JP2519077B2 - Discontinuous circulation redox battery - Google Patents

Discontinuous circulation redox battery

Info

Publication number
JP2519077B2
JP2519077B2 JP63037549A JP3754988A JP2519077B2 JP 2519077 B2 JP2519077 B2 JP 2519077B2 JP 63037549 A JP63037549 A JP 63037549A JP 3754988 A JP3754988 A JP 3754988A JP 2519077 B2 JP2519077 B2 JP 2519077B2
Authority
JP
Japan
Prior art keywords
liquid
battery
cell
redox battery
electrolytic solution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP63037549A
Other languages
Japanese (ja)
Other versions
JPH01213968A (en
Inventor
浩助 黒川
健 野崎
勇一 赤井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ebara Corp
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
Agency of Industrial Science and Technology
Ebara Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agency of Industrial Science and Technology, Ebara Corp filed Critical Agency of Industrial Science and Technology
Priority to JP63037549A priority Critical patent/JP2519077B2/en
Publication of JPH01213968A publication Critical patent/JPH01213968A/en
Application granted granted Critical
Publication of JP2519077B2 publication Critical patent/JP2519077B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04082Arrangements for control of reactant parameters, e.g. pressure or concentration
    • H01M8/04186Arrangements for control of reactant parameters, e.g. pressure or concentration of liquid-charged or electrolyte-charged reactants
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/70Arrangements for stirring or circulating the electrolyte
    • H01M50/77Arrangements for stirring or circulating the electrolyte with external circulating path
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04276Arrangements for managing the electrolyte stream, e.g. heat exchange
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Fuel Cell (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、蓄電池であるレドツクス電池に関するもの
である。
The present invention relates to a redox battery which is a storage battery.

(従来技術) 電力は各種のエネルギーへの変換が容易で制御し易
く、消費時の環境汚染がないので、エネルギー消費に占
める割合は年毎に増加している。電力供給の特異な点
は、生産と消費が同時に行なわれることである。この制
約の中で、電力消費の変動に即応しながら、一定周波
数、一定電圧の質の高い電力を高い信頼性で送ること
が、電力技術の課題である。現状では、出力は変えにく
いが効率の高い原子力発電や新鋭火力発電を、なるべく
最高効率の定格で運転しながら、電力消費の変動に応じ
て発電を行なうのに適した水力発電などで、昼間の大き
な電力需要の増加をまかなつている。このため経済性の
良好な原子力発電や新鋭火力発電による夜間余剰電力を
揚水発電によつて貯蔵している。しかし、揚水発電の立
地条件が次第に厳しくなるにつれて二次電池による貯蔵
方式が取り上げられてきた。
(Prior Art) Electric power is easy to convert into various types of energy, easy to control, and there is no environmental pollution at the time of consumption, so the percentage of energy consumption is increasing every year. The peculiar point of power supply is that production and consumption are performed simultaneously. Within this constraint, it is a challenge of electric power technology to send high-quality electric power of a constant frequency and a constant voltage with high reliability while responding to fluctuations in power consumption. At present, it is difficult to change the output, but high-efficiency nuclear power generation and new thermal power generation are operated at the highest efficiency rating, while hydropower generation is suitable for generating power according to fluctuations in power consumption. It covers a large increase in power demand. For this reason, surplus electricity at night due to economically efficient nuclear power generation and advanced thermal power generation is stored by pumped storage power generation. However, as the location conditions for pumped storage power generation have become increasingly severe, storage methods using secondary batteries have been taken up.

また、従来の水力発電、火力発電、原子力発電に加え
て、今後は太陽光発電、風力発電等による電力の供給も
増大すると考えられる。しかし、太陽光発電、風力発電
等の場合には日照、風等によつてその発電量が左右され
ることから、少なくとも地上では、単独で十分な電力供
給源とは成り得ず、何らかの蓄電設備と組合せて、初め
て安定した電力供給源となる。
In addition to conventional hydroelectric power generation, thermal power generation, and nuclear power generation, it is considered that the supply of electric power by solar power generation, wind power generation, etc. will increase in the future. However, in the case of solar power generation, wind power generation, etc., the amount of power generation depends on sunlight, wind, etc., so at least on the ground, it cannot be a sufficient power supply source alone, and some power storage equipment Only when combined with a stable power supply source.

以上のような二次電池の必要性のもとで、鉛蓄電池
が、太陽光発電用としてなど多く使用されてきている
が、その他の有力な二次電池の一つとして、正極および
負極の少なくとも一方の構造が、電極活物質を含む電解
液が供給され予め設けられた不活性極上に於ける上記該
活物質の反応により充放電が行なわれる構造であり、且
つ、該活物質が、価電数の異なる酸化状態をとりうる物
質である電池、即ちレドツクス電池が注目されている。
Under the necessity of the secondary battery as described above, the lead storage battery has been widely used for solar power generation and the like, but as one of other influential secondary batteries, at least the positive electrode and the negative electrode are used. One structure is a structure in which an electrolytic solution containing an electrode active material is supplied and charging / discharging is performed by a reaction of the active material on an inactive electrode provided in advance, and the active material is a valence electrode. A redox battery, which is a substance that can be in a different number of oxidation states, is drawing attention.

ここでレドツクス電池の原理の概要について、第5
図、第6図を用いて説明する。
Here, the outline of the principle of the redox battery is described in
This will be described with reference to FIG. 6 and FIG.

第5図はレドツクス電池を用いた電力貯蔵システムの
充電時の状態を示し第6図は同じく放電時の状態を示
す。
FIG. 5 shows a state during charging of the power storage system using the redox battery, and FIG. 6 shows a state during discharging.

これらの図において、1は発電所、2は変電設備、3
は負荷、4はインバータ、5はレドツクス電池で、タン
ク6a、6b、7a、7bとポンプ8、9および流通型電解槽10
から構成される。流通型電解槽10は正極11と負極12、お
よび両電極間を分離する隔膜13とを備え、隔膜13で仕切
られた左右の室内には正極液14、負極液15が収容され
る。正極液14はFeイオンを含む塩酸溶液とし、負極液15
はCrイオンを含む塩酸溶液とする例を示した。
In these figures, 1 is a power plant, 2 is substation equipment, 3
Is a load, 4 is an inverter, 5 is a redox battery, and tanks 6a, 6b, 7a and 7b, pumps 8 and 9 and a flow type electrolytic cell 10 are provided.
Consists of The flow-through type electrolytic cell 10 includes a positive electrode 11 and a negative electrode 12, and a diaphragm 13 that separates both electrodes, and a positive electrode solution 14 and a negative electrode solution 15 are contained in the left and right chambers partitioned by the diaphragm 13. The positive electrode liquid 14 is a hydrochloric acid solution containing Fe ions, and the negative electrode liquid 15
Shows an example of a hydrochloric acid solution containing Cr ions.

次に作用について説明する。 Next, the operation will be described.

発電所1で発電され変電設備2に送電された電力は適
当な電圧に変圧され、負荷3に供給される。一方、夜間
になり余剰電力がでると、インバータ4により交直変換
を行ない、レドツクス電池5に充電が行われる。この場
合は、第5図に示すようにタンク6bから6aへ、タンク7a
から7bの方へポンプ8、9で正、負極液14、15を徐々に
送りながら充電が行われる。正極液14にFeイオン、負極
液15にCrイオンを使用する場合、流通型電解槽10内で起
こる反応は下記第(1)〜(3)式中の充電側の反応と
なる。
The electric power generated in the power plant 1 and transmitted to the substation equipment 2 is transformed into an appropriate voltage and supplied to the load 3. On the other hand, when it is nighttime and surplus power is generated, the AC / DC conversion is performed by the inverter 4, and the redox battery 5 is charged. In this case, as shown in FIG. 5, from tank 6b to 6a, tank 7a
From 7 to 7b, the positive and negative electrode liquids 14 and 15 are gradually fed by the pumps 8 and 9 to perform charging. When Fe ions are used for the positive electrode liquid 14 and Cr ions are used for the negative electrode liquid 15, the reaction that occurs in the flow-through type electrolytic cell 10 is the reaction on the charging side in the following formulas (1) to (3).

このようにして、電力が正極液14、負極液15の中に蓄
積される。
In this way, electric power is accumulated in the positive electrode liquid 14 and the negative electrode liquid 15.

一方、供給電力が需要電力よりも少ない場合は、上記
第(1)〜(3)式中の放電側の反応が行なわれ、イン
バータ4により直交変換が行なわれ、変電設備2を介し
て負荷3に電力が供給される。
On the other hand, when the supplied power is less than the demanded power, the reaction on the discharge side in the above equations (1) to (3) is performed, the orthogonal transformation is performed by the inverter 4, and the load 3 is passed through the substation equipment 2. Is powered.

(発明が解決しようとする問題点) 前述の従来から有るレドツクス電池に於いては、1セ
ル当たりの充放電電圧が約1Vと小さいので単セルを積層
し電気的に直列に接続された集合電池として使用されて
いるが、この集合電池の各々の単セルに対して均一の電
解液が同時に供給される必要が有る。そのため、共通の
電解液供給液路および電解液戻り液路から各セルへの液
路が分岐している構造となつており、この共通液路を通
じての、高電位側セルから低電位側セルへの電流が液路
漏れ電流であり、充放電に寄与しない電流としてレドツ
クス電池の損失となつている。特に、電池の充電或いは
放電の電流値が小さい場合には、この液路漏れ電流損失
の電池充放電電力に対する比率が相対的に大きくなり、
電池の充放電効率を高くするための妨げとなつている。
(Problems to be Solved by the Invention) In the above-mentioned conventional redox battery, the charging / discharging voltage per cell is as small as about 1 V, so that an assembled battery in which single cells are stacked and electrically connected in series However, it is necessary to supply a uniform electrolytic solution to each single cell of this assembled battery at the same time. Therefore, it has a structure in which the liquid path to each cell from the common electrolytic solution supply liquid path and electrolytic solution return liquid path is branched, and through this common liquid path, from the high potential side cell to the low potential side cell. Is the leakage current in the liquid path, which is a loss of the redox battery as a current that does not contribute to charging and discharging. In particular, when the current value for charging or discharging the battery is small, the ratio of this fluid leakage current loss to the battery charge / discharge power becomes relatively large,
This is an obstacle to increasing the charge / discharge efficiency of the battery.

(問題点を解決するための手段) 本発明は、上記のごとき従来のものの問題点を解決す
るための手段として、レドツクス電池のうちで、単セル
を積層した集合電池の構成のレドツクス電池に於いて、
電解液供給液路および電解液戻り液路の少なくとも一方
の各セルへの分岐後の位置に、液路として各セルの液路
に対応する貫通部を有する絶縁材料製の、又は、絶縁材
料で被覆された棒状の弁を集合電池全体に通す形で集合
電池内部に設け、電解液供給用ポンプの運転、停止と同
期させて、この棒状の弁を回転させること、又は軸方向
に移動させることにより、各セルの電解液液路の遮断お
よび開放を行なう構造としたことを特徴とするレドツク
ス電池を提供し、少なくともポンプによる送液を断続的
に行なう場合の送液停止時間中は、電気的液路を遮断す
るか或いは電気的液路を狭小にすることにより、液路漏
れ電流による損失を低減しようとするものである。
(Means for Solving Problems) The present invention relates to a redox battery having a structure of an assembled battery in which single cells are stacked among redox batteries, as a means for solving the problems of the conventional ones. And
At the position after branching to each cell of at least one of the electrolytic solution supply liquid path and the electrolytic solution return liquid path, made of an insulating material having a penetrating portion corresponding to the liquid path of each cell as a liquid path, or an insulating material. A covered rod-shaped valve is provided inside the assembled battery so as to pass through the entire assembled battery, and the rod-shaped valve is rotated or axially moved in synchronization with the operation and stop of the electrolyte supply pump. Provides a redox battery characterized in that the electrolyte solution passage of each cell is cut off and opened, and at least during the liquid feed stop time when the pump feeds liquid intermittently, By shutting off the liquid passage or narrowing the electrical liquid passage, it is intended to reduce the loss due to the liquid passage leakage current.

(実施例) 以下に本発明を適用した場合の実施例について図を用
いて示す。
(Example) Hereinafter, an example when the present invention is applied will be described with reference to the drawings.

第1図、第2図および第3図は、レドツクス電池に於
いて本発明を適用し電解液供給側と電解液戻り側の両方
の分岐部に、液路として各セルの液路に対応する貫通部
を有する絶縁材料製の、又は、絶縁材料で被覆された棒
状の弁を設けた場合の構造を示す断面図である。第1図
はポンプ運転中の状態を示し、第2図および第3図はポ
ンプ停止中の状態を示している。また、第4図は本発明
を適用しない従来からのレドツクス電池の構造を示す断
面図である。第1図、第2図、第3図および第4図のい
ずれに於いても、便宜上正極液の系統のみを示してある
が、負極液についても同様の系統が存在するものであ
り、第1図、第2図および第3図の場合に負極液側にも
本発明は適用されている。
FIG. 1, FIG. 2 and FIG. 3 correspond to the liquid passage of each cell as a liquid passage at the branch portions of both the electrolytic solution supply side and the electrolytic solution return side to which the present invention is applied in the redox battery. It is sectional drawing which shows the structure at the time of providing the rod-shaped valve made from the insulating material which has a penetration part, or was coat | covered with the insulating material. FIG. 1 shows a state during pump operation, and FIGS. 2 and 3 show a state during pump stop. FIG. 4 is a sectional view showing the structure of a conventional redox battery to which the present invention is not applied. In each of FIG. 1, FIG. 2, FIG. 3 and FIG. 4, only the system of the positive electrode liquid is shown for the sake of convenience, but a similar system also exists for the negative electrode liquid. The present invention is applied to the side of the negative electrode liquid in the cases of FIGS. 2, 2 and 3.

第1図のポンプ運転中の状態では、絶縁材料製の、又
は、絶縁材料で被覆された棒状の弁26(以下単に棒状の
弁26と記載する)の貫通部が電解液液路の一部となる状
態であるので、共通液路24、25を通じての各セル間の液
路漏れ電流が存在している。しかし、各セル内の正極液
が十分に入れ換えられた時点で正極液ポンプ17が停止す
ると第2図または第3図の状態とする。ここで、第2図
は棒状の弁26を回転させることにより液路を遮断する場
合の構造を示し、第3図は棒状の弁26を軸方向に移動さ
せることにより液路を遮断する場合の構造を示してい
る。この第2図および第3図の正極液ポンプ17が停止し
た状態では、棒状の弁26により各セル間の液路が電気的
に殆ど遮断されるため液路漏れ電流の値が極めて小さく
なつている。一方、第4図の本発明を適用しない場合に
は、正極液ポンプ17の運転、停止にかかわらず、共通液
路24、25を通じての液路漏れ電流が常に存在する。
In a state where the pump shown in FIG. 1 is in operation, a penetrating portion of a rod-shaped valve 26 (hereinafter, simply referred to as a rod-shaped valve 26) made of an insulating material or covered with an insulating material has a part of an electrolyte solution passage. Therefore, there is a liquid path leakage current between the cells through the common liquid paths 24 and 25. However, when the cathode fluid pump 17 is stopped at the time when the cathode fluid in each cell is sufficiently replaced, the state shown in FIG. 2 or 3 is obtained. Here, FIG. 2 shows a structure for shutting off the liquid passage by rotating the rod-shaped valve 26, and FIG. 3 shows a structure for shutting off the liquid passage by moving the rod-shaped valve 26 in the axial direction. The structure is shown. When the positive electrode liquid pump 17 shown in FIGS. 2 and 3 is stopped, the rod-shaped valve 26 electrically shuts off the liquid passage between the cells, so that the value of the liquid passage leakage current becomes extremely small. There is. On the other hand, when the present invention shown in FIG. 4 is not applied, liquid passage leakage current always flows through the common liquid passages 24 and 25 regardless of whether the positive electrode liquid pump 17 is operated or stopped.

第1図、第2図および第3図の本発明を適用した構造
のレドツクス電池と、第4図の本発明を適用しない構造
のレドツクス電池の両方について充放電を行なつた結
果、本発明を適用した場合の方が、明らかに液路漏れ電
流による損失が小さく電流効率即ち放電電気量の充電電
気量に対する比率の高いことが確認された。
As a result of charging and discharging both the redox battery having a structure to which the present invention is applied in FIGS. 1, 2 and 3 and the redox battery having a structure to which the present invention is not applied, shown in FIG. It was confirmed that the loss due to the leakage current in the liquid passage is smaller and the current efficiency, that is, the ratio of the discharged electricity quantity to the charged electricity quantity is higher when the method is applied.

なお、本実施例に於いては電解液供給側と電解液戻り
側の両方に本発明を適用した例を示したが、いずれか片
方にのみ本発明を適用することも可能である。
In addition, in the present embodiment, the example in which the present invention is applied to both the electrolytic solution supply side and the electrolytic solution return side is shown, but the present invention can be applied to only one of them.

(発明の効果) 本発明は、レドツクス電池のうちで、単セルを積層し
た集合電池の構成のレドツクス電池に於いて、電解液供
給液路および電解液戻り液路の少なくとも一方の各セル
への分岐後の位置に、液路として各セルの液路に対する
貫通部を有する絶縁材料製の、又は、絶縁材料で被覆さ
れた棒状の弁を集合電池全体に通す形状で設け、この棒
状の弁を回転させること、又は軸方向に移動させること
により、各セルの電解液液路の遮断および開放を行なう
構造を設けたことを特徴とするレドツクス電池により、
少なくともポンプによる送液を断続的に行なう場合の送
液停止時間中は、電気的液路を遮断するか或いは電気的
液路を狭小にすることにより、液路漏れ電流による損失
を低減するものであり、実用上極めて大なる効果を奏す
る。
(Effects of the Invention) The present invention relates to a redox battery having a structure of an assembled battery in which single cells are stacked among redox batteries, and at least one of the electrolytic solution supply liquid path and the electrolytic solution return liquid path is connected to each cell. At the position after branching, a rod-shaped valve made of an insulating material having a penetrating portion for the liquid passage of each cell as a liquid passage, or a rod-shaped valve covered with an insulating material is provided in a shape to pass through the entire assembled battery. By rotating or moving in the axial direction, a redox battery characterized by having a structure for blocking and opening the electrolyte solution passage of each cell,
At least during the liquid feed stop time when the liquid is fed by the pump intermittently, the loss due to the liquid leak current can be reduced by cutting off the electric liquid passage or narrowing the electric liquid passage. There is an extremely great effect in practical use.

【図面の簡単な説明】[Brief description of drawings]

第1図、第2図および第3図は、レドツクス電池に於い
て本発明を適用し電解液供給側と電解液戻り側の両方の
分岐部に、液路として各セルの液路に対応する貫通部を
有する棒状の弁を設けた場合の構造を示す断面図であ
り、各々、第1図はポンプ運転中の状態を示し、第2図
および第3図はポンプ停止中の状態を示す図である。第
4図は本発明を適用しない従来からのレドツクス電池の
構造を示す断面図である。第5図、第6図はレドツクス
電池を用いた電力貯蔵システムの充電、放電の状態を説
明する図である。 5……レドツクス電池、6a、6b、16……正極液タンク、
7a、7b……負極液タンク、8、9、17……ポンプ、10、
18……流通型電解槽、11、19……正極、12、20……負
極、13、21……隔膜、14、22……正極液、15……負極
液、23……集電炭素板、24……電解液供給共通液路、25
……電解液戻り共通液路、26……棒状の弁。
FIG. 1, FIG. 2 and FIG. 3 correspond to the liquid passage of each cell as a liquid passage at the branch portions of both the electrolytic solution supply side and the electrolytic solution return side to which the present invention is applied in the redox battery. It is sectional drawing which shows the structure at the time of providing the rod-shaped valve which has a penetration part, respectively, FIG. 1 shows the state during pump operation | movement, and FIG. 2 and FIG. 3 shows the state during pump stop. Is. FIG. 4 is a sectional view showing the structure of a conventional redox battery to which the present invention is not applied. FIG. 5 and FIG. 6 are diagrams for explaining the charging and discharging states of the power storage system using the redox battery. 5 ... Redox battery, 6a, 6b, 16 ... Cathode liquid tank,
7a, 7b …… Anode liquid tank, 8, 9, 17 …… Pump, 10,
18 …… Flow type electrolyzer, 11, 19 …… Positive electrode, 12, 20 …… Negative electrode, 13, 21 …… Separator, 14, 22 …… Positive electrode solution, 15 …… Negative electrode solution, 23 …… Collection carbon plate , 24 …… common liquid path for electrolyte supply, 25
...... Electrolyte return common fluid path, 26 …… Bar valve.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 赤井 勇一 東京都大田区羽田旭町11番1号 株式会 社荏原製作所内 審査官 板谷 一弘 (56)参考文献 特開 昭61−269866(JP,A) ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Yuichi Akai Yuichi Akai 11-1 Haneda Asahi-cho, Ota-ku, Tokyo Kazuhiro Itaya (56) References, Ebara Corporation Eisai Co., Ltd. References JP-A 61-269866 (JP, A) )

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】単セルを積層した集合電池の構成のレドツ
クス電池に於いて、電解液供給液路および電解液戻り液
路の少なくとも一方の各セルへの分岐後の位置に、液路
として各セルの液路に対応する貫通部を有する絶縁材料
製の、又は、絶縁材料で被覆された棒状の弁を集合電池
全体に通す形状で集合電池内部に設け、電解液供給用ポ
ンプの運転、停止と同期させて、この棒状の弁を回転さ
せる、又は軸方向に移動させることにより、各セルの電
解液液路の遮断および開放を行なうようにしたことを特
徴とするレドツクス電池。
1. A redox battery having a structure of an assembled battery in which single cells are laminated, wherein at least one of an electrolytic solution supply liquid path and an electrolytic solution return liquid path is branched to each cell, and each of them is used as a liquid path. A rod-shaped valve made of an insulating material having a penetrating portion corresponding to the liquid passage of the cell or covered with an insulating material is provided inside the assembled battery so as to pass through the entire assembled battery, and the electrolyte supply pump is operated and stopped. A redox battery, characterized in that the rod-shaped valve is rotated or axially moved in synchronism with the above, thereby blocking and opening the electrolytic solution passage of each cell.
JP63037549A 1988-02-22 1988-02-22 Discontinuous circulation redox battery Expired - Lifetime JP2519077B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63037549A JP2519077B2 (en) 1988-02-22 1988-02-22 Discontinuous circulation redox battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63037549A JP2519077B2 (en) 1988-02-22 1988-02-22 Discontinuous circulation redox battery

Publications (2)

Publication Number Publication Date
JPH01213968A JPH01213968A (en) 1989-08-28
JP2519077B2 true JP2519077B2 (en) 1996-07-31

Family

ID=12500604

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63037549A Expired - Lifetime JP2519077B2 (en) 1988-02-22 1988-02-22 Discontinuous circulation redox battery

Country Status (1)

Country Link
JP (1) JP2519077B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017007212A1 (en) * 2015-07-07 2017-01-12 킴스테크날리지 주식회사 Flow battery

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07220750A (en) * 1994-02-07 1995-08-18 Hiroshi Yokose Electrolyte flow mechanism improved redox flow cell
JP2006114340A (en) * 2004-10-14 2006-04-27 Matsushita Electric Ind Co Ltd Fuel cell and its operation method

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61269866A (en) * 1985-05-23 1986-11-29 Sumitomo Electric Ind Ltd Redox flow cell

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017007212A1 (en) * 2015-07-07 2017-01-12 킴스테크날리지 주식회사 Flow battery

Also Published As

Publication number Publication date
JPH01213968A (en) 1989-08-28

Similar Documents

Publication Publication Date Title
US20070072067A1 (en) Vanadium redox battery cell stack
Price et al. A novel approach to utility-scale energy storage
CN103137986B (en) A kind of zinc bromine single flow battery
US9595730B2 (en) Flow battery and usage thereof
CN100578849C (en) High power oxidation, reduction liquid energy-storage pile modular structure and its group mode
JPS62200668A (en) Battery device
KR940010444A (en) Membrane flow cell battery
CN105680082A (en) Long-lifetime zinc-bromine flow battery structure and electrolyte
Galbraith The lithium-water-air battery for automotive propulsion
US20130154364A1 (en) Vanadium redox battery energy storage system
US8692517B2 (en) Non-diffusion liquid energy storage device
Rathod et al. Renewable energy generation system connected to micro grid and analysis of energy management: a critical review
KR20110113514A (en) A redox flow secondary cell with carbon felt electrode applied surface treatment
JP2519077B2 (en) Discontinuous circulation redox battery
JPH0534784B2 (en)
Tsuda et al. Improvement of performance in redox flow batteries for PV systems
JPS61193375A (en) Secondary cell device
CN1893162B (en) Liquid accumulator cell with double functions of accumulating and electrochemical synthesizing
JPH01213967A (en) Non-continuous circulation type redox battery
JPH01213964A (en) Operating method for redox battery
JPS6286667A (en) Electrolyte flowing type cell system and operating method thereof
Mayfield et al. Challenges and Advantages of Zinc Bromide Flow Batteries in Power System Applications
CN111180761A (en) Method for releasing residual energy when vehicle-mounted fuel cell is shut down
JPS6229865B2 (en)
CN114068995B (en) All-iron oxidation flow battery system

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term