JP2525189B2 - Photovoltaic power generation method and device for effectively utilizing sunlight - Google Patents

Photovoltaic power generation method and device for effectively utilizing sunlight

Info

Publication number
JP2525189B2
JP2525189B2 JP62153097A JP15309787A JP2525189B2 JP 2525189 B2 JP2525189 B2 JP 2525189B2 JP 62153097 A JP62153097 A JP 62153097A JP 15309787 A JP15309787 A JP 15309787A JP 2525189 B2 JP2525189 B2 JP 2525189B2
Authority
JP
Japan
Prior art keywords
solar cell
heat
power generation
sunlight
fluorescent dye
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP62153097A
Other languages
Japanese (ja)
Other versions
JPS63318169A (en
Inventor
孝 堀米
卓夫 清水
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shimizu Construction Co Ltd
Mitsui Toatsu Chemicals Inc
Original Assignee
Shimizu Construction Co Ltd
Mitsui Toatsu Chemicals Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shimizu Construction Co Ltd, Mitsui Toatsu Chemicals Inc filed Critical Shimizu Construction Co Ltd
Priority to JP62153097A priority Critical patent/JP2525189B2/en
Publication of JPS63318169A publication Critical patent/JPS63318169A/en
Application granted granted Critical
Publication of JP2525189B2 publication Critical patent/JP2525189B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/054Optical elements directly associated or integrated with the PV cell, e.g. light-reflecting means or light-concentrating means
    • H01L31/055Optical elements directly associated or integrated with the PV cell, e.g. light-reflecting means or light-concentrating means where light is absorbed and re-emitted at a different wavelength by the optical element directly associated or integrated with the PV cell, e.g. by using luminescent material, fluorescent concentrators or up-conversion arrangements
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B10/00Integration of renewable energy sources in buildings
    • Y02B10/10Photovoltaic [PV]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/52PV systems with concentrators

Landscapes

  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Photovoltaic Devices (AREA)

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、太陽光発電方法及びそのデバイスの改良に
関し、詳しくは太陽光を電気エネルギーに高効率に変換
するだけでなく、更に効率よく熱回収可能な太陽光発電
方法及びそのデバイスに関するものである。
Description: TECHNICAL FIELD The present invention relates to improvement of a solar power generation method and a device thereof, and more specifically, not only highly efficiently converts sunlight into electric energy, but also more efficiently heats it. The present invention relates to a recoverable solar power generation method and a device thereof.

[発明の背景] 太陽エネルギーを電気エネルギーに変換する技術とし
て太陽電池があり、近時、太陽電池の光電変換効率の向
上技術の開発は盛んに行われているが、太陽エネルギー
特に太陽光を総合的に高効率で発電する技術はほとんど
開発されておらず、未だ満足できる段階には到っていな
いのが現状である。
[Background of the Invention] There is a solar cell as a technology for converting solar energy into electric energy, and recently, a technology for improving photoelectric conversion efficiency of the solar cell has been actively developed. The technology to generate electricity with high efficiency has hardly been developed, and it is the current situation that it is not yet at a satisfactory stage.

周知の如く、太陽電池には多種多様のものがあり、各
々製造コスト、光電変換効率、形状ないし体裁等につい
て異なるばかりでなく、その分光感度特性(バンドギャ
ップ)も異なっている。
As is well known, there are various types of solar cells, and not only the manufacturing cost, the photoelectric conversion efficiency, the shape and the appearance, etc., but also the spectral sensitivity characteristics (bandgap) thereof are different.

このようにバンドギャップの異なる太陽電池の複数個
を組合せて用い、太陽光を総合的に効率よく電気エネル
ギーに変換する試みもなされている。
As described above, attempts have been made to convert sunlight into electric energy comprehensively and efficiently by using a plurality of solar cells having different band gaps in combination.

即ち、例えばバンドギャップの異なるアモルファス太
陽電池を多層に重ねたタンデム型アモルファス太陽電池
や結晶型太陽電池の上にアモルファス太陽電池を設置し
たタンデム型太陽電池は従来から考えられているが、こ
の技術は、太陽光をその波長のまま、複数のプロセスに
て電気エネルギーに変換するものであるため、多層に設
置する太陽電池の選択範囲が限られるという不都合があ
る。
That is, for example, a tandem type amorphous solar cell in which amorphous solar cells having different band gaps are stacked in multiple layers or a tandem type solar cell in which an amorphous solar cell is installed on a crystalline type solar cell has been conventionally considered. However, since sunlight is converted into electric energy in a plurality of processes while keeping its wavelength, there is a disadvantage that the selection range of the solar cells installed in multiple layers is limited.

かかる不都合を解消すべく、鋭意検討を重ねた結果、
本発明者等は、先に特願昭61-150109号明細書におい
て、太陽光を波長選別し、太陽光を総合的に効率よく電
気エネルギーに変換する技術を提案した。
As a result of intensive studies to eliminate such inconvenience,
The present inventors previously proposed a technique in Japanese Patent Application No. 61-150109, in which sunlight is wavelength-selected and the sunlight is comprehensively and efficiently converted into electric energy.

[発明の目的] 本発明は、先に自ら提案した高効率的な電気エネルギ
ー変換技術を更に改良し、太陽光の総合的有効利用を図
り、実用的かつ省エネ型である太陽光発電方法及びその
デバイスを提供することを目的とする。
[Object of the Invention] The present invention further improves the high-efficiency electric energy conversion technology, which has been previously proposed by itself, achieves a comprehensive effective utilization of sunlight, and is a practical and energy-saving type photovoltaic power generation method and its method. Intended to provide the device.

[発明の構成] 本発明に係る太陽光発電方法は、集光部の少なくとも
一端面において、前記集光部に含有された蛍光色素より
放射された蛍光を太陽電池に入射させ、前記集光部に入
射した太陽光を波長選別し電気エネルギーに変換する太
陽光発電方法において、前記集光部が透明容器で形成さ
れ、該容器内に蛍光色素を溶解した熱媒を含有し、該熱
媒から熱回収することを特徴とする。
[Structure of the Invention] In the solar power generation method according to the present invention, the fluorescence emitted from the fluorescent dye contained in the condensing part is made incident on the solar cell on at least one end face of the condensing part, and the condensing part is formed. In the photovoltaic power generation method of wavelength-selecting sunlight incident on and converting it into electric energy, the condensing part is formed of a transparent container, and the container contains a heat medium in which a fluorescent dye is dissolved. Characterized by heat recovery.

また、上記本発明法を実施するのに適切な本発明に係
る太陽光発電デバイスは、波長選別する集光部の少なく
とも一端面に、該集光部に含有された蛍光色素が入射し
た太陽光を吸収して放射する蛍光を電気エネルギーに変
換する太陽電池が設けられた太陽光発電デバイスにおい
て、前記集光部が蛍光色素を溶解した且つ熱回収可能な
熱媒を含有する透明容器であることを特徴とする。
Further, the photovoltaic power generation device according to the present invention suitable for carrying out the method of the present invention is a solar light in which the fluorescent dye contained in the light condensing part is incident on at least one end face of the light condensing part for wavelength selection. In a photovoltaic power generation device provided with a solar cell that absorbs and radiates fluorescence emitted into electric energy, the condensing part is a transparent container containing a heat medium capable of dissolving a fluorescent dye and recovering heat. Is characterized by.

[発明の作用] 本発明は、蛍光色素を溶解した且つ熱回収可能な熱媒
を含有する透明容器を用いて、波長選別して、その各々
の波長帯に適した太陽電池を用いて効率よく太陽エネル
ギー特に太陽光を電気エネルギーに変換すると共に効率
的な熱回収を行い、太陽光の総合的有効利用を図るもの
である。
[Operation of the Invention] The present invention efficiently selects a wavelength using a transparent container containing a heat medium capable of recovering heat and containing a fluorescent dye, and efficiently uses a solar cell suitable for each wavelength band. Solar energy, in particular sunlight, is converted into electrical energy and efficient heat recovery is performed to achieve comprehensive effective utilization of sunlight.

[発明の具体的構成] 本発明において透明容器は、方形状のガラス又はプラ
スチック性の透明(半透明含む)容器であり、内部には
蛍光色素が溶解された熱媒を含む。従って該透明容器に
太陽光を当てると、反射光の他に、ある波長帯の光を吸
収して、異なった波長帯の光を放射する(吸収・放射す
る光の波長帯は蛍光色素により異なる)ものである。ま
た熱媒の存在によって太陽の熱エネルギーを吸収するこ
とができる。
[Specific Configuration of the Invention] In the present invention, the transparent container is a rectangular glass or plastic transparent (including semi-transparent) container, and contains a heat medium in which a fluorescent dye is dissolved. Therefore, when sunlight is applied to the transparent container, in addition to reflected light, it absorbs light in a certain wavelength band and emits light in different wavelength bands (the wavelength band of light absorbed / emitted differs depending on the fluorescent dye). ). Further, the heat energy of the sun can be absorbed by the presence of the heat medium.

蛍光色素としては、例えば昼光蛍光染料、又は顔料色
素があり、熱媒に溶解可能なものが用いられる。好まし
い蛍光染料としては、例えば、C.I.49005,C.I.46040,C.
I.45170,C.I.45350,C.I.45380等が挙げられる。
Examples of fluorescent dyes include daylight fluorescent dyes and pigment dyes, and those soluble in a heat medium are used. Preferred fluorescent dyes include, for example, CI49005, CI46040, C.
I.45170, CI45350, CI45380 and the like.

熱媒としては、例えば酢酸エチル等のエステル類、メ
タノール、エタノール等のアルコール類、その他水等が
用いられ、蛍光色素との関係で好ましいものを選択使用
する。
As the heat medium, for example, esters such as ethyl acetate, alcohols such as methanol and ethanol, and other water and the like are used, and one preferable in relation to the fluorescent dye is selected and used.

本発明において、蛍光色素として、例えばレッド・オ
レンジを用いた場合には、第3図に示す如く、入射太陽
光(白色光)のうち黄赤部を反射し[反射成分
(1)]、その上、吸収した紫外〜青紫の入射エネルギ
ーを黄赤色の発光に変換して放射ないし反射する[蛍光
成分(2)]ため、両者が重なり合って輝くような黄赤
色[(3)の成分=(1)+(2)]に見えることとな
る。
In the present invention, when red or orange, for example, is used as the fluorescent dye, as shown in FIG. 3, the yellow-red part of incident sunlight (white light) is reflected [reflection component (1)], and Since the absorbed incident energy of ultraviolet to blue-violet is converted into yellow-red luminescence and emitted or reflected [fluorescent component (2)], yellow-red [(3) component = (1) + where both are superposed and shining. (2)].

本発明の透明容器において、かかる蛍光色素から放射
ないし反射された光(反射光(1)と蛍光との合計成分
(3))は、略全反射して該容器端面に集光される。こ
のように特別な光学系(レンズや反射鏡)を用いずに、
或る波長の光が該容器の端面に集光される。かかる波長
選別は、用いる蛍光色素によって決め得る。
In the transparent container of the present invention, the light emitted or reflected from the fluorescent dye (the total component (3) of the reflected light (1) and the fluorescence) is substantially totally reflected and condensed on the end face of the container. In this way, without using a special optical system (lens or reflecting mirror),
Light of a certain wavelength is focused on the end face of the container. Such wavelength selection can be determined depending on the fluorescent dye used.

本発明においては、透明容器の端面に用いられる太陽
電池のバンドギャップに応じて上記波長選別を行うこと
ができる。
In the present invention, the wavelength selection can be performed according to the band gap of the solar cell used for the end surface of the transparent container.

本発明に用いられる太陽電池は、いずれのタイプのも
のであってもよい。即ち、アモルファス(非結晶型)、
結晶型のいずれでもよいし、いわゆる化合物半導体タイ
プでもよいし、その他のタイプでもよい。
The solar cell used in the present invention may be of any type. That is, amorphous (non-crystalline),
It may be any of crystal type, so-called compound semiconductor type, and other types.

また本発明の太陽電池は、乾式、湿式のいずれのタイ
プでもよく、乾式型のシリコン太陽電池は単結晶、多結
晶(インゴットおよびリボン)、アモルファスのいずれ
でもよく、化合物半導体(有機および無機)太陽電池で
もよい。湿式では化合物半導体太陽電池等が挙げられ
る。また、色素を励起することにより働く光電池(例え
ば光ガルバニ電池、色素増感電池等)の如き光の作用で
働く化学電池や、有機薄膜を素材とする太陽電池、或は
金属薄膜とトンネルダイオードを組合せたプラズモン太
陽電池を用いてもよい。
Further, the solar cell of the present invention may be of either dry type or wet type, and the dry type silicon solar cell may be any of single crystal, polycrystal (ingot and ribbon) and amorphous, and compound semiconductor (organic and inorganic) solar cells. Batteries are also acceptable. In the case of a wet type, a compound semiconductor solar cell and the like can be mentioned. Also, chemical cells that work by the action of light such as photovoltaic cells that work by exciting dyes (eg, photogalvanic cells, dye-sensitized cells, etc.), solar cells made of organic thin films, or metal thin films and tunnel diodes are used. A combined plasmon solar cell may be used.

本発明に好ましく用いられる太陽電池については、日
本化学会、昭和59年10月1日発行の「化学と工業」第37
巻第10号671頁〜678頁「太陽電池の化学的課題」及び
「光の作用で働く化学電池」の記載、並びに特開昭59-4
179号、同59-47777号、同59-96722号公報等を参照でき
る。
For the solar cell preferably used in the present invention, see “Chemicals and Industry”, No. 37, published by the Chemical Society of Japan, October 1, 1984.
Vol. 10, pp. 671-678, "Chemical problems of solar cells" and "Chemical cells working by the action of light", and JP-A-59-4
No. 179, No. 59-47777, No. 59-96722, etc. can be referred to.

本発明において、熱媒に吸収された熱エネルギーを回
収する手段は、特に限定されず、例えば熱交換器(液−
液型など)等を用いることができ、特に省エネ等を考慮
し、透明容器内の液の対流を利用し自然循環による熱交
換を行うことも好ましい。
In the present invention, the means for recovering the heat energy absorbed in the heat medium is not particularly limited, and may be, for example, a heat exchanger (liquid-
A liquid type) or the like can be used, and it is also preferable to perform heat exchange by natural circulation using convection of the liquid in the transparent container in consideration of energy saving.

以下、本発明の方法を実施するための太陽光発電デバ
イスについて添付図面に基き説明する。
Hereinafter, a photovoltaic power generation device for carrying out the method of the present invention will be described with reference to the accompanying drawings.

第1図は、太陽光発電デバイスの一例を示す斜視図、
第2図は、同上の概略側面図である。
FIG. 1 is a perspective view showing an example of a solar power generation device,
FIG. 2 is a schematic side view of the above.

第1図及び第2図において、1は方形状の透明プラス
チック容器であり、該透明容器1内には蛍光色素2が溶
解された熱媒3を含む。4は該透明容器1の太陽光入射
面(上面)に設けられた第1太陽電池、5は透明容器1
の一端面に設けられた第2太陽電池、6は透明容器1の
下端に設けられた第3太陽電池である。尚、7は透明容
器1の上記太陽電池の設けられていない面に設けられた
反射膜である。
In FIGS. 1 and 2, reference numeral 1 denotes a rectangular transparent plastic container, and the transparent container 1 contains a heat medium 3 in which a fluorescent dye 2 is dissolved. Reference numeral 4 is a first solar cell provided on the sunlight incident surface (upper surface) of the transparent container 1, and 5 is the transparent container 1.
2 is a second solar cell provided on one end surface of the transparent solar cell, and 6 is a third solar cell provided on the lower end of the transparent container 1. Reference numeral 7 is a reflective film provided on the surface of the transparent container 1 on which the solar cell is not provided.

本実施例において、例えば第1太陽電池4としてアモ
ルファス太陽電池を用い、第2太陽電池5として結晶型
太陽電池を用い、そして第3太陽電池6として化合物半
導体太陽電池を用いる、というように異なるバンドギャ
ップをもった太陽電池を用いることが、太陽光を電気エ
ネルギーへの効率的変換という点から好ましい。
In this embodiment, for example, an amorphous solar cell is used as the first solar cell 4, a crystalline solar cell is used as the second solar cell 5, and a compound semiconductor solar cell is used as the third solar cell 6. It is preferable to use a solar cell having a gap in terms of efficient conversion of sunlight into electric energy.

即ち、本実施例の場合、透明容器1の上に、例えばア
モルファス太陽電池4を設置して、短波長側の太陽エネ
ルギーを電気エネルギーに変換する。次にアモルファス
太陽電池4を透過した太陽光(主に中波長帯)を透明容
器1に当て、蛍光色素2に吸収・放射させ中波長帯をよ
り長波長帯にシフトし、これを端面に設置した結晶型太
陽電池5に当て、電気エネルギーに変換する。一方、透
明容器1を透過した太陽光(主に長波長帯)を透明容器
1の下に設置した化合物半導体太陽電池6にて電気エネ
ルギーに変換する。
That is, in the case of the present embodiment, for example, an amorphous solar cell 4 is installed on the transparent container 1 to convert solar energy on the short wavelength side into electric energy. Next, sunlight (mainly medium wavelength band) that has passed through the amorphous solar cell 4 is applied to the transparent container 1 to be absorbed and emitted by the fluorescent dye 2 to shift the medium wavelength band to a longer wavelength band, which is installed on the end face. The crystalline solar cell 5 is applied and converted into electric energy. On the other hand, the sunlight (mainly in the long wavelength band) transmitted through the transparent container 1 is converted into electric energy by the compound semiconductor solar cell 6 installed under the transparent container 1.

このように3段階プロセスにて太陽エネルギーを波長
選別して、その各々の波長帯に最適な分光感度特性をも
った3種類の太陽電池にて色々な波長帯を含む太陽エネ
ルギーを効率よく電気エネルギー、即ち電力に変換する
ものである。
In this way, the solar energy is wavelength-selected by the three-step process, and the solar energy including various wavelength bands is efficiently converted into electric energy by the three types of solar cells having the optimum spectral sensitivity characteristics for each wavelength band. That is, it is converted into electric power.

第1図及び第2図において、8は多管8Aを有する熱交
換器であり、9は冷水入口、10は温水出口である。11は
透明容器1の上部出口1Aと熱交換器8の入口を連結する
パイプであり、該パイプ11の途中には、ポンプ12(サク
ション側には図示しないストレーナーが設けられている
ことが好ましい)が設けられている。13は熱交換器8の
出口と透明容器1の下部入口1Bを連結するパイプであ
る。
In FIGS. 1 and 2, 8 is a heat exchanger having a multi-tube 8A, 9 is a cold water inlet, and 10 is a hot water outlet. Reference numeral 11 is a pipe that connects the upper outlet 1A of the transparent container 1 and the inlet of the heat exchanger 8, and a pump 12 in the middle of the pipe 11 (a strainer (not shown) is preferably provided on the suction side) Is provided. Reference numeral 13 is a pipe that connects the outlet of the heat exchanger 8 and the lower inlet 1B of the transparent container 1.

尚、熱交換器8は透明容器1の近傍(接設含む)に設
けられてもよいが、離れた場所(例えば地上のメンテナ
ンスしやすい場所等)に設けられてもよい。また熱交換
器8のタイプは上記に限定されず公知の種々のタイプの
ものを用いることができる。
The heat exchanger 8 may be provided in the vicinity of the transparent container 1 (including the contact), but may be provided in a remote place (for example, a place on the ground where maintenance is easy). The type of the heat exchanger 8 is not limited to the above, and various known types can be used.

本発明における太陽光のエネルギーの利用形態は種々
のタイプが考えられ、以下に主なタイプを例示する。
Various types of energy utilization forms of sunlight in the present invention are conceivable, and the main types are exemplified below.

第1太陽電池4、第2太陽電池5、第3太陽電池6を
設け波長選別された光を電気に利用し、これとは別に熱
交換器を設け、全ての波長域の光を熱回収に利用するタ
イプ 第1太陽電池4、第2太陽電池5を設け、第3太陽電
池の部位に熱交換手段を設け、短波、中波域の光を電気
に利用し、長波域の光を熱回収に利用するタイプ(第1
太陽電池又は第2太陽電池の部位に熱交換手段を設け、
短波、中波域の光を熱回収に利用してもよい) のタイプで、第3太陽電池を省略し、採光の利用を
付加したタイプ 太陽光の熱エネルギー(太陽光の全エネルギーから太
陽電池等で消費したエネルギーを差引いたエネルギー)
を吸収した熱媒は、透明容器1内に攪拌等の動力を与え
ない限り、容器の上方が先に温度上昇し、次第に下方に
熱伝導して下方の熱媒も温度上昇し、全体的に温度上昇
する。従って全体的に温度上昇した後には、容器1のい
ずれの部位から熱媒を引き抜いてもよいが、下方に熱伝
導が十分になされていない段階では、図示の如く容器の
上部出口1Aからポンプ12を用いて熱媒を引き抜くことが
好ましい。熱媒は熱交換器8内で熱交換され、冷水を温
水に加温する。この熱交換(ポンプの作動による熱媒の
供給、冷水の供給等)は連続的に行ってもよいが、バッ
チ式で行ってもよい。温水は適当な方法によって貯蔵し
ておくこともできる。なお公知の蓄熱法(例えば地下蓄
熱法等)を利用してもよい。
The first solar cell 4, the second solar cell 5, and the third solar cell 6 are provided to use the wavelength-selected light for electricity. In addition to this, a heat exchanger is provided to recover the light in all wavelength ranges. Type to be used First solar cell 4 and second solar cell 5 are provided, heat exchanging means is provided at a portion of the third solar cell, light in the short wave and medium wave regions is used for electricity, and light in the long wave region is recovered. Type used for (1st
Providing heat exchange means at the solar cell or the second solar cell,
Short-wave and mid-wave light may be used for heat recovery), type that omits the third solar cell and adds the use of daylight Thermal energy of sunlight (from total solar energy to solar cells) (Energy obtained by subtracting the energy consumed by
The temperature of the heat medium that has absorbed the temperature of the upper part of the container rises first, and the temperature of the heat medium in the lower part gradually rises, and the temperature of the lower heat carrier also rises, unless the transparent container 1 is powered by stirring or the like. Temperature rises. Therefore, after the temperature has risen as a whole, the heat medium may be drawn out from any part of the container 1, but at a stage where heat conduction is not sufficiently downward, as shown in the figure, the pump 12 is discharged from the upper outlet 1A of the container. It is preferable to draw out the heat medium by using. The heat medium is heat-exchanged in the heat exchanger 8 to heat cold water to warm water. This heat exchange (supply of heat medium by operation of pump, supply of cold water, etc.) may be performed continuously, or may be performed in a batch system. The warm water may be stored by any suitable method. A known heat storage method (for example, underground heat storage method) may be used.

上記実施例では、ポンプを用いているが、連結パイプ
11と熱交換器8内を密封系にし、熱交換器を透明容器内
の液面より高い位置に設けることにより、透明容器内の
熱吸収した熱媒は低密度になるため熱交換器内に移動
し、熱交換可能となるので、必ずしもポンプを必要とし
ない。なお容器内の上面は熱媒が熱交換器の方へ容易に
移動できるように傾斜を有していることが好ましい。
In the above embodiment, the pump is used, but the connecting pipe
By making the inside of the heat exchanger 11 and the heat exchanger 8 a closed system and providing the heat exchanger at a position higher than the liquid level in the transparent container, the heat medium that has absorbed heat in the transparent container has a low density, so It does not necessarily require a pump as it can be moved and heat exchanged. The upper surface in the container is preferably inclined so that the heat medium can be easily moved to the heat exchanger.

尚、上記実施例においては、容器内の熱媒を交換して
もよい場合には、透明容器内の熱媒の液面と熱交換器の
位置にヘッド差をとり、ポンプを省略して、例えばバル
ブやコックにより適当な流量に調整するだけで、熱交換
を行うことができる。熱交換器から排出された熱媒は適
当な容器に受け入れ、使用するか(再処理後に再使用す
る場合含む)、あるいは廃棄する(処理して廃棄するこ
とが好ましい)。
Incidentally, in the above embodiment, when the heat medium in the container may be replaced, the head difference is taken between the liquid level of the heat medium in the transparent container and the position of the heat exchanger, and the pump is omitted. For example, the heat exchange can be performed only by adjusting the flow rate to an appropriate value with a valve or a cock. The heat medium discharged from the heat exchanger is received in a suitable container and either used (including a case where it is reused after reprocessing) or discarded (preferably treated and discarded).

尚また上記実施例においては、太陽電池の発熱エネル
ギーを吸収するための伝熱パイプ14を設けることも好ま
しい。パイプ14の取り付け方・本数等については、より
効率的な設計とすることが好ましい。
Further, in the above embodiment, it is also preferable to provide the heat transfer pipe 14 for absorbing the heat generation energy of the solar cell. It is preferable that the pipe 14 is attached more efficiently and the number of pipes 14 is designed more efficiently.

尚、本発明の集光部ないし第1太陽電池に入射する太
陽光は直射日光であっても散乱光であっても収束光であ
ってもよい。
The sunlight incident on the light condensing unit or the first solar cell of the present invention may be direct sunlight, scattered light, or convergent light.

又蛍光色素の耐久性(耐候性)を向上させるための技
術(例えばクリヤーオーバレイ)を適用することは好ま
しいことである。
It is also preferable to apply a technique (for example, clear overlay) for improving the durability (weather resistance) of the fluorescent dye.

なお本発明の透明容器と特願昭61-150109号に記載の
蛍光型集光板を組合せ使用することもできる。
The transparent container of the present invention may be used in combination with the fluorescent light condensing plate described in Japanese Patent Application No. 61-150109.

[発明の効果] 本発明によれば特有の透明容器と太陽電池の組合せに
よって、太陽光を波長選別し、太陽光を総合的に効率よ
く電気エネルギーに変換でき、かつ太陽光の熱エネルギ
ーを吸収して、太陽光の総合的有効利用をはかり、実用
的、かつ省エネ型の太陽光発電方法及びそのデバイスを
提供できる。
[Effects of the Invention] According to the present invention, sunlight is wavelength-selected by a combination of a unique transparent container and a solar cell, the sunlight can be efficiently and comprehensively converted into electric energy, and the heat energy of the sunlight is absorbed. As a result, it is possible to provide a practical and energy-saving solar power generation method and its device by comprehensively utilizing sunlight effectively.

【図面の簡単な説明】 第1図は、太陽光発電デバイスの一例を示す斜視図、第
2図は、同上の概略側面図、第3図は蛍光色素としてレ
ッド・オレンジを用いたときの波長・反射率を示すグラ
フである。 1:透明容器 2:蛍光色素 3:熱媒 4:第1太陽電池 5:第2太陽電池 6:第3太陽電池 7:反射膜 8:熱交換器
BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a perspective view showing an example of a photovoltaic device, FIG. 2 is a schematic side view of the same, and FIG. 3 is a wavelength when red and orange are used as fluorescent dyes. It is a graph showing the reflectance. 1: Transparent container 2: Fluorescent dye 3: Heat medium 4: First solar cell 5: Second solar cell 6: Third solar cell 7: Reflective film 8: Heat exchanger

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 昭58−49860(JP,A) 特開 昭57−152170(JP,A) ─────────────────────────────────────────────────── ─── Continuation of front page (56) References JP-A-58-49860 (JP, A) JP-A-57-152170 (JP, A)

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】集光部の少なくとも一端面において、前記
集光部に含有された蛍光色素より放射された蛍光を太陽
電池に入射させ、前記集光部に入射した太陽光を波長選
別し電気エネルギーに変換する太陽光発電方法におい
て、前記集光部が透明容器で形成され、該容器内に蛍光
色素を溶解した熱媒を含有し、該熱媒から熱回収するこ
とを特徴とする太陽光発電方法。
1. At least one end face of the light collecting part, the fluorescence emitted from the fluorescent dye contained in the light collecting part is made incident on the solar cell, and the sunlight incident on the light collecting part is wavelength-selected to generate electricity. In the solar power generation method of converting into energy, the condensing part is formed of a transparent container, the container contains a heat medium in which a fluorescent dye is dissolved, and heat is recovered from the heat medium. Power generation method.
【請求項2】波長選別する集光部の少なくとも一端面
に、該集光部に含有された蛍光色素が入射した太陽光を
吸収して放射する蛍光を電気エネルギーに変換する太陽
電池が設けられた太陽光発電デバイスにおいて、前記集
光部が蛍光色素を溶解した且つ熱回収可能な熱媒を含有
する透明容器であることを特徴とする太陽光発電デバイ
ス。
2. A solar cell for converting the fluorescence emitted by absorbing the sunlight incident on the fluorescent dye contained in the condensing section into electric energy on at least one end surface of the condensing section for wavelength selection. In the solar power generation device, the condensing unit is a transparent container containing a heat medium capable of recovering heat and having a fluorescent dye dissolved therein.
JP62153097A 1987-06-19 1987-06-19 Photovoltaic power generation method and device for effectively utilizing sunlight Expired - Lifetime JP2525189B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62153097A JP2525189B2 (en) 1987-06-19 1987-06-19 Photovoltaic power generation method and device for effectively utilizing sunlight

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62153097A JP2525189B2 (en) 1987-06-19 1987-06-19 Photovoltaic power generation method and device for effectively utilizing sunlight

Publications (2)

Publication Number Publication Date
JPS63318169A JPS63318169A (en) 1988-12-27
JP2525189B2 true JP2525189B2 (en) 1996-08-14

Family

ID=15554908

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62153097A Expired - Lifetime JP2525189B2 (en) 1987-06-19 1987-06-19 Photovoltaic power generation method and device for effectively utilizing sunlight

Country Status (1)

Country Link
JP (1) JP2525189B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008075584A1 (en) * 2006-12-20 2008-06-26 Electric Power Development Co., Ltd. Photovoltaic generation heat collecting unit

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008075584A1 (en) * 2006-12-20 2008-06-26 Electric Power Development Co., Ltd. Photovoltaic generation heat collecting unit
JP2008151490A (en) * 2006-12-20 2008-07-03 Electric Power Dev Co Ltd Photovoltaic power generation heat collection unit

Also Published As

Publication number Publication date
JPS63318169A (en) 1988-12-27

Similar Documents

Publication Publication Date Title
Michael et al. Flat plate solar photovoltaic–thermal (PV/T) systems: A reference guide
CN2913955Y (en) Heat self-dissipating solar energy accumulation type photovoltaic electricity generating system
JP3969792B2 (en) Solar thermal power generation system
US20040025931A1 (en) Solar panel for simultaneous generation of electric and thermal energy
CN103441177B (en) Multipurpose Photospot solar system
CN101316082B (en) High-efficiency low-cost solar cogeneration system
JP2002314112A (en) Photovoltaic power generating system
CN201256368Y (en) High efficiency low cost solar energy cogeneration system
TW201327847A (en) Solar cell module
CN203466205U (en) Novel multipurpose light gathering solar system
JP2000031522A (en) Photovolatic power generation for doubling conversion efficiency, and heat collector
CN111953292B (en) Solar energy frequency division type electric heat allies oneself with supplies device
CN106487325A (en) A kind of electric coproduction multistage application device of groove type solar condensing thermal
JP2525189B2 (en) Photovoltaic power generation method and device for effectively utilizing sunlight
CN201830174U (en) Parabolic-mirror secondary high-concentration photovoltaic and photo-thermoelectric integrated device
Tripanagnostopoulos et al. Hybrid PV-TC solar systems
TWM647692U (en) Plate type container, cooling type photovoltaic power generation device and solar photovoltaic power generation equipment
CN207320145U (en) A kind of concentrating photovoltaic photo-thermal component and array for being disposed with double side photovoltaic battery piece
CN110034720A (en) A kind of reflective solar heat hot light thermal photovoltaic power generation combination energy utilization system and method
CN206290390U (en) A kind of full spectrum electricity generation system of solar energy
CN109217811A (en) A kind of photoelectric and light-heat integration component and hot-water heating system
CN108759114A (en) Parabolic slot type photovoltaic panel heat-collection generating device
CN201017894Y (en) Solar photovoltaic/photothermal coupling device
CN209982429U (en) Photovoltaic and photo-thermal integrated device
CN205505443U (en) Linear fei nieer spotlight photovoltaic light and heat integrated device of heat pipe formula