JP2523372B2 - Constant velocity joint outer ring manufacturing method - Google Patents

Constant velocity joint outer ring manufacturing method

Info

Publication number
JP2523372B2
JP2523372B2 JP1107738A JP10773889A JP2523372B2 JP 2523372 B2 JP2523372 B2 JP 2523372B2 JP 1107738 A JP1107738 A JP 1107738A JP 10773889 A JP10773889 A JP 10773889A JP 2523372 B2 JP2523372 B2 JP 2523372B2
Authority
JP
Japan
Prior art keywords
outer ring
molding
less
rate
upsetting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP1107738A
Other languages
Japanese (ja)
Other versions
JPH02290640A (en
Inventor
俊雄 真枝
薫 山之井
憲二 磯川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Honda Motor Co Ltd
Daido Steel Co Ltd
Original Assignee
Honda Motor Co Ltd
Daido Steel Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Honda Motor Co Ltd, Daido Steel Co Ltd filed Critical Honda Motor Co Ltd
Priority to JP1107738A priority Critical patent/JP2523372B2/en
Publication of JPH02290640A publication Critical patent/JPH02290640A/en
Application granted granted Critical
Publication of JP2523372B2 publication Critical patent/JP2523372B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D3/00Yielding couplings, i.e. with means permitting movement between the connected parts during the drive
    • F16D3/16Universal joints in which flexibility is produced by means of pivots or sliding or rolling connecting parts
    • F16D3/20Universal joints in which flexibility is produced by means of pivots or sliding or rolling connecting parts one coupling part entering a sleeve of the other coupling part and connected thereto by sliding or rolling members
    • F16D3/202Universal joints in which flexibility is produced by means of pivots or sliding or rolling connecting parts one coupling part entering a sleeve of the other coupling part and connected thereto by sliding or rolling members one coupling part having radially projecting pins, e.g. tripod joints
    • F16D3/205Universal joints in which flexibility is produced by means of pivots or sliding or rolling connecting parts one coupling part entering a sleeve of the other coupling part and connected thereto by sliding or rolling members one coupling part having radially projecting pins, e.g. tripod joints the pins extending radially outwardly from the coupling part
    • F16D3/2055Universal joints in which flexibility is produced by means of pivots or sliding or rolling connecting parts one coupling part entering a sleeve of the other coupling part and connected thereto by sliding or rolling members one coupling part having radially projecting pins, e.g. tripod joints the pins extending radially outwardly from the coupling part having three pins, i.e. true tripod joints

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Forging (AREA)

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、自動車の車輪駆動用などに用いられる等速
ジョイントの外輪の製造方法であって、特に成形用金型
の損耗が少ない製造方法に関する。
Description: TECHNICAL FIELD The present invention relates to a method for manufacturing an outer ring of a constant velocity joint used for driving a wheel of an automobile, etc., in particular, a method for manufacturing a molding die with less wear. Regarding

(従来の技術) 等速ジョイントの外輪は、カップ状をなすと共に内周
に縦のトラック溝を有し、該トラック溝がボール又はロ
ーラの転動面として用いられている。該外輪は、複数の
鍛造工程を経て成形され、転動面の摩耗を減少するため
に硬化処理が施されている。
(Prior Art) The outer ring of a constant velocity joint has a cup shape and has a vertical track groove on the inner periphery thereof, and the track groove is used as a rolling surface of a ball or a roller. The outer ring is molded through a plurality of forging steps, and is hardened to reduce wear of the rolling surface.

この硬化処理の手段としては、従来、SCR420等の材料
を用いて浸炭により硬化する方式が多く用いられて来た
が、カップ部のほかにスピンドル部等外輪全体の強度上
昇の必要性及び熱処理工程のインライン化の必要性か
ら、S48C,S55C等の高周波焼入鋼を用いて高周波焼入れ
をする方式に置換されつつある。
Conventionally, as a method of this hardening treatment, a method of hardening by carburizing using a material such as SCR420 has been widely used, but in addition to the cup part, it is necessary to increase the strength of the entire outer ring such as the spindle part and the heat treatment process. Due to the need for in-line production, the method is being replaced by a method of induction hardening using induction hardened steel such as S48C, S55C.

しかし、高周波焼入鋼は、高炭素鋼であるために、冷
鍛性又は成形性が劣るので、これを改善すべく、例えば
特開昭63−216952、同60−230960等においては冷鍛性と
高周波焼入性を両立させ得る材料が提案されている。
However, since induction hardened steel is a high carbon steel, it is inferior in cold forgeability or formability. Therefore, in order to improve this, for example, in JP-A-63-216952 and 60-230960, cold forgeability is used. A material has been proposed that can achieve both the induction hardening and the induction hardening.

(発明が解決しようとする課題) ところで、等速ジョイント外輪のようなカップ状部品
を成形するときは、カップ内面形状と同形状のパンチを
用いていわゆる後方押出しを行なうことになるが、パン
チの一部に応力が集中して割れが生じ易く、該割れの発
生は、成形荷重の大きさに敏感であり、型寿命は、応力
値の僅かな差によって大きく左右される。
(Problems to be Solved by the Invention) When molding a cup-shaped component such as an outer ring for a constant velocity joint, so-called backward extrusion is performed using a punch having the same shape as the inner surface of the cup. The stress is likely to be concentrated on a part and cracking easily occurs, and the occurrence of the cracking is sensitive to the magnitude of the molding load, and the mold life is greatly influenced by a slight difference in stress value.

例えば第2図のPはトリポード型の外輪を成形するた
めのパンチであるが、中心部Aと溝形成部Bの境目Cの
ように断面形状が急変するコーナー部分では応力が集中
して割れが発生し易く、このためパンチに大きな荷重は
かけられない。
For example, P in FIG. 2 is a punch for forming a tripod type outer ring, but stress is concentrated at the corner portion where the cross-sectional shape suddenly changes like the boundary C between the central portion A and the groove forming portion B and cracks occur. It is apt to occur, and therefore a large load cannot be applied to the punch.

一方、成形される素材にとっても、断面形状の変化が
急変する部分においては、静水圧効果の大きい後方押出
しであっても、急変部分においては引張り応力が作用し
てクラック発生のおそれがある。
On the other hand, for the material to be molded, even in the case of backward extrusion having a large hydrostatic effect at the portion where the change in the cross-sectional shape changes abruptly, tensile stress may act on the sudden change portion and cracks may occur.

特に、カップの後方押出し成形を冷間や温間鍛造で行
なう場合、又は据込み、押出しを連続して冷間や温間鍛
造で行なう場合には、より一層パンチ寿命と材料割れが
問題となり、前記特開昭63−216952、同60−230960のよ
うに材料を規定するだけでは限定があり、これまで使用
されていた前記SCR420のような浸炭材並みの金型寿命や
素材のクラック防止率が得られないという欠点があっ
た。
In particular, when the rear extrusion molding of the cup is performed by cold or warm forging, or when the upsetting and extrusion are continuously performed by cold or warm forging, punch life and material cracking become more problems, There is a limitation only by specifying the material as in the above-mentioned JP-A-63-216952 and 60-230960, and the mold life and the crack prevention rate of the material are the same as the carburizing material such as the SCR420 used so far. There was a drawback that it could not be obtained.

すなわち、より高炭素化や形状複雑化が進むにつれて
従来公知の材料を用いただけでは不充分となり、更なる
材料の改良と成形プロセスの見直しが必要と考えられ
る。
That is, it is considered that it is not enough to use the conventionally known material as the carbonization becomes higher and the shape becomes more complicated, and further improvement of the material and review of the molding process are considered necessary.

しかも、等速ジョイント外輪は、外輪直径に比して小
径の軸部を一体に備えており、該軸部を前方押出しによ
り成形した後に据込みを行ない、更にカップ部を成形す
る工程をとるものであり、据込み及びカップ部の成形に
都合のよいように大径の素材を用いて成形率を小さい値
にしようとすると、軸部成形の際の成形率が大きくな
り、軸部押出し用のダイの強度不足、焼付き等の問題が
生じる。
Moreover, the constant velocity joint outer ring integrally includes a shaft portion having a diameter smaller than the diameter of the outer ring, and the step of forming the shaft portion by front extrusion and then upsetting the cup portion is further performed. Therefore, if a material with a large diameter is used to reduce the molding rate so that it is convenient for upsetting and molding of the cup section, the molding rate at the time of molding the shaft section becomes large, and Problems such as insufficient die strength and seizure occur.

したがって、従来は材料の比較的小さい伸び限界に左
右されて工程設計がなされていたので、設計の自由度が
乏しかった。
Therefore, in the past, the process design was carried out depending on the relatively small elongation limit of the material, so that the degree of freedom in design was poor.

本発明は、これらの点に鑑みてなされたもので、特に
カップ成形工程におけるパンチ荷重の減少を主目的とし
て、浸炭材(SCR420)並み又はそれ以上に優れた成形性
をもつ等速ジョイント外輪の加工手段を得ることを課題
とする。
The present invention has been made in view of these points, and particularly for the main purpose of reducing the punch load in the cup forming step, it is possible to provide a constant velocity joint outer ring having a formability superior to that of a carburized material (SCR420) or more. The subject is to obtain a processing means.

(課題を解決するための手段) そこで、本発明は、従来の高周波焼入鋼の成分に変更
を加えて、焼入性を満足させると共に、特に伸び限界を
向上させて成形性を改善し、かつ適切な成形率を採用す
ることにより、冷間又は温間での成形を可能にしたもの
である。そして、その手段は、高周波焼入材を使用し、
少くとも軸部の押出し工程と、素材を拡径する据込み工
程と、肉厚が一定でないカップの押出し工程とを有する
等速ジョイント外輪の製造方法において、前記高周波焼
入材の成分が重量比率で、 C;0.45〜0.58% Si;0.15%以下、 Mn;0.15〜0.35% Cr;0.5%以下、 B;0.0005〜0.0035% Ti;0.050%以下 Al;0.015〜0.050% Mn+Cr;0.30〜0.70% 残部をFeと不純物とし、据込み工程での成形率εh=
60〜80%、カップ押出し工程での成形率をεA=50〜70
%の範囲で成形加工を行なうことを特徴とする。
(Means for Solving the Problems) Therefore, the present invention, by modifying the components of the conventional induction hardened steel, to satisfy the hardenability, in particular, improve the elongation limit to improve the formability, In addition, by adopting an appropriate molding rate, cold or warm molding is possible. And the means uses induction hardened material,
In a method for manufacturing a constant velocity joint outer ring, which comprises at least a shaft extruding step, an upsetting step of expanding the raw material, and an extruding step of a cup whose thickness is not constant, the components of the induction hardened material are in a weight ratio. , C; 0.45 to 0.58% Si; 0.15% or less, Mn; 0.15 to 0.35% Cr; 0.5% or less, B; 0.0005 to 0.0035% Ti; 0.050% or less Al; 0.015 to 0.050% Mn + Cr; 0.30 to 0.70% As Fe and impurities, and the forming rate εh = in the upsetting process
60 to 80%, molding rate in cup extrusion process is εA = 50 to 70
It is characterized in that molding is performed in the range of%.

しかして、前記の成分比率は炭素鋼をベースとして次
の(1)〜(4)の考え方によるものである。
Therefore, the above component ratios are based on the following ideas (1) to (4) based on carbon steel.

(1) 変形抵抗、成形荷重を下げるため、C,Si,Mn,C
r,P,Mn+Crの上限を規定した。
(1) C, Si, Mn, C to reduce deformation resistance and forming load
The upper limits of r, P, Mn + Cr are specified.

(2) 割れ対策(変形能)のため、Ti,Sの上限を規定
した。
(2) To prevent cracking (deformability), the upper limits of Ti and S are specified.

(3) 高周波焼入性を確保するためにC,Mn,Mn+Crの
下限を規定した。
(3) The lower limits of C, Mn, and Mn + Cr have been specified to ensure induction hardenability.

(4) 高周波焼入性のばらつきを減らすためにBの
上、下限を規定した。
(4) The upper and lower limits of B are defined to reduce the variation in induction hardenability.

前記の比率に関して、Cは硬度を確保するために必要
であるが、0.45%未満では焼入性に乏しく、0.58%を越
えると冷鍛性を害する。Siは溶解時の脱酸剤として作用
するが、鍛造性を悪化するので、温間鍛造を考慮して0.
15%以下とした。しかし冷間鍛造においては0.10%以下
が望ましい。
Regarding the above ratio, C is necessary to secure the hardness, but if it is less than 0.45%, the hardenability is poor, and if it exceeds 0.58%, the cold forgeability is impaired. Si acts as a deoxidizing agent at the time of melting, but since it deteriorates the forgeability, considering warm forging, 0.
It was set to 15% or less. However, 0.10% or less is desirable in cold forging.

Mnは焼入性向上に改善に有効ではあるが、0.15%未満
では焼入性に乏しく、0.35%を越えると冷鍛性を害す
る。
Mn is effective in improving the hardenability, but if it is less than 0.15%, the hardenability is poor, and if it exceeds 0.35%, the cold forgeability is impaired.

Crも同じく焼入性向上には有効であるが、多いと冷鍛
性を害する。そこで温間鍛造も考慮して0.5%以下とし
たが、冷間鍛造においては0.3%以下が好ましい。
Cr is also effective in improving hardenability, but if it is too much, it impairs cold forgeability. Therefore, it is set to 0.5% or less in consideration of warm forging, but 0.3% or less is preferable in cold forging.

Bも焼入性に有効であるが、0.0005%未満では効果に
乏しく0.0035%を越えると焼入性向上効果が低下すると
共に靱性も低下してくるので0.0005〜0.0035%の範囲と
した。第4図に高周波焼入性に及ぼすBの影響を示す
が、高周波焼入ではBの前記範囲内での焼入深さが大で
ある。このデータは、直径25mm、長さ100mmの試験片に
対して周波数100KHz、電圧9.5KV、移動速度3mm/Sの焼入
条件によって得られた。
B is also effective for hardenability, but if it is less than 0.0005%, the effect is poor, and if it exceeds 0.0035%, the effect of improving hardenability decreases and the toughness also decreases, so the range was made 0.0005 to 0.0035%. FIG. 4 shows the effect of B on the induction hardenability. In induction hardening, the quenching depth within the above range of B is large. This data was obtained for a specimen with a diameter of 25 mm and a length of 100 mm under the quenching conditions of frequency 100 KHz, voltage 9.5 KV, and moving speed 3 mm / S.

Tiは0.05%以下であるが、望ましくは0.01〜0.05%と
し、Alは0.015〜0.05%としたが、これらTi,Alは、前記
Bを有効に作用させて焼入性を確保し、かつ鋼材中のN,
Oを化合物として固定させることから有効であるが、そ
れぞれの下限値未満ではその改善効果が不充分で、一方
過剰になると材料の靱性を悪化させる。
Although Ti is 0.05% or less, preferably 0.01 to 0.05% and Al is 0.015 to 0.05%, these Ti and Al effectively harden the B by ensuring the hardenability, and N in,
It is effective because O is fixed as a compound, but if it is less than the respective lower limit values, the improvement effect is insufficient, while if it is excessive, the toughness of the material deteriorates.

更に、Mn及びCrは、Mn+Crとして総量を規定して0.3
〜0.70%としたが冷間鍛造の場合は0.30〜0.50%が望ま
しい。
Furthermore, Mn and Cr are defined as Mn + Cr, and the total amount is 0.3
Although it was set to ~ 0.70%, 0.30 to 0.50% is desirable in the case of cold forging.

前記の成分が前記特開昭60−230960、同63−216952等
の従来例と特に異なる点は、従来Mnが0.6%以下である
のを0.15〜0.35%として冷鍛性を向上させ、Bが0.0005
〜0.0050%であるのを0.0005〜0.0035と上限を低下くし
て第4図に示す焼入性の良好な範囲のみを採用し、Mn+
Crの下限を規定して同様に焼入性の維持を図った。
The above-mentioned components are particularly different from the conventional examples of JP-A-60-230960, 63-216952 and the like in that the conventional Mn is set to 0.15 to 0.35% when the Mn is 0.6% or less to improve the cold forgeability, and B is 0.0005
~ 0.0050% is reduced to 0.0005 to 0.0035 and the upper limit is lowered, and only the range of good hardenability shown in Fig. 4 is adopted.
Similarly, the lower limit of Cr was specified to maintain the hardenability.

なお、P,S,O,N等の量は本発明の要件ではないが、P
は0.015%以下、Sは0.020%以下、Oは0.0015%以下、
Nは0.010%以下に抑えることが望ましい。これ以上の
含有量になると、いずれも冷鍛性を悪化させる。
The amount of P, S, O, N, etc. is not a requirement of the present invention, but P
Is 0.015% or less, S is 0.020% or less, O is 0.0015% or less,
It is desirable to keep N to 0.010% or less. When the content is more than this range, the cold forgeability deteriorates.

(作 用) 前記の手段を用いたので、高炭素鋼であるにも拘ら
ず、全体の工程を通じて浸炭材並みの工程数での低荷重
成形が可能であり、特にカップ押出し工程においては応
力値が低いのでパンチ寿命が長く、断面成形率εAが下
がるので、断面急変部でも肉厚差が緩和され、応力低下
と相俟って材料割れが生じない。
(Working) Since the above-mentioned means was used, it is possible to perform low-load forming with the same number of steps as the carburized material throughout the entire process, despite the fact that it is a high carbon steel. Is low, the punch life is long, and the cross-section forming ratio εA is low. Therefore, the difference in wall thickness is alleviated even at a sudden change in cross-section, and material cracking does not occur in combination with stress reduction.

高周波焼入性は従来と同等である。 The induction hardenability is equivalent to the conventional one.

(実施例) 以下、本発明の実施例と図面を参照して説明する。第
1図はトリポード型等速ジョイントの外輪の成形工程を
示し、直径D0の素材1から前方押出し工程によりダイ
から直径d1の軸部2bを押出して高さH0の未加工部2aをも
つワーク2を成形し、据込み工程によって、前記未加
工部2aを据込んで直径D1(断面積A1)高さH1の据込み部
3aをもつワーク3を成形する。次に後方押出し工程に
おいては第2図のパンチPとダイを用いて据込み部3aを
押出し、D1≒D2の外径をもつ筒部4a(断面積A2)と丸穴
に換算した平均内径D3の穴4b(断面積A3)をもつワーク
4が成形される。最後に前記の工程と類似の金型を用
いたしごき加工が行なわれ、外径D4の筒部5a(断面積
A4)と平均内径D5≒D3の穴5bと前記軸部をもつ外輪5が
成形される。
(Example) Hereinafter, an example of the present invention and a drawing are described. FIG. 1 shows a forming process of an outer ring of a tripod type constant velocity joint, in which a shaft 2b having a diameter d 1 is extruded from a die 1 by a front extrusion process from a material 1 having a diameter D 0 to form an unprocessed portion 2a having a height H 0. The work piece 2 having the above is formed, and the unprocessed portion 2a is upset by an upsetting process to have a diameter D 1 (cross-sectional area A 1 ) and a height H 1.
Form the workpiece 3 having 3a. In next backward extrusion process by converting the upset 3a extrusion, and the circular hole cylindrical portion 4a having an outer diameter of D 1 ≒ D 2 (cross-sectional area A 2) using a punch P and the die of FIG. 2 work 4 with holes 4b of the average inner diameter D 3 (cross-sectional area a 3) is molded. Finally, ironing is performed using a die similar to the above process, and the cylindrical portion 5a with an outer diameter D 4 (cross-sectional area
Outer ring 5 with A 4) and the average inner diameter D 5 ≒ D the shaft portion and the hole 5b of 3 is molded.

該外輪5は、第3図に示すように筒部6と軸部7をも
ち、筒部6の内面に中心穴8と3本のトラック溝9が形
成されている。
As shown in FIG. 3, the outer ring 5 has a tubular portion 6 and a shaft portion 7, and a central hole 8 and three track grooves 9 are formed on the inner surface of the tubular portion 6.

前記〜の工程における成形率を断面減少率εA又
は据込み率εhとしてこれに工程番号を付記して示せば
次のとおりになる。
The molding rate in the above steps (1) to (3) will be as follows if the sectional reduction rate εA or the upsetting rate εh is added to the step number and shown.

まず、前方押出し工程においては ε=1−a1/A0=1−d1 2/D0 2(×100%) 据込み工程においては、 ε=1−H1/H0(×100%) 後方押出し工程においては ε=A3/A1=D3 2/D2 2≒D3 2/D1 2(×100%) しごき工程においては となる。First, in the forward extrusion step, ε A = 1-a 1 / A 0 = 1-d 1 2 / D 0 2 (× 100%) In the upsetting step, ε h = 1-H 1 / H 0 (× 100%) %) In the backward extrusion process, ε A = A 3 / A 1 = D 3 2 / D 2 2 ≈D 3 2 / D 1 2 (× 100%) In the ironing process Becomes

本実施例において用いられた素材の成分は、後記第2
表に示されるMn;0.25%、Cr;0.20%、B;0.0015%のもの
であり、この素材を第1図の工程で第1表の成形率で成
形加工した。同表でで示す従来例は、前記の従来材料を
用いた際の成形率である。
The ingredients of the materials used in this example are described in the second section below.
Mn: 0.25%, Cr: 0.20%, B: 0.0015% shown in the table, and this material was molded at the molding rate shown in Table 1 in the process of FIG. The conventional example shown in the table is the molding rate when the above-mentioned conventional material is used.

第1表において、従来例の成形率は、材料の伸び限
界、据込み限界と等速ジョイント外輪の形状に基づく製
造プロセスにより経験的に行なわれている範囲である。
これに対して本発明では第2工程、第4工程で約10
%の増加が可能で、このため第3工程で成形率を約10
%低く設定されている。
In Table 1, the forming ratio of the conventional example is a range empirically performed by the manufacturing process based on the elongation limit and upsetting limit of the material and the shape of the outer ring of the constant velocity joint.
On the other hand, in the present invention, about 10 in the second step and the fourth step.
%, It is possible to increase the molding rate in the third step by about 10%.
% Is set low.

これを更に詳述すると、第1工程でε=60〜80%
としたのは、軸径とカップ径の比が略一定であるため、
60%未満では第2工程に負担がかかり、80%を越えると
該第1工程での負担が過大でダイスに焼付き、かじり等
が生じ易いからで、従来例も同一値であるが、従来はや
や過大の値であった。
More specifically, in the first step, ε A = 60-80%
The reason is that the ratio of the shaft diameter to the cup diameter is almost constant,
If it is less than 60%, the second step will be burdened, and if it exceeds 80%, the burden in the first step will be excessive and seizure, galling, etc. will easily occur on the die. It was a little too high.

第2工程で成形率が60%未満では第1工程の負担を大
にしなければならず、従来の材料では70%以上にすると
据込み時にクラック発生のおそれがあった。しかし、本
発明の材料を用いると据込み限界が10%向上して80%ま
で可能になり、ε=60〜80%とすることができた。
If the molding rate in the second step is less than 60%, the load of the first step must be heavy, and if the conventional material is 70% or more, cracks may occur during upsetting. However, when the material of the present invention was used, the upsetting limit was improved by 10% to 80%, and ε h = 60 to 80%.

第3工程で成形率が70%を越えると荷重が急増して好
ましくはなく、また第4工程でのしごき代を確保できな
い。逆にここでの成形率が小さいと第2工程(据込み工
程)の成形率を大にしなければならず第2工程の負担が
過大となるため、従来は下限を60%未満とすることはで
きなかったが、前記のとおり第2工程の成形率が10%向
上したので第3工程では下限を50%にすることができ
た。なお、下限を50%未満にすると第4工程での負担も
過大になる。したがってε=50〜70%とした。
If the molding rate exceeds 70% in the third step, the load increases rapidly, which is not preferable, and the ironing allowance in the fourth step cannot be secured. On the contrary, if the molding rate here is small, the molding rate of the second step (upsetting step) must be increased, and the load of the second step becomes excessive. Therefore, the lower limit is conventionally set to less than 60%. Although it was not possible, the lower limit could be set to 50% in the third step because the molding rate in the second step was improved by 10% as described above. If the lower limit is set to less than 50%, the burden on the fourth step will be excessive. Therefore, ε A = 50 to 70%.

第4工程においては、しごき代が10%未満では倣い精
度が低く、内周のトラック溝9の精度を確保することが
できず、25%を越えると材料破断のおそれが生じるが、
本発明では伸び限界の向上により30%まで可能となり、
倣い精度が向上しトラック溝の精度を向上させることが
できる。
In the fourth step, if the ironing allowance is less than 10%, the copying accuracy is low, and the accuracy of the inner track groove 9 cannot be ensured. If it exceeds 25%, the material may be broken.
In the present invention, improvement of the elongation limit enables up to 30%,
The copying accuracy is improved, and the accuracy of the track groove can be improved.

本発明の実施に提案した鋼材は、第2表中に示すよう
にMnが少なくBが多いのが特徴で、同表中の各鋼材に据
込み成形をしたときの割れ発生率は第5図に示すとおり
である。第5図において割れ発生の据込率の限界は、ベ
ース鋼(一般の高周波焼入鋼材)で68%、特開昭60−23
0960の鋼材で73.5%、本提案鋼材で80%である。
The steel material proposed in the practice of the present invention is characterized by having a small amount of Mn and a large amount of B as shown in Table 2, and the crack occurrence rate when upsetting is performed on each steel material in the table is shown in FIG. As shown in. In Fig. 5, the upper limit of the cracking upset rate is 68% for the base steel (general induction hardened steel material).
It is 73.5% for 0960 steel and 80% for the proposed steel.

このように据込み限界の大きい材料を用いると、第2
工程の据込み成形率εを大きくとり次の第3工程の
成形率εを下げることができ、第3工程におけるパ
ンチ及びワークの負荷を減少させることができる。
If a material with a large upsetting limit is used,
The upsetting forming rate ε h of the process can be made large and the forming rate ε A of the next third step can be lowered, and the load of the punch and the work in the third step can be reduced.

第3表から明らかなとおり、3欄の本提案鋼は第2工
程において、1,2欄の従来鋼に比して同一の成形率65%
でも成形荷重は低く、4欄のように成形率を70%として
も従来鋼に比し成形荷重はあまり増加はしない。そして
第3工程のカップ押出しでは同一の成形率60%で1欄に
比し10%,2欄に比し3%の荷重低下が見られた。また4
欄のように第2工程の成形率を70%のもは、第3工程で
は成形率は55%ですみこれにより更に10%の荷重低下が
達成された。
As is clear from Table 3, the proposed steel in column 3 has the same forming ratio of 65% in the second step as compared to the conventional steel in columns 1 and 2.
However, the forming load is low, and even if the forming ratio is 70% as shown in column 4, the forming load does not increase much compared to the conventional steel. Then, in the third step of cup extrusion, at the same molding rate of 60%, a load reduction of 10% as compared to the first column and 3% as compared to the second column was observed. Again 4
As shown in the column, the forming ratio of the second step was 70%, while the forming ratio of the third step was 55%, which resulted in a further load reduction of 10%.

該4欄ではε=70%に設定しているが、本提案鋼
の据込み限界は第5図からε=80%であるのでクラ
ックの発生はなく、まだ余裕が残されている。
In the 4th column, ε h = 70% is set, but since the upsetting limit of the proposed steel is ε h = 80% from FIG. 5, no cracks occur and there is still room.

これに対してベース鋼では、ε=68%でクラック
発生のおそれがあり、余裕も充分にとれないから、第3
工程での成形率を下げることはできない。特にカップ深
さの大きいワークの場合は、容積増加分だけ据込み率を
大きくしなければならないが、ベース鋼ではε=70
%を超えることは困難で第3工程に負担がかかり、ε
=70〜80%となり荷重が急増してパンチ寿命を減少さ
せていた。
On the other hand, in the base steel, cracks may occur at ε h = 68% and a sufficient margin cannot be secured.
The molding rate in the process cannot be lowered. Especially for a workpiece with a large cup depth, the upsetting rate must be increased by the volume increase, but with the base steel, ε h = 70
%, It is difficult to load the third step, and ε A
= 70 to 80%, the load increased rapidly and the punch life was reduced.

このように、本提案の鋼材を用いることにより成形可
能の範囲が拡大され、工程設計の自由度が増大する。こ
のため、特に成形荷重が大きくパンチ及びワークの局部
に応力が集中し易い第3工程の成形荷重を減少させるこ
とができる。
Thus, by using the steel material of the present proposal, the range of formability is expanded and the degree of freedom in process design is increased. Therefore, it is possible to reduce the molding load in the third step in which the molding load is particularly large and the stress is likely to be concentrated on the local parts of the punch and the work.

一般に、成形率を下げるとパンチ荷重が大幅に下がる
ことは知られており、第3表4欄のように成形率ε
すなわち断面減少率を少なくすると荷重も減少する。第
6図はその関係を示すグラフで、円柱状素材W1に凹部を
押出成形してW2にする場合の押出し力が変化する状態を
示す。第3表の4欄のように第3工程の成形率ε
55%に下げると成形荷重もこれに比例して減少する。
Generally, the punch load lowering the molding rate and is known to decrease significantly, molding rate as Table 3, column 4 epsilon A
That is, when the cross-section reduction rate is reduced, the load is also reduced. FIG. 6 is a graph showing the relationship, and shows a state in which the extrusion force changes when the recess is extruded into the cylindrical material W 1 to form W 2 . As shown in column 4 of Table 3, the forming ratio ε A of the third step is
When it is reduced to 55%, the forming load also decreases in proportion to this.

一方、金型においては第7図に見られるように応力振
幅値の僅かの減少によってその耐久性は大幅に増大す
る。第7図は金型鋼SKH51の疲労特性曲線を示し、P1
の応力が780MPaのとき繰返し強度が3×104回である
が、応力が7%減少するP2点では725MPaで8×104回、
応力が10%減少するP3点では702MPaで1.03×105回とな
り、耐久性の伸びが著しい。
On the other hand, as shown in FIG. 7, the durability of the mold is greatly increased by a slight decrease in the stress amplitude value. Fig. 7 shows the fatigue characteristic curve of die steel SKH51. The cyclic strength is 3 × 10 4 times when the stress at P 1 is 780 MPa, but it is 8 × 10 at 725 MPa at P 2 where the stress decreases by 7%. 4 times,
Stress becomes 1.03 × 10 5 times 702MPa at P 3 points to 10% reduction, significant growth in durability.

したがって、第3表3,4欄に示すように第3工程で成
形荷重を減少させるとパンチ寿命が伸びる。
Therefore, as shown in columns 3 and 4 of Table 3, when the forming load is reduced in the third step, the punch life is extended.

成形工程中、鋼材に対して第8図、第9図に示すよう
に加工中に適宜の熱処理を施しながら成形加工をする。
第8図は冷間鍛造の1例で、最初に球状化焼鈍SAを施
し、第2工程と第3工程後に低温焼鈍LAを行なう。第9
図は温間鍛造の1例で、この場合は第3工程後のみに低
温焼鈍LAを行なう。
During the forming step, the steel material is formed while being subjected to an appropriate heat treatment during the processing as shown in FIGS. 8 and 9.
FIG. 8 shows an example of cold forging in which spheroidizing annealing SA is first performed, and low temperature annealing LA is performed after the second step and the third step. Ninth
The figure shows an example of warm forging. In this case, low temperature annealing LA is performed only after the third step.

そして、成形及び切削加工ののち高周波焼入れが施さ
れるが、その硬度及び焼入深さは第10図に示すとおりで
あり、aのベース鋼、bの特開昭60−230960に比べてc
の本提案鋼は、硬度、焼入深さ等において略同一値を呈
する。
Then, induction hardening is carried out after forming and cutting, and the hardness and the hardening depth are as shown in FIG. 10, and compared with the base steel of a and the Japanese Patent Laid-Open No. 60-230960 of b, c.
The proposed steel of (1) exhibits substantially the same values in hardness, quenching depth, etc.

以上トリポード型の外輪について述べたが、第11図に
示すバンフィールド型の外輪10についても同様に実施す
ることができる。
Although the tripod type outer ring has been described above, the same can be applied to the Banfield type outer ring 10 shown in FIG.

(発明の効果) 本発明は、以上のように成形性が良好で高周波焼入れ
に適する成分比の鋼材を案出し、該鋼材に可能の成形率
で据込み成形を行なうから、パンチ及びワークに大きな
負荷がかかる次のカップ押出し工程での成形率を下げる
ことができ、成形工程中最も損傷し易いパンチの寿命を
伸ばし、ワークの割れも防止できる効果を奏する。
(Effects of the Invention) The present invention devises a steel material having a good formability and a component ratio suitable for induction hardening as described above, and performs upsetting at a molding rate that is possible for the steel material. It is possible to reduce the molding rate in the next cup extrusion step in which a load is applied, extend the life of the punch which is most easily damaged during the molding step, and prevent the work from cracking.

【図面の簡単な説明】[Brief description of drawings]

第1図は本発明の成形工程図、第2図はパンチの斜面
図、第3図は(a)(b)は製品の縦断面図及び横面
図、第4図はB含有率と焼入深さのグラフ、第5図は据
込み案と割れ発生のグラフ、第6図は押出し圧力と断面
減少率のグラフ、第7図は金型鋼の疲労特性のグラフ、
第8図は冷間鍛造時の工程図、第9図は温間鍛造時の工
程図、第10図(a)(b)はローラ溝と軸部の焼入れの
硬度と深さのグラフ、第11図は他の製品の縦断面図及び
斜面図である。 ……第1工程(前方押出し) ……第2工程(据込み) ……第3工程(後方押出し) ……第4工程(しごき) P……パンチ 5……外輪 7……軸部
FIG. 1 is a molding process diagram of the present invention, FIG. 2 is a perspective view of a punch, FIGS. 3 (a) and 3 (b) are longitudinal sectional views and lateral views of a product, and FIG. Graph of penetration depth, Fig. 5 is graph of upset plan and crack occurrence, Fig. 6 is graph of extrusion pressure and cross-section reduction rate, Fig. 7 is graph of fatigue property of die steel,
Fig. 8 is a process drawing during cold forging, Fig. 9 is a process drawing during warm forging, and Figs. 10 (a) and (b) are graphs of hardness and depth of hardening of roller groove and shaft, Figure 11 is a vertical cross-sectional view and slope view of another product. …… 1st process (forward extrusion) …… 2nd process (installation) …… 3rd process (rear extrusion) …… 4th process (ironing) P …… Punch 5 …… Outer ring 7 …… Shaft

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 昭62−34644(JP,A) 特開 昭61−282625(JP,A) 特開 平1−104440(JP,A) 特開 昭56−23337(JP,A) 特開 昭53−81861(JP,A) ─────────────────────────────────────────────────── ─── Continuation of the front page (56) References JP 62-34644 (JP, A) JP 61-282625 (JP, A) JP 1-104440 (JP, A) JP 56- 23337 (JP, A) JP-A-53-81861 (JP, A)

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】高周波焼入材を使用し、少くとも軸部の押
出し工程と、素材を拡径する据込み工程と、肉厚が一定
でないカップの押出し工程とを有する等速ジョイント外
輪の製造方法において、前記高周波焼入材の成分が重量
比率で、 C;0.45〜0.58% Si;0.15%以下、 Mn;0.15〜0.35% Cr;0.5%以下、 B;0.0005〜0.0035% Ti;0.050%以下 Al;0.015〜0.050% Mn+Cr;0.30〜0.70% 残部をFeと不純物とし、据込み工程での成形率εh=60
〜80%、カップ押出し工程での成形率をεA=50〜70%
の範囲で成形加工を行なうことを特徴とする、等速ジョ
イント外輪の製造方法。
1. Production of a constant velocity joint outer ring using an induction hardened material and having at least a shaft extruding step, an upsetting step for expanding the diameter of the material, and an extruding step for a cup whose thickness is not constant. In the method, the components of the induction hardened material are in a weight ratio, C; 0.45 to 0.58% Si; 0.15% or less, Mn; 0.15 to 0.35% Cr; 0.5% or less, B; 0.0005 to 0.0035% Ti; 0.050% or less Al; 0.015 to 0.050% Mn + Cr; 0.30 to 0.70% The balance is Fe and impurities, and the forming rate in the upsetting process is εh = 60.
~ 80%, molding rate in cup extrusion process is εA = 50-70%
A method for manufacturing a constant velocity joint outer ring, characterized in that the molding process is performed within the range of.
JP1107738A 1989-04-28 1989-04-28 Constant velocity joint outer ring manufacturing method Expired - Lifetime JP2523372B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1107738A JP2523372B2 (en) 1989-04-28 1989-04-28 Constant velocity joint outer ring manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1107738A JP2523372B2 (en) 1989-04-28 1989-04-28 Constant velocity joint outer ring manufacturing method

Publications (2)

Publication Number Publication Date
JPH02290640A JPH02290640A (en) 1990-11-30
JP2523372B2 true JP2523372B2 (en) 1996-08-07

Family

ID=14466705

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1107738A Expired - Lifetime JP2523372B2 (en) 1989-04-28 1989-04-28 Constant velocity joint outer ring manufacturing method

Country Status (1)

Country Link
JP (1) JP2523372B2 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0657324A (en) * 1992-08-10 1994-03-01 Nippon Seiko Kk Manufacture of bearing
JP2000154828A (en) 1998-11-19 2000-06-06 Nippon Steel Corp Outer ring for constant velocity universal joint excellent in anti-flaking characteristic and shaft strength and manufacture thereof
GB2355271B (en) * 1999-10-11 2003-12-24 Sanyo Special Steel Co Ltd Process for producing constant velocity joint having improved cold workability and strength
US7347077B2 (en) 2003-11-27 2008-03-25 Honda Motor Co., Ltd. Method of manufacturing outer ring member for constant velocity joint
JP2007253235A (en) 2006-02-27 2007-10-04 Honda Motor Co Ltd Method for manufacturing outer ring member for constant-velocity joint
JP5483822B2 (en) * 2008-02-07 2014-05-07 Ntn株式会社 Constant velocity joint
CN106141068B (en) * 2015-04-20 2018-07-20 赖传荣 The forming method and its device of the public conjunction of universal joint

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5623337A (en) * 1979-08-03 1981-03-05 Honda Motor Co Ltd Manufacture of outer wheel for uniform speed universal joint
JPH0741366B2 (en) * 1985-06-06 1995-05-10 エヌティエヌ株式会社 Constant velocity universal joint outer ring manufacturing method
JPH06102243B2 (en) * 1985-08-09 1994-12-14 エヌティエヌ株式会社 Constant velocity universal joint outer ring manufacturing method
JP2610662B2 (en) * 1988-11-09 1997-05-14 川崎製鉄株式会社 Carbon steel for machine structure with excellent cold forgeability and induction hardenability

Also Published As

Publication number Publication date
JPH02290640A (en) 1990-11-30

Similar Documents

Publication Publication Date Title
EP1276915B1 (en) Rolling bearing component
US7604304B2 (en) Crawler, crawler pin, crawler bush, and crawler manufacturing method
JP3309344B2 (en) Manufacturing method of gear with center hole
US6440237B1 (en) Process for forming cold formed high-load bearing steel parts
US6332714B1 (en) Induction-hardened rolling bearing device
DE60030063T2 (en) POWDER METALLURGICAL PROCESS
JP2007262536A (en) Sintered gear and its production method
JP2523372B2 (en) Constant velocity joint outer ring manufacturing method
CN1039725C (en) High strength high toughness spring steel, and manufacturing process therefor
DE112007002699B4 (en) Wheel bearing device for a vehicle
CN1829867A (en) Thin-walled antifriction bearings
RU2443795C2 (en) MULTI-FUNCTION ANTIFRICTION NANOSTRUCTURE WEAR-RESISTANT DAMPING ALLOYS WITH SHAPE MEMORY EFFECT ON METASTABLE BASIS OF IRON WITH STRUCTURE OF HEXAGONAL ε-MARTENSITE, AND ITEMS USING THESE ALLOYS WITH EFFECT OF SELF-ORGANISATION OF NANOSTRUCTURE COMPOSITIONS, SELF-STRENGTHENING AND SELF-LUBRICATION OF FRICTION SURFACES, WITH EFFECT OF SELF-DAMPING OF VIBRATIONS AND NOISES
EP0553388A2 (en) Caliber roll for rolling and manufacturing method of its roll main body
CN1193111C (en) Steel material, its use and its manufacture
US6203630B1 (en) Steel for induction quenching and machinery structural parts using the same
EP0745695A1 (en) Bearing part
US6454880B1 (en) Material for die casting tooling components, method for making same, and tooling components made from the material and process
JP3424035B2 (en) Outer ring of constant velocity ball joint
EP1669468B1 (en) Steel product for induction hardening, induction-hardened member using the same, and methods for producing them
JP3353946B2 (en) Linear guide bearing
US6419770B1 (en) Cold-warm working and heat treatment method of high carbon-high alloy group steel
EP0303041A2 (en) Oil-quenched and tempered hard drawn steel wire with a shaped section, and process for producing the same
US7181847B2 (en) Process for manufacturing a cylindrical hollow body and hollow body made thereby
JPH0657324A (en) Manufacture of bearing
JP3196901B2 (en) Steel for aluminum extrusion dies

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080531

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090531

Year of fee payment: 13

EXPY Cancellation because of completion of term