JP2521664B2 - Magneto-optical disk - Google Patents

Magneto-optical disk

Info

Publication number
JP2521664B2
JP2521664B2 JP61121611A JP12161186A JP2521664B2 JP 2521664 B2 JP2521664 B2 JP 2521664B2 JP 61121611 A JP61121611 A JP 61121611A JP 12161186 A JP12161186 A JP 12161186A JP 2521664 B2 JP2521664 B2 JP 2521664B2
Authority
JP
Japan
Prior art keywords
recording
magneto
layer
optical disk
film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP61121611A
Other languages
Japanese (ja)
Other versions
JPS62277645A (en
Inventor
勝太郎 市原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Tokyo Shibaura Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Shibaura Electric Co Ltd filed Critical Tokyo Shibaura Electric Co Ltd
Priority to JP61121611A priority Critical patent/JP2521664B2/en
Publication of JPS62277645A publication Critical patent/JPS62277645A/en
Application granted granted Critical
Publication of JP2521664B2 publication Critical patent/JP2521664B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

【発明の詳細な説明】 [発明の目的] (産業上の利用分野) 本発明は膜面に垂直な方向に磁化容易軸を有する希土
類−遷移金属非晶質フェリ磁性合金薄膜を記録層とする
光磁気ディスクに係り、特に記録およひ再生時に一定角
速度回転方式により駆動される光磁気ディスクに関す
る。
DETAILED DESCRIPTION OF THE INVENTION (Industrial field of application) The present invention uses a rare earth-transition metal amorphous ferrimagnetic alloy thin film having an easy axis of magnetization in a direction perpendicular to the film surface as a recording layer. The present invention relates to a magneto-optical disk, and more particularly to a magneto-optical disk driven by a constant angular velocity rotation system during recording and reproduction.

(従来の技術) 希土類−遷移金属非晶質フェリ磁性合金薄膜(以下、
RE−TM膜と略記する)の垂直磁化膜を記録層とし、その
磁気光学効果、特に極力−効果を利用して再生を行なう
光磁気ディスクは、書替え可能型光記録媒体として有望
視され、実用化が期待されている。光磁気ディスクは既
に実用化されているTe−C膜等を記録層とした一回書込
み・消去不能型の光ディスクに比べて、消去および反復
記録が可能という大きな長所を有する反面、記録・消去
に際して大きなマグネットを必要とするので、光学ヘッ
ドの重量が増え、アクセス速度が遅くなるという短所を
有している。
(Prior Art) Rare earth-transition metal amorphous ferrimagnetic alloy thin film (hereinafter,
A magneto-optical disk that uses a perpendicularly magnetized film (abbreviated as RE-TM film) as a recording layer and uses the magneto-optical effect, especially the effect as much as possible, is promising as a rewritable optical recording medium. Is expected. Magneto-optical discs have the great advantage that erasing and repetitive recording are possible as compared with the optical discs of the write-once / non-erasable type that have already been put to practical use, such as a Te-C film as a recording layer, but at the time of recording / erasing Since a large magnet is required, the weight of the optical head increases and the access speed becomes slow.

ところで、光ディスクの駆動方式は周知のように、一
定角速度回転方式(以下、CAV方式という)と、一定線
速度回転方式(以下、CLV方式という)の2種類が実用
化されている。CLV方式ではディスク外周側と内周側と
で記録密度を一定にできるので、外周側ほど記録密度が
低下するCAV方式に比べて記録容量の点では有利である
が、光学ヘッドとディスクとの相対位置関係に応じてデ
ィスクの回転速度を変化させる必要があるので、ディス
ク駆動装置の構成が複雑化しアクセス速度が遅くなる。
また、ビデオディスクのような動画メモリ等で要求され
るスチル,倍速,スロー等の特殊再生が困難となる。従
って、CLV方式は文書ファイルメモリに、またCAV方式は
コードデータファイルメモリや動画メモリに各々適して
いる。
By the way, as is well known, two types of optical disc drive systems have been put into practical use, a constant angular velocity rotation system (hereinafter referred to as CAV system) and a constant linear velocity rotation system (hereinafter referred to as CLV system). In the CLV method, the recording density can be made constant on the outer and inner circumference sides of the disc, so it is more advantageous in terms of recording capacity than the CAV method, in which the recording density decreases on the outer circumference side, but the relative distance between the optical head and the disc. Since it is necessary to change the rotation speed of the disk according to the positional relationship, the structure of the disk drive device becomes complicated and the access speed becomes slow.
In addition, it is difficult to perform special reproduction such as still, double speed, slow, etc., which is required in a moving picture memory such as a video disc. Therefore, the CLV method is suitable for the document file memory, and the CAV method is suitable for the code data file memory and the moving picture memory.

光磁気ディスクにおいても、駆動方式はメモリとして
の応用分野によってCLV,CAV両方式を任意に選択できる
が、光学ヘッドの重量増大のためアクセス速度が遅いと
いう光磁気ディスクの短所を補なう上では、CAV方式の
採用が好ましい。
Even for magneto-optical disks, both CLV and CAV can be selected as the drive method depending on the field of application as a memory, but in order to compensate for the disadvantage of the magneto-optical disk that the access speed is slow due to the increase in the weight of the optical head. It is preferable to use the CAV method.

しかしながら、CAV方式で光磁気ディスクを駆動する
と、記録レーザパワー,記録用磁界,記録周波数を一定
にして記録した場合、1記録ビットを形成するのに必要
なRE−TM膜へのレーザビームの供給エネルギー密度が、
ディスクの内周側では大きく、外周側では小さくなる。
この結果、記録感度の変動や、記録ビット形状のバラツ
キによる再生C/N(再生信号のキャリア・ノイズ比)の
変動が生じる。記録レーザパワー,記録用磁界,記録周
波数等の制御によりRE−TM膜への供給エネルギー密度を
一定に保つことは、システムを複雑化するので好ましく
ない。
However, when the magneto-optical disk is driven by the CAV method, when recording is performed with the recording laser power, the recording magnetic field, and the recording frequency being constant, the supply of the laser beam to the RE-TM film necessary for forming one recording bit is performed. Energy density
It is large on the inner side of the disk and small on the outer side.
As a result, the recording sensitivity fluctuates and the reproduction C / N (carrier noise ratio of the reproduction signal) fluctuates due to variations in the recording bit shape. It is not preferable to keep the energy density supplied to the RE-TM film constant by controlling the recording laser power, the recording magnetic field, the recording frequency, etc., as it complicates the system.

(発明が解決しようとする問題点) このように光磁気ディスクをCAV方式で駆動すると、
記録感度および再生C/Nの変動が生じ易いという問題が
あった。
(Problems to be solved by the invention) When the magneto-optical disk is driven by the CAV method in this way,
There is a problem that the recording sensitivity and the reproduction C / N are likely to change.

従って本発明は、記録および再生時にCAV方式で駆動
された場合、ディスク全面にわたって記録感度および再
生C/Nを一様にできる光磁気ディスクを提供することを
目的とする。
Therefore, it is an object of the present invention to provide a magneto-optical disk capable of uniform recording sensitivity and reproducing C / N over the entire surface of the disk when driven by the CAV method during recording and reproducing.

[発明の構成] (問題点を解決するための手段) 本発明は、ガイドグルーブを有する基板上にRE−TM膜
からなる記録層と透明干渉層および光反射層を順次積層
して構成された構造を有し、記録および再生時にCAV方
式により駆動される光磁気ディスクにおいて、透明干渉
層の熱伝導率を記録層および光反射層の熱伝導率よりも
小さくし、かつ透明干渉層の膜厚をディスク半径方向に
沿って内周側から外周側へ向けて一様に増加させること
によって上記問題点を解決するものである。
[Structure of the Invention] (Means for Solving Problems) The present invention is configured by sequentially stacking a recording layer made of a RE-TM film, a transparent interference layer, and a light reflection layer on a substrate having a guide groove. In a magneto-optical disk that has a structure and is driven by the CAV method during recording and reproduction, the thermal conductivity of the transparent interference layer is made smaller than the thermal conductivity of the recording layer and the light reflection layer, and the film thickness of the transparent interference layer. The above problem is solved by uniformly increasing the value from the inner circumference side to the outer circumference side along the disk radial direction.

(作用) 基板上にRE−TM膜からなる記録層と透明干渉層および
光反射光を順次積層した構造において、透明干渉層はRE
−TM間単層では不十分な極力−回転角を、透明干渉層を
介してのレーザビームの多重反射によって増加させ、再
生信号出力を増大させるためのものである。ここで、こ
の透明干渉層の熱伝導率は記録層および光反射層の熱伝
導率よりも小さいため、光磁気ディスクでの熱の流れは
RE−TMから光反射層に向かう方向、つまりRE−TM膜から
なる記録層→透明干渉層→光反射層の方向に生じる。こ
の場合、透明干渉層は光反射層への熱の流れを抑制する
熱絶縁層としての作用を持つ。この熱絶縁効果は透明干
渉層の膜厚に対応して増大するから、透明干渉層の膜厚
がディスク半径方向に沿って内周側から外周側へ向けて
一様に増加している本発明の構成によれば、1記録ビッ
ト形成時にレーザビームによるRE−MT膜への供給エネル
ギー密度が相対的に大きくなる内周側では記録閾値温度
が相対的に増加(記録感度が低下)し、供給エネルギー
密度が相対的に小さくなる外周側では記録閾値温度が相
対的に減少(記録感度が上昇)する。これによって記録
感度および記録ビット形状(再生C/N)が一様化され
る。
(Function) In the structure in which the recording layer made of the RE-TM film, the transparent interference layer and the reflected light are sequentially laminated on the substrate, the transparent interference layer is the RE layer.
This is for increasing the reproduction signal output by increasing the rotation angle, which is insufficient in the single layer between TM and TM, by multiple reflection of the laser beam through the transparent interference layer. Here, since the thermal conductivity of the transparent interference layer is smaller than the thermal conductivity of the recording layer and the light reflecting layer, the heat flow in the magneto-optical disk is
It occurs in the direction from the RE-TM to the light reflection layer, that is, in the direction of the recording layer made of the RE-TM film → the transparent interference layer → the light reflection layer. In this case, the transparent interference layer has a function as a heat insulating layer that suppresses the flow of heat to the light reflecting layer. Since this heat insulation effect increases corresponding to the film thickness of the transparent interference layer, the film thickness of the transparent interference layer uniformly increases from the inner peripheral side to the outer peripheral side along the radial direction of the disk. According to the configuration, the recording threshold temperature relatively increases (recording sensitivity decreases) on the inner circumference side where the energy density supplied to the RE-MT film by the laser beam becomes relatively large when forming one recording bit, and On the outer peripheral side where the energy density becomes relatively small, the recording threshold temperature relatively decreases (recording sensitivity increases). This makes the recording sensitivity and the recording bit shape (reproduction C / N) uniform.

(実施例) 第1図は本発明の一実施例に係る光磁気ディスクの構
成図であり、ディスク状の透明樹脂基板1、例えばピッ
チ2μmのスパイラル状のガイドグルーブが設けられて
いるポリカーボネイト基板上にRE−TM膜、例えば膜厚30
nmのTbCo膜からなる記録層2が形成され、その上に透明
干渉層3として例えばSiN膜が設られている。さらに、
透明干渉層3の上に例えば膜厚50nmのAl膜からなる光反
射層4が形成されている。
(Embodiment) FIG. 1 is a block diagram of a magneto-optical disk according to an embodiment of the present invention, in which a disk-shaped transparent resin substrate 1, for example, a polycarbonate substrate provided with spiral guide grooves with a pitch of 2 μm is provided. RE-TM film, for example, a film thickness of 30
A recording layer 2 made of a TbCo film having a thickness of nm is formed, and a SiN film, for example, is provided as a transparent interference layer 3 on the recording layer 2. further,
On the transparent interference layer 3, a light reflection layer 4 made of, for example, an Al film having a film thickness of 50 nm is formed.

ここで、透明干渉層3は第1図右方の拡大断面図およ
び第2図に示したように、少なくとも記録エリアにおけ
る膜厚が、ディスクの半径方向に沿って内周側から外周
側へ向けて一様に増加している。
Here, as shown in the enlarged sectional view on the right side of FIG. 1 and FIG. 2, the transparent interference layer 3 has a film thickness at least in the recording area from the inner peripheral side to the outer peripheral side along the radial direction of the disc. Have increased uniformly.

この構造の光磁気ディスクは、以下の手順で作製する
ことができた。先ず、フレオンガスによる洗浄の後、十
分に脱気したポリカーボネイト基板をTb,Co,Si3N4,Alの
4元ターゲットを有するスパッタ装置内の基板ホルダに
設置した。スパッタ装置内部を排気後5mTorrのArガスを
導入し、Tb,Coの両ターゲットに同時にDC電力を印加
し、両ターゲット上に設けられているシャッタを閉じた
状態で5分間のプリ・スパッタを行なった後、両シャッ
タを同時に開いて45秒間で膜厚30nmのTbCo膜、すなわち
記録層2を形成した。この際、基板ホルダは60rpmで回
転させた。
The magneto-optical disk having this structure could be manufactured by the following procedure. First, after cleaning with Freon gas, the fully degassed polycarbonate substrate was placed on a substrate holder in a sputtering apparatus having a quaternary target of Tb, Co, Si 3 N 4 , and Al. After exhausting the inside of the sputtering equipment, introducing 5 mTorr of Ar gas, applying DC power to both Tb and Co targets simultaneously, and pre-sputtering for 5 minutes with the shutters on both targets closed. After that, both shutters were opened simultaneously and a TbCo film having a film thickness of 30 nm, that is, the recording layer 2 was formed in 45 seconds. At this time, the substrate holder was rotated at 60 rpm.

次に、Si3N4ターゲットに500WのRFパワーを印加し、
基板ホルダを回転させながら30分間にわたり透明干渉層
3としてのSiN膜を形成した。このときSi3N4ターゲット
上に自作のマスクを設置することによって、SiN膜の膜
厚が第2図に示したような分布となるようにした。
Next, apply RF power of 500 W to the Si 3 N 4 target,
While rotating the substrate holder, the SiN film as the transparent interference layer 3 was formed for 30 minutes. At this time, a self-made mask was placed on the Si 3 N 4 target so that the film thickness of the SiN film had a distribution as shown in FIG.

次に、Alターゲットに300WのRFパワーを投入し、6分
間で膜厚50nmのAl膜、すなわち光反射層4を形成して、
第1図に示した構造の光磁気ディスクを得た。
Next, RF power of 300 W is applied to the Al target to form an Al film having a film thickness of 50 nm, that is, the light reflection layer 4 in 6 minutes,
A magneto-optical disk having the structure shown in FIG. 1 was obtained.

ターゲット上にマスクを配置し、その位置および形状
を調整することにより膜厚を調整する方法は、スパッタ
膜形成における膜厚制御法として通常よく使用されてい
る。透明干渉層3としてのSiN膜を形成する際に用いた
マスクは、該SiN間の膜厚分布が第2図となるような形
状としたものであり、基礎実験結果に基づいて製作した
ものである。膜厚分布はマスクの形状によってどのよう
にでも制御でき、記録層2,透明干渉層3および光反射層
4の材料を変えたときは、透明干渉層3がそれぞれの材
料に適合した膜厚分布となるように、マスクの形状を変
更すればよい。
A method of arranging a mask on a target and adjusting the position and shape of the mask to adjust the film thickness is commonly used as a film thickness control method in forming a sputtered film. The mask used when forming the SiN film as the transparent interference layer 3 had a shape such that the film thickness distribution between the SiNs was as shown in FIG. 2, and was manufactured based on the results of basic experiments. is there. The film thickness distribution can be controlled by the shape of the mask, and when the materials of the recording layer 2, the transparent interference layer 3 and the light reflection layer 4 are changed, the film thickness distribution of the transparent interference layer 3 is suitable for each material. The shape of the mask may be changed so that

第1図に示した光磁気ディスクの動特性(記録再生特
性)の評価を第1表に示した仕様のディスク駆動装置に
よって行なった。
The dynamic characteristics (recording / reproducing characteristics) of the magneto-optical disk shown in FIG. 1 were evaluated by a disk drive device having the specifications shown in Table 1.

その評価結果を第3図に示す。第3図に示されるよう
に、本発明に係る光磁気ディスクはCAV方式のディスク
駆動装置を用いて記録エリア内で極めて安定した記録感
度および再生C/Nが得られた。この理由は次のように説
明することができる。第4図は第1表に示した仕様のデ
ィスク駆動装置で光磁気ディスクを駆動したときに、1
記録ビットの形成に必要なレーザビームの供給エネルギ
ー密度Eとディスク半径rdとの関係を示す図である。E
は次式(1)(2)より導出した。
The evaluation result is shown in FIG. As shown in FIG. 3, the magneto-optical disk according to the present invention obtained extremely stable recording sensitivity and reproducing C / N in the recording area by using the CAV type disk drive. The reason for this can be explained as follows. FIG. 4 shows 1 when the magneto-optical disk is driven by the disk drive device having the specifications shown in Table 1.
It is a figure which shows the relationship between the supply energy density E of a laser beam required for formation of a recording bit, and disk radius rd. E
Was derived from the following equations (1) and (2).

E=P・tp/{(πd2/4)+dl} ……(1) l=2πrdν×tp ……(2) 但し、P:記録レーザパワー、tp:記録用レーザビーム
照射時間、d:レーザスポット直径、l:時間tpにおけるデ
ィスク移動距離、rd:ディスク半径、ν:ディスク回転
速度である。
E = P · tp / {( πd 2/4) + dl} ...... (1) l = 2πrdν × tp ...... (2) where, P: recording laser power, tp: the laser beam irradiation time, d: Laser Spot diameter, l: disk movement distance at time tp, rd: disk radius, ν: disk rotation speed.

(1)(2)式に第1表からν=20rps(1200rpm),t
p=400nsec(平均値),=5mW,d=1.3μmを代入すれ
ば、第4図が得られる。
From Table 1 in equations (1) and (2), ν = 20rps (1200rpm), t
By substituting p = 400 nsec (average value), = 5 mW, and d = 1.3 μm, FIG. 4 is obtained.

第4図に示されるように、CAV方式では記録用レーザ
ビームの供給エネルギー密度はディスク半径rdの関数と
なる。従って、一様な膜厚の光磁気ディスクではディス
ク内周側が高感度に、外周側が低感度になる。
As shown in FIG. 4, in the CAV system, the energy density supplied by the recording laser beam is a function of the disc radius rd. Therefore, in a magneto-optical disk having a uniform film thickness, the inner peripheral side has high sensitivity and the outer peripheral side has low sensitivity.

これに対し、本発明の光磁気ディスクのように透明干
渉層3の膜厚を内周側から外周側へ向けて一様に増加さ
せれば、内周側では記録層2から光反射層4への熱損失
が相対的に大きくなって低感度化され、外周側では熱損
失が相対的に小さくなって高感度化される。従って、デ
ィスク半径方向において記録感度が一様になり、また記
録ビットの形状(大きさ)も一様となるので、再生C/N
も一様となる。
On the other hand, if the film thickness of the transparent interference layer 3 is uniformly increased from the inner circumference side to the outer circumference side as in the magneto-optical disk of the present invention, the recording layer 2 to the light reflection layer 4 are formed on the inner circumference side. The heat loss to the outer peripheral side is relatively large and the sensitivity is low, and the heat loss on the outer peripheral side is relatively small and the sensitivity is high. Therefore, the recording sensitivity is uniform in the radial direction of the disc, and the shape (size) of the recording bit is also uniform.
Is also uniform.

上述した本発明による光磁気ディスクの効果をより明
らかにするため、従来技術に基づく光磁気ディスクを試
作し、同一のディスク駆動装置を用いて評価した。従来
技術に基づく光磁気ディスクの試作においては、先に述
べた本発明に基づく光磁気ディスクの製造プロセス中、
スパッタ装置内でSi3N4ターゲット前面に設けた膜厚制
御用のマスクを取除き、基板上に記録層として30nm厚の
TbCo膜を形成した後、透明干渉層として100nm一様膜厚
のSiN膜、および光反射層として50nm厚のAl膜を順次積
層した。
In order to further clarify the effect of the above-described magneto-optical disk according to the present invention, a magneto-optical disk based on the conventional technique was prototyped and evaluated using the same disk drive device. In the trial manufacture of the magneto-optical disk based on the prior art, during the manufacturing process of the magneto-optical disk based on the present invention described above,
The mask for controlling the film thickness provided on the front surface of the Si 3 N 4 target was removed in the sputtering system, and a 30 nm thick recording layer was formed on the substrate.
After forming the TbCo film, a SiN film having a uniform thickness of 100 nm as a transparent interference layer and an Al film having a thickness of 50 nm as a light reflecting layer were sequentially laminated.

この従来技術に基づく光磁気ディスクを第1表のディ
スク駆動装置で評価した結果を第5図に示す。第4図に
示した計算結果から推定される傾向が明確に現われてい
る。すなわち、記録閾値レーザパワーは外周側に移行す
るに従い増加しており、また外周側では記録ビットの大
きさが不十分となるために、再生C/Nは外周側で減少し
ている。
FIG. 5 shows the result of evaluation of the magneto-optical disk based on this prior art with the disk drive device shown in Table 1. The tendency estimated from the calculation result shown in FIG. 4 is clearly shown. That is, the recording threshold laser power increases as it moves to the outer peripheral side, and the reproduction C / N decreases on the outer peripheral side because the recording bit size becomes insufficient on the outer peripheral side.

なお、本発明は上記した実施例に限定されるものでは
なく、例えば記録層に用いるRE−TM膜としてTbCo以外の
ものを用いた場合にも、本発明は有効である。
The present invention is not limited to the above-described embodiments, and the present invention is effective when, for example, a RE-TM film used for the recording layer is made of a material other than TbCo.

また、透明干渉層の材料としてはSiNのほかに、SiO,S
iO2,Si3N4,ZnS,AlN,CaF2,ITO等を用いることができる。
透明樹脂基板の材料としても、ポリカーボネイトのほか
ポリメチルメタクリレート,エポキシ等を幅広く選択で
きる。
In addition to SiN, SiO, S
It is possible to use iO 2 , Si 3 N 4 , ZnS, AlN, CaF 2 , ITO or the like.
As a material for the transparent resin substrate, not only polycarbonate but also polymethylmethacrylate, epoxy, etc. can be widely selected.

但し、本発明においては透明干渉層の熱伝導率が記録
層および光反射層のそれよりも小さい場合、すなわち透
明干渉層が熱絶縁層としての働きをする場合に有効であ
るから、記録層,透明干渉層および光反射層の材料はそ
のような条件を満たす組合せが望ましい。
However, in the present invention, when the thermal conductivity of the transparent interference layer is smaller than that of the recording layer and the light reflection layer, that is, when the transparent interference layer functions as a heat insulating layer, the recording layer, It is desirable that the materials of the transparent interference layer and the light reflecting layer are a combination satisfying such a condition.

さらに、本発明は第1図に示したような構造の光磁気
ディスクに限定されず、例えば基板と記録層との間にも
透明干渉層を介在させた構造の光磁気ディスクにも本発
明を適用することができる。その他、本発明は要旨を逸
脱しない範囲で種々変形して実施することが可能であ
る。
Furthermore, the present invention is not limited to the magneto-optical disk having the structure shown in FIG. 1, and the present invention is also applicable to a magneto-optical disk having a structure in which a transparent interference layer is interposed between the substrate and the recording layer. Can be applied. In addition, the present invention can be variously modified and implemented without departing from the gist.

[発明の効果] 本発明による光磁気ディスクは、記録および再生時に
CAV方式で駆動され、記録レーザパワー,記録用磁界お
よび記録周波数が一定の下で記録されても、ディスク全
面にわたり一様な記録感度および再生C/Nが得られる。
[Effects of the Invention] The magneto-optical disk according to the present invention is used for recording and reproduction.
Even if the recording is performed by the CAV method and the recording laser power, the recording magnetic field, and the recording frequency are constant, uniform recording sensitivity and reproducing C / N are obtained over the entire surface of the disc.

【図面の簡単な説明】[Brief description of drawings]

第1図は本発明の一実施例に係る光磁気ディスクの断面
図、第2図は同実施例の光磁気ディスクにおける透明干
渉層のディスク半径方向の膜厚分布を示す図、第3図は
同実施例の光磁気ディスクをCAV方式のディスク駆動装
置で駆動した場合のディスク半径と記録閾値レーザパワ
ーおよび再生C/Nとの関係を示す図、第4図はCAV方式に
おけるディスク半径方向の記録エネルギー密度分布を示
す図、第5図は従来技術に基づく光磁気ディスクをCAV
方式のディスク駆動装置で駆動した場合のディスク半径
と記録閾値レーザパワーおよび再生C/Nとの関係を示す
図である。 1……透明樹脂基板、2……RE−TM膜からなる記録層、
3……透明干渉層、4……光反射層。
FIG. 1 is a sectional view of a magneto-optical disk according to an embodiment of the present invention, FIG. 2 is a view showing a film thickness distribution of a transparent interference layer in a disk radial direction in the magneto-optical disk of the embodiment, and FIG. FIG. 4 is a diagram showing the relationship between the disc radius, the recording threshold laser power, and the reproduction C / N when the magneto-optical disc of the embodiment is driven by a CAV disc drive, and FIG. 4 shows recording in the disc radius direction in the CAV system. FIG. 5 shows the energy density distribution, and FIG. 5 shows a conventional magneto-optical disk as a CAV.
FIG. 6 is a diagram showing a relationship between a disc radius, a recording threshold laser power, and a reproduction C / N when the disc is driven by a disc drive apparatus of a system. 1 ... Transparent resin substrate, 2 ... Recording layer made of RE-TM film,
3 ... Transparent interference layer, 4 ... Light reflecting layer.

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】ガイドグルーブを有する基板上に希土類−
遷移金属非晶質フェリ磁性合金薄膜からなる記録層と透
明干渉層および光反射層を順次積層して構成され、記録
および再生時に一定角速度回転方式により駆動される光
磁気ディスクにおいて、 前記透明干渉層の熱伝導率が前記記録層および前記光反
射層の熱伝導率よりも小さく、かつ前記透明干渉層の薄
膜がディスク半径方向に沿って内周側から外周側へ向け
て一様に増加していることを特徴とする光磁気ディス
ク。
1. A rare earth element on a substrate having a guide groove.
A magneto-optical disk which is formed by sequentially stacking a recording layer made of a transition metal amorphous ferrimagnetic alloy thin film, a transparent interference layer and a light reflection layer, and is driven by a constant angular velocity rotation method during recording and reproduction. Has a thermal conductivity smaller than that of the recording layer and the light reflection layer, and the thin film of the transparent interference layer increases uniformly from the inner circumference side to the outer circumference side along the disc radial direction. A magneto-optical disk characterized by being present.
JP61121611A 1986-05-27 1986-05-27 Magneto-optical disk Expired - Lifetime JP2521664B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61121611A JP2521664B2 (en) 1986-05-27 1986-05-27 Magneto-optical disk

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61121611A JP2521664B2 (en) 1986-05-27 1986-05-27 Magneto-optical disk

Publications (2)

Publication Number Publication Date
JPS62277645A JPS62277645A (en) 1987-12-02
JP2521664B2 true JP2521664B2 (en) 1996-08-07

Family

ID=14815537

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61121611A Expired - Lifetime JP2521664B2 (en) 1986-05-27 1986-05-27 Magneto-optical disk

Country Status (1)

Country Link
JP (1) JP2521664B2 (en)

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5911555A (en) * 1982-07-13 1984-01-21 Ricoh Co Ltd Opto-magnetic recording medium
JPH0766577B2 (en) * 1985-03-18 1995-07-19 日本電気株式会社 Magneto-optical recording medium

Also Published As

Publication number Publication date
JPS62277645A (en) 1987-12-02

Similar Documents

Publication Publication Date Title
JP2521664B2 (en) Magneto-optical disk
JP2674837B2 (en) Phase change optical disk
JPH0766577B2 (en) Magneto-optical recording medium
JPH0729206A (en) Optical recording medium
JPS62277643A (en) Magneto-optical disk
JPS62277644A (en) Magneto-optical disk
JP2766520B2 (en) Method for manufacturing magneto-optical recording medium
JPH0675304B2 (en) Magneto-optical recording medium
JPH11348422A (en) Optical recording medium and manufacture thereof
JPH02278518A (en) Rewriting method for information
JP2815663B2 (en) Magneto-optical recording medium and magneto-optical information recording method
Yamagami et al. High-density magneto-optical recording with magnetic field modulation and pulsed laser irradiation
JP2834846B2 (en) Method for manufacturing magneto-optical recording medium
JP2637825B2 (en) Phase change optical disk
JP2000149325A (en) Optical recording medium and its production
JP3071246B2 (en) Magneto-optical recording method
KR100225108B1 (en) Optic-magneto recording medium
JP2004134064A (en) Magnetic recording medium, method for manufacturing the same, and magnetic recording and reproducing device
JP3878337B2 (en) Method for producing non-initialization type phase change optical recording medium
JPH0675305B2 (en) Magneto-optical recording medium
JPH0675306B2 (en) Magneto-optical recording medium
JPH0388148A (en) Phase change type optical disk
JPS63124249A (en) Magneto-optical disk
JP2000187892A (en) Silicon dioxide film, phase change type disk medium and its production
JPS61273761A (en) Photomagnetic disk