JP2520641B2 - Standing wave accelerator - Google Patents

Standing wave accelerator

Info

Publication number
JP2520641B2
JP2520641B2 JP62125286A JP12528687A JP2520641B2 JP 2520641 B2 JP2520641 B2 JP 2520641B2 JP 62125286 A JP62125286 A JP 62125286A JP 12528687 A JP12528687 A JP 12528687A JP 2520641 B2 JP2520641 B2 JP 2520641B2
Authority
JP
Japan
Prior art keywords
accelerating
cavity
coupling
particles
standing wave
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP62125286A
Other languages
Japanese (ja)
Other versions
JPS63291398A (en
Inventor
勇介 森口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP62125286A priority Critical patent/JP2520641B2/en
Priority to US07/196,255 priority patent/US5039910A/en
Publication of JPS63291398A publication Critical patent/JPS63291398A/en
Application granted granted Critical
Publication of JP2520641B2 publication Critical patent/JP2520641B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Particle Accelerators (AREA)

Description

【発明の詳細な説明】Detailed Description of the Invention 【産業上の利用分野】[Industrial applications]

この発明は、粒子を加速する定在波型加速管に関する
ものである。
The present invention relates to a standing wave accelerating tube that accelerates particles.

【従来の技術】[Prior art]

第4図は従来の広範囲なエネルギに粒子を加速するこ
とのできるサイドカップル型の定在波型加速管の断面図
である。この第4図において、1は加速管を構成する一
つの加速空胴であり、2a〜2d,3,4は結合空胴、5はマイ
クロ波の伝播を止めるショート棒、6は加速空胴1内に
溜ったマイクロ波エネルギによって加速される粒子であ
る。 次に動作について説明する。ショート棒付きの結合空
胴の加速空胴1との結合孔の大きさは結合空胴3,4では
異なる。結合空胴3の結合孔の大きさは他の結合空胴と
同じであり、結合空胴4の結合孔は他より小さい。 いま、第5図のように結合空胴4にショート棒5を入
れると、マイクロ波は矢印A1で示すように結合空胴3を
伝播し、それ以降の結合空胴2dにマイクロ波を伝播させ
る。 また、第6図のように、結合空胴3にショート棒5を
入れると、マイクロ波は矢印A2で示すように結合空胴4
を伝播し、それ以降の結合空胴2dにマイクロ波を伝播さ
せる。 さらに、第7図に示すように結合空胴3,4ともにショ
ート棒5を入れると、マイクロ波は矢印A3で示すように
それ以降の結合空胴2dへは伝播しない。 これらの結果、加速管内の電界分布は第8図(a)〜
第8図(c)のようになり、第8図(a)ないし第8図
(c)はそれぞれ第5図ないし第7図の場合の電界分布
を示し、加速される粒子6は加速管内の電界によって得
るエネルギが異なるため、第8図(a)ないし第8図
(c)では、それぞれ粒子のエネルギが異なる。 以上のようなショート棒5の挿脱により加速される粒
子6のエネルギを調整する。
FIG. 4 is a sectional view of a conventional side-coupling type standing wave type accelerating tube capable of accelerating particles to a wide range of energies. In FIG. 4, 1 is one acceleration cavity that constitutes an acceleration tube, 2a to 2d, 3 and 4 are coupling cavities, 5 is a short rod for stopping the propagation of microwaves, and 6 is an acceleration cavity 1 These particles are accelerated by the microwave energy stored inside. Next, the operation will be described. The size of the coupling hole of the coupling cavity with the short rod and the acceleration cavity 1 is different in the coupling cavities 3 and 4. The size of the coupling hole of the coupling cavity 3 is the same as that of the other coupling cavities, and the coupling hole of the coupling cavity 4 is smaller than the others. Now, when the short rod 5 is inserted into the coupling cavity 4 as shown in FIG. 5, the microwave propagates through the coupling cavity 3 as shown by an arrow A1, and the microwave propagates to the subsequent coupling cavities 2d. . Further, as shown in FIG. 6, when the short rod 5 is inserted into the coupling cavity 3, the microwave is coupled by the coupling cavity 4 as shown by an arrow A2.
And propagate the microwave to the subsequent coupling cavities 2d. Furthermore, when the short rod 5 is inserted into both the coupling cavities 3 and 4 as shown in FIG. 7, the microwave does not propagate to the subsequent coupling cavities 2d as indicated by an arrow A3. As a result, the electric field distribution in the acceleration tube is shown in FIG.
It becomes like FIG. 8 (c), and FIGS. 8 (a) to 8 (c) show the electric field distributions in the cases of FIGS. 5 to 7, respectively. Since the energy obtained by the electric field is different, the energy of the particles is different in FIGS. 8 (a) to 8 (c). The energy of the particles 6 accelerated by the insertion and removal of the short rod 5 as described above is adjusted.

【発明が解決しようとする問題点】[Problems to be Solved by the Invention]

従来の定在波型加速管は以上のように構成されている
ので、ショート棒5を入れ、その以降の空胴の電界の大
きさを小さくしたり、あるいは全くなくしたりすると、
粒子6の進む方向と垂直な方向の電界(収束電界)も小
さくなったり、なくなったりする。その結果、ショート
棒以降の結合空胴にて粒子6は発散してしまい加速管の
外部より磁界を加え収束させる必要があるなどの問題点
があった。 この発明は上記のような問題点を解消するためになさ
れたもので、外部より磁界を与えることなく、粒子を収
束させることのできる定在波型加速管を得ることを目的
とする。
Since the conventional standing wave type accelerating tube is configured as described above, if the short rod 5 is inserted to reduce the magnitude of the electric field in the cavity thereafter, or to eliminate it at all,
The electric field (converging electric field) in the direction perpendicular to the traveling direction of the particles 6 also becomes small or disappears. As a result, there is a problem in that the particles 6 diverge in the coupling cavity after the short rod and it is necessary to apply a magnetic field from the outside of the accelerating tube to converge the particles. The present invention has been made to solve the above problems, and an object thereof is to obtain a standing wave type accelerating tube capable of converging particles without applying a magnetic field from the outside.

【問題点を解決するための手段】[Means for solving problems]

この発明に係る定在波型加速管は、ショート棒付結合
空胴の前あるいは後の加速空胴に粒子を加速し、かつビ
ーム収束作用を生じる加速およびビーム収束手段を設け
たものである。
The standing wave type accelerating tube according to the present invention is provided with accelerating and beam converging means for accelerating particles and generating a beam converging action in the accelerating cavity before or after the coupling cavity with a short rod.

【作 用】[Work]

この発明における加速およびビーム収束手段はそれを
設けた加速空胴において粒子の進行方向と垂直な方向の
電界分布を大きくして粒子に対して加速し、かつ収束作
用を及ぼす。
The accelerating and beam converging means in the present invention increases the electric field distribution in the direction perpendicular to the traveling direction of the particles in the acceleration cavity provided with the accelerating and beam converging means to accelerate the particles and exert a converging action.

【実施例】【Example】

以下、この発明の一実施例を図について説明する。第
1図(a)において、第4図との同一部分には同一符号
を付してその重複説明を避け、第4図とは異なる部分を
主体に述べる。 この第1図(a)を第4図と比較しても明らかなよう
に、符号1,3〜6で示す部分は第4図と同様であり、こ
の第1図(a)の実施例では加速およびビーム収束手段
として加速空胴1内においてショート棒5が挿入されて
いる結合空胴3の次の加速空胴1aの入口にリング7が設
けられている。このリング7は第1図(b)に示す形状
をなしており、加速空胴1a内の電界分布を変えるための
もので、この加速空胴1aの粒子入口部の数mmのところに
配置されている。その他の構成は第4図と同様である。 第2図および第3図はそれぞれ加速空胴1内の電界分
布を示すものである。この第2図,第3図の両図におけ
る8は加速空胴1内の粒子6が進行方向の電界の強さで
あり、9は粒子6の進行方向に垂直な方向の電界の強さ
である。 次に動作について説明する。基本的な動作は従来と同
様であるが、ショート棒付きの結合空胴3の次の加速空
胴1aは第1図(a)のように入口部にリング7が入って
いる。その加速空胴1aの電界分布は他の加速空胴1の電
界分布(第2図)とは異なり、第3図のように粒子6の
進行方向と垂直な方向の電界が加速空胴1aの粒子入口付
近で急激に大きくなり、粒子6に対して大きな収束作用
が働く。 従って、第8図(b)のように、第4図の結合空胴3
にショート棒5を入れ、第1図(a)の加速空胴1aで急
に電界が弱くなっても、この加速空胴1aの入口で大きな
収束作用を受けるので、粒子6は発散することなく加速
される。 なお、第7図のように両サイドの結合空胴3,4にショ
ート棒5を入れた場合は、第1図(a)の加速空胴1a以
後には全く電界がなくなり、第8図(c)のようにな
る。 そのような場合は、第1図(a)の加速空胴1の入口
にリング7を設けておくとよい。つまり、エネルギ調整
において第5図ないし第7図のような3種類のショート
棒5の入れ出しの仕方をする場合は、第1図(a)の加
速空胴1および加速空胴1aの両加速空胴入口において、
リング7を設ける必要がある。 尚、第5図,第6図に示したようなショート棒5の入
れ出しの仕方をする場合は加速空胴1aにリング7を挿入
すればよい。 このようなリング7をすべての加速空胴の入口に設け
ると、粒子6は常に加速空胴入口で強く収束される。
An embodiment of the present invention will be described below with reference to the drawings. In FIG. 1 (a), the same parts as those in FIG. 4 are designated by the same reference numerals to avoid redundant description, and the parts different from those in FIG. 4 will be mainly described. As is apparent from a comparison of FIG. 1 (a) with FIG. 4, the portions indicated by reference numerals 1, 3 to 6 are the same as in FIG. 4, and in the embodiment of FIG. 1 (a), A ring 7 is provided at the entrance of the next acceleration cavity 1a of the coupling cavity 3 in which the short rod 5 is inserted in the acceleration cavity 1 as means for accelerating and beam focusing. This ring 7 has the shape shown in FIG. 1 (b), and is for changing the electric field distribution in the acceleration cavity 1a, and is arranged at a few mm from the particle inlet of the acceleration cavity 1a. ing. Other configurations are the same as those in FIG. 2 and 3 show the electric field distribution in the acceleration cavity 1, respectively. In both figures 2 and 3, 8 is the strength of the electric field in the traveling direction of the particles 6 in the acceleration cavity 1, and 9 is the strength of the electric field in the direction perpendicular to the traveling direction of the particles 6. is there. Next, the operation will be described. The basic operation is the same as the conventional one, but the accelerating cavity 1a next to the coupling cavity 3 with a short rod has a ring 7 at the inlet as shown in FIG. 1 (a). The electric field distribution of the accelerating cavity 1a is different from the electric field distribution of the other accelerating cavities 1 (FIG. 2), and the electric field in the direction perpendicular to the traveling direction of the particles 6 as shown in FIG. It rapidly increases near the particle entrance, and a large converging action acts on the particle 6. Therefore, as shown in FIG. 8B, the coupling cavity 3 of FIG.
Even if the electric field suddenly weakens in the accelerating cavity 1a of Fig. 1 (a) by inserting the short rod 5 into it, the particle 6 will not diverge because it will undergo a large focusing action at the entrance of this accelerating cavity 1a Be accelerated. When the short rods 5 are inserted in the coupling cavities 3 and 4 on both sides as shown in FIG. 7, there is no electric field after the acceleration cavity 1a in FIG. It becomes like c). In such a case, it is advisable to provide a ring 7 at the entrance of the acceleration cavity 1 shown in FIG. That is, when the three types of short rods 5 are put in and out as shown in FIGS. 5 to 7 in the energy adjustment, both acceleration cavities 1 and 1a of FIG. 1 (a) are accelerated. At the entrance to the cavity,
It is necessary to provide the ring 7. Incidentally, when the short rod 5 is put in and out as shown in FIGS. 5 and 6, the ring 7 may be inserted into the acceleration cavity 1a. If such a ring 7 is provided at the entrance of all accelerating cavities, the particles 6 are always strongly focused at the entrance of the accelerating cavity.

【発明の効果】【The invention's effect】

以上のように、この発明によれば、ショート棒付きの
結合空胴の前あるいは後の加速空胴に粒子の加速および
ビーム収束手段を設けるように構成したので、外部磁界
を使わなくてもよくなり、加速管がコンパクトになると
ともに安価となる。
As described above, according to the present invention, since the particle accelerating and beam converging means are provided in the accelerating cavity before or after the coupling cavity with the short rod, it is not necessary to use an external magnetic field. Therefore, the accelerating tube becomes compact and inexpensive.

【図面の簡単な説明】[Brief description of drawings]

第1図(a)はこの発明の一実施例にる定在波型加速管
の要部の構成を示す断面図、第1図(b)は同上実施例
に使用されるリングの平面図、第2図および第3図は同
上実施例における加速空胴内電界分布図、第4図は従来
の定在波型加速管の要部の構成を示す断面図、第5図な
いし第7図はそれぞれ従来の定在波型加速管におけるシ
ョート棒を結合空胴内に挿入するショート棒の位置に応
じたマイクロ波の伝播状態図、第8図(a)ないし第8
図(c)はそれぞれ第5図ないし第7図のショート棒挿
入位置の場合の定在波型加速管内の電界強度図である。 図において、1,1aは加速空胴、3,4は結合空胴、5はシ
ョート棒、6は粒子、7は加速およびビーム収束手段で
ある。 なお、図中、同一符号は同一又は相当部分を示す。
FIG. 1 (a) is a sectional view showing the structure of the main part of a standing wave type acceleration tube according to an embodiment of the present invention, and FIG. 1 (b) is a plan view of a ring used in the embodiment. 2 and 3 are electric field distribution diagrams in the accelerating cavity in the above embodiment, FIG. 4 is a cross-sectional view showing the structure of the main part of a conventional standing wave type accelerating tube, and FIGS. 5 to 7 are FIGS. 8 (a) to 8 (a) to 8 (c) are diagrams of microwave propagation according to the position of the short rod inserted into the coupling cavity in the conventional standing wave type acceleration tube, respectively.
FIG. 6 (c) is an electric field intensity diagram in the standing wave type accelerating tube at the short rod insertion position of FIGS. 5 to 7, respectively. In the figure, 1 and 1a are acceleration cavities, 3 and 4 are coupling cavities, 5 is a short rod, 6 is a particle, and 7 is an acceleration and beam focusing means. In the drawings, the same reference numerals indicate the same or corresponding parts.

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】粒子を加速しかつマイクロ波を伝播させる
複数の加速空胴と、この加速空胴に結合孔を介して結合
されマイクロ波の伝播を止めるショート棒が挿入される
結合空胴と、上記ショート棒が挿入される結合空胴の前
あるいは後の上記加速空胴に設けられ上記粒子の加速お
よびビーム収束作用を生じさせる加速およびビーム収束
手段とを備えた定在波型加速管。
1. A plurality of accelerating cavities for accelerating particles and propagating microwaves, and a coupling cavity in which short rods which are coupled to the accelerating cavities via coupling holes to stop the propagation of microwaves are inserted. A standing wave type accelerating tube provided in the accelerating cavity before or after the coupling cavity into which the short rod is inserted, the accelerating and beam converging means for accelerating the particles and causing the beam converging action.
JP62125286A 1987-05-22 1987-05-22 Standing wave accelerator Expired - Lifetime JP2520641B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP62125286A JP2520641B2 (en) 1987-05-22 1987-05-22 Standing wave accelerator
US07/196,255 US5039910A (en) 1987-05-22 1988-05-20 Standing-wave accelerating structure with different diameter bores in bunching and regular cavity sections

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62125286A JP2520641B2 (en) 1987-05-22 1987-05-22 Standing wave accelerator

Publications (2)

Publication Number Publication Date
JPS63291398A JPS63291398A (en) 1988-11-29
JP2520641B2 true JP2520641B2 (en) 1996-07-31

Family

ID=14906317

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62125286A Expired - Lifetime JP2520641B2 (en) 1987-05-22 1987-05-22 Standing wave accelerator

Country Status (1)

Country Link
JP (1) JP2520641B2 (en)

Also Published As

Publication number Publication date
JPS63291398A (en) 1988-11-29

Similar Documents

Publication Publication Date Title
GB1597774A (en) Heavy-ion accelerating structure
EP3089561A1 (en) X-ray pulse source and method for generating x-ray pulses
JPS61118938A (en) Ignition method and apparatus for superhigh frequency ion source
JP2520641B2 (en) Standing wave accelerator
JPS5367099A (en) Electron beam shape accelerator
JPH07500206A (en) Electron accelerator with coaxial cavity
Afanasiev et al. On the smoothed Tamm problem
JP3099883B2 (en) Higher mode attenuation antenna
JPH0525387B2 (en)
JP3201585B2 (en) Method and apparatus for accelerating and compressing a short pulse electron beam
RU1632348C (en) Process of build-up of beam of accelerated charged particles
JPH01251599A (en) Linear accelerator
JPH07211498A (en) Charged particle accelerator
JPH01313899A (en) Standing waveform accelerating tube
JPH0389500A (en) Position accelerator
JP2843689B2 (en) Electron accelerator
JPS6343840Y2 (en)
JPH0758639B2 (en) Ion beam acceleration / deceleration device
JPH04248300A (en) Standing wave type accelerating tube
JP2794535B2 (en) Undulator and free electron laser oscillation method
JPH0230100A (en) Linear accelerator
JPS6396898A (en) Synchrotron radiator
JP2721856B2 (en) Plasma generator
JPH0567437A (en) Electromagnetic field orthogonal microwave amplifier tube
JPH05114499A (en) High frequency accelerating cavity