JP2519209B2 - Variable damping force type hydraulic shock absorber - Google Patents
Variable damping force type hydraulic shock absorberInfo
- Publication number
- JP2519209B2 JP2519209B2 JP61160481A JP16048186A JP2519209B2 JP 2519209 B2 JP2519209 B2 JP 2519209B2 JP 61160481 A JP61160481 A JP 61160481A JP 16048186 A JP16048186 A JP 16048186A JP 2519209 B2 JP2519209 B2 JP 2519209B2
- Authority
- JP
- Japan
- Prior art keywords
- liquid chamber
- cylinder
- piston
- valve
- chamber
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16F—SPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
- F16F9/00—Springs, vibration-dampers, shock-absorbers, or similarly-constructed movement-dampers using a fluid or the equivalent as damping medium
- F16F9/32—Details
- F16F9/44—Means on or in the damper for manual or non-automatic adjustment; such means combined with temperature correction
Landscapes
- Engineering & Computer Science (AREA)
- General Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Fluid-Damping Devices (AREA)
Description
【発明の詳細な説明】 産業上の利用分野 この発明は、車両のサスペンシヨンに用いられる液圧
緩衝器とりわけ減衰力調整可能な減衰力可変型液圧緩衝
器に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a hydraulic shock absorber used for suspension of a vehicle, and more particularly to a variable damping force hydraulic shock absorber with adjustable damping force.
従来の技術 従来のこの種液圧緩衝器は、走路状態あるいは車速な
どの走行条件に関係なく減衰力が一定であつたため、そ
の走行条件に応じて車両の走行性、乗り心地あるいは操
安性を良好なものにすることができなかつた。Conventional technology Since this type of conventional hydraulic shock absorber has a constant damping force regardless of running conditions such as road condition or vehicle speed, the running performance, riding comfort, or maneuverability of the vehicle can be adjusted according to the running conditions. I couldn't make it good.
そこで、作動液を充填したシリンダ内を摺動するピス
トンに、通路断面積を切換えることによつて減衰力を任
意に選択できる減衰力可変機構を設け、走行条件に応じ
て減衰力を調整できるようにしたものが本出願人からも
種々提供されている(例えば特願昭58−206386号参
照)。Therefore, a piston that slides in a cylinder filled with hydraulic fluid is provided with a damping force variable mechanism that allows the damping force to be selected arbitrarily by switching the passage cross-sectional area, so that the damping force can be adjusted according to running conditions. Various types of the above are also provided by the present applicant (see, for example, Japanese Patent Application No. 58-206386).
斯る減衰力可変型液圧緩衝器の一例を、模式的に表わ
した第5図に基づいて概略説明すれば、1は車軸側に固
定された外筒、2はこの外筒1内に設けられ、かつ内部
に作動液を充填したシリンダ、3は内部に作動液と気体
とが共存するリザーバ室、4は車体側に固定されたピス
トンロツド5に設けられ、かつシリンダ2内を上下液室
6,7に隔成しつつ上下に摺動するピストンであつて、こ
のピストン4には、伸行程時に作動液を上部液室6から
下部液室7に、圧行程時には下部液室7から上部液室6
に夫々置換流動させる第1,第2貫通路8,9が設けられて
いると共に、各貫通路8,9の出口に上記置換流動の際に
作動液に流通抵抗を与える伸側バルブ10と圧側バルブ11
が設けられている。また、図中12はシリンダ2の内部下
端に固定されたベースバルブであつて、このベースバル
ブ12にも上記ピストン4と同様に伸,圧行程時に作動液
を下部液室7とリザーバ室3に夫々置換流動させる第3,
第4貫通路13,14が設けられており、この各貫通路13,14
の各出口に伸側チエツクバルブ15と流通抵抗を与える圧
側バルブ16が設けられている。An example of such a damping force variable hydraulic shock absorber will be schematically described with reference to FIG. 5 schematically showing, 1 is an outer cylinder fixed to the axle side, and 2 is provided in the outer cylinder 1. And a cylinder 3 filled with hydraulic fluid therein, 3 is a reservoir chamber in which the hydraulic fluid and gas coexist, and 4 is provided in a piston rod 5 fixed to the vehicle body side, and the cylinder 2 is provided with upper and lower fluid chambers.
A piston that slides up and down while being separated into 6 and 7, wherein the piston 4 moves the working fluid from the upper fluid chamber 6 to the lower fluid chamber 7 and from the lower fluid chamber 7 to the upper fluid chamber during the pressure stroke. Liquid chamber 6
Are provided with first and second through passages 8 and 9, respectively, which cause displacement flow, and at the outlets of the respective through passages 8 and 9, the expansion side valve 10 and the pressure side that give flow resistance to the working fluid during the above displacement flow. Valve 11
Is provided. Further, reference numeral 12 in the drawing denotes a base valve fixed to the inner lower end of the cylinder 2, and the base valve 12 is extended to the lower liquid chamber 7 and the reservoir chamber 3 at the time of the pressure stroke by extending like the piston 4. Replace each with a fluidized third,
Fourth through passages 13 and 14 are provided, and the respective through passages 13 and 14 are provided.
An expansion-side check valve 15 and a pressure-side valve 16 for providing flow resistance are provided at each outlet of the.
また、ピストン4の内部中央には、上下各液室6,7を
連通する連通路17と、この連通路17を全閉から最大開口
面積まで調整する可変機構18が設けられており、この可
変機構18により車両の走行条件に応じて減衰力を調整で
きるようになつている。A communication passage 17 that communicates the upper and lower liquid chambers 6 and 7 and a variable mechanism 18 that adjusts the communication passage 17 from the fully closed state to the maximum opening area are provided in the center of the piston 4. The mechanism 18 can adjust the damping force according to the traveling conditions of the vehicle.
発明が解決しようとする問題点 ところで、上記従来の減衰力可変型液圧緩衝器にあつ
ては、圧側減衰力はベースバルブ12に設けた圧側バルブ
16とピストン4に設けた圧側バルブ11および可変機構18
によつて定まる。そして、圧行程時に可変機構18を操作
して連通孔17を全開にすると、下部液室7から上部液室
6への流通抵抗が最小となり、ピストンロツド5の進入
分の作動液が下部液室7からリザーバ室3に流入すると
きに圧側バルブ16によつて生じる流通抵抗分だけの最小
減衰力が得られる。次に、可変機構18を全閉にすると、
ピストン4の進入に伴なう下部液室7の作動液はピスト
ン4の圧側バルブ11によつて上部液室6へ、また、ベー
スバルブ12の圧側バルブ16によつてリザーバ室3へそれ
ぞれ排出される。このとき、上記圧側バルブ11を剛くし
て、例えば、極端には大きい圧力でも開かなくすると、
下部液室7から排出されるべき作動液の全量は上記圧側
バルブ16を通過することとなり、流動抵抗が最大とな
り、最大の減衰力が得られる。しかし、このとき上部液
室6には、容積増加分の作動液の補償がないので負圧に
なつてしまう。この負圧は上記圧側バルブ11を所定の剛
性以下に設定するまで生じる。そして、負圧が生じると
エアレーシヨンやキヤビテーシヨンが発生して、異音の
発生や、構成部品の破壊をもたらす。従つて、圧側バル
ブ11は負圧が発生しない程度の所定の剛性以下にしか設
定できないので、該圧側バルブ11で生じる流通抵抗の大
きさには制約があり、このため減衰力の可変幅が小さく
なってしまうという問題があつた。DISCLOSURE OF THE INVENTION Problems to be Solved by the Invention By the way, in the conventional damping force variable type hydraulic shock absorber described above, the compression side damping force is the pressure side valve provided in the base valve 12.
16 and pressure side valve 11 and variable mechanism 18 provided on piston 4
Determined by When the variable mechanism 18 is operated to fully open the communication hole 17 during the pressure stroke, the flow resistance from the lower liquid chamber 7 to the upper liquid chamber 6 becomes the minimum, and the working fluid that has entered the piston rod 5 becomes lower. A minimum damping force corresponding to the flow resistance generated by the pressure side valve 16 when flowing into the reservoir chamber 3 from is obtained. Next, when the variable mechanism 18 is fully closed,
The hydraulic fluid in the lower liquid chamber 7 accompanying the entry of the piston 4 is discharged to the upper liquid chamber 6 by the pressure side valve 11 of the piston 4 and to the reservoir chamber 3 by the pressure side valve 16 of the base valve 12, respectively. It At this time, if the pressure side valve 11 is made rigid so that it will not be opened even with an extremely large pressure,
The entire amount of the hydraulic fluid to be discharged from the lower liquid chamber 7 passes through the pressure side valve 16 so that the flow resistance becomes maximum and the maximum damping force is obtained. However, at this time, the upper liquid chamber 6 is not compensated for the hydraulic fluid for the increase in volume, so that the negative pressure is reached. This negative pressure is generated until the pressure side valve 11 is set to have a predetermined rigidity or less. When negative pressure is generated, air race or cavitation is generated, which causes abnormal noise and destruction of components. Therefore, since the pressure side valve 11 can be set only to a predetermined rigidity or less such that negative pressure is not generated, there is a restriction on the magnitude of the flow resistance generated in the pressure side valve 11, and therefore the variable range of the damping force is small. There was a problem of becoming.
問題点を解決するための手段 本発明は、上記従来の問題点に鑑み案出されたもの
で、車体側に固定された外筒内に設けられ、かつ内部に
作動液と気体を充填したシリンダと、一端が車軸側に固
定され、他端が上記シリンダの一端を封止的に貫通した
ピストンロッドと、上記シリンダの下部内を上記液室と
下部液室とに隔成すべく前記ピストンロッドの先端に固
設されて該シリンダ内に摺動可能に嵌挿されたピストン
と、上記外筒とシリンダとの間に形成され、一端が通孔
を介して下部液室に開口した連通路と、上記シリンダの
上部内を上記上部液室とリザーバ室とに隔成すべく該シ
リンダ内に固定された固定バルブ装置と、上記ピストン
に設けられ、伸行程時に上記下部液室から上部液室に流
動する作動液に流通抵抗を与える第1バルブおよび圧行
程時に上部液室から下部液室への容積補償流れを許容す
るチェックバルブと、上記固定バルブ装置に設けられ、
圧行程時に上記上部液室からリザーバ室に流動する作動
液に流通抵抗を与える第2バルブおよび伸行程時にリザ
ーバ室から上部液室への容積補償流れを許容するチェッ
クバルブと、上記固定バルブ装置のバルブボディ内に一
部が形成されて、上部液室とリザーバ室とを連通する第
1バイパス通路と、上記固定バルブ装置のバルブボディ
内に一部が形成されて、上部液室と下部液室とを上記連
通路を介して連通する第2バイパス通路と、上記固定バ
ルブ装置に設けられて、上記第1,第2バイパス通路の通
路断面積をオリフィスを介して可変にする可変機構とを
備えたことを特徴としている。Means for Solving the Problems The present invention has been devised in view of the above-mentioned conventional problems, and is a cylinder provided in an outer cylinder fixed to the vehicle body side and filled with working fluid and gas inside. A piston rod having one end fixed to the axle side and the other end sealingly penetrating one end of the cylinder; and a piston rod of the piston rod for partitioning a lower portion of the cylinder into the liquid chamber and the lower liquid chamber. A piston fixed to the tip and slidably fitted in the cylinder, and a communication passage formed between the outer cylinder and the cylinder and having one end opened to the lower liquid chamber through a through hole, A fixed valve device fixed to the inside of the cylinder so as to separate the inside of the upper part of the cylinder into the upper liquid chamber and the reservoir chamber, and provided on the piston, and flows from the lower liquid chamber to the upper liquid chamber during the extension stroke. The first valve that gives flow resistance to the hydraulic fluid and And a check valve that allows a volume-compensating flow from the upper liquid chamber to the lower liquid chamber during the pressure stroke and the fixed valve device,
A second valve that gives flow resistance to the working fluid flowing from the upper liquid chamber to the reservoir chamber during the pressure stroke, a check valve that allows a volume-compensating flow from the reservoir chamber to the upper liquid chamber during the stroke, and the fixed valve device. A first bypass passage that is partially formed in the valve body and connects the upper liquid chamber and the reservoir chamber, and a portion is formed in the valve body of the fixed valve device to form an upper liquid chamber and a lower liquid chamber. And a variable mechanism provided in the fixed valve device for varying the passage cross-sectional areas of the first and second bypass passages via an orifice. It is characterized by that.
作 用 上記構成を有するこの発明によれば、可変機構によつ
て第1,第2バイパス通路が開路されている場合におい
て、伸行程時には下部液室の作動液の一部は、ピストン
に形成された一つの貫通路と第1バルブを通り、残りの
一部が可変機構を備えた第2バイパス通路を通つて上部
液室に流入する。従つて、下部液室から第1バルブを通
つて上部液室に流入する作動液の量は第2バイパス通路
を通る流量分だけ減少して流通抵抗が小さくなり、減衰
力も小さくなる。また、この上部液室には、上記第2バ
イパス通路を介して下部液圧内の作動液が流入すると共
に、固定バルブ装置に形成された他の貫通路を介してリ
ザーバ室から作動液が流入してピストンロツド退出に伴
なう容積の増加量を補償する。According to the present invention having the above-mentioned configuration, when the first and second bypass passages are opened by the variable mechanism, a part of the hydraulic fluid in the lower fluid chamber is formed in the piston during the extension stroke. It passes through another through passage and the first valve, and the remaining part flows into the upper liquid chamber through the second bypass passage having the variable mechanism. Therefore, the amount of hydraulic fluid flowing from the lower liquid chamber through the first valve into the upper liquid chamber is reduced by the flow rate through the second bypass passage, the flow resistance is reduced, and the damping force is also reduced. Further, the working fluid in the lower fluid pressure flows into the upper fluid chamber via the second bypass passage, and the working fluid flows from the reservoir chamber through another through passage formed in the fixed valve device. Then, the increase in volume due to the withdrawal of the piston rod is compensated.
他方、圧行程時には、上部液室の作動液の一部は、固
定バルブ装置に形成された第2バルブを備えた一つの貫
通路を残り残りの一部が可変機構を備えた第1バイパス
通路を通つてリザーバ室に流入する。従つて上部液室か
ら第2バルブを通つてリザーバ室に流入する作動液の量
は第1バイパス通路を通る流量分だけ減少して流通抵抗
が小さくなり、減衰力も小さくなる。また、同時に下部
液室にはピストンに形成された他の貫通路を介して上部
液室から作動液が流入してピストンの移動に伴なう容積
の増加量を補償するようになつている。On the other hand, during the pressure stroke, a part of the hydraulic fluid in the upper liquid chamber remains in one through passage provided with the second valve formed in the fixed valve device, and the rest remains in the first bypass passage provided with the variable mechanism. Through to the reservoir chamber. Therefore, the amount of hydraulic fluid flowing from the upper liquid chamber through the second valve into the reservoir chamber is reduced by the flow rate through the first bypass passage, the flow resistance is reduced, and the damping force is also reduced. At the same time, the working fluid from the upper liquid chamber flows into the lower liquid chamber through another through passage formed in the piston to compensate for the increase in volume accompanying the movement of the piston.
実施例 以下、この発明の実施例を図面に基づいて詳述する。Embodiment Hereinafter, an embodiment of the present invention will be described in detail with reference to the drawings.
第1図は本発明に係る液圧緩衝器の一実施例を示し、
21は上端が車体側に固定された外筒、22は上下端が封止
されたこの外筒21内に収納されたシリンダ22であつて、
このシリンダ22内部には作動液と伴に気体が封入されて
おり、また外筒21との間に円環状の連通路23を形成し
て、この連通路23と後述する下部液室とを連通する通孔
24を具備している。25は下端25aが図外の車軸側に固定
され、上端25bが上記シリンダ22の下端に設けられたシ
ール部材26と協働して、該シリンダ22の下端を封止的に
貫通したピストンロッド、27はこのピストンロツド25の
上端25bに固定されてシリンダ22内に摺動可能に嵌挿さ
れたピストンであつて、このピストン27はシリンダ22の
下部内を上下の各液室28,29に隔成している。また、こ
のピストン27は、上下面を貫通する貫通路30,31と、こ
の1つの貫通路30を開閉する第1バルブ32と、他の貫通
路31を開閉するチエツクバルブ33とを備えており、上記
第1バルブ32は、環状のディスクプレートであり、上記
貫通路30を通つて上記下部液室29から上部液室28に流動
する作動液に流通抵抗を生じさせて伸行程時に減衰力を
発生させるようになつている。他方、チエツクバルブ33
は、チエツクプレート35と、円環状のスプリングシート
36に支持されて上記チエツクプレート35を小さい弾発力
で閉方向に付勢する円錐状のスプリング37とを有し、上
部液室28から下部液室29への作動液の流通のみを許容す
るようになつている。また、上記スプリングシート36の
下面には、上記ガイド部材26に突き当つてピストン27の
最下動位置を規制するストツパ38が設けられており、こ
のストツパ38は、下方へ移動したピストン27が上記通孔
24を閉塞しないように設定されている。FIG. 1 shows an embodiment of a hydraulic shock absorber according to the present invention,
21 is an outer cylinder whose upper end is fixed to the vehicle body side, 22 is a cylinder 22 housed in this outer cylinder 21 whose upper and lower ends are sealed,
Gas is enclosed in the cylinder 22 together with the working fluid, and an annular communication passage 23 is formed between the cylinder 22 and the outer cylinder 21 to communicate the communication passage 23 with a lower liquid chamber described later. Through hole
24. 25, a lower end 25a is fixed to the axle side (not shown), and an upper end 25b cooperates with a seal member 26 provided on the lower end of the cylinder 22 to seally penetrate the lower end of the cylinder 22. Reference numeral 27 denotes a piston fixed to the upper end 25b of the piston rod 25 and slidably fitted in the cylinder 22. The piston 27 divides the lower portion of the cylinder 22 into upper and lower liquid chambers 28 and 29. are doing. The piston 27 is also provided with through passages 30 and 31 penetrating the upper and lower surfaces, a first valve 32 that opens and closes this one through passage 30, and a check valve 33 that opens and closes another through passage 31. The first valve 32 is an annular disc plate, which causes a flow resistance to the working fluid flowing from the lower liquid chamber 29 to the upper liquid chamber 28 through the through passage 30 to generate a damping force during the extension stroke. It is supposed to be generated. On the other hand, check valve 33
Is a check plate 35 and an annular spring seat.
And a conical spring 37 which is supported by 36 and biases the check plate 35 in the closing direction with a small elastic force, and allows only the working fluid to flow from the upper liquid chamber 28 to the lower liquid chamber 29. It is becoming like this. Further, on the lower surface of the spring seat 36, there is provided a stopper 38 that abuts against the guide member 26 and regulates the lowest moving position of the piston 27. Through hole
It is set not to block 24.
図中39はピストン27上方のシリンダ22壁に液密的に固
定されてシリンダ22の上部内を上記上部液室28と、作動
液と気体とが封入されたリサーバ室40とに隔成する固定
バルブ装置であつて、この固定バルブ装置39は、第2図
にも示すように、バルブボディ39aの一側内部に上下面
を貫通形成された貫通路41,42と、この1つの貫通路41
を開閉する第2バルブ43と、他の貫通孔42を開閉するチ
エツクバルブ44とを備え、上記第2バルブ43は環状デイ
スクプレートであり、上記貫通孔41を通つて上部液室28
からリザーバ室40に流動する作動液に流通抵抗を生じさ
せるようになつている。他方、チエツクバルブ44は、チ
エツクプレート46と、円環状のスプリングシート47に支
持されて上記チエツクプレート46を小さい弾発力で閉方
向に付勢する円錐状のスプリング48とを有し、リザーバ
室40から上部液室28への作動液の流通のみを許容するよ
うになつている。Reference numeral 39 in the figure is liquid-tightly fixed to the wall of the cylinder 22 above the piston 27 so as to separate the inside of the upper portion of the cylinder 22 into the upper liquid chamber 28 and the reservoir chamber 40 in which the working fluid and the gas are sealed. As shown in FIG. 2, the fixed valve device 39 includes through passages 41 and 42 formed through the upper and lower surfaces inside one side of the valve body 39a, and this one through passage 41.
And a check valve 44 for opening and closing another through hole 42. The second valve 43 is an annular disk plate, and the upper liquid chamber 28 passes through the through hole 41.
Flow resistance is generated in the working fluid flowing from the reservoir to the reservoir chamber 40. On the other hand, the check valve 44 has a check plate 46 and a conical spring 48 which is supported by an annular spring seat 47 and biases the check plate 46 in the closing direction with a small elastic force, and the reservoir chamber. Only the flow of hydraulic fluid from 40 to the upper liquid chamber 28 is allowed.
また、上記固定バルブ装置39は、バルブボデイ39aの
他側内部に軸直角方向に貫通形成された上下二段の連通
孔49,50と、中央上下方向に貫通固定された筒状部材51
とを有しており、上記上側連通孔49は、外側開口49aが
リザーバ室40に連通している一方、下側連通孔50は、外
側開口50aが上記連通路23内に臨設され、該連通路23及
び通孔24を介して下部液室29に連通している。上記筒状
部材51は、第2図,第3図−a,bに示すように上記各連
通孔49,50の内側開口49b,50bに対向した外周に、所定径
の環状溝52,53が夫々形成されていると共に、この環状
溝52,53には所定角度120゜離隔した位置に夫々大,小径
各2つのオリフイス54,55,56,57が穿設されている。そ
して、上側オリフイス54または55−上側環状溝52−上側
連通孔49によつて第1バイパス通路B1が構成され、下側
連通孔50−下側環状溝53−下側オリフイス56または57に
よつて第2バイパス通路B2が構成されるようになつてい
る。Further, the fixed valve device 39 includes two upper and lower communication holes 49 and 50 formed through the other side inside the valve body 39a in a direction perpendicular to the axis, and a cylindrical member 51 fixed through the central vertical direction.
The upper communication hole 49 has an outer opening 49a communicating with the reservoir chamber 40, while the lower communication hole 50 has an outer opening 50a provided in the communication passage 23. It communicates with the lower liquid chamber 29 via the passage 23 and the through hole 24. As shown in FIGS. 2 and 3A and 3B, the tubular member 51 has annular grooves 52 and 53 of a predetermined diameter formed on the outer periphery thereof facing the inner openings 49b and 50b of the communication holes 49 and 50. Each of the annular grooves 52, 53 is formed with two orifices 54, 55, 56, 57 having a large diameter and a small diameter, respectively, at positions separated by a predetermined angle of 120 °. The upper bypass 54 or 55-the upper annular groove 52-the upper communication hole 49 constitutes the first bypass passage B1, and the lower communication hole 50-the lower annular groove 53-the lower orifice 56 or 57. The second bypass passage B2 is configured.
図中61は固定バルブ装置39に設けられた減衰力可変機
構であつて、これは上記筒状部材51の内部に軸受62を介
して回転可能に支持された内部中空状の回転部材58と、
この回転部材58にアクチユエータ63の駆動力を伝達する
出力軸64とから主として構成されている。上記回転部材
58は、内部が中空状に形成され、該回転部材58の回転に
伴い上記各オリフイス54〜57に対して選択的に対向する
可動連通孔59,60が穿設されていると共に、回転角度位
置によつては各オリフイス54〜57は全閉にするようにな
つており、この可動連通孔59,60のオリフイス54〜57に
対する選択的対向によつて上部液室28からリザーバ室40
へそして、下部液室29から上部液室28へ流動する作動液
の流通抵抗を変えて減衰力を調整するようになつてい
る。In the figure, 61 is a damping force variable mechanism provided in the fixed valve device 39, which has an inner hollow rotating member 58 rotatably supported inside the cylindrical member 51 via a bearing 62,
The rotary member 58 mainly includes an output shaft 64 that transmits the driving force of the actuator 63. The rotating member
The inside of the 58 is formed in a hollow shape, and movable communication holes 59 and 60 that selectively oppose the respective orifices 54 to 57 are formed as the rotating member 58 rotates. Therefore, the orifices 54 to 57 are fully closed, and the movable communication holes 59 and 60 are selectively opposed to the orifices 54 to 57 so that the upper fluid chamber 28 to the reservoir chamber 40 are closed.
The damping force is adjusted by changing the flow resistance of the working fluid flowing from the lower liquid chamber 29 to the upper liquid chamber 28.
また、上記出力軸64は、上端部がシリンダ22上端中央
のシール65を液密内に貫通突出してアクチユエータ63に
連結されており、このアクチユエータ63は図外の例えば
減衰力設定器やモータ制御部からの信号を入力するモー
タ駆動回路の出力信号によつて駆動し、車両の走行条件
や路面状態に応じて回転制御されている。Further, the output shaft 64 is connected to an actuator 63 with its upper end projecting through a seal 65 at the center of the upper end of the cylinder 22 in a liquid-tight manner, and this actuator 63 is not shown in the drawing, for example, a damping force setting device or a motor control unit. It is driven by an output signal of a motor drive circuit that receives a signal from the motor, and its rotation is controlled according to the traveling condition and the road surface condition of the vehicle.
次に、上記構成のこの実施例の作用について説明す
る。Next, the operation of this embodiment having the above configuration will be described.
まず、筒状部材51の各オリフイス54〜57が回転部材58
によつて閉塞されている場合は、ピストン27を伴うピス
トンロツド25がシリンダ22内を下降すると、ピストン27
によつて下部液室29が高圧となるために、下部液室29内
の作動液はピストン27の貫通孔30を通り第1バルブ32で
流通抵抗を受けながら、この第1バルブ32を押し開いて
オリフイスを形成し、このオリフイスを高速で通過する
際に、静圧を動圧に変えて圧力降下し、上部液室28内に
流入する。かくして、上部液室28と下部液室29との圧力
差によつてピストン27は上方に付勢され伸び行程を阻止
しようとする伸び側減衰力が発生する。このとき、上部
液室28はピストン27の移動に伴なつて容積が増大するの
で、リザーバ室40内の作動液が貫通孔42からチエツクバ
ルブ44を通つて流入し、容積が補償される。First, the orifices 54 to 57 of the tubular member 51 are rotated by the rotary member 58.
If the piston rod 25 with the piston 27 descends in the cylinder 22, the piston 27
As a result, the lower liquid chamber 29 becomes a high pressure, so that the working liquid in the lower liquid chamber 29 passes through the through hole 30 of the piston 27 and receives the flow resistance at the first valve 32, and pushes the first valve 32 open. As a result, an orifice is formed, and when passing through the orifice at a high speed, the static pressure is changed into a dynamic pressure, the pressure drops, and the orifice flows into the upper liquid chamber 28. Thus, due to the pressure difference between the upper liquid chamber 28 and the lower liquid chamber 29, the piston 27 is urged upward, and an extension-side damping force that tends to prevent the extension stroke is generated. At this time, since the volume of the upper liquid chamber 28 increases with the movement of the piston 27, the hydraulic fluid in the reservoir chamber 40 flows from the through hole 42 through the check valve 44 to compensate the volume.
一方、ピストン27を伴うピストンロツド25がシリンダ
22内を上昇すると、前述の伸行程の場合とは逆に、ピス
トン27によつて上部液室28が高圧となるため、上部液室
28の作動液のうちピストンロツド25の進入体積分は固定
バルブ装置39の貫通孔41から第2バルブ43で強い流通抵
抗を受けながらこの第2バルブ43を押し開いてオリフイ
スを形成し、このオリフイスを高速で通過する際に、静
圧を動圧に変えて圧力降下し、リザーバ室40内に流入す
る。かくして、上部液室28と下部液室29との圧力差によ
つてピストン27は下方に付勢され圧行程を阻止しようと
する圧側減衰力が発生する。このとき、下部液室29はピ
ストン27の移動に伴なつて容積が増大するので、上部液
室28内の作動液の残りの一部が貫通孔31からチエツクバ
ルブ33を通つて下部液室29に流入し、容積が補償され
る。On the other hand, the piston rod 25 with the piston 27
When the inside of 22 is raised, the upper liquid chamber 28 becomes a high pressure by the piston 27, contrary to the case of the above-described extension stroke, so that the upper liquid chamber
Of the hydraulic fluid 28, the piston rod 25 entry volume is pushed open by the second valve 43 while receiving a strong flow resistance from the through hole 41 of the fixed valve device 39 by the second valve 43 to form an orifice. When passing at a high speed, the static pressure is changed to a dynamic pressure, the pressure drops, and the fluid flows into the reservoir chamber 40. Thus, due to the pressure difference between the upper liquid chamber 28 and the lower liquid chamber 29, the piston 27 is urged downward to generate a pressure side damping force that tries to prevent the pressure stroke. At this time, since the volume of the lower liquid chamber 29 increases with the movement of the piston 27, the remaining part of the hydraulic fluid in the upper liquid chamber 28 passes from the through hole 31 through the check valve 33 to the lower liquid chamber 29. And the volume is compensated.
次に、回転部材58の可動連通孔59,60が筒状部材51の
各オリフイス54〜57のいずれかと合致した場合は、まず
伸行程時にあつては、高圧の下部液室29内の作動液の一
部が第2図の実線矢印で示すように通孔24から連通路23
を通つて下側連通孔50内に流入し、ここから筒状部材51
の下側環状溝53内を通流し、予じめ選択された所定径の
下側オリフイス56又は57から下側可動連通孔60及び中空
部58aを通つて上部液室28内に流入する。したがつて、
下部液室29から上部液室28へ流動する作動液の流通抵抗
は可変機構61のオリフイス56,57の大きさに応じて小さ
くなり、減衰力も小さくなる。Next, when the movable communication holes 59, 60 of the rotating member 58 match any one of the orifices 54 to 57 of the tubular member 51, first, during the extension stroke, the hydraulic fluid in the high pressure lower fluid chamber 29 is first As shown by the solid line arrow in FIG.
Through the lower communication hole 50, and the cylindrical member 51
Through the lower annular groove 53, the lower orifice 56 or 57 having a predetermined diameter selected through the lower movable communication hole 60 and the hollow portion 58a, and then flows into the upper liquid chamber 28. Therefore,
The flow resistance of the working fluid flowing from the lower liquid chamber 29 to the upper liquid chamber 28 decreases according to the size of the orifices 56, 57 of the variable mechanism 61, and the damping force also decreases.
一方、圧行程時にあつては、高圧になつた上部液室28
内の作動液の一部は、第2図の破線矢印で示すように回
転部材58の中空部58aを通つて上側可動連通孔59から予
じめ選択された所定径の上側オリフイス54又は55を通つ
て上側環状溝52に流入し、そのまま上側連通孔49に入り
ここから開口49a端縁とシリンダ22内壁面との隙間を通
つてリザーバ室40内に流入する。したがつて、上部液室
28からリザーバ室40へ流動する作動液の流通抵抗は可変
機構61のオリフイス54,55の大きさに応じて小さくな
り、減衰力も小さくなる。また、このような伸行程時お
よび圧行程時のピストン27の移動に伴なう容積補償の流
れはそれぞれチエツクバルブ44,33によつて流通抵抗を
生じることなく行なわれる。特に、各バイパス通路B1,B
2が開路された場合における伸行程時には、下部液室29
内の作動液の一部が前述のように第2バイパス通路B2を
通って上部液室28内に流入するため、容積補償作用がさ
らに円滑に行われる。従つて、上部液室28や下部液室29
に負圧を生じさせることはなく、第1,第2バルブ32,43
の剛性を高くして最大減衰力を大きくすることができる
と共に、第1,第2バイパス通路B1,B2の上側,下側オリ
フイス54,55,56,57の大きさは任意に設定することによ
り、減衰力を0から上記最大減衰力までの間で可変幅を
広げることができる。On the other hand, during the pressure stroke, the upper liquid chamber 28
A part of the hydraulic fluid in the inside passes through the hollow portion 58a of the rotating member 58 as shown by the broken line arrow in FIG. 2 and flows through the upper movable communication hole 59 into the upper orifice 54 or 55 having a predetermined diameter selected in advance. It then flows into the upper annular groove 52, then enters the upper communication hole 49 as it is, and then flows into the reservoir chamber 40 through the gap between the edge of the opening 49a and the inner wall surface of the cylinder 22. Therefore, the upper liquid chamber
The flow resistance of the hydraulic fluid flowing from 28 to the reservoir chamber 40 decreases according to the size of the orifices 54, 55 of the variable mechanism 61, and the damping force also decreases. Further, the flow of the volume compensation accompanying the movement of the piston 27 during the extension stroke and the pressure stroke is performed by the check valves 44 and 33 without causing flow resistance. In particular, each bypass passage B1, B
The lower liquid chamber 29
Since a part of the hydraulic fluid therein flows into the upper liquid chamber 28 through the second bypass passage B2 as described above, the volume compensating action is performed more smoothly. Therefore, the upper liquid chamber 28 and the lower liquid chamber 29
No negative pressure is generated in the first and second valves 32, 43.
It is possible to increase the maximum damping force by increasing the rigidity of the and the upper and lower orifices 54, 55, 56 and 57 of the first and second bypass passages B1 and B2 by setting them arbitrarily. The variable width can be widened from 0 to the maximum damping force.
第4図は、上記実施例に供されるアクチユエータの他
の配置構成を示しており、上方に延長された出力軸64の
上端にアクチユエータ63を設けて、外筒21から切り離し
た位置に配設することも可能である。これによつて車体
側へ固定される緩衝器のレイアウトの自由度が大きくな
る。FIG. 4 shows another arrangement of the actuator used in the above embodiment. The actuator 63 is provided at the upper end of the output shaft 64 extended upward, and the actuator 63 is provided at a position separated from the outer cylinder 21. It is also possible to do so. This increases the degree of freedom in layout of the shock absorber fixed to the vehicle body side.
発明の効果 以上の説明で明らかなように、この発明に係る減衰力
可変型液圧緩衝器によれば、伸行程時および圧行程時の
いずれの場合にもピストンの移動に伴なう下部液室およ
び上部液室への容積補償は第1,第2のチエツクバルブに
よつて行なわれるので、第1および第2バルブの剛性を
高くしても、負圧が発生することはない。このため第1,
第2バルブの剛性を高くして任意に高い減衰力が設定で
きる。また、第1,第2のバイパス通路のオリフイスを任
意の大きさに設定して減衰力を0にも設定できるので、
減衰力の可変幅を広くすることができる。EFFECTS OF THE INVENTION As is clear from the above description, according to the damping force variable hydraulic shock absorber of the present invention, the lower liquid accompanying the movement of the piston is caused in both the extension stroke and the pressure stroke. Since the volume compensation for the chamber and the upper liquid chamber is performed by the first and second check valves, negative pressure is not generated even if the rigidity of the first and second valves is increased. Therefore, the first
The rigidity of the second valve can be increased to set an arbitrarily high damping force. Also, since the orifice of the first and second bypass passages can be set to an arbitrary size and the damping force can be set to 0,
The variable width of the damping force can be widened.
第1図はこの発明に係る減衰力可変型液圧緩衝器の一実
施例を示す破断断面図、第2図はこの実施例に供される
固定バルブ装置を拡大して示す断面図、第3−a図およ
び3−b図は、第2図のA−A線及びB−B線断面図、
第4図はアクチユエータの他の配置構成を示す部分断面
図、第5図は従来の液圧緩衝器を示す模式図である。 21……外筒、22……シリンダ、23……連通路、24……通
孔、25……ピストンロツド、27……ピストン、28……上
部液室、29……下部液室、32……第1バルブ、33……チ
エツクバルブ、39……固定バルブ装置、39a……バルブ
ボディ、40……リザーバ室、43……第2バルブ、B1……
第1バイパス通路、B2……第2バイパス通路、54〜57…
…オリフィス、61……可変機構。FIG. 1 is a cutaway sectional view showing an embodiment of a variable damping force type hydraulic shock absorber according to the present invention, and FIG. 2 is an enlarged sectional view showing a fixed valve device used in this embodiment, and FIG. -A figure and 3-b figure are the sectional views on the AA line and BB line of FIG.
FIG. 4 is a partial sectional view showing another arrangement of the actuator, and FIG. 5 is a schematic view showing a conventional hydraulic shock absorber. 21 …… Outer cylinder, 22 …… Cylinder, 23 …… Communication passage, 24 …… Through hole, 25 …… Piston rod, 27 …… Piston, 28 …… Upper fluid chamber, 29 …… Lower fluid chamber, 32 …… 1st valve, 33 ... Check valve, 39 ... Fixed valve device, 39a ... Valve body, 40 ... Reservoir chamber, 43 ... Second valve, B1 ...
First bypass passage, B2 ... Second bypass passage, 54-57 ...
… Orifice, 61 …… Variable mechanism.
Claims (1)
つ内部に作動液と気体を充填したシリンダと、 一端が車軸側に固定され、他端が上記シリンダの一端を
封止的に貫通したピストンロッドと、 上記シリンダの下部内を上記液室と下部液室とに隔成す
べく前記ピストンロッドの先端に固設されて該シリンダ
内に摺動可能に嵌挿されたピストンと、 上記外筒とシリンダとの間に形成され、一端が通孔を介
して下部液室に開口した連通路と、 上記シリンダの上部内を上記上部液室とリザーバ室とに
隔成すべく該シリンダ内に固定された固定バルブ装置
と、 上記ピストンに設けられ、伸行程時に上記下部液室から
上部液室に流動する作動液に流通抵抗を与える第1バル
ブおよび圧行程時に上部液室から下部液室への容積補償
流れを許容するチェックバルブと、 上記固定バルブ装置に設けられ、圧行程時に上記上部液
室からリザーバ室に流動する作動液に流通抵抗を与える
第2バルブ及び伸工程時にリザーバ室から上部液室への
容積補償流れを許容するチェックバルブと、 上記固定バルブ装置のバルブボディ内に一部が形成され
て、上部液室とリザーバ室とを連通する第1バイパス通
路と、 上記固定バルブ装置のバルブボディ内に一部が形成され
て、上部液室と下部液室とを上記連通路を介して連通す
る第2バイパス通路と、 上記固定バルブ装置に設けられて、上記第1,第2バイパ
ス通路の通路断面積を内径の異なる複数のオリフィスを
介して可変にする可変機構とを備えたことを特徴とする
減衰力可変型液圧緩衝器。1. A cylinder provided in an outer cylinder fixed to a vehicle body and having a working fluid and a gas filled therein, one end of which is fixed to an axle side, and the other end of which is a sealing end of the cylinder. A piston rod penetrating through the piston, and a piston fixedly mounted on the tip of the piston rod so as to separate the inside of the lower part of the cylinder into the liquid chamber and the lower liquid chamber, and slidably fitted into the cylinder. A communication passage formed between the outer cylinder and the cylinder and having one end opened to the lower liquid chamber through a through hole; and an upper liquid chamber and a reservoir chamber to separate the upper portion of the cylinder from the upper liquid chamber and the reservoir chamber. A fixed valve device fixed to the first piston, and a first valve provided on the piston for imparting flow resistance to the working fluid flowing from the lower liquid chamber to the upper liquid chamber at the time of extension and the upper liquid chamber to the lower liquid chamber at the time of pressure stroke. To allow volume compensation flow to Lock valve and a second valve provided in the fixed valve device for providing flow resistance to the working fluid flowing from the upper liquid chamber to the reservoir chamber during the pressure stroke, and a volume compensating flow from the reservoir chamber to the upper liquid chamber during the stretching process. A permissible check valve, a first bypass passage that is partially formed in the valve body of the fixed valve device and connects the upper liquid chamber and the reservoir chamber, and a part of the first bypass passage in the valve body of the fixed valve device. A second bypass passage that is formed to communicate the upper liquid chamber and the lower liquid chamber through the communication passage, and the fixed valve device is provided with an inner diameter of the passage cross-sectional area of the first and second bypass passages. A variable damping force type hydraulic shock absorber, comprising a variable mechanism for changing the pressure through a plurality of different orifices.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP61160481A JP2519209B2 (en) | 1986-07-08 | 1986-07-08 | Variable damping force type hydraulic shock absorber |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP61160481A JP2519209B2 (en) | 1986-07-08 | 1986-07-08 | Variable damping force type hydraulic shock absorber |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS6319435A JPS6319435A (en) | 1988-01-27 |
JP2519209B2 true JP2519209B2 (en) | 1996-07-31 |
Family
ID=15715882
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP61160481A Expired - Lifetime JP2519209B2 (en) | 1986-07-08 | 1986-07-08 | Variable damping force type hydraulic shock absorber |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2519209B2 (en) |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS544634Y2 (en) * | 1973-12-06 | 1979-02-27 | ||
JPH0249724B2 (en) * | 1981-12-07 | 1990-10-31 | Matsushita Electric Ind Co Ltd | SONOSHIJISOCHI |
-
1986
- 1986-07-08 JP JP61160481A patent/JP2519209B2/en not_active Expired - Lifetime
Also Published As
Publication number | Publication date |
---|---|
JPS6319435A (en) | 1988-01-27 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5404973A (en) | Damping force control type hydraulic shock absorber | |
GB2266573A (en) | Variable damping force shock absorber | |
US5324066A (en) | Hydraulic damper with variable damping characteristics in compression and extension | |
JPH06147252A (en) | Hydraulic buffer | |
KR870001183B1 (en) | Water-pressure damper | |
US5409090A (en) | Damping force control type hydraulic shock absorber | |
JP2918293B2 (en) | Variable damping force type shock absorber | |
JP2519209B2 (en) | Variable damping force type hydraulic shock absorber | |
JPH04160242A (en) | Hydraulic shock absorber | |
JPS6342134B2 (en) | ||
JPH02275128A (en) | Variable damping force system for liquid pressure buffer | |
JPH05302639A (en) | Hydraulic damper | |
JPH04157224A (en) | Hydraulic shockabsorber | |
JPS6364654B2 (en) | ||
JPH0620913Y2 (en) | Variable damping force type hydraulic shock absorber | |
JPH10246271A (en) | Damping force adjustable hydraulic shock absorber | |
JPH0754899A (en) | Damping force regulating type hydraulic buffer | |
JPH09112620A (en) | Liquid pressure damper for suspension for automobile | |
JP2804792B2 (en) | Variable damping force type hydraulic shock absorber | |
JPS58116213A (en) | Damping force regulating shock absorber | |
JP2588393B2 (en) | Hydraulic shock absorber damping force adjustment device | |
JP3079338B2 (en) | Damping force adjustable hydraulic shock absorber | |
JP2600331Y2 (en) | Variable damping force type hydraulic shock absorber | |
JPH06668Y2 (en) | Hydraulic shock absorber | |
JPS6342132B2 (en) |