内の圧力が所定値にあるときのプランジ
ャに対する力を測定することにより決められる。スケー
ル係数が力と圧力とを測定することから得られるため、
注射器の断面積と注射器内の実際の(そして変動する)
摩擦力を考慮する必要はない。
The detected force corrects the frictional force in the syringe and the pressure in the syringe is calculated by an algorithm that scales the detected force with an empirically derived scale factor. Used for. The scale factor is determined by measuring the force on the plunger when the pressure in the syringe is at a given value. Since the scale factor is obtained from measuring force and pressure,
The cross-sectional area of the syringe and the actual (and fluctuating) inside the syringe
It is not necessary to consider the frictional force.

【0008】計算された圧力は次いで所定の閉塞圧力と
比較すればよい。もしも計算された圧力が所定の閉塞圧
力を上廻るのであれば応急処置をとればよい。
The calculated pressure may then be compared to a predetermined occlusion pressure. If the calculated pressure exceeds a predetermined occlusion pressure, first aid may be taken.

【0009】スケール係数は使用される注射器の形式に
よって変わる。本発明はメモリに注射器の形式によって
変わるパラメータを記憶し、かつ注射器内の圧力を計算
することにより種々形式の注射器を注射器ポンプにおい
て用いることができるようにする。また、本発明は断面
積と実際の摩擦力とがアルゴリズムにおいて用いられて
いないので従来技術を用いて得られるものよりはるかに
正確な圧力を読み取ることができる。
The scale factor depends on the type of syringe used. The present invention allows various types of syringes to be used in syringe pumps by storing in memory parameters that vary with the type of syringe and by calculating the pressure within the syringe. Also, since the present invention does not use the cross-sectional area and the actual friction force in the algorithm, a much more accurate pressure reading than that obtained using the prior art can be read.

【0010】[0010]

【実施例】本発明を実施した注射器ポンプ8が図1に示
されている。ハウジング10は注射器12と、プッシャ
14と、注射器クランプ16とを支持している。注射器
クランプ16は注射器12をハウジング10上の適所に
保持する。注射器12のプランジャ18が、リードねじ
222(図2を参照)を介して電動モータにより駆動さ
れるプッシャ14により押圧されている。
DETAILED DESCRIPTION OF THE INVENTION A syringe pump 8 embodying the present invention is shown in FIG. The housing 10 supports a syringe 12, a pusher 14, and a syringe clamp 16. The syringe clamp 16 holds the syringe 12 in place on the housing 10. The plunger 18 of the syringe 12 is pressed by the pusher 14 driven by an electric motor via a lead screw 222 (see FIG. 2).

【0011】プッシャ14には、プランジャ18のフラ
ンジ18aと係合し、プランジャ18がプッシャ14と
は独立して運動するのを阻止するアンチサイフォン・キ
ャッチ(antisiphon catch)20が設
けられている。プッシャ14にはまた、フランジ18a
に対して直接押圧して流体を注射器12から汲み出す圧
力プレート22が設けられている。
The pusher 14 is provided with an anti-siphon catch 20 which engages the flange 18a of the plunger 18 and prevents the plunger 18 from moving independently of the pusher 14. The pusher 14 also has a flange 18a.
A pressure plate 22 is provided that presses directly against and draws fluid from the syringe 12.

【0012】図2は、ポンプ8のシャーシと機械的要素
とを示す。シャーシ226はモータ230とリードねじ
222とを担持している。モータ230は歯車組立体2
32を介してリードねじ222を駆動する。プッシャ1
4はプッシャブロック228がリードねじ222と協働
することにより駆動される。
FIG. 2 shows the chassis and mechanical elements of the pump 8. The chassis 226 carries a motor 230 and a lead screw 222. The motor 230 is the gear assembly 2
The lead screw 222 is driven via 32. Pusher 1
4 is driven by the pusher block 228 cooperating with the lead screw 222.

【0013】図5は本発明の主要な電気要素を示すブロ
ック図である。パネル24に表示される、注射器ポンプ
の種々パラメータを検出するためにトランスジューサが
設けられている。前記トランスジューサは、力トランス
ジューサ36、アンチサイフォン・キャッチ検出器3
8、取外し検出器40、および注射クランプ検出器42
である。これらのトランスジューサの出力60,62,
64および66はそれぞれ各種の信号処理モジュールを
介して中央処理装置44へ送り込まれる。各種の電子モ
ジュールの線図を図6に示す。前記要素の値や形式が前
記図に示されている。
FIG. 5 is a block diagram showing the main electrical elements of the present invention. Transducers are provided to detect various parameters of the syringe pump displayed on panel 24. The transducer is a force transducer 36, an anti-siphon catch detector 3
8, detachment detector 40, and injection clamp detector 42
Is. The outputs 60, 62 of these transducers,
64 and 66 are sent to the central processing unit 44 via various signal processing modules. Diagrams of various electronic modules are shown in FIG. The values and formats of the elements are shown in the figure.

【0014】中央処理装置44は、ランダムアクセスメ
モリ53(図8)、ウオッチドッグ48(図7)、EP
ROM50(図6)、およびEEPROM52(図8)
を有するマイクロプロセッサ46(図6)を含む。ウオ
ッチドッグ48はマイクロプロセッサ46をモニタしそ
の適正動作を確実に行わせる。EEPROM52はポン
プにおいて使用されている注射器のパラメータに関する
データを保有している。EPROM50は注射器ポンプ
の動作を制御するソフトウエアプログラムを保有してい
る。
The central processing unit 44 includes a random access memory 53 (FIG. 8), a watch dog 48 (FIG. 7), an EP.
ROM 50 (FIG. 6) and EEPROM 52 (FIG. 8)
Including a microprocessor 46 (FIG. 6). The watchdog 48 monitors the microprocessor 46 to ensure its proper operation. The EEPROM 52 holds data regarding the parameters of the syringe used in the pump. EPROM 50 contains a software program that controls the operation of the syringe pump.

【0015】力トランスジューサ36の出力は信号条件
付け回路54(図9)によって条件付けされ、前記信号
条件付け回路54は力トランスジューサ36の出力をア
ナログ/デジタル変換器56(図10)に入力するに適
した形態に変換する。アナログ/デジタル変換器56は
アナログ出力をデジタル化し、シリアル出力58を発生
させ、当該シリアル出力58はマイクロプロセッサ46
の入力ポートへ入力される。
The output of the force transducer 36 is conditioned by a signal conditioning circuit 54 (FIG. 9) which is suitable for inputting the output of the force transducer 36 to an analog / digital converter 56 (FIG. 10). Convert to. The analog-to-digital converter 56 digitizes the analog output and produces a serial output 58, which is output to the microprocessor 46.
Is input to the input port of.

【0016】図4は力トランスジューサ36を詳細に示
す。力トランスジューサ36はホィートストーン・ブリ
ッジ形態の4個の歪みゲージから構成されている。当該
ホィートストーン・ブリッジは±15%の公差で350
オームあるいは1キロオームのインピーダンズを有して
いる。力の測定範囲は0から150Nまでである。ブリ
ッジの感度は20℃において150Nの負荷の下で1.
7mV/V〜2.4mV/Vである。ブリッジはエネル
ギを節約するためマイクロプロセッサ46(図6および
図7におけるラインCDANA)により制御され間欠的
に給電される。
FIG. 4 shows force transducer 36 in greater detail. Force transducer 36 consists of four strain gauges in the form of a Wheatstone bridge. The Wheatstone Bridge is 350 with ± 15% tolerance
It has ohms or 1 kilo ohm impedance. The force measurement range is from 0 to 150N. The sensitivity of the bridge is 1. under a load of 150 N at 20 ° C.
It is 7 mV / V-2.4 mV / V. The bridge is intermittently powered under the control of a microprocessor 46 (line CDANA in FIGS. 6 and 7) to save energy.

【0017】図3および図4から判るように、歪みゲー
ジ112はビーム113に接着されている。圧力プレー
ト22に力が加えられると、ビーム113が撓み、歪み
ゲージ112を歪ませ出力60を発生させる。
As can be seen in FIGS. 3 and 4, strain gauge 112 is bonded to beam 113. When a force is applied to the pressure plate 22, the beam 113 deflects, distorting the strain gauge 112 and producing an output 60.

【0018】力トランスジューサ36の出力60は信号
条件付け回路54(図9)に送られ、その後、アナログ
/デジタル変換器56に送られ、当該アナログ/デジタ
ル変換器56は力トランスジューサ36の条件付けされ
た出力をシリアル出力58に変換する。次に、シリアル
出力58はマイクロプロセッサ46の入力に送り込まれ
る。
The output 60 of the force transducer 36 is sent to a signal conditioning circuit 54 (FIG. 9) and then to an analog-to-digital converter 56, which analog-to-digital converter 56 is conditioned output of the force transducer 36. To serial output 58. The serial output 58 is then fed into the input of the microprocessor 46.

【0019】EPROM50にはマイクロプロセッサ4
6用のソフトウエアプログラムが常駐し、当該ソフトウ
エアプログラムは、プランジャ18に対する力が力トラ
ンスジューサ36によって測定されるにつれて注射器1
2内の圧力を連続的に計算する。注射器12内の圧力を
計算するために前記プログラムが使用する或るパラメー
タがEEPROM52に記憶されている。注射器ポンプ
8は種々形式の注射器に対応するようプログラム可能で
あるので、各形式の注射器に対して1組のパラメータが
EEPROM52に記憶されている。
EPROM 50 includes microprocessor 4
6 resides in the syringe 1 as the force on the plunger 18 is measured by the force transducer 36.
The pressure in 2 is calculated continuously. Certain parameters used by the program to calculate the pressure within the syringe 12 are stored in the EEPROM 52. Since the syringe pump 8 is programmable to accommodate various types of syringes, one set of parameters is stored in the EEPROM 52 for each type of syringe.

【0020】EEPROM52に記憶されているパラメ
ータは以下のものを含む。
The parameters stored in the EEPROM 52 include the following:

【0021】Ef=ヌル(大気)圧力における注射器プ
ランジャと注射器バレルとの間の平均摩擦力 Pc=プランジャに較正力が加えられたときの注射器に
おける圧力。当該較正力は典型的に5kgFであり、通
常の圧力スレショルドである約0.7バールのPcの値
をもたらす。
Ef = average frictional force between the syringe plunger and syringe barrel at null (atmospheric) pressure Pc = pressure in the syringe when a calibration force is applied to the plunger. The calibration force is typically 5 kgF, resulting in a value of Pc of about 0.7 bar which is a normal pressure threshold.

【0022】Fc=注射器においてPcの圧力を得るた
めにプランジャが負荷される力。
Fc = the force with which the plunger is loaded to obtain the pressure of Pc in the syringe.

【0023】EPROM50におけるプログラムは注射
器における圧力を計算するためにマイクロプロセッサ4
6が使用する。次に、マイクロプロセッサ46は、計算
された圧力を、当該注射器に対してEEPROM52に
記憶されている圧力値と比較する。もしも計算された圧
力が記憶されている圧力を上廻るとすれば、マイクロプ
ロセッサ46によって閉塞アラームが発生する。
The program in EPROM 50 is microprocessor 4 to calculate the pressure in the syringe.
6 used. The microprocessor 46 then compares the calculated pressure to the pressure value stored in the EEPROM 52 for that syringe. If the calculated pressure exceeds the stored pressure, a blockage alarm is generated by the microprocessor 46.

【0024】注射器中の圧力を計算するアルゴリズムは
次の通りである。
The algorithm for calculating the pressure in the syringe is as follows.

【0025】[0025]

【数2】P=((F−Ff)/(Fc−Ff))・Pc 但しFは力トランスジューサ36によって測定される力
で、Fc、FfおよびPcは前述のように定義したパラ
メータである。
## EQU2 ## P = ((F-Ff) / (Fc-Ff)). Pc, where F is the force measured by the force transducer 36, and Fc, Ff, and Pc are parameters defined as described above.

【0026】本明細書の従来技術の項で述べた従来の式
に対する前述の式の主な利点は、(1)圧力と共に変動
することが知られている注射器中の摩擦力に高度に左右
されないこと、(2)注射器の断面積を決定する必要の
ないことである。むしろ注射器内の圧力は経験的に決定
し易いパラメータを用いて計算される。
The main advantages of the above equations over the conventional equations mentioned in the prior art section of this specification are: (1) highly independent of frictional forces in syringes known to vary with pressure. (2) It is not necessary to determine the cross-sectional area of the syringe. Rather, the pressure in the syringe is calculated using parameters that are easily determined empirically.

【0027】前記式は従来技術による式から得た圧力の
計算においてエラーがより小さいことが数学的に実証さ
れた。
It has been mathematically proved that the above equation has less error in the calculation of pressure obtained from the prior art equation.

【0028】従来技術においてはEfは一定と想定さ
れ、圧力を加えることなくプランジャを動かすに要する
力は式P=(E−Ef)/Aを適用すると
In the prior art, Ef is assumed to be constant, and the force required to move the plunger without applying pressure is given by the equation P = (E-Ef) / A.

【数3】 測定された圧力、即ちPm=(F−Ffo)/A・・・・(1) 但し、Ffoは差圧が零(ヌル)のとき測定した注射器
内の摩擦力である。
Equation 3] measured pressure, i.e. P m = (F-Ffo) / A ···· (1) where, Ffo is the frictional force in the measured syringe when the differential pressure is zero (null).

【0029】しかしながら、摩擦は圧力の関数であり以
下のように表わすことができる。
However, friction is a function of pressure and can be expressed as:

【0030】[0030]

【数4】Ef(P)=Ffo+kP・・・・(2) 但し、kは注射器の形状と材料によって変わる特定の注
射器の定数である。
## EQU4 ## Ef (P) = Ffo + kP ... (2) Here, k is a constant of a specific syringe that varies depending on the shape and material of the syringe.

【0031】断面積が既知であると想定すれば、注射器
内の実際の圧力は式P=(E−Ef)/Aに式(2)を
用いることにより正確に提供される。
Assuming the cross-sectional area is known, the actual pressure in the syringe is accurately provided by using equation (2) in the equation P = (E-Ef) / A.

【0032】[0032]

【数5】 実際の圧力、即ちPa=(F−Ffo−kp)/A・・・・(3) 式(3)からの実際の圧力と、式(1)からの予測され
た圧力との差はΔp=kp/Aである。
## EQU00005 ## Actual pressure, ie, Pa = (F-Ffo-kp) / A ... (3) Actual pressure from equation (3) and predicted pressure from equation (1) The difference is Δp = kp / A.

【0033】従来の式を用いると圧力の単位当たりのエ
ラーは、
Using the conventional equation, the error per unit of pressure is

【数6】Δp/p=k/A・・・・(4) 本発明の式を適用すれば、[Equation 6] Δp / p = k / A (4) By applying the formula of the present invention,

【数7】 測定された圧力、即ちP=((F−Ffo)/(Fc−Ffo)) ・Pc ・・・・・・・・(5) 式(5)を使用することから起因するエラーを評価する
ために、実際の圧力を適当に表しうる。
Originating from using Equation 7] measured pressure, i.e. P m = ((F-Ffo ) / (Fc-Ffo)) · Pc ········ (5) Equation (5) The actual pressure may be appropriately represented to assess the error.

【0034】式(3)はF=Fcの場合は依然として有
効である。この場合、P=Pcであり、そのため以下の
式を導き出す。
Equation (3) is still valid when F = Fc. In this case, P = Pc, so we derive the following equation:

【0035】[0035]

【数8】 Pc=(Fc−Fpo−Pcp)/A・・・・(6) 式(3)および(6)においてAを排除すると次式を提
供する。
## EQU00008 ## Pc = (Fc-Fpo-Pcp) / A ... (6) The elimination of A in equations (3) and (6) provides the following equation:

【0036】[0036]

【数9】 そうすれば[Equation 9] that way

【数10】 kp/(F−Fpo)及びkp/Fpoは1と比較すれ
ば極めて小さいので、式(8)は以下により近似化でき
る。
[Equation 10] Since kp / (F-Fpo) and kp / Fpo are extremely small as compared with 1, the equation (8) can be approximated by the following.

【0037】[0037]

【数11】 測定された値と実際の値との間の差は[Equation 11] The difference between the measured and the actual value is

【数12】 Δp=Pmkp[1/(Fc−Fp)−1/(F−Fp)]・・・・(10) となり、圧力単位のエラーは、[Equation 12] Δp = P m kp [1 / (Fc-Fp) -1 / (F-Fp)] (10), and the error in pressure unit is

【数13】 Δp=Pmk[1/(Fc−Fp)−1/(F−Fp)]・・・・・(11) 60ccの注射の典型的な値を式(4)(従来技術)と
式(11)(本発明)とに代入すると、従来技術は Δp/p=k/5.55であり、 本発明は Δp/p=k/13.5である。
Δp = P m k [1 / (Fc−Fp) −1 / (F−Fp)] (11) A typical value of 60 cc injection is given by the formula (4) (prior art). ) And equation (11) (invention), Δp / p = k / 5.55 for the prior art and Δp / p = k / 13.5 for the invention.

【0038】但し、Ff=10N Fc=50N A=5.55cmm=0.4バール F≒33Nである。However, Ff 0 = 10N Fc = 50N A = 5.55 cm 2 P m = 0.4 bar F≈33N.

【0039】本発明を用いた圧力測定におけるエラーは
従来技術のそれと比較すると著しく低減することが判
る。
It can be seen that the error in pressure measurement using the present invention is significantly reduced compared to that of the prior art.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明を実施した注射器ポンプの斜視図。FIG. 1 is a perspective view of a syringe pump embodying the present invention.

【図2】注射器ポンプの駆動機構の斜視図。FIG. 2 is a perspective view of a drive mechanism of the syringe pump.

【図3】本発明のプッシャ機構の断面図。FIG. 3 is a sectional view of the pusher mechanism of the present invention.

【図4】プッシャディスクと力トランスジューサとの斜
視図。
FIG. 4 is a perspective view of a pusher disk and a force transducer.

【図5】本発明の主要要素のブロック図。FIG. 5 is a block diagram of the main elements of the present invention.

【図6】本発明による電子装置の一部を示す図。FIG. 6 shows a part of an electronic device according to the invention.

【図7】本発明による電子装置の一部を示す図。FIG. 7 shows a part of an electronic device according to the invention.

【図8】本発明による電子装置の一部を示す図。FIG. 8 shows a part of an electronic device according to the invention.

【図9】本発明による電子装置の一部を示す図。FIG. 9 shows a part of an electronic device according to the invention.

【図10】本発明による電子装置の一部を示す図。FIG. 10 shows a part of an electronic device according to the invention.

【符号の説明】 8:注射器ポンプ 10:ハウジング 12:注射器 14:プッシャ 18:プランジャ 20:アンチサイフォン・キャッチ 22:圧力プレート 27:圧力ディスプレイ 27a,27b,27c:セグメント 28:ポインタ 35:スイッチ 36:力トランスジューサ[Explanation of reference signs] 8: Syringe pump 10: Housing 12: Syringe 14: Pusher 18: Plunger 20: Anti-siphon catch 22: Pressure plate 27: Pressure display 27a, 27b, 27c: Segment 28: Pointer 35: Switch 36: Force transducer

───────────────────────────────────────────────────── フロントページの続き (72)発明者 ジャン−クロード・ロドレー フランス共和国38690 サンテティエー ヌ・ドゥ・クロセイ,ル・ペラン,レ・ テラッス(番地なし) ─────────────────────────────────────────────────── ─── Continued Front Page (72) Inventor Jean-Claude Rodray 38690 Saint-Etienne de Crocey, Le Perrin, Les Terrass (no street number)

Claims (8)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 注射器ポンプに使用される注射器内の圧
力を決定する方法において、 前記注射器のプランジャに対する力を測定するステップ
と、 測定された力から注射器の所定の摩擦力(Ff)を差し
引いてスケールされた力を提供するステップと、 スケールされた力を、所定の較正圧力(Pc)と、所定
の摩擦力(Ff)と、所定の較正力(Fc)とに依存す
る補正係数で乗算するステップとを備えることを特徴と
する注射器内の圧力を決定する方法。
1. A method of determining pressure in a syringe used in a syringe pump, the method comprising: measuring a force of the syringe against a plunger; subtracting a predetermined friction force (Ff) of the syringe from the measured force. Providing a scaled force, multiplying the scaled force by a correction factor that depends on a predetermined calibration pressure (Pc), a predetermined friction force (Ff) and a predetermined calibration force (Fc) Determining the pressure in the syringe.
【請求項2】 Ff、FcおよびPcが経験的に導き出
されることを特徴とする請求項1に記載の方法。
2. The method according to claim 1, wherein Ff, Fc and Pc are empirically derived.
【請求項3】 前記補正係数がFcとFfとの差でPc
を除算することにより得られることを特徴とする請求項
1に記載の方法。
3. The correction coefficient is Pc as a difference between Fc and Ff.
The method of claim 1, wherein the method is obtained by dividing.
【請求項4】 前記注射器内に圧力Pcがあるとき前記
注射器のプランジャに対する力を測定することによりF
cが決定されることを特徴とする請求項2に記載の方
法。
4. F by measuring the force of the syringe against the plunger when there is pressure Pc in the syringe.
Method according to claim 2, characterized in that c is determined.
【請求項5】 前記注射器のプランジャにFcの力が加
えられたとき前記注射器内の圧力を測定することにより
Pcが決定されることを特徴とする請求項2に記載の方
法。
5. The method of claim 2, wherein Pc is determined by measuring the pressure within the syringe when an Fc force is applied to the syringe plunger.
【請求項6】 前記注射器内の圧力が大気圧と同じであ
るときFfは前記注射器の壁と前記注射器のストッパと
の間の摩擦力であることを特徴とする請求項2に記載の
方法。
6. The method of claim 2, wherein Ff is the frictional force between the wall of the syringe and the stopper of the syringe when the pressure in the syringe is the same as atmospheric pressure.
【請求項7】 前記注射器ポンプにおいて閉塞が発生し
たか否かを決定するために圧力を圧力しきい値と比較す
るステップをさらに含むことを特徴とする請求項1に記
載の方法。
7. The method of claim 1, further comprising comparing pressure with a pressure threshold to determine if an occlusion has occurred at the syringe pump.
【請求項8】 プランジャと、ストッパと、壁とを有す
る注射器から流体を汲出する注射器ポンプにおいて、 前記プランジャに対する力を検出する手段と、 前記力をアルゴリズムを用いて計算された圧力に変換す
る手段と、 所定の圧力値を記憶する手段と、 計算された圧力を所定の圧力値と比較する手段と、 計算された圧力が、それが比較される所定値を上廻る場
合を使用者に知らせる手段とを備え、 前記アルゴリズムが、検出された力から摩擦力を差し引
き、その結果を、較正力と摩擦力との差で除算した較正
圧力で乗算することにより前記計算された圧力を計算す
ることを特徴とする注射器ポンプ。
8. A syringe pump for pumping fluid from a syringe having a plunger, a stopper and a wall, means for detecting a force on the plunger, and means for converting the force to a pressure calculated using an algorithm. A means for storing a predetermined pressure value, a means for comparing the calculated pressure with a predetermined pressure value, and a means for informing the user when the calculated pressure exceeds a predetermined value with which it is compared And the algorithm calculates the calculated pressure by subtracting the frictional force from the detected force and multiplying the result by the calibration pressure divided by the difference between the calibration force and the frictional force. Characteristic syringe pump.
JP5236740A 1992-09-23 1993-09-22 Method and apparatus for pressure determination and occlusion detection in syringe pumps Expired - Lifetime JP2527527B2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US950377 1992-09-23
US07/950,377 US5242408A (en) 1992-09-23 1992-09-23 Method and apparatus for determining pressure and detecting occlusions in a syringe pump

Publications (2)

Publication Number Publication Date
JPH07289638A JPH07289638A (en) 1995-11-07
JP2527527B2 true JP2527527B2 (en) 1996-08-28

Family

ID=25490358

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5236740A Expired - Lifetime JP2527527B2 (en) 1992-09-23 1993-09-22 Method and apparatus for pressure determination and occlusion detection in syringe pumps

Country Status (4)

Country Link
US (1) US5242408A (en)
EP (1) EP0589439B1 (en)
JP (1) JP2527527B2 (en)
DE (1) DE69320282T2 (en)

Families Citing this family (132)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5458571A (en) 1989-03-17 1995-10-17 Merit Medical Systems, Inc. System and method for monitoring, displaying and recording balloon catheter condition interval data
US5425713A (en) 1989-03-17 1995-06-20 Merit Medical Systems, Inc. System and method for monitoring, displaying and recording balloon catheter condition interval and inflation location data
US5425716A (en) * 1991-08-09 1995-06-20 Atom Kabushiki Kaisha Infusion apparatus
US6402718B1 (en) 1992-08-17 2002-06-11 Medrad, Inc. Front-loading medical injector and syringe for use therewith
US5383858B1 (en) * 1992-08-17 1996-10-29 Medrad Inc Front-loading medical injector and syringe for use therewith
US5354273A (en) * 1992-12-14 1994-10-11 Mallinckrodt Medical, Inc. Delivery apparatus with pressure controlled delivery
US5882338A (en) * 1993-05-04 1999-03-16 Zeneca Limited Syringes and syringe pumps
GB9309151D0 (en) * 1993-05-04 1993-06-16 Zeneca Ltd Syringes and syringe pumps
CA2129284C (en) * 1993-11-24 1999-03-09 Kenneth J. Niehoff Controlling plunger drives for fluid injection in animals
US5823998A (en) * 1994-08-24 1998-10-20 Eli Lilly Japan Kabushiki Kaisha Injection apparatus
GB9422082D0 (en) * 1994-11-02 1994-12-21 Zeneca Ltd Reservoirs and delivery devices
EP0780134B1 (en) * 1995-12-19 2001-09-19 Fresenius AG A modular system, particularly for biomedical applications, a unit and a communication system for use therein
US5808203A (en) * 1997-05-12 1998-09-15 Medrad, Inc. Fluid pressure measurement devices
US6958053B1 (en) 1999-11-24 2005-10-25 Medrad, Inc. Injector providing drive member advancement and engagement with syringe plunger, and method of connecting a syringe to an injector
US6652489B2 (en) 2000-02-07 2003-11-25 Medrad, Inc. Front-loading medical injector and syringes, syringe interfaces, syringe adapters and syringe plungers for use therewith
WO2001087383A2 (en) * 2000-05-18 2001-11-22 Dentsply International, Inc. Fluid material dispensing syringe
AUPQ867900A0 (en) 2000-07-10 2000-08-03 Medrad, Inc. Medical injector system
WO2002030490A2 (en) * 2000-10-10 2002-04-18 Dentsply International Inc. Fluid material dispensing syringe
DE60235964D1 (en) * 2001-02-22 2010-05-27 Terumo Corp SYRINGE PUMP
US6805841B2 (en) 2001-05-09 2004-10-19 The Provost Fellows And Scholars Of The College Of The Holy And Undivided Trinity Of Queen Elizabeth Near Dublin Liquid pumping system
US6939323B2 (en) * 2001-10-26 2005-09-06 Massachusetts Institute Of Technology Needleless injector
DE60232098D1 (en) * 2001-12-31 2009-06-04 Trinity College Dublin DEVICE FOR CARRYING OUT CELL-BASED ANALYSIS PROCEDURES
US6985870B2 (en) 2002-01-11 2006-01-10 Baxter International Inc. Medication delivery system
US7553294B2 (en) 2002-05-30 2009-06-30 Medrad, Inc. Syringe plunger sensing mechanism for a medical injector
US7150724B2 (en) * 2002-06-05 2006-12-19 Cardinal Health 303, Inc. Syringe plunger driver system
AU2007203388B2 (en) * 2002-06-05 2011-02-24 Carefusion 303, Inc. Syringe plunger driver system
US7018361B2 (en) 2002-06-14 2006-03-28 Baxter International Inc. Infusion pump
US6997905B2 (en) 2002-06-14 2006-02-14 Baxter International Inc. Dual orientation display for a medical device
US6929619B2 (en) * 2002-08-02 2005-08-16 Liebel-Flarshiem Company Injector
AU2003272279B2 (en) 2002-09-06 2007-04-26 Massachusetts Institute Of Technology Measuring properties of an anatomical body
JP4286019B2 (en) * 2003-02-04 2009-06-24 株式会社根本杏林堂 Chemical injection system
ES2737835T3 (en) 2003-04-23 2020-01-16 Valeritas Inc Hydraulically driven pump for long-term medication administration
US7419478B1 (en) 2003-06-25 2008-09-02 Medrad, Inc. Front-loading syringe for medical injector having a flexible syringe retaining ring
US8422413B2 (en) * 2003-09-18 2013-04-16 Dentsply International Inc. Process and device for the wireless transmission of dental process data
CN100484580C (en) * 2003-10-29 2009-05-06 株式会社根本杏林堂 Medicinal liquid infusion apparatus
US8182461B2 (en) * 2003-11-04 2012-05-22 Smiths Medical Asd, Inc. Syringe pump rapid occlusion detection system
US7666169B2 (en) 2003-11-25 2010-02-23 Medrad, Inc. Syringe and syringe plungers for use with medical injectors
ITMO20040082A1 (en) * 2004-04-13 2004-07-13 Gambro Lundia Ab CONNECTOR FOR A FLUID LINE OF AN EXTACORPOREO CIRCUIT
ITMO20040085A1 (en) * 2004-04-20 2004-07-20 Gambro Lundia Ab INFUSION DEVICE FOR MEDICAL FLUIDS.
DE102004026932B4 (en) * 2004-06-01 2008-02-28 Schott Ag Method and device for positioning a feeder needle and feeder and production line
WO2006014425A1 (en) 2004-07-02 2006-02-09 Biovalve Technologies, Inc. Methods and devices for delivering glp-1 and uses thereof
US7833189B2 (en) 2005-02-11 2010-11-16 Massachusetts Institute Of Technology Controlled needle-free transport
US8840586B2 (en) * 2006-08-23 2014-09-23 Medtronic Minimed, Inc. Systems and methods allowing for reservoir filling and infusion medium delivery
US7641649B2 (en) 2005-05-06 2010-01-05 Medtronic Minimed, Inc. Reservoir support and method for infusion device
US8512288B2 (en) 2006-08-23 2013-08-20 Medtronic Minimed, Inc. Infusion medium delivery device and method with drive device for driving plunger in reservoir
US8277415B2 (en) 2006-08-23 2012-10-02 Medtronic Minimed, Inc. Infusion medium delivery device and method with drive device for driving plunger in reservoir
US20080097291A1 (en) * 2006-08-23 2008-04-24 Hanson Ian B Infusion pumps and methods and delivery devices and methods with same
US8137314B2 (en) * 2006-08-23 2012-03-20 Medtronic Minimed, Inc. Infusion medium delivery device and method with compressible or curved reservoir or conduit
US7905868B2 (en) 2006-08-23 2011-03-15 Medtronic Minimed, Inc. Infusion medium delivery device and method with drive device for driving plunger in reservoir
EP2335754B1 (en) 2006-02-09 2013-12-18 DEKA Products Limited Partnership Patch-sized fluid delivery systems
EP1998829B1 (en) 2006-03-14 2011-02-09 University Of Southern California Mems device for delivery of therapeutic agents
US8926569B2 (en) 2006-03-15 2015-01-06 Bayer Medical Care Inc. Plunger covers and plungers for use in syringes and methods of fabricating plunger covers and plungers for use in syringes
JP4732206B2 (en) * 2006-03-22 2011-07-27 株式会社根本杏林堂 Chemical injection system
JP2009532117A (en) 2006-03-30 2009-09-10 ヴァレリタス,エルエルシー Multi-cartridge fluid dispensing device
US7794434B2 (en) * 2006-08-23 2010-09-14 Medtronic Minimed, Inc. Systems and methods allowing for reservoir filling and infusion medium delivery
US7811262B2 (en) * 2006-08-23 2010-10-12 Medtronic Minimed, Inc. Systems and methods allowing for reservoir filling and infusion medium delivery
US7455663B2 (en) * 2006-08-23 2008-11-25 Medtronic Minimed, Inc. Infusion medium delivery system, device and method with needle inserter and needle inserter device and method
US7828764B2 (en) * 2006-08-23 2010-11-09 Medtronic Minimed, Inc. Systems and methods allowing for reservoir filling and infusion medium delivery
US20080051765A1 (en) * 2006-08-23 2008-02-28 Medtronic Minimed, Inc. Systems and methods allowing for reservoir filling and infusion medium delivery
US8454560B2 (en) * 2006-12-05 2013-06-04 Mallinckrodt Llc Syringe mount for a medical fluid injector
USD1002840S1 (en) 2007-03-14 2023-10-24 Bayer Healthcare Llc Syringe plunger
USD942005S1 (en) 2007-03-14 2022-01-25 Bayer Healthcare Llc Orange syringe plunger cover
USD847985S1 (en) 2007-03-14 2019-05-07 Bayer Healthcare Llc Syringe plunger cover
US8613725B2 (en) 2007-04-30 2013-12-24 Medtronic Minimed, Inc. Reservoir systems and methods
US7959715B2 (en) 2007-04-30 2011-06-14 Medtronic Minimed, Inc. Systems and methods allowing for reservoir air bubble management
US8434528B2 (en) 2007-04-30 2013-05-07 Medtronic Minimed, Inc. Systems and methods for reservoir filling
US7963954B2 (en) 2007-04-30 2011-06-21 Medtronic Minimed, Inc. Automated filling systems and methods
US8323250B2 (en) 2007-04-30 2012-12-04 Medtronic Minimed, Inc. Adhesive patch systems and methods
US8597243B2 (en) 2007-04-30 2013-12-03 Medtronic Minimed, Inc. Systems and methods allowing for reservoir air bubble management
JP5102350B2 (en) 2007-04-30 2012-12-19 メドトロニック ミニメド インコーポレイテッド Reservoir filling / bubble management / infusion medium delivery system and method using the system
US8062008B2 (en) 2007-09-27 2011-11-22 Curlin Medical Inc. Peristaltic pump and removable cassette therefor
US7934912B2 (en) 2007-09-27 2011-05-03 Curlin Medical Inc Peristaltic pump assembly with cassette and mounting pin arrangement
US8083503B2 (en) 2007-09-27 2011-12-27 Curlin Medical Inc. Peristaltic pump assembly and regulator therefor
US8517990B2 (en) 2007-12-18 2013-08-27 Hospira, Inc. User interface improvements for medical devices
EP2666510B1 (en) 2007-12-20 2017-10-18 University Of Southern California Apparatus for controlled delivery of therapeutic agents
US8986253B2 (en) 2008-01-25 2015-03-24 Tandem Diabetes Care, Inc. Two chamber pumps and related methods
US9333297B2 (en) 2008-05-08 2016-05-10 Minipumps, Llc Drug-delivery pump with intelligent control
CN104353150A (en) 2008-05-08 2015-02-18 迷你泵有限责任公司 Implantable pums and cannulas therefor
US8231609B2 (en) 2008-05-08 2012-07-31 Minipumps, Llc Drug-delivery pumps and methods of manufacture
US8408421B2 (en) 2008-09-16 2013-04-02 Tandem Diabetes Care, Inc. Flow regulating stopcocks and related methods
US8650937B2 (en) 2008-09-19 2014-02-18 Tandem Diabetes Care, Inc. Solute concentration measurement device and related methods
US8105269B2 (en) 2008-10-24 2012-01-31 Baxter International Inc. In situ tubing measurements for infusion pumps
US8378837B2 (en) * 2009-02-20 2013-02-19 Hospira, Inc. Occlusion detection system
US8137083B2 (en) 2009-03-11 2012-03-20 Baxter International Inc. Infusion pump actuators, system and method for controlling medical fluid flowrate
WO2010118043A1 (en) * 2009-04-06 2010-10-14 Harvard Apparatus, Inc. Improvements in laboratory syringe pumps
EP2724739B1 (en) 2009-07-30 2015-07-01 Tandem Diabetes Care, Inc. Portable infusion pump system
EP2467797B1 (en) 2009-08-18 2017-07-19 MiniPumps, LLC Electrolytic drug-delivery pump with adaptive control
US8758271B2 (en) 2009-09-01 2014-06-24 Massachusetts Institute Of Technology Nonlinear system identification techniques and devices for discovering dynamic and static tissue properties
WO2011028716A1 (en) * 2009-09-01 2011-03-10 Massachusetts Institute Of Technology Nonlinear system identification technique for testing the efficacy of skin care products
US20110097229A1 (en) * 2009-10-09 2011-04-28 Cauley Iii Thomas Henry Feedback Controlled Syringe Pump
US8552880B2 (en) * 2009-12-04 2013-10-08 Smiths Medical Asd, Inc. Guided user help system for an ambulatory infusion system
WO2011084511A1 (en) 2009-12-15 2011-07-14 Massachusetts Institute Of Technology Jet injector use in oral evaluation
US8382447B2 (en) 2009-12-31 2013-02-26 Baxter International, Inc. Shuttle pump with controlled geometry
WO2011126895A2 (en) * 2010-03-30 2011-10-13 Deka Products Limited Partnership Infusion pump methods, systems and apparatus
MX2012012133A (en) * 2010-04-20 2013-03-05 Minipumps Llc Electrolytically driven drug pump devices.
US9108047B2 (en) 2010-06-04 2015-08-18 Bayer Medical Care Inc. System and method for planning and monitoring multi-dose radiopharmaceutical usage on radiopharmaceutical injectors
US8567235B2 (en) 2010-06-29 2013-10-29 Baxter International Inc. Tube measurement technique using linear actuator and pressure sensor
JP3181663U (en) 2011-05-12 2013-02-21 メドラッド、インク. Syringes for use in fluid delivery systems
US9240002B2 (en) 2011-08-19 2016-01-19 Hospira, Inc. Systems and methods for a graphical interface including a graphical representation of medical data
JP6146875B2 (en) 2011-10-11 2017-06-14 ホスピテック レスピレーション リミテッド Pressure controlled syringe
CN104136054A (en) * 2011-11-08 2014-11-05 戴维·R·邓肯 Compact non-electric medicament infuser
US10022498B2 (en) 2011-12-16 2018-07-17 Icu Medical, Inc. System for monitoring and delivering medication to a patient and method of using the same to minimize the risks associated with automated therapy
JP6306566B2 (en) 2012-03-30 2018-04-04 アイシーユー・メディカル・インコーポレーテッド Air detection system and method for detecting air in an infusion system pump
US9180242B2 (en) 2012-05-17 2015-11-10 Tandem Diabetes Care, Inc. Methods and devices for multiple fluid transfer
CA3089257C (en) 2012-07-31 2023-07-25 Icu Medical, Inc. Patient care system for critical medications
US9174003B2 (en) 2012-09-28 2015-11-03 Bayer Medical Care Inc. Quick release plunger
ES2749187T3 (en) 2012-12-31 2020-03-19 Gambro Lundia Ab Detection of occlusions in fluid administration
US9173998B2 (en) 2013-03-14 2015-11-03 Tandem Diabetes Care, Inc. System and method for detecting occlusions in an infusion pump
US9421329B2 (en) 2013-03-15 2016-08-23 Tandem Diabetes Care, Inc. Infusion device occlusion detection system
AU2014268355B2 (en) 2013-05-24 2018-06-14 Icu Medical, Inc. Multi-sensor infusion system for detecting air or an occlusion in the infusion system
EP3003441B1 (en) 2013-05-29 2020-12-02 ICU Medical, Inc. Infusion system which utilizes one or more sensors and additional information to make an air determination regarding the infusion system
ES2845748T3 (en) 2013-05-29 2021-07-27 Icu Medical Inc Infusion system and method of use that prevent oversaturation of an analog-digital converter
US20150182697A1 (en) 2013-12-31 2015-07-02 Abbvie Inc. Pump, motor and assembly for beneficial agent delivery
AU2015222800B2 (en) 2014-02-28 2019-10-17 Icu Medical, Inc. Infusion system and method which utilizes dual wavelength optical air-in-line detection
EP3119453B1 (en) 2014-03-19 2019-02-27 Bayer Healthcare LLC System for syringe engagement to an injector
US10758672B2 (en) 2014-05-15 2020-09-01 The General Hospital Corporation Prediction, visualization, and control of drug delivery by multiple infusion pumps
AU2015266706B2 (en) 2014-05-29 2020-01-30 Icu Medical, Inc. Infusion system and pump with configurable closed loop delivery rate catch-up
US11344668B2 (en) 2014-12-19 2022-05-31 Icu Medical, Inc. Infusion system with concurrent TPN/insulin infusion
US10850024B2 (en) 2015-03-02 2020-12-01 Icu Medical, Inc. Infusion system, device, and method having advanced infusion features
US10589016B2 (en) 2015-04-15 2020-03-17 Gambro Lundia Ab Treatment system with infusion apparatus pressure priming
US9480797B1 (en) 2015-10-28 2016-11-01 Bayer Healthcare Llc System and method for syringe plunger engagement with an injector
EP3167923A1 (en) * 2015-11-13 2017-05-17 Fresenius Vial SAS Method for detecting an occlusion in an infusion line
US10881791B2 (en) 2016-03-23 2021-01-05 Fresenius Vial Sas Infusion device and method for administering a medical fluid to a patient
WO2017197024A1 (en) 2016-05-13 2017-11-16 Icu Medical, Inc. Infusion pump system and method with common line auto flush
WO2017214441A1 (en) 2016-06-10 2017-12-14 Icu Medical, Inc. Acoustic flow sensor for continuous medication flow measurements and feedback control of infusion
DE102017105481A1 (en) * 2017-03-15 2018-09-20 Medtron Ag injector
US10089055B1 (en) 2017-12-27 2018-10-02 Icu Medical, Inc. Synchronized display of screen content on networked devices
DK3758777T3 (en) 2018-02-27 2023-02-27 Bayer Healthcare Llc INJECTION PISTON ENGAGEMENT MECHANISM
US11278671B2 (en) 2019-12-04 2022-03-22 Icu Medical, Inc. Infusion pump with safety sequence keypad
EP4185260A1 (en) 2020-07-21 2023-05-31 ICU Medical, Inc. Fluid transfer devices and methods of use
US11135360B1 (en) 2020-12-07 2021-10-05 Icu Medical, Inc. Concurrent infusion with common line auto flush
CN116568347A (en) * 2020-12-09 2023-08-08 施曼信医疗Asd公司 Infusion pump with occlusion detection

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4322201A (en) * 1979-03-09 1982-03-30 Avi, Inc. IV Pump with back pressure control
US4460355A (en) * 1982-06-11 1984-07-17 Ivac Corporation Fluid pressure monitoring system
US4747828A (en) * 1986-12-09 1988-05-31 Fisher Scientific Group IV fluid line occlusion detector
US4898579A (en) * 1987-06-26 1990-02-06 Pump Controller Corporation Infusion pump
US4836752A (en) * 1987-11-02 1989-06-06 Fisher Scientific Company Partial restriction detector
DE3741802C1 (en) * 1987-12-10 1988-11-24 Braun Melsungen Ag Method for monitoring the operation of an infusion syringe pump
DE3902943A1 (en) * 1989-02-01 1990-08-09 Wolf Gmbh Richard DEVICE FOR INPUTING AND EXTRACTING LIQUIDS IN OR FROM BODY HOLLOW ORGANS
EP0429866B1 (en) * 1989-11-02 1994-05-25 Ivac Corporation Apparatus and method for measuring pressure in a fluid line for detecting an occlusion in said fluid line

Also Published As

Publication number Publication date
DE69320282T2 (en) 1998-12-17
DE69320282D1 (en) 1998-09-17
EP0589439A3 (en) 1995-02-15
US5242408A (en) 1993-09-07
JPH07289638A (en) 1995-11-07
EP0589439A2 (en) 1994-03-30
EP0589439B1 (en) 1998-08-12

Similar Documents

Publication Publication Date Title
JP2527527B2 (en) Method and apparatus for pressure determination and occlusion detection in syringe pumps
JP2544893B2 (en) Syringe pump with continuous pressure monitoring and display
US5501665A (en) Process and device for detection of obstructions in a perfusion line
US20230248903A1 (en) Occlusion detection system and method
US4950244A (en) Pressure sensor assembly for disposable pump cassette
EP0589328B1 (en) Syringe pump with graphical display of error conditions
EP2241344B1 (en) Ambulatory infusion device with sensor testing unit
CA2562232A1 (en) Device and method for the detection of an occlusion in infusion pumps
EP3374003B1 (en) Method for detecting an occlusion in an infusion line
JP2004512906A (en) Blockage detection method and blockage detection system for outpatient drug infusion pump
WO2006116997A1 (en) Handheld injection device with integrated force sensor
JP3307642B2 (en) Pressure measuring instruments, especially for injection devices
CN109195646B (en) Infusion device and method allowing detection of drift of sensor signal
US20070088265A1 (en) Adapter and pump interface for measuring pressure on an infusion pump
EP3463511B1 (en) Infusion device and method allowing for detecting a drift in a sensor signal
CN219206989U (en) CT equipment
WO2000008432A2 (en) Pressure measuring device
CN117915969A (en) Infusion device with processing means configured to determine a value indicative of the sensitivity of the sensor device
JPH01249038A (en) Continuous blood pressure measuring device
JPH0373308B2 (en)

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080614

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090614

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100614

Year of fee payment: 14

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110614

Year of fee payment: 15

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120614

Year of fee payment: 16

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130614

Year of fee payment: 17