JP2518776B2 - Refrigerator circuit using expansion ejector - Google Patents

Refrigerator circuit using expansion ejector

Info

Publication number
JP2518776B2
JP2518776B2 JP4208233A JP20823392A JP2518776B2 JP 2518776 B2 JP2518776 B2 JP 2518776B2 JP 4208233 A JP4208233 A JP 4208233A JP 20823392 A JP20823392 A JP 20823392A JP 2518776 B2 JP2518776 B2 JP 2518776B2
Authority
JP
Japan
Prior art keywords
evaporator
compressor
expansion
ejector
heat exchange
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP4208233A
Other languages
Japanese (ja)
Other versions
JPH0658640A (en
Inventor
健司 森川
敏夫 天神
弘 大日方
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Morikawa Sangyo KK
Original Assignee
Morikawa Sangyo KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Morikawa Sangyo KK filed Critical Morikawa Sangyo KK
Priority to JP4208233A priority Critical patent/JP2518776B2/en
Publication of JPH0658640A publication Critical patent/JPH0658640A/en
Application granted granted Critical
Publication of JP2518776B2 publication Critical patent/JP2518776B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2341/00Details of ejectors not being used as compression device; Details of flow restrictors or expansion valves
    • F25B2341/001Ejectors not being used as compression device
    • F25B2341/0012Ejectors with the cooled primary flow at high pressure

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明は各種冷凍機器に用いら
れる、膨張エゼクタを用いた冷凍機回路に関するもので
ある。
BACKGROUND OF THE INVENTION This invention is used for various refrigeration equipment, are those related to the refrigerator circuits using expansion ejector.

【0002】[0002]

【従来の技術】従来一般に有機溶剤のガス又は、ハロン
ガス、フロンガス等のハロゲン系有機溶剤のガス、又は
炭化水素化合物系のガス、その他各種ガスを空気中から
回収する場合、通常活性炭が用いられる。
2. Description of the Related Art Conventionally, activated carbon is generally used when recovering organic solvent gas, halogen-based organic solvent gas such as halon gas, CFC gas, or hydrocarbon compound-based gas and other various gases from the air.

【0003】[0003]

【発明が解決しようとする課題】しかし上記のような活
性炭を用いる場合には次のような問題が起こる。それは
例えばフロンR113を洗浄液として用いる洗浄槽か
ら、ガスとして蒸発するフロンR113を回収する際、
同ガス中には作業員の手等からもたらされる動物性脂
肪、界面活性剤、ハンダ付用のフラックス、グリース等
が混入しており、これらは上記フロンR113と共に活
性炭に吸着され、同活性炭の微細孔に侵入し、目詰まり
を起こさせて吸着能力を低下させ、寿命を低下させてし
まう。又活性炭は吸着、脱着の操作も温度を変化させて
行うので面倒である。
However, when the above activated carbon is used, the following problems occur. For example, when recovering CFC R113 which evaporates as a gas from a cleaning tank using CFC R113 as a cleaning liquid,
Animal fat, surfactant, flux for soldering, grease, etc., which are brought from the hands of workers, are mixed in the gas, and these are adsorbed on the activated carbon along with the above-mentioned CFC R113, and fine particles of the activated carbon If they enter the holes, they will be clogged, reducing their adsorption ability and shortening their service life. In addition, adsorption and desorption of activated carbon is also troublesome because it is performed by changing the temperature.

【0004】なお、ガスの液化回収については、上記の
ように活性炭を用いる方法の外に、ガスを冷却して、液
化させ、回収する方法も行われているが、この場合は上
記ガスをほぼ−50〜−80°C程度に冷却しなければ
ならず、かつ通常の冷凍機回路では−35°C程度にし
か冷却できず、このためその冷却装置は大型で複雑なも
のとなり、従って高額なものとなることが避けられな
い。
Regarding the liquefaction and recovery of the gas, in addition to the method using activated carbon as described above, a method of cooling the gas to liquefy it and recovering it is also used. It must be cooled to about -50 to -80 ° C, and can be cooled only to about -35 ° C in a normal refrigerator circuit, which makes the cooling device large and complicated and therefore expensive. It is inevitable that it will become a thing.

【0005】この発明は上記のよな問題を解決するため
になされたもので、その目的は、活性炭を使用すること
による前記のような各種問題をすべて解決することがで
き、即ち活性炭を使用せずにすみ、かつ、又小型で、簡
単な装置で、ガスが液化回収できる極低温又は極低温に
近い低温が得られ、従って簡単な構造で安価な、性能に
優れた冷凍機回路、即ち膨張エゼクタを用いる冷凍機回
路を提供することである。
The present invention has been made to solve the above problems, and an object thereof is to solve all of the above-mentioned various problems caused by using activated carbon, that is, use activated carbon. In addition, it is possible to obtain a cryogenic temperature at which gas can be liquefied and recovered, or a cryogenic temperature close to cryogenic temperature, with a simple structure, and an inexpensive refrigerator with excellent performance, that is, expansion. Refrigerator cycle using ejector
Is to provide a path .

【0006】[0006]

【課題を解決するための手段】上記の目的を達成するこ
の発明について述べるとそれは、第一圧縮機と第一膨張
弁又は毛細管を、第一凝縮機を介して連通させ、該第一
膨張弁又は毛細管を第一蒸発器を介して前記第一圧縮機
と連通させて第一冷凍機回路を形成し、又別に、第2圧
縮機と熱交換部を、第二凝縮機を介して連通させ、該熱
交換部を、膨張エゼクタを介して受液器に連通させ、該
受液器を前記第二圧縮機に連通させ、又該受液器を第二
膨張弁又は毛細管を介して第二蒸発器に連通させ、該第
二蒸発器を前記膨張エゼクタに連通させ、更に前記熱交
換部を前記蒸発器に対応させて熱交換機を形成したこと
を特徴とする膨張エゼクタを用いる冷凍機回路である。
The present invention which achieves the above-mentioned object is described as follows. A first compressor and a first expansion valve or a capillary are communicated with each other through a first condenser, and the first expansion is performed. A valve or a capillary tube communicates with the first compressor via a first evaporator to form a first refrigerator circuit, and separately, a second compressor communicates with a heat exchange section via a second condenser. The heat exchange section is connected to a liquid receiver via an expansion ejector, the liquid receiver is connected to the second compressor, and the liquid receiver is connected via a second expansion valve or a capillary tube to the first expansion valve. A refrigerator circuit using an expansion ejector, characterized in that the expansion ejector is connected to the second evaporator, the second evaporator is connected to the expansion ejector, and a heat exchanger is formed by making the heat exchange section correspond to the evaporator. Is.

【0007】又、第一圧縮機と第一膨張弁又は毛細管と
を、第一凝縮機を介して連通させ、該第一膨張弁又は毛
細管を、第一蒸発器を介して前記第一圧縮機と連通させ
て第一冷凍回路を形成し、又別に第二圧縮機と熱交換部
を、第二圧縮機を介して連通させ、該熱交換部と第二蒸
発器とを、第二膨張弁又は毛細管を介して連通させ、該
第二蒸発器と前記第二圧縮機とを連通させて第二冷凍機
回路を形成し、該第二冷凍機回路の熱交換部を前記蒸発
器と対応させて熱交換機を形成し、又別に第三圧縮機と
第二熱交換部を第三凝縮機を介して連通させ、該熱交換
部と、受液器を、膨張エゼクタを介して連通させ、該受
液器を、前記第三圧縮機に連通させ、又該受液器を、第
三膨張弁又は毛細管を介して第三蒸発器に連通させ、該
第三蒸発器を前記膨張エゼクタに連通させ、前記第二熱
交換部を前記第二蒸発器に対応させて第二熱交換機を形
成したことを特徴とする膨張エゼクタを用いる冷凍機回
路である。
Further, the first compressor and the first expansion valve or the capillary tube are communicated with each other via the first condenser, and the first expansion valve or the capillary tube is connected to the first compressor via the first evaporator. To form a first refrigerating circuit, and to separately communicate a second compressor and a heat exchange section via a second compressor, and to connect the heat exchange section and the second evaporator to a second expansion valve. Alternatively, they are communicated via a capillary tube, the second evaporator is communicated with the second compressor to form a second refrigerator circuit, and the heat exchange section of the second refrigerator circuit is made to correspond to the evaporator. To form a heat exchanger, and separately, the third compressor and the second heat exchange section are communicated with each other through the third condenser, and the heat exchange section and the liquid receiver are communicated with each other through an expansion ejector, and A liquid receiver is connected to the third compressor, and the liquid receiver is connected to a third evaporator via a third expansion valve or a capillary, and the third evaporator is connected to the third evaporator. Communicated to Zhang ejector, a refrigerator circuit using an expansion ejector, characterized in that said second heat exchanger to form a second heat exchanger so as to correspond to the second evaporator.

【0008】又、圧縮機と受液器とを凝縮機を介して連
通させ、該受液器と蒸発器とを、膨張弁又は毛細管を介
して連通させ、該蒸発器を前記圧縮機へ連通させて冷凍
機回路を形成し、上記受液器と他の受液器を熱交換部を
介して連通させ、該熱交換部と前記蒸発部を対応させて
熱交換機を形成し、又上記他の受液器を他の膨張弁又は
毛細管を介して他の蒸発器に連通させ、該他の蒸発器を
前記蒸発器に連通させ、又上記他の受液器に連通させた
他の熱交換部を、前記他の蒸発器に対応させて熱交換機
を形成し、更に前記他の熱交換部を膨張エゼクタを介し
て更に他の受液器に連通させ、該更に他の受液器を前記
他の蒸発器に連通させ、前記膨張弁又は毛細管を、更に
他の蒸発器を介して前記エゼクタに連通させたことを特
徴とする膨張エゼクタを用いる冷凍機回路である。
Further, the compressor and the liquid receiver are communicated with each other through a condenser, the liquid receiver and the evaporator are communicated with each other through an expansion valve or a capillary tube, and the evaporator is communicated with the compressor. To form a refrigerator circuit, the liquid receiver and another liquid receiver are communicated with each other via a heat exchange unit, and the heat exchange unit and the evaporation unit are made to correspond to each other to form a heat exchanger. The other receiver to communicate with another evaporator via another expansion valve or capillary tube, the other evaporator to communicate with the evaporator, and the other heat exchange to communicate with the other receiver. A portion corresponding to the other evaporator to form a heat exchanger, the further heat exchange portion is communicated with a further liquid receiver via an expansion ejector, and the further liquid receiver is An expansion ejector characterized in that the expansion valve or the capillary is communicated with another evaporator, and the expansion valve or the capillary is communicated with the ejector through another evaporator. A refrigerator circuit using the data.

【009】[0109]

【作用】まず膨張エゼクタを用いる冷凍機回路について
述べると、圧縮機において圧縮された冷媒は、高温、高
圧となって凝縮機に送られ、同凝縮機において冷媒蒸気
は外部から冷却され、放熱して液化する。そして液化し
た冷媒液体はその高圧により、前記膨張エゼクタにおい
て高速で、膨張、噴出させられ、前記受液器に収容され
る。そして受液器内のガスは前記圧縮機に至り圧縮さ
れ、冷媒液は膨張弁又は毛細管を通り、膨張させられて
蒸発器に入り吸熱して冷凍効果を表わす。
First, the refrigerator circuit using the expansion ejector will be described. The refrigerant compressed in the compressor becomes high temperature and high pressure and is sent to the condenser, in which the refrigerant vapor is cooled from the outside and radiates heat. Liquefy. The liquefied refrigerant liquid is expanded and jetted at high speed in the expansion ejector due to the high pressure, and is stored in the liquid receiver. Then, the gas in the liquid receiver reaches the compressor and is compressed, and the refrigerant liquid is expanded through the expansion valve or the capillary to enter the evaporator and absorbs heat to exhibit a refrigerating effect.

【0010】そしてこの蒸発器は前記のように膨張エゼ
クタに連通されており、膨張エゼクタ内の冷媒液の膨張
噴射により、前記蒸発器に連通した吸引部は低圧とな
り、このため前記蒸発器も低圧となり、蒸発器としての
温度低下に加えられた上記低圧のための温度低下のため
に、一例として−80°C程度迄冷却させられる。
The evaporator is communicated with the expansion ejector as described above, and the expansion injection of the refrigerant liquid in the expansion ejector causes the suction portion communicating with the evaporator to have a low pressure, so that the evaporator also has a low pressure. Therefore, due to the temperature drop due to the low pressure added to the temperature drop as the evaporator, the temperature is lowered to about -80 ° C as an example.

【0011】一般に従来の、圧縮機、凝縮器、膨張弁又
は毛細管、蒸発器から成る冷凍器は通常−35°C程度
にしか冷却できないが、この発明の上記装置によれば、
上記従来の装置に殆ど膨張エゼクタを設けるのみ程度の
ごく簡単な、従ってコンパクトな構造であるにもかかわ
らず前記のような極低温又はそれに近い低温をもたらす
ことができるのである。
In general, a conventional refrigerator comprising a compressor, a condenser, an expansion valve or a capillary tube, and an evaporator can usually be cooled only to about -35 ° C. However, according to the above apparatus of the present invention,
In spite of the fact that the above-mentioned conventional device is provided with an expansion ejector, it is possible to provide a cryogenic temperature as described above or a temperature very close to it, although it has a very simple structure.

【0012】このようにごく簡単な、従ってコンパクト
な装置により回収器の冷却部材を極低温又はそれに近い
低温に冷却することができる。
As described above, the cooling member of the recovery device can be cooled to a cryogenic temperature or a low temperature close thereto by using a very simple and thus compact device.

【0013】[0013]

【実施例】図1において1は圧縮機であり、2は凝縮機
を示す。3は連通管である。次に4は膨張エゼクタであ
り、図2に示すようなノズル5が前記凝縮機2に連通さ
せられており、同ノズル5から加圧された液化冷媒6が
矢印A6方向に噴出させられる。図1において7は受液
器を示す。そして同受液器7中の液化冷媒6は、同受液
器7中において一部がガス化しており、この冷媒ガスは
前記圧縮機1に至り圧縮される。
DESCRIPTION OF THE PREFERRED EMBODIMENTS In FIG. 1, 1 is a compressor and 2 is a condenser. 3 is a communication pipe. Next, 4 is an expansion ejector, a nozzle 5 as shown in FIG. 2 is communicated with the condenser 2, and the liquefied refrigerant 6 pressurized from the nozzle 5 is ejected in the direction of arrow A6. In FIG. 1, reference numeral 7 indicates a liquid receiver. The liquefied refrigerant 6 in the liquid receiver 7 is partially gasified in the liquid receiver 7, and the refrigerant gas reaches the compressor 1 and is compressed.

【0014】一方前記受液器7中の液化冷媒6は膨張弁
又は毛細管8に至り膨張膨張させられて蒸発器9に入り
蒸発し、吸熱してここに冷却効果を現す。次に前記膨張
エゼクタ4においては前記のようにそのノズル5から、
液化冷媒6が噴出させられており、これにより、ノズル
5の先端部10において流速が早くなり、従って低圧と
なりこのためその吸入部11から、前記蒸発器9の気化
冷媒が吸入され、前記ノズル5から噴出される液化冷媒
6により付勢されて、前記受液器7に送入され、かつ前
記圧縮機1に吸引される。
On the other hand, the liquefied refrigerant 6 in the liquid receiver 7 reaches the expansion valve or the capillary 8 and is expanded and expanded to enter the evaporator 9 to evaporate and absorb heat to exhibit a cooling effect. Next, in the expansion ejector 4, from the nozzle 5 as described above,
The liquefied refrigerant 6 is ejected, which increases the flow velocity at the tip portion 10 of the nozzle 5 and thus causes a low pressure, so that the vaporized refrigerant of the evaporator 9 is sucked from its suction portion 11 and the nozzle 5 The liquid is urged by the liquefied refrigerant 6 ejected from the liquefied refrigerant 6, fed into the liquid receiver 7, and sucked by the compressor 1.

【0015】このため前記蒸発器9においては、その内
部のガスは低圧となり、このため一層蒸発が行われ、蒸
発器本来の蒸発作用に加えて上記膨張エゼクタ4の吸引
の低圧による蒸発が加わって蒸発器9の冷却効果は一層
高められ、従来の冷凍器の蒸発器がほぼ−35°C程度
にしか冷却しないものを、この発明の蒸発器9において
はほぼ−80°C程度に冷却することができる。
For this reason, in the evaporator 9, the gas inside thereof has a low pressure, so that further evaporation is performed, and in addition to the original evaporation action of the evaporator, the evaporation due to the low pressure of the suction of the expansion ejector 4 is added. The cooling effect of the evaporator 9 is further enhanced, and in the evaporator 9 of the present invention, the evaporator of the conventional refrigerator which cools only to about −35 ° C. is cooled to about −80 ° C. You can

【0016】なお図1において12は熱交換機であり、
前記受液器7の下流の連通管3と前記蒸発器9下流の連
通管3間に跨って設けられており、これにより蒸発器9
に入る冷媒液体を予冷することができ、蒸発器9におけ
る温度低下を一層効果的にしている。
In FIG. 1, reference numeral 12 is a heat exchanger,
It is provided so as to straddle between the communication pipe 3 downstream of the liquid receiver 7 and the communication pipe 3 downstream of the evaporator 9, whereby the evaporator 9 is provided.
The incoming refrigerant liquid can be pre-cooled, making the temperature drop in the evaporator 9 more effective.

【0017】又前記受液器7において液体とガスを分離
させ、このうちのガスを前記圧縮機1に供給することに
より、このガスの有する圧力により前記圧縮機1におけ
る圧縮比は小さくなり、前記圧縮機1のロードをその分
少なくすることができる。なお図1において13は冷却
装置を示す。なお14は上記のように形成された冷凍機
回路である。
By separating the liquid and the gas in the liquid receiver 7 and supplying the gas out of the liquid to the compressor 1, the compression ratio in the compressor 1 becomes small due to the pressure of the gas, and The load on the compressor 1 can be reduced accordingly. In FIG. 1, 13 indicates a cooling device. Reference numeral 14 is a refrigerator circuit formed as described above.

【0018】次に、この発明の装置に用いられる冷媒に
ついて説明すると、メタンCH、エタンC等の
水素が、フッ素又は塩素に置き換えられたもの、たとえ
ば、CCl(R−12)、CClF(R−1
1)、CHClF(R−22)等であるが、その他ア
ンモニア、炭酸ガス等適宜のものを用いてよく、空気、
水素、ヘリューム以外のものであれば使用して差支えは
ない。
Next, the refrigerant used in the apparatus of the present invention will be described. Methane CH 4 , ethane C 2 H 6 and the like in which hydrogen is replaced by fluorine or chlorine, for example, CCl 2 F 2 (R- 12), CCl 3 F (R-1
1), CHClF 2 (R-22) and the like, but other appropriate materials such as ammonia and carbon dioxide may be used, and air,
It can be used with anything other than hydrogen and helium.

【0019】次に図3に示すものは、この発明の他の実
施例を示し、同図において17は第一圧縮機、18は第
一凝縮器、19は第一膨張弁又は毛細管、20は第一蒸
発器を示す。21はこうして形成された第一冷凍機回路
である。又22は第二圧縮機、23は第二凝縮機、24
は熱交換部、4は膨張エゼクタ、7は前記受液器であ
る。又25は第二膨張弁又は毛細管、26は第二蒸発器
を示す。27はこうして形成された第二冷凍器回路を示
す。
Next, FIG. 3 shows another embodiment of the present invention, in which 17 is a first compressor, 18 is a first condenser, 19 is a first expansion valve or capillary tube, and 20 is a first expansion valve or capillary tube. The first evaporator is shown. 21 is the first refrigerator circuit thus formed. 22 is a second compressor, 23 is a second condenser, 24
Is a heat exchange section, 4 is an expansion ejector, and 7 is the liquid receiver. Further, 25 is a second expansion valve or capillary tube, and 26 is a second evaporator. 27 shows the second refrigerator circuit thus formed.

【0020】そして前記熱交換部24は前記蒸発器20
と対応させられて熱交換機28を形成させられている。
29はこうして形成された冷凍機回路を示す。そしてこ
のように形成された膨張エゼクタを用いる冷凍機回路2
9は、前記第二蒸発器26が、前記エゼクタ4により一
層低温にされるのに加えて、前記熱交換機28が設けら
れたことにより、前記エゼクタ4に供給される加圧溶媒
は同熱交換機28により冷却されているため、前記第二
蒸発器26においては一例として−100°Cの低温が
得られた。
The heat exchange section 24 is connected to the evaporator 20.
The heat exchanger 28 is formed in correspondence with the above.
Reference numeral 29 denotes the refrigerator circuit thus formed. And the refrigerator circuit 2 using the expansion ejector formed in this way
9 is that the second evaporator 26 is further cooled by the ejector 4 and the heat exchanger 28 is provided, so that the pressurized solvent supplied to the ejector 4 is the same heat exchanger. Since it is cooled by 28, a low temperature of −100 ° C. was obtained in the second evaporator 26 as an example.

【0021】次に図4に示すものはこの発明の更に他の
実施例を示し、同図において、図3に示すものと同一の
図面符号のものは図3と同一名称とし、かつ同一作用を
するものとする。そして31は第3圧縮機、32は第三
凝縮機、33は第二熱交換部、34は第三膨張弁又は毛
細管、35は第三蒸発器を示す。
Next, FIG. 4 shows still another embodiment of the present invention. In FIG. 4, the same reference numerals as those shown in FIG. 3 have the same names as those of FIG. It shall be. Reference numeral 31 is a third compressor, 32 is a third condenser, 33 is a second heat exchange section, 34 is a third expansion valve or capillary tube, and 35 is a third evaporator.

【0022】又36は前記第二蒸発器26と第二熱交換
部33により形成された第二熱交換機である。そして3
7はこうして形成された冷凍機回路を示す。このように
形成された冷凍機回路37においては、その第三蒸発器
35は通常の蒸発機としての低温を現わすが、前記膨張
エゼクタ4により圧力低下をもたらされ、更に低温にさ
れることに加えて、前記膨張エゼクタ4に噴出される加
圧溶媒も、熱交換機28、第二熱交換機36により冷却
されており、このため一例として−110°Cが得られ
た。
Reference numeral 36 is a second heat exchanger formed by the second evaporator 26 and the second heat exchange section 33. And 3
7 shows the refrigerator circuit thus formed. In the refrigerator circuit 37 formed in this way, the third evaporator 35 exhibits a low temperature as a normal evaporator, but the expansion ejector 4 causes a pressure drop, and the temperature is further lowered. In addition, the pressurized solvent ejected to the expansion ejector 4 is also cooled by the heat exchanger 28 and the second heat exchanger 36. Therefore, as an example, −110 ° C. was obtained.

【0023】このように、図3及び図4に示す比較的簡
単な構造の装置により極低温が得られることが理解され
よう。次に図5に示すものは、この発明の更に他の実施
例を示し、同図において39は圧縮機、40は凝縮機、
41は受液器、42は膨張弁又は毛細管、43は蒸発
器、44は熱交換部、45は蒸発器43と熱交換部44
により形成された熱交換機である。
It will thus be appreciated that cryogenic temperatures can be achieved with the relatively simple construction of the device shown in FIGS. Next, FIG. 5 shows still another embodiment of the present invention, in which 39 is a compressor, 40 is a condenser,
41 is a liquid receiver, 42 is an expansion valve or a capillary, 43 is an evaporator, 44 is a heat exchange part, 45 is an evaporator 43 and a heat exchange part 44
Is a heat exchanger formed by.

【0024】そして図示のように圧縮機39及び凝縮機
40を除いた同一の装置の複数個が直列に接続されてお
り、その末端にエゼクタ46、受液器47、膨張弁4
8、蒸発器49から成る冷凍機回路50が示されてい
る。このように形成された冷凍機回路では一例として−
140°Cの低温が得られた。次に図5は上記の、この
発明の膨張エゼクタを用いる冷凍器回路を用いたガス回
収器を示すものであって、同図の多くの部分は図1と同
一であり、このため図1に示す図面符号と同一図面符号
は前記図1と同一名称であり、かつ同一の作用を行うも
のである。
As shown in the figure, a plurality of the same devices except the compressor 39 and the condenser 40 are connected in series, and the ejector 46, the liquid receiver 47, and the expansion valve 4 are connected to the ends thereof.
8, a refrigerator circuit 50 consisting of an evaporator 49 is shown. In the refrigerator circuit formed in this way, as an example,
A low temperature of 140 ° C was obtained. Next, FIG. 5 shows a gas recovery device using the above-described refrigerator circuit using the expansion ejector of the present invention, and many parts of the drawing are the same as those in FIG. The same reference numerals as those shown in the drawings have the same names as those in FIG. 1 and have the same functions.

【0025】そして、同図において52はガスの回収器
であり、密閉容器状に形成されたケーシング53の内側
に、上下方向に亙って冷却コイルが冷却部材54として
設けられ、同冷却部材54はこの発明の前記冷凍機回路
の蒸発器9に連通させられている。又同図において55
は回収ガスの供給口、56は清浄ガスの排出口であり、
57はフアン、送風機等の吸引装置を示す。58は底
部、59は回収通路、60は回収容器、61は支持台を
示す。
In the figure, reference numeral 52 is a gas collector, and a cooling coil is provided as a cooling member 54 in the up and down direction inside a casing 53 formed in a closed container shape. Is communicated with the evaporator 9 of the refrigerator circuit of the present invention. Also in the figure 55
Is a recovery gas supply port, and 56 is a clean gas discharge port,
Reference numeral 57 indicates a suction device such as a fan or a blower. Reference numeral 58 is a bottom portion, 59 is a recovery passageway, 60 is a recovery container, and 61 is a support base.

【0026】この装置の作用について述べると、前記回
収器52の冷却部材54は前記冷凍機回路13からの冷
却された冷媒の環流によりほぼ−80°Cの温度となっ
ている。そして回収ガス、この場合一例として例えばハ
ロン113ガスが空気と共に前記供給口55から、前記
回収器52内に供給される。そうすると同ハロン113
ガスは前記圧縮機1で圧縮された冷媒ガスは凝縮機2で
液化され、膨張エゼクタ4において膨張噴出させられ、
受液器7に収容され、そのうちのガス成分は前記圧縮機
1に至り圧縮される。
To explain the operation of this device, the cooling member 54 of the recovery unit 52 has a temperature of approximately -80 ° C. due to the circulation of the cooled refrigerant from the refrigerator circuit 13. Then, the recovered gas, in this case, for example, halon 113 gas, is supplied into the recoverer 52 from the supply port 55 together with air. Then the same halon 113
The refrigerant gas compressed by the compressor 1 is liquefied by the condenser 2 and expanded and ejected by the expansion ejector 4,
It is stored in the liquid receiver 7, and the gas component of the liquid reaches the compressor 1 and is compressed.

【0027】そして前記受液器7内の冷媒液6は膨張弁
又は毛細管8を通過して蒸発器9において蒸発、気化
し、ここを冷却する。この場合前記膨張エゼクタ4にお
いては減圧を生じており、このため蒸発器9が減圧さ
れ、これにより蒸発器9は一層の温度低下を来し、ほぼ
−80°C程度になる。そしてこの蒸発器9はこれに連
通されているガス回収器52の冷却部材54を冷却さ
せ、一例として−80°Cとさせる
The refrigerant liquid 6 in the liquid receiver 7 passes through an expansion valve or a capillary tube 8 to be vaporized and vaporized in an evaporator 9 to cool it. In this case, the expansion ejector 4 is decompressed, so that the evaporator 9 is decompressed, whereby the evaporator 9 further lowers in temperature to about -80 ° C. Then, the evaporator 9 cools the cooling member 54 of the gas recovery device 52 which is communicated with the evaporator 9, and the temperature is set to −80 ° C. as an example.

【0028】ガス回収機52の吸引装置57を作動さ
せ、供給口55から、目的とするガス、一例として例え
ば空気に混合したハロン113ガスを吸引する。そうす
るとこのハロン113の混合ガスはケーシング53内を
上昇させられ、その間前記冷却部材54に接し、冷却さ
れ、液化させられる。なお同ハロン113ガスははほぼ
−50°C程度で液化するため良好に液化する。
The suction device 57 of the gas recovery machine 52 is operated to suck the target gas, for example, halon 113 gas mixed with air, for example, from the supply port 55. Then, the mixed gas of the halon 113 is moved up in the casing 53, and while being in contact with the cooling member 54, is cooled and liquefied. The halon 113 gas is liquefied well because it liquefies at about -50 ° C.

【0029】そしてケーシング53内を滴下し、底部5
8から回収通路59を経て、回収容器60に回収され
る。前記のように一般に通常用いられている冷凍機回路
は−35°C程度の低温しか得られなかったので、ガス
の液化回収ができなかったのであるが、上記のこの発明
の装置によれば殆ど従来の、通常の装置に膨張エゼクタ
を加える程度の簡単な装置により、容易に各種ガスの液
化回収を行うことができる。なお上記装置は実際には複
数のガス回収器52を直列に接続して設け、予冷及び深
冷を行わせ、完全に回収を行うようにする。
Then, the inside of the casing 53 is dropped and the bottom portion 5
It is collected in the collection container 60 from the No. 8 through the collection passage 59. As described above, the normally used refrigerator circuit was only able to obtain a low temperature of about −35 ° C., so that the gas could not be liquefied and recovered. Liquefaction and recovery of various gases can be easily performed by a conventional device that is as simple as adding an expansion ejector to an ordinary device. Note that the above-mentioned device is actually provided by connecting a plurality of gas recovery units 52 in series to perform pre-cooling and deep-cooling and complete recovery.

【0030】又上記装置は据置型の装置とすることがで
きると共に、これをトラック等に積載して、移動自在に
形成してもよい。この場合上記圧縮機1はそのトラック
等の外部出力軸に接続するようにしてもよく、又は通常
の電源に接続するようにしてもよい。又その場合当然に
全体は図示しない断熱ハウジング中に収容され、各種開
口部はバルブが設けられ、吸込みホース等が着脱自在に
設けられることは勿論である。
Further, the above-mentioned device may be a stationary device, and it may be movably formed by loading it on a truck or the like. In this case, the compressor 1 may be connected to an external output shaft of the truck or the like, or may be connected to a normal power source. Of course, in that case, the whole is accommodated in a heat-insulating housing (not shown), various openings are provided with valves, and suction hoses and the like are detachably provided.

【0031】[0031]

【発明の効果】この発明は前記のように構成され、蒸気
圧縮冷凍機において凝縮機の下流に膨張エゼクタを設
け、この膨張エゼクタに受液器を連通させ、この受液器
を前記圧縮器に連通すると共にその下流に膨張弁又は毛
細管を設け、該膨張弁又は毛細管と前記膨張エゼクタの
間に蒸発器を設けたことにより、極めて簡単な構造にも
かかわらず、従来の蒸気圧縮冷凍機よりも大巾に冷凍能
力を増大させることかでき、極低温又はそれに近い低温
を得ることができる。
The present invention is constructed as described above, and in the vapor compression refrigerator, an expansion ejector is provided downstream of the condenser, and a liquid receiver is connected to the expansion ejector, and the liquid receiver is connected to the compressor. An expansion valve or a capillary tube is provided downstream of the expansion valve or the communication tube, and an evaporator is provided between the expansion valve or the capillary tube and the expansion ejector. It is possible to greatly increase the refrigerating capacity, and obtain a cryogenic temperature or a low temperature close to it.

【図面の簡単な説明】[Brief description of drawings]

【図1】この発明の実施例を示し、膨張エゼクタを用い
る冷凍機回路の回路図である。
FIG. 1 is a circuit diagram of a refrigerator circuit using an expansion ejector according to an embodiment of the present invention.

【図2】この発明の実施例を示し、膨張エゼクタの断面
図である。
FIG. 2 is a sectional view of an expansion ejector showing an embodiment of the present invention.

【図3】この発明の他の実施例を示し、図1に相当する
図である。
FIG. 3 is a view corresponding to FIG. 1, showing another embodiment of the present invention.

【図4】この発明の更に他の実施例を示し、図1に相当
する図である。
FIG. 4 is a view corresponding to FIG. 1 and showing still another embodiment of the present invention.

【図5】この発明の更にに他の実施例を示し、図1に相
当する図である。
FIG. 5 is a view corresponding to FIG. 1, showing still another embodiment of the present invention.

【図6】この発明の実施例を示し、膨張エゼクタを用い
る冷凍機回路を用いたガス回収装置の概略を示す図であ
る。
FIG. 6 is a view showing an embodiment of the present invention and is a view showing an outline of a gas recovery device using a refrigerator circuit using an expansion ejector.

【符号の説明】[Explanation of symbols]

1 圧縮機 2 凝縮機 4 膨張エゼクタ 7 受液器 8 膨張弁又は毛細管 9 蒸発器 52 ガス回収装置 54 冷却部材 55 供給口 56 排出口 60 回収容器 1 Compressor 2 Condenser 4 Expansion Ejector 7 Liquid Receiver 8 Expansion Valve or Capillary 9 Evaporator 52 Gas Recovery Device 54 Cooling Member 55 Supply Port 56 Discharge Port 60 Recovery Container

Claims (3)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 第一圧縮機と第一膨張弁又は毛細管を、
第一凝縮機を介して連通させ、該第一膨張弁又は毛細管
を第一蒸発器を介して前記第一圧縮機と連通させて第一
冷凍機回路を形成し、又別に、第2圧縮機と熱交換部
を、第二凝縮機を介して連通させ、該熱交換部を、膨張
エゼクタを介して受液器に連通させ、該受液器を前記第
二圧縮機に連通させ、又該受液器を第二膨張弁又は毛細
管を介して第二蒸発器に連通させ、該第二蒸発器を前記
膨張エゼクタに連通させ、更に前記熱交換部を前記蒸発
器に対応させて熱交換機を形成したことを特徴とする膨
張エゼクタを用いる冷凍機回路。
1. A first compressor and a first expansion valve or capillary tube,
The first expansion valve or the capillary tube, which is communicated through the first condenser.
To communicate with the first compressor via a first evaporator.
Forming a refrigerator circuit, and separately, a second compressor and a heat exchange section
Through the second condenser to expand the heat exchange section.
The receiver is connected to the receiver via an ejector, and the receiver is connected to the first receiver.
The second receiver is connected to the second compressor, and the receiver is connected to the second expansion valve or capillary.
The second evaporator is connected to the second evaporator through a pipe,
Communicate with the expansion ejector, and further evaporate the heat exchange section.
A refrigerator circuit using an expansion ejector, characterized in that a heat exchanger is formed corresponding to a container .
【請求項2】 第一圧縮機と第一膨張弁又は毛細管と
を、第一凝縮機を介して連通させ、該第一膨張弁又は毛
細管を、第一蒸発器を介して前記第一圧縮機と連通させ
て第一冷凍回路を形成し、又別に第二圧縮機と熱交換部
を、第二圧縮機を介して連通させ、該熱交換部と第二蒸
発器とを、第二膨張弁又は毛細管を介して連通させ、該
第二蒸発器と前記第二圧縮機とを連通させて第二冷凍機
回路を形成し、該第二冷凍機回路の熱交換部を前記蒸発
器と対応させて熱交換機を形成し、又別に第三圧縮機と
第二熱交換部を第三凝縮機を介して連通させ、該熱交換
部と、受液器を、膨張エゼクタを介して連通させ、該受
液器を、前記第三圧縮機に連通させ、又該受液器を、第
三膨張弁又は毛細管を介して第三蒸発器に連通させ、該
第三蒸発器を前記膨張エゼクタに連通させ、前記第二熱
交換部を前記第二蒸発器に対応させて第二熱交換機を形
成したことを特徴とする膨張エゼクタを用いる冷凍機回
路。
2. A first compressor and a first expansion valve or a capillary tube.
Through the first condenser, the first expansion valve or bristles
The thin tube is connected to the first compressor through the first evaporator.
Form a first refrigeration circuit, and a second compressor and heat exchange part separately.
To communicate with each other via the second compressor, and the heat exchange section and the second steam are connected.
The generator is communicated with a second expansion valve or a capillary tube,
A second refrigerator by connecting the second evaporator and the second compressor.
Circuit is formed, and the heat exchange section of the second refrigerator circuit is vaporized
A heat exchanger is formed in correspondence with the compressor, and a third compressor is separately provided.
The second heat exchange section is communicated via the third condenser, and the heat exchange is performed.
And the liquid receiver via the expansion ejector,
The liquid container is connected to the third compressor, and the liquid receiver is connected to the first compressor.
Communicating with a third evaporator through a three expansion valve or a capillary,
The third evaporator is connected to the expansion ejector, and the second heat
Form a second heat exchanger with the exchange part corresponding to the second evaporator.
A refrigerator circuit using an expansion ejector, which is characterized by being made.
【請求項3】 圧縮機と受液器とを凝縮機を介して連通
させ、該受液器と蒸発器とを、膨張弁又は毛細管を介し
て連通させ、該蒸発器を前記圧縮機へ連通させて冷凍機
回路を形成し、上記受液器と他の受液器を熱交換部を介
して連通させ、該熱交換部と前記蒸発部を対応させて熱
交換機を形成し、又上記他の受液器を他の膨張弁又は毛
細管を介して他の蒸発器に連通させ、該他の蒸発器を前
記蒸発器に連通させ、又上記他の受液器に連通させた他
の熱交換部を、前記他の蒸発器 に対応させて熱交換機を
形成し、更に前記他の熱交換部を膨張エゼクタを介して
更に他の受液器に連通させ、該更に他の受液器を前記他
の蒸発器に連通させ、前記膨張弁又は毛細管を、更に他
の蒸発器を介して前記エゼクタに連通させたことを特徴
とする膨張エゼクタを用いる冷凍機回路。
3. A compressor and a liquid receiver are connected via a condenser.
The liquid receiver and the evaporator through an expansion valve or a capillary tube.
The evaporator and the compressor to communicate with the compressor.
A circuit is formed and the above receiver and other receivers are connected via a heat exchange unit.
And communicate with each other, and the heat exchange section and the evaporation section are made to correspond to each other to generate heat.
It forms an exchanger, and the other receiver is replaced by another expansion valve or bristles.
Connect it to another evaporator through a thin tube, and
In addition to communicating with the above-mentioned evaporator and communicating with other liquid receivers
The heat exchange unit, a heat exchanger in correspondence with the other evaporator
And further through the expansion ejector the other heat exchange part
The other liquid receiver is communicated with the other liquid receiver, and the other liquid receiver is connected to the other liquid receiver.
Of the expansion valve or capillary tube, and
A refrigerator circuit using an expansion ejector, wherein the refrigerator circuit is communicated with the ejector through the evaporator .
JP4208233A 1992-08-04 1992-08-04 Refrigerator circuit using expansion ejector Expired - Lifetime JP2518776B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4208233A JP2518776B2 (en) 1992-08-04 1992-08-04 Refrigerator circuit using expansion ejector

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4208233A JP2518776B2 (en) 1992-08-04 1992-08-04 Refrigerator circuit using expansion ejector

Publications (2)

Publication Number Publication Date
JPH0658640A JPH0658640A (en) 1994-03-04
JP2518776B2 true JP2518776B2 (en) 1996-07-31

Family

ID=16552861

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4208233A Expired - Lifetime JP2518776B2 (en) 1992-08-04 1992-08-04 Refrigerator circuit using expansion ejector

Country Status (1)

Country Link
JP (1) JP2518776B2 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010281567A (en) * 2000-06-01 2010-12-16 Denso Corp Ejector type refrigerating cycle
JP4639541B2 (en) * 2001-03-01 2011-02-23 株式会社デンソー Cycle using ejector
JP4463466B2 (en) * 2001-07-06 2010-05-19 株式会社デンソー Ejector cycle
JP4032875B2 (en) 2001-10-04 2008-01-16 株式会社デンソー Ejector cycle
CN100434832C (en) * 2006-11-21 2008-11-19 西安交通大学 Self-overlapping refrigerating cycle system with injector
JP4697487B2 (en) * 2008-08-06 2011-06-08 三菱電機株式会社 Refrigeration equipment
CN106766317A (en) * 2017-01-24 2017-05-31 天津商业大学 A kind of CO of both vapor compression auxiliary supercooling2Trans-critical cycle kind of refrigeration cycle freezer

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS523747A (en) * 1975-06-26 1977-01-12 Sharp Corp Refrigerating cycle
JPH0415459A (en) * 1990-05-07 1992-01-20 Nippondenso Co Ltd Refrigerant recovery device
JPH04103975A (en) * 1990-08-22 1992-04-06 Toshiba Corp Refrigerant recovering and filling device

Also Published As

Publication number Publication date
JPH0658640A (en) 1994-03-04

Similar Documents

Publication Publication Date Title
JP4973872B2 (en) CO2 refrigerator
US6438994B1 (en) Method for providing refrigeration using a turboexpander cycle
US6105388A (en) Multiple circuit cryogenic liquefaction of industrial gas
JP2001221517A (en) Supercritical refrigeration cycle
JP2518776B2 (en) Refrigerator circuit using expansion ejector
WO2002024316A1 (en) System for forming aerosols and cooling device incorporated therein
KR100596157B1 (en) Refrigerator using mixed refrigerant with carbon dioxide
EP0138041B1 (en) Chemically assisted mechanical refrigeration process
JPWO2016181957A1 (en) Refrigeration equipment
JP2000146372A (en) Refrigerant recovering apparatus
JPH06109338A (en) Refrigerating machine circuit and gas recovering device employing the circuit
JPH0835736A (en) Compression and absorption type compound refrigerator
JP3278973B2 (en) Cryogenic refrigerator
KR100609168B1 (en) Cascade refrigerating cycle
JPH04288451A (en) Fluorocarbon mixture refrigerant freezer
JP2001108320A (en) Cryostatic refrigerator
JP2697476B2 (en) Cryogenic refrigerator heat exchanger
JPH09250821A (en) Freezer
JPH06323666A (en) Refrigerator
KR0159238B1 (en) Two-step expanding apparatus using accumulator of an airconditioner
JPS6248974A (en) Cryopump
US3129080A (en) Equipment for supplying both air compressed to high pressure and liquid oxygen
JPH09236340A (en) Cryogenic refrigerating device
JP2845724B2 (en) Regenerator for cryogenic refrigerator
JPH0712412A (en) Refrigerating cycle and refrigerating device