JPH04288451A - Fluorocarbon mixture refrigerant freezer - Google Patents

Fluorocarbon mixture refrigerant freezer

Info

Publication number
JPH04288451A
JPH04288451A JP3052276A JP5227691A JPH04288451A JP H04288451 A JPH04288451 A JP H04288451A JP 3052276 A JP3052276 A JP 3052276A JP 5227691 A JP5227691 A JP 5227691A JP H04288451 A JPH04288451 A JP H04288451A
Authority
JP
Japan
Prior art keywords
refrigerant
fluorocarbon
gas
heat exchanger
pressure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP3052276A
Other languages
Japanese (ja)
Other versions
JP3174081B2 (en
Inventor
Takachika Sasakura
笹倉 隆親
Akinori Kubota
久保田 明典
Hitoshi Iijima
等 飯島
Naoki Tanaka
直樹 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nihon Kentetsu Co Ltd
Mitsubishi Electric Corp
Original Assignee
Nihon Kentetsu Co Ltd
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nihon Kentetsu Co Ltd, Mitsubishi Electric Corp filed Critical Nihon Kentetsu Co Ltd
Priority to JP05227691A priority Critical patent/JP3174081B2/en
Publication of JPH04288451A publication Critical patent/JPH04288451A/en
Application granted granted Critical
Publication of JP3174081B2 publication Critical patent/JP3174081B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PURPOSE:To restrict ozone in the stratosphere against its breakage caused by leakage of refrigerant of fluorocarbon, prevent pressure in a freezing cycle while a refrigerant freezing device is being stopped from being increased and decrease a discharging temperature of a compressor. CONSTITUTION:Nonazeotropic mixture refrigerant used in a freezing cycle is one including at least R-21 fluorocarbon refrigerant, R-116 fluorocarbon refrigerant, one including at least R-21 fluorocarbon refrigerant, R-134a fluorocarbon refrigerant and R-23 fluorocarbon refrigerant, or one including at least R-21 fluorocarbon refrigerant and R-23 fluorocarbon refrigerant or one including R-21 fluorocarbon refrigerant, R-116 fluorocarbon refrigerant and R-23 fluorocarbon refrigerant.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】この発明は、非共沸混合冷媒を用
いて低温を得るフロン系混合冷媒冷凍装置に関するもの
である。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a fluorocarbon mixed refrigerant refrigeration system which uses a non-azeotropic refrigerant mixture to obtain a low temperature.

【0002】0002

【従来の技術】図1は例えば特開昭54−161145
号公報に示された従来のフロン系混合冷媒冷凍装置を示
す冷媒回路図であり、図において、1は圧縮機、2は予
冷器、3は気液分離器、4は第2膨張弁、5は第1熱交
換器、6は第2熱交換器、7は第1膨張弁、8は蒸発器
である。また、この冷媒回路において、冷媒としてR−
12フロン冷媒,R−13フロン冷媒が用いられて、−
50〜−70℃の冷凍温度が得られる冷凍装置を構成し
ている。次に動作について説明する。圧縮機1から吐出
され高圧となった冷媒ガスは、予冷器2に入り、高沸点
成分すなわちR−12フロン冷媒を比較的多く含む冷媒
が凝縮され、気液分離器3で気液に分離される。このう
ち、凝縮液は第2膨張弁4で低圧に減圧されて低温とな
り、第2熱交換器6からの低圧戻り冷媒と合流し、第1
熱交換器5に流入する。一方、分離された低沸点成分す
なわちR−13フロン冷媒を比較的多く含む未凝縮冷媒
ガスは、第1熱交換器5に入り、ここで第2膨張弁4で
低圧まで減圧して低温となった冷媒と、第2熱交換器6
からの低圧戻り冷媒とによって冷却され、全量または一
部が液化して第2熱交換器6に流入する。ここでは、蒸
発器8からの低圧戻り冷媒によってさらに冷却された後
に、第1膨張弁7で低圧に減圧されて、蒸発器8に流入
する。蒸発器8に流入した冷媒は、非冷却体を冷却し、
蒸発してガス化した後に、第2熱交換器6、第1熱交換
器5とを順次経由して圧縮機1に戻る。
[Prior Art] FIG. 1 shows, for example, Japanese Patent Application Laid-Open No. 54-161145
1 is a refrigerant circuit diagram showing a conventional fluorocarbon-based mixed refrigerant refrigeration system disclosed in the publication, and in the figure, 1 is a compressor, 2 is a precooler, 3 is a gas-liquid separator, 4 is a second expansion valve, and 5 is a first heat exchanger, 6 is a second heat exchanger, 7 is a first expansion valve, and 8 is an evaporator. Moreover, in this refrigerant circuit, R-
12 fluorocarbon refrigerant, R-13 fluorocarbon refrigerant are used, -
This constitutes a refrigeration device that can obtain a refrigeration temperature of 50 to -70°C. Next, the operation will be explained. The high-pressure refrigerant gas discharged from the compressor 1 enters the precooler 2, where the refrigerant containing a relatively large amount of high boiling point components, that is, R-12 fluorocarbon refrigerant, is condensed and separated into gas and liquid by the gas-liquid separator 3. Ru. Among them, the condensed liquid is reduced in pressure to a low temperature by the second expansion valve 4, becomes low temperature, merges with the low pressure return refrigerant from the second heat exchanger 6, and flows into the first
It flows into the heat exchanger 5. On the other hand, the uncondensed refrigerant gas containing a relatively large amount of the separated low boiling point component, that is, R-13 fluorocarbon refrigerant, enters the first heat exchanger 5, where it is reduced to a low pressure by the second expansion valve 4 and becomes low temperature. refrigerant and the second heat exchanger 6
The refrigerant is cooled by the low-pressure return refrigerant from the refrigerant, and all or part of the refrigerant is liquefied and flows into the second heat exchanger 6. Here, after being further cooled by the low-pressure return refrigerant from the evaporator 8 , it is reduced in pressure to a low pressure by the first expansion valve 7 and flows into the evaporator 8 . The refrigerant flowing into the evaporator 8 cools the non-cooled body,
After being evaporated and gasified, it returns to the compressor 1 via the second heat exchanger 6 and the first heat exchanger 5 in this order.

【0003】0003

【発明が解決しようとする課題】従来のフロン系混合冷
媒冷凍装置は、以上のように構成されているので、R−
12フロン冷媒やR−13フロン冷媒を使用することに
より、冷媒充填時や修理時に大気中に漏れることによっ
て、地球の成層圏のオゾンを破壊するなどの問題点があ
った。また、この装置の運転を停止した際に、冷凍サイ
クル内の圧力上昇を招いたり、運転中に圧縮機における
冷媒の吐出温度が上昇するなどの課題があった。
[Problems to be Solved by the Invention] Since the conventional fluorocarbon mixed refrigerant refrigeration system is constructed as described above, the R-
The use of CFC 12 refrigerant and R-13 CFC refrigerant has caused problems such as the ozone in the earth's stratosphere being destroyed by the refrigerant leaking into the atmosphere during refrigerant filling or repair. Further, when the device stops operating, the pressure within the refrigeration cycle increases, and the discharge temperature of the refrigerant from the compressor increases during operation.

【0004】この請求項1の発明は上記のような課題を
解消するためになされたものであり、オゾンの破壊程度
がR−12フロン冷媒やR−13フロン冷媒より少ない
冷媒を使用することによって、オゾンの破壊を低減でき
るとともに、従来と同程度の冷却効果が得られるフロン
系混合冷媒冷凍装置を得ることを目的とする。
[0004] The invention of claim 1 has been made to solve the above-mentioned problem, and by using a refrigerant that causes less ozone destruction than R-12 fluorocarbon refrigerant and R-13 fluorocarbon refrigerant. The object of the present invention is to obtain a fluorocarbon-based mixed refrigerant refrigeration system that can reduce ozone destruction and provide a cooling effect comparable to that of conventional systems.

【0005】また、この請求項2の発明はオゾンの破壊
程度がR−12フロン冷媒やR−13フロン冷媒より少
ない冷媒を使用することによって、オゾンの破壊を低減
できるとともに、装置停止時の圧力上昇を低く抑えるこ
とができるフロン系混合冷媒冷凍装置を得ることを目的
とする。
[0005] Furthermore, the invention of claim 2 can reduce ozone destruction by using a refrigerant whose degree of ozone destruction is lower than that of R-12 fluorocarbon refrigerant and R-13 fluorocarbon refrigerant, and also reduce the pressure when the equipment is stopped. The purpose of the present invention is to obtain a fluorocarbon-based mixed refrigerant refrigeration system that can suppress the rise in temperature to a low level.

【0006】さらに、この請求項3の発明はオゾンの破
壊程度がR−12フロン冷媒やR−13フロン冷媒より
少ない冷媒を充填することによって、オゾンの破壊を低
減できるとともに、ポリトロープ指数の小さい冷媒を充
填することにより、圧縮機の吐出温度を低下させ、従来
と同程度の冷却効果を得ることができるフロン系混合冷
媒冷凍装置を得ることを目的とする。
Furthermore, the invention of claim 3 can reduce ozone destruction by filling a refrigerant with a lower degree of ozone destruction than R-12 fluorocarbon refrigerant and R-13 fluorocarbon refrigerant. The purpose of the present invention is to provide a fluorocarbon-based mixed refrigerant refrigeration system that can lower the discharge temperature of the compressor and obtain a cooling effect comparable to that of conventional fluorocarbons.

【0007】[0007]

【課題を解決するための手段】この請求項1の発明は、
冷凍サイクルで用いる非共沸混合冷媒を、少くともR−
21フロン冷媒およびR−116フロン冷媒を含むもの
としたものである。
[Means for solving the problem] The invention of claim 1 is as follows:
The non-azeotropic mixed refrigerant used in the refrigeration cycle is at least R-
21 Freon refrigerant and R-116 Freon refrigerant.

【0008】また、この請求項2の発明は、冷凍サイク
ルで用いる非共沸混合冷媒を、少くともR−21フロン
冷媒,R−134aフロン冷媒およびR−23フロン冷
媒を含むものとしたものである。
[0008] Furthermore, the invention of claim 2 is such that the non-azeotropic mixed refrigerant used in the refrigeration cycle contains at least R-21 fluorocarbon refrigerant, R-134a fluorocarbon refrigerant and R-23 fluorocarbon refrigerant. be.

【0009】さらに、この請求項3の発明は、冷凍サイ
クルで用いる非共沸混合冷媒を、少くともR−21フロ
ン冷媒およびR−23フロン冷媒を含むもの、またはR
−21フロン冷媒,R−116フロン冷媒およびR−2
3フロン冷媒を含むものとしたものである。
Furthermore, the invention of claim 3 provides that the non-azeotropic mixed refrigerant used in the refrigeration cycle contains at least R-21 fluorocarbon refrigerant and R-23 fluorocarbon refrigerant, or R-23 fluorocarbon refrigerant.
-21 Freon refrigerant, R-116 Freon refrigerant and R-2
It contains 3 fluorocarbon refrigerant.

【0010】0010

【作用】この請求項1の発明におけるフロン系混合冷媒
冷凍装置は、充填される2種類以上の非共沸混合冷媒ガ
スのうち、高沸点の冷媒R−21を凝縮させた後、減圧
して低温とし、R−21フロン冷媒の次に沸点の高いR
−116フロン冷媒を冷却し凝縮させる。そして、凝縮
したR−116フロン冷媒を減圧して低温とし、次に沸
点の高い冷媒を凝縮させるという動作を順次くり返し、
最後に最も沸点の低い冷媒を凝縮した後に、蒸発器で蒸
発させて低温を得る。
[Operation] The fluorocarbon mixed refrigerant refrigeration system according to the invention of claim 1 condenses the high boiling point refrigerant R-21 among the two or more types of non-azeotropic mixed refrigerant gases to be filled, and then reduces the pressure. R has a low temperature and has the second highest boiling point after R-21 Freon refrigerant.
- Cools and condenses 116 Freon refrigerant. Then, the condensed R-116 fluorocarbon refrigerant is depressurized to a low temperature, and then the refrigerant with a high boiling point is condensed, which is repeated in sequence.
Finally, the refrigerant with the lowest boiling point is condensed and then evaporated in an evaporator to obtain a low temperature.

【0011】また、この請求項2の発明におけるフロン
系混合冷媒冷凍装置は、充填される2種類以上の非共沸
混合冷媒のうち、高沸点の冷媒R−21を凝縮させた後
、減圧して低温とし、R−21フロン冷媒の次に沸点の
高いR−134aフロン冷媒を冷却し凝縮させる。そし
て、R−134aフロン冷媒を減圧して低温とし、R−
134aフロン冷媒の次に沸点の高いR−23フロン冷
媒を冷却し凝縮させる。そして、さらに凝縮したR−2
3フロン冷媒を減圧して低温とし、次に沸点の低い冷媒
を凝縮させるという動作を順次くり返し、最後に最も沸
点の低い冷媒を凝縮した後に、蒸発器で蒸発させて低温
を得る。
[0011] Furthermore, the fluorocarbon mixed refrigerant refrigeration apparatus according to the invention of claim 2 condenses the high boiling point refrigerant R-21 among the two or more types of non-azeotropic mixed refrigerants to be filled, and then reduces the pressure. The R-134a Freon refrigerant, which has the second highest boiling point after the R-21 Freon refrigerant, is cooled and condensed. Then, the pressure of the R-134a Freon refrigerant is reduced to a low temperature, and the R-134a refrigerant is
The R-23 Freon refrigerant, which has the second highest boiling point after the 134a Freon refrigerant, is cooled and condensed. And further condensed R-2
The operation of reducing the pressure of the 3 fluorocarbon refrigerant to a low temperature, then condensing the refrigerant with the lowest boiling point is repeated in sequence, and finally, after condensing the refrigerant with the lowest boiling point, it is evaporated in an evaporator to obtain a low temperature.

【0012】さらに、この請求項3の発明におけるフロ
ン系混合冷媒冷凍装置は、高沸点の冷媒R−21を凝縮
させた後、減圧して低温とし、R−21フロン冷媒の次
に沸点の高いR−23フロン冷媒のみ、または、R−1
16フロン冷媒とR−23フロン冷媒とを冷却し凝縮さ
せる。そして、凝縮したR−116フロン冷媒とR−2
3フロン冷媒を減圧して低温とし、次に沸点の高い冷媒
を凝縮させるという動作を順次くり返し、最後に最も沸
点の低い冷媒を凝縮した後に、蒸発器で蒸発させて低温
を得る。
Furthermore, the fluorocarbon mixed refrigerant refrigeration apparatus according to the invention of claim 3 condenses the high boiling point refrigerant R-21 and then reduces the pressure to a low temperature. R-23 Freon refrigerant only or R-1
The 16 fluorocarbon refrigerant and the R-23 fluorocarbon refrigerant are cooled and condensed. Then, condensed R-116 Freon refrigerant and R-2
The operation of reducing the pressure of the 3 fluorocarbon refrigerant to a low temperature, then condensing the refrigerant with a high boiling point is repeated in sequence, and finally, after condensing the refrigerant with the lowest boiling point, it is evaporated in an evaporator to obtain a low temperature.

【0013】[0013]

【実施例】以下、この発明の一実施例を図について説明
する。ここで、フロン系混合冷媒冷凍装置の構成および
動作は基本的に従来と同一であり、ここではその重複す
る説明を省略する。図2は圧力と冷媒の飽和温度との関
係を示す特性図であり、これからR−13フロン冷媒と
R−116フロン冷媒とは、ほぼ同じ特性であることが
分かる。従って、R−13フロン冷媒の代替冷媒として
R−116フロン冷媒を使用することができる。ここで
、R−21フロン冷媒はR−12フロン冷媒に比べ、圧
力に対する飽和温度が高くなるが、動作圧力(高圧)を
15−25kg/cm2程度としてR−116フロン冷
媒の凝縮温度を高めとすることにより、R−21フロン
冷媒で冷却することができ、R−12フロン冷媒の代替
冷媒としてR−21フロン冷媒を使用することができる
。なお、上記実施例ではフロン系混合冷媒冷凍装置に充
填されるR−12,R−13フロン冷媒の代替冷媒とし
てR−21フロン冷媒およびR−116フロン冷媒のみ
を使用する場合を説明したが、これらにR−12と同様
にオゾンを破壊するR−114フロン冷媒やR−13を
含むフロン冷媒を使用してもよく、R−114フロン冷
媒の代替としてR−21フロン冷媒を使用できることか
らR−12,R−13,R−114の各フロン冷媒を含
む2種類以上のフロン冷媒を使用しても、上記実施例と
同様の効果が得られる。
DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the present invention will be described below with reference to the drawings. Here, the configuration and operation of the fluorocarbon-based mixed refrigerant refrigeration system are basically the same as those of the conventional system, and redundant explanation thereof will be omitted here. FIG. 2 is a characteristic diagram showing the relationship between pressure and refrigerant saturation temperature, and from this it can be seen that R-13 Freon refrigerant and R-116 Freon refrigerant have almost the same characteristics. Therefore, R-116 fluorocarbon refrigerant can be used as an alternative refrigerant to R-13 fluorocarbon refrigerant. Here, R-21 Freon refrigerant has a higher saturation temperature with respect to pressure than R-12 Freon refrigerant, but the condensation temperature of R-116 Freon refrigerant can be raised by setting the operating pressure (high pressure) to about 15-25 kg/cm2. By doing so, it is possible to perform cooling with the R-21 fluorocarbon refrigerant, and the R-21 fluorocarbon refrigerant can be used as an alternative refrigerant to the R-12 fluorocarbon refrigerant. In addition, in the above embodiment, a case was explained in which only R-21 fluorocarbon refrigerant and R-116 fluorocarbon refrigerant were used as alternative refrigerants for R-12 and R-13 fluorocarbon refrigerants filled in a fluorocarbon mixed refrigerant refrigeration system. For these, R-114 CFC refrigerant, which destroys ozone like R-12, or CFC refrigerant containing R-13 may be used, and R-21 CFC refrigerant can be used as an alternative to R-114 CFC refrigerant. Even if two or more types of fluorocarbon refrigerants including fluorocarbon refrigerants -12, R-13, and R-114 are used, the same effects as in the above embodiment can be obtained.

【0014】また、図3は請求項2の発明における冷媒
の圧力と飽和温度との関係を示す特性図であり、この図
から134aフロン冷媒とR−12フロン冷媒,R−1
3フロン冷媒とR−23フロン冷媒とは、それぞれほぼ
同じ特性であることが分かる。従って、R−12フロン
冷媒とR−13フロン冷媒の代替冷媒として、134a
フロン冷媒とR−23フロン冷媒を使用することができ
る。ここで、134aフロン冷媒(テトラフルオロエタ
ン)はオゾンを破壊しない冷媒であり、この134aフ
ロン冷媒とR−23フロン冷媒に、さらにR−21フロ
ン冷媒を充填することによって、R−21フロン冷媒の
飽和圧力が134aフロン冷媒やR−23フロン冷媒に
比べ低いことから、装置の停止時の圧力上昇を低くする
ことができる。なお、上記実施例ではフロン系混合冷媒
冷凍装置に充填されるR−12,R−13フロン冷媒の
代替冷媒R−134a,R23,R21の各フロン冷媒
のみを使用する場合を説明したが、これらにR−12,
R−13フロン冷媒を含む2種類以上のフロン冷媒を使
用しても上記実施例と同様の効果を奏する。
FIG. 3 is a characteristic diagram showing the relationship between refrigerant pressure and saturation temperature in the invention according to claim 2. From this diagram, it can be seen that 134a fluorocarbon refrigerant, R-12 fluorocarbon refrigerant, R-1 fluorocarbon refrigerant,
It can be seen that the 3 fluorocarbon refrigerant and the R-23 fluorocarbon refrigerant have almost the same characteristics. Therefore, as an alternative refrigerant for R-12 and R-13 fluorocarbon refrigerants, 134a
Freon refrigerants and R-23 Freon refrigerants can be used. Here, 134a fluorocarbon refrigerant (tetrafluoroethane) is a refrigerant that does not destroy ozone, and by filling the 134a fluorocarbon refrigerant and R-23 fluorocarbon refrigerant with R-21 fluorocarbon refrigerant, the R-21 fluorocarbon refrigerant can be Since the saturation pressure is lower than that of 134a fluorocarbon refrigerant and R-23 fluorocarbon refrigerant, the pressure rise when the device is stopped can be reduced. In addition, in the above embodiment, a case was explained in which only fluorocarbon refrigerants R-134a, R23, and R21, which are substitutes for R-12 and R-13 fluorocarbon refrigerants filled in a fluorocarbon mixed refrigerant refrigeration system, are used. R-12,
Even if two or more types of fluorocarbon refrigerants including R-13 fluorocarbon refrigerant are used, the same effects as in the above embodiments can be obtained.

【0015】さらに、図4は請求項2の発明における冷
媒の圧力と飽和温度との関係を示す特性図であり、この
図から、R−13フロン冷媒とR−116フロン冷媒,
R−23フロン冷媒とは、ほぼ同じ特性であることから
、R−13フロン冷媒の代替冷媒としてR−116フロ
ン冷媒とR−23フロン冷媒を使用することができる。 また、吸入圧力1kg/cm2の飽和ガスを15kg/
cm2および20kg/cm2で圧縮した場合のガス温
度は、〔表1〕に示す通りである。従って、R−116
フロン冷媒は温度が著しく低いところから、R−13フ
ロン冷媒の代替冷媒としてR−116フロン冷媒単体ま
たはR−116フロン冷媒とR−23フロン冷媒とを混
合して用いることにより、圧縮機1の吐出温度を低くす
ることができ、この圧縮機1の潤滑用オイルの劣化を防
止することができる。
Furthermore, FIG. 4 is a characteristic diagram showing the relationship between refrigerant pressure and saturation temperature in the invention of claim 2, and from this diagram, it can be seen that R-13 fluorocarbon refrigerant, R-116 fluorocarbon refrigerant,
Since R-23 Freon refrigerant has almost the same characteristics, R-116 Freon refrigerant and R-23 Freon refrigerant can be used as alternative refrigerants for R-13 Freon refrigerant. In addition, 15 kg/cm2 of saturated gas with a suction pressure of 1 kg/cm2 is
The gas temperatures when compressed at cm2 and 20 kg/cm2 are as shown in [Table 1]. Therefore, R-116
Since the temperature of fluorocarbon refrigerant is extremely low, by using R-116 fluorocarbon refrigerant alone or a mixture of R-116 fluorocarbon refrigerant and R-23 fluorocarbon refrigerant as an alternative refrigerant to R-13 fluorocarbon refrigerant, the compressor 1 can be improved. The discharge temperature can be lowered, and deterioration of the lubricating oil of the compressor 1 can be prevented.

【0016】[0016]

【表1】[Table 1]

【0017】R−21フロン冷媒は、R−12フロン冷
媒に比べ、圧力に対する飽和温度が高くなるが、動作圧
力(高圧)を15−25kg/cm2程度としてR−1
16フロン冷媒やR−23フロン冷媒の凝縮温度を高め
とすることにより、R−21フロン冷媒で冷却すること
ができ、R−12フロン冷媒の代替冷媒としてR−21
フロン冷媒を使用することができる。以上のことから、
R−12フロン冷媒とR−13フロン冷媒の代替冷媒と
して、R−21フロン冷媒およびR−23フロン冷媒の
組み合わせやR−21フロン冷媒,R−23フロン冷媒
およびR−116フロン冷媒の組み合わせが可能である
ことがわかる。なお、上記実施例ではフロン系混合冷媒
冷凍装置に充填されるR−12,R−13フロン冷媒の
代替冷媒としてR−21,R−23,R−116のフロ
ン冷媒のみを使用する場合について説明したが、これら
にR−12と同様のオゾンを破壊するR−114フロン
冷媒とR−13フロン冷媒を含むものの代替として使用
してもよく、またR−114フロン冷媒の代替としてR
−21が使用できることから、R−12,R−13,R
−114フロン冷媒を含む2種類以上のフロン冷媒の代
替として使用してもよく、上記実施例と同様の効果が得
られる。
R-21 Freon refrigerant has a higher saturation temperature with respect to pressure than R-12 Freon refrigerant, but when the operating pressure (high pressure) is about 15-25 kg/cm2, R-1
By increasing the condensation temperature of 16 CFC refrigerant and R-23 CFC refrigerant, it is possible to cool with R-21 CFC refrigerant, and R-21 CFC refrigerant can be used as an alternative refrigerant to R-12 CFC refrigerant.
Freon refrigerant can be used. From the above,
As alternative refrigerants for R-12 Freon refrigerant and R-13 Freon refrigerant, combinations of R-21 Freon refrigerant and R-23 Freon refrigerant, and combinations of R-21 Freon refrigerant, R-23 Freon refrigerant and R-116 Freon refrigerant are available. It turns out that it is possible. In addition, in the above embodiment, a case is explained in which only R-21, R-23, and R-116 fluorocarbon refrigerants are used as alternative refrigerants for R-12 and R-13 fluorocarbon refrigerants filled in a fluorocarbon mixed refrigerant refrigeration system. However, it may be used as a substitute for R-114 CFC refrigerant and R-13 CFC refrigerant, which destroy ozone similar to R-12.
-21 can be used, R-12, R-13, R
It may be used as a substitute for two or more types of fluorocarbon refrigerants including -114 fluorocarbon refrigerant, and the same effects as in the above embodiments can be obtained.

【0018】[0018]

【発明の効果】以上のように、この請求項1の発明によ
れば冷凍サイクルで用いる非共沸混合冷媒を、少くとも
R−21フロン冷媒およびR−116フロン冷媒を含む
ものとしたので、かかる冷媒が充填作業時や系統の修理
時に大気中に漏れることがあっても、地球の成層圏オゾ
ンを破壊するのを抑制できるものが得られる効果がある
As described above, according to the invention of claim 1, since the non-azeotropic mixed refrigerant used in the refrigeration cycle contains at least R-21 fluorocarbon refrigerant and R-116 fluorocarbon refrigerant, Even if such a refrigerant leaks into the atmosphere during filling operations or system repairs, it has the effect of suppressing the destruction of the earth's stratospheric ozone.

【0019】また、この請求項2の発明によれば、冷凍
サイクルで用いる非共沸混合冷媒を少くともR−21フ
ロン冷媒,R−134aフロン冷媒およびR−23フロ
ン冷媒を含むものとしたので、上記効果に加えて、装置
の動作が停止した際における冷凍サイクル中の圧力上昇
を抑えることができるものが、得られる効果がある。
Further, according to the invention of claim 2, the non-azeotropic mixed refrigerant used in the refrigeration cycle contains at least R-21 fluorocarbon refrigerant, R-134a fluorocarbon refrigerant and R-23 fluorocarbon refrigerant. In addition to the above-mentioned effects, there is an effect that can be obtained by suppressing the pressure rise in the refrigeration cycle when the operation of the device is stopped.

【0020】さらに、この請求項3の発明によれば冷凍
サイクルで用いる非共沸混合冷媒を、少くともR−21
フロン冷媒およびR−23フロン冷媒を含むもの、また
はR−21フロン冷媒,R−116フロン冷媒およびR
−23フロン冷媒を含むものとしたので、地球の成層圏
のオゾンがそのフロン冷媒によって破壊するのを抑制で
きるとともに、圧縮機の吐出温度を低下できるものが得
られる効果がある。
Furthermore, according to the invention of claim 3, the non-azeotropic mixed refrigerant used in the refrigeration cycle is at least R-21.
Those containing fluorocarbon refrigerant and R-23 fluorocarbon refrigerant, or R-21 fluorocarbon refrigerant, R-116 fluorocarbon refrigerant and R
Since it contains -23 fluorocarbon refrigerant, it is possible to suppress the ozone in the earth's stratosphere from being destroyed by the fluorocarbon refrigerant, and also to reduce the discharge temperature of the compressor.

【図面の簡単な説明】[Brief explanation of the drawing]

【図1】この発明および従来のフロン系混合冷媒冷凍装
置を示すブロック図である。
FIG. 1 is a block diagram showing the present invention and a conventional fluorocarbon mixed refrigerant refrigeration system.

【図2】請求項1の発明における冷媒の圧力と飽和温度
との関係を示す特性図である。
FIG. 2 is a characteristic diagram showing the relationship between refrigerant pressure and saturation temperature in the invention of claim 1.

【図3】請求項2の発明における冷媒の圧力と飽和温度
との関係を示す特性図である。
FIG. 3 is a characteristic diagram showing the relationship between refrigerant pressure and saturation temperature in the invention of claim 2.

【図4】請求項3の発明における冷媒の圧力と飽和温度
との関係を示す特性図である。
FIG. 4 is a characteristic diagram showing the relationship between refrigerant pressure and saturation temperature in the invention according to claim 3.

【符号の説明】[Explanation of symbols]

1    圧縮機 2    予冷器 3    気液分離器 4    第2膨張弁 5    第1熱交換器 6    第2熱交換器 7    第1膨張弁 8    蒸発器 なお、図中、同一符号は同一、又は相当部分を示す。 1 Compressor 2 Precooler 3 Gas-liquid separator 4 Second expansion valve 5 First heat exchanger 6 Second heat exchanger 7 First expansion valve 8 Evaporator In addition, in the figures, the same reference numerals indicate the same or equivalent parts.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】  圧縮機で圧縮した高圧の2種類以上の
非共沸混合冷媒のうち高沸点成分を多く含む冷媒を凝縮
する予冷器と、該予冷器を通過した冷媒を気液に分離す
る気液分離器と、該気液分離器で分離した低沸点成分を
多く含む冷媒ガスの少くとも一部を液化する熱交換器と
、該熱交換器からの冷媒を減圧する第1膨張弁と、該第
1膨張弁からの冷媒を蒸発させた後、上記熱交換器を介
して上記圧縮器へ戻す蒸発器と、上記気液分離器で分離
した高沸点成分を含む冷媒の凝縮液を減圧した後、上記
熱交換器を介して上記圧縮器へ戻す第2膨張弁とからな
る冷凍サイクルを有するフロン系混合冷媒冷凍装置にお
いて、上記非共沸混合冷媒を、少くともR−21フロン
冷媒およびR−116フロン冷媒を含むものとしたこと
を特徴とするフロン系混合冷媒冷凍装置。
[Claim 1] A precooler that condenses a high-pressure non-azeotropic mixed refrigerant of two or more types compressed by a compressor that contains a large amount of high boiling point components, and a precooler that separates the refrigerant that has passed through the precooler into gas and liquid. a gas-liquid separator; a heat exchanger that liquefies at least a portion of the refrigerant gas containing many low-boiling components separated by the gas-liquid separator; and a first expansion valve that reduces the pressure of the refrigerant from the heat exchanger. , an evaporator that evaporates the refrigerant from the first expansion valve and then returns it to the compressor via the heat exchanger; and a decompression of the refrigerant condensate containing high-boiling components separated by the gas-liquid separator. In a fluorocarbon mixed refrigerant refrigeration system having a refrigeration cycle comprising a second expansion valve that returns the non-azeotropic refrigerant to the compressor via the heat exchanger, the non-azeotropic refrigerant is mixed with at least R-21 fluorocarbon refrigerant and A fluorocarbon mixed refrigerant refrigeration system characterized by containing R-116 fluorocarbon refrigerant.
【請求項2】  圧縮機で圧縮した高圧の2種類以上の
非共沸混合冷媒のうち高沸点成分を多く含む冷媒を凝縮
する予冷器と、該予冷器を通過した冷媒を気液に分離す
る気液分離器と、該気液分離器で分離した低沸点成分を
多く含む冷媒ガスの少くとも一部を液化する熱交換器と
、該熱交換器からの冷媒を減圧する第1膨張弁と、該第
1膨張弁からの冷媒を蒸発させた後、上記熱交換器を介
して上記圧縮器へ戻す蒸発器と、上記気液分離器で分離
した高沸点成分を含む冷媒の凝縮液を減圧した後、上記
熱交換器を介して上記圧縮器へ戻す第2膨張弁とからな
る冷凍サイクルを有するフロン系混合冷媒冷凍装置にお
いて、上記非共沸混合冷媒を、少くともR−21フロン
冷媒,R−134aフロン冷媒およびR−23フロン冷
媒を含むものとしたことを特徴とするフロン系混合冷媒
冷凍装置。
[Claim 2] A precooler that condenses a high-pressure non-azeotropic mixed refrigerant of two or more types compressed by a compressor that contains a large amount of high boiling point components, and a precooler that separates the refrigerant that has passed through the precooler into gas and liquid. a gas-liquid separator; a heat exchanger that liquefies at least a portion of the refrigerant gas containing many low-boiling components separated by the gas-liquid separator; and a first expansion valve that reduces the pressure of the refrigerant from the heat exchanger. , an evaporator that evaporates the refrigerant from the first expansion valve and then returns it to the compressor via the heat exchanger; and a decompression of the refrigerant condensate containing high-boiling components separated by the gas-liquid separator. In a fluorocarbon mixed refrigerant refrigeration system having a refrigeration cycle comprising a second expansion valve that returns the non-azeotropic refrigerant to the compressor via the heat exchanger, the non-azeotropic mixed refrigerant is at least R-21 fluorocarbon A fluorocarbon mixed refrigerant refrigeration system characterized by containing an R-134a fluorocarbon refrigerant and an R-23 fluorocarbon refrigerant.
【請求項3】  圧縮機で圧縮した高圧の2種類以上の
非共沸混合冷媒のうち高沸点成分を多く含む冷媒を凝縮
する予冷器と、該予冷器を通過した冷媒を気液に分離す
る気液分離器と、該気液分離器で分離した低沸点成分を
多く含む冷媒ガスの少くとも一部を液化する熱交換器と
、該熱交換器からの冷媒を減圧する第1膨張弁と、該第
1膨張弁からの冷媒を蒸発させた後、上記熱交換器を介
して上記圧縮器へ戻す蒸発器と、上記気液分離器で分離
した高沸点成分を含む冷媒の凝縮液を減圧した後、上記
熱交換器を介して上記圧縮器へ戻す第2膨張弁とからな
る冷凍サイクルを有するフロン系混合冷媒冷凍装置にお
いて、上記非共沸混合冷媒を、少くともR−21フロン
冷媒およびR−23フロン冷媒を含むもの、またはR−
21フロン冷媒,R−116フロン冷媒およびR−23
フロン冷媒を含むものとしたことを特徴とするフロン系
混合冷媒冷凍装置。
[Claim 3] A precooler that condenses a high-pressure non-azeotropic mixed refrigerant of two or more types compressed by a compressor that contains a large amount of high boiling point components, and a precooler that separates the refrigerant that has passed through the precooler into gas and liquid. a gas-liquid separator; a heat exchanger that liquefies at least a portion of the refrigerant gas containing many low-boiling components separated by the gas-liquid separator; and a first expansion valve that reduces the pressure of the refrigerant from the heat exchanger. , an evaporator that evaporates the refrigerant from the first expansion valve and then returns it to the compressor via the heat exchanger; and a decompression of the refrigerant condensate containing high-boiling components separated by the gas-liquid separator. In a fluorocarbon mixed refrigerant refrigeration system having a refrigeration cycle comprising a second expansion valve that returns the non-azeotropic refrigerant to the compressor via the heat exchanger, the non-azeotropic refrigerant is mixed with at least R-21 fluorocarbon refrigerant and Those containing R-23 Freon refrigerant, or R-
21 Freon refrigerant, R-116 Freon refrigerant and R-23
A fluorocarbon mixed refrigerant refrigeration device characterized by containing a fluorocarbon refrigerant.
JP05227691A 1991-03-18 1991-03-18 Non-azeotropic mixed refrigerant refrigeration system Expired - Fee Related JP3174081B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP05227691A JP3174081B2 (en) 1991-03-18 1991-03-18 Non-azeotropic mixed refrigerant refrigeration system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP05227691A JP3174081B2 (en) 1991-03-18 1991-03-18 Non-azeotropic mixed refrigerant refrigeration system

Publications (2)

Publication Number Publication Date
JPH04288451A true JPH04288451A (en) 1992-10-13
JP3174081B2 JP3174081B2 (en) 2001-06-11

Family

ID=12910269

Family Applications (1)

Application Number Title Priority Date Filing Date
JP05227691A Expired - Fee Related JP3174081B2 (en) 1991-03-18 1991-03-18 Non-azeotropic mixed refrigerant refrigeration system

Country Status (1)

Country Link
JP (1) JP3174081B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0765924A2 (en) * 1992-07-10 1997-04-02 E.I. Du Pont De Nemours And Company Azeotropic compositions of perfluoroethane and trifluoromethane, or oxide or nitrous oxide, or carbon dioxide, or fluoromethane
US5766503A (en) * 1994-12-16 1998-06-16 E. I. Du Pont De Nemours And Company Refrigeration process using azeotropic compositions of perfluoroethane and trifluoromethane
DE10121544B4 (en) * 2001-05-03 2007-08-16 Axima Refrigeration Gmbh Process for the liquefaction of a reactive gas
JP2010043752A (en) * 2008-08-08 2010-02-25 Sanyo Electric Co Ltd Refrigerating device
US9335070B2 (en) 2008-09-10 2016-05-10 Panasonic Healthcare Holdings Co., Ltd. Refrigerating apparatus
CN109341124A (en) * 2018-11-14 2019-02-15 珠海格力电器股份有限公司 A kind of mixed working fluid dual temperature circulatory system

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0765924A2 (en) * 1992-07-10 1997-04-02 E.I. Du Pont De Nemours And Company Azeotropic compositions of perfluoroethane and trifluoromethane, or oxide or nitrous oxide, or carbon dioxide, or fluoromethane
EP0765924A3 (en) * 1992-07-10 1997-05-14 Du Pont
US5766503A (en) * 1994-12-16 1998-06-16 E. I. Du Pont De Nemours And Company Refrigeration process using azeotropic compositions of perfluoroethane and trifluoromethane
DE10121544B4 (en) * 2001-05-03 2007-08-16 Axima Refrigeration Gmbh Process for the liquefaction of a reactive gas
JP2010043752A (en) * 2008-08-08 2010-02-25 Sanyo Electric Co Ltd Refrigerating device
US9335070B2 (en) 2008-09-10 2016-05-10 Panasonic Healthcare Holdings Co., Ltd. Refrigerating apparatus
US9360238B2 (en) 2008-09-10 2016-06-07 Panasonic Healthcare Holdings Co., Ltd. Refrigerating apparatus
CN109341124A (en) * 2018-11-14 2019-02-15 珠海格力电器股份有限公司 A kind of mixed working fluid dual temperature circulatory system

Also Published As

Publication number Publication date
JP3174081B2 (en) 2001-06-11

Similar Documents

Publication Publication Date Title
US5265443A (en) Refrigerating unit
CA2293204C (en) Single circuit cryogenic liquefaction of industrial gas
CA2065109C (en) Refrigerant compositions
KR20000048443A (en) Multicomponent refrigerant cooling with internal recycle
EP1016844B1 (en) Multiple circuit cryogenic liquefaction of industrial gas with multicomponent refrigerant
IL133775A (en) Method for providing refrigeration
KR20030079962A (en) Industrial gas liquefaction with azeotropic fluid forecooling
JPH04288451A (en) Fluorocarbon mixture refrigerant freezer
US20050072957A1 (en) Non-HCFC refrigerant mixture for an ultra-low temperature refrigeration system
JPH08166172A (en) Refrigerating equipment
JP4651255B2 (en) Refrigerant composition and refrigeration circuit using the same
US20040124394A1 (en) Non-HCFC refrigerant mixture for an ultra-low temperature refrigeration system
JP2017053625A (en) Refrigerant recovery device and refrigerant recovery method
JPH04304289A (en) Refrigerant composition
JP3863831B2 (en) Refrigerant composition and refrigeration circuit using the refrigerant composition
JP6067255B2 (en) Refrigerant recovery device and refrigerant recovery method
JPH08127767A (en) Working fluid
JP3037116B2 (en) Refrigeration equipment
JPH08165465A (en) Cooling medium composition and refrigerating system
JPH08200866A (en) Air conditioner
JP2017138046A (en) Refrigeration device
JP3448377B2 (en) Refrigeration system using non-azeotropic refrigerant mixture
JPH06201204A (en) Two-stage condensation refrigerating apparatus using non-azeotropic refrigerant
JPH08303882A (en) Method of operating heat pump using new alternative refrigerant gas hfc
JP3327705B2 (en) Refrigerant composition and refrigeration apparatus using the same

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees