JP2518738B2 - Manufacturing method of fine-grained ceramic balun by continuous air flow firing furnace - Google Patents

Manufacturing method of fine-grained ceramic balun by continuous air flow firing furnace

Info

Publication number
JP2518738B2
JP2518738B2 JP2339213A JP33921390A JP2518738B2 JP 2518738 B2 JP2518738 B2 JP 2518738B2 JP 2339213 A JP2339213 A JP 2339213A JP 33921390 A JP33921390 A JP 33921390A JP 2518738 B2 JP2518738 B2 JP 2518738B2
Authority
JP
Japan
Prior art keywords
firing furnace
fine
continuous
furnace
raw material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2339213A
Other languages
Japanese (ja)
Other versions
JPH04200740A (en
Inventor
啓孜 片山
裕之 柴田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Jiryoku Senko Co Ltd
Original Assignee
Nippon Jiryoku Senko Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Jiryoku Senko Co Ltd filed Critical Nippon Jiryoku Senko Co Ltd
Priority to JP2339213A priority Critical patent/JP2518738B2/en
Publication of JPH04200740A publication Critical patent/JPH04200740A/en
Application granted granted Critical
Publication of JP2518738B2 publication Critical patent/JP2518738B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Glanulating (AREA)
  • Manufacturing Of Micro-Capsules (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、天然ガラス質鉱物及び/または人工のガラ
ス質素材を原料とする連続気流焼成炉による細粒セラミ
ックバルーンの製造方法に関する。
TECHNICAL FIELD The present invention relates to a method for producing a fine-grained ceramic balloon by a continuous airflow firing furnace using a natural glassy mineral and / or an artificial glassy material as a raw material.

〔従来の技術〕[Conventional technology]

従来の天然ガラス質鉱物及び/または人工のガラス質
素材を原料として、これを粉砕し、適当粒に造粒後焼成
発泡させて軽量発泡体を製造することについては従来か
ら行われている。そして、従来の焼成方法としてはロー
タリキルンを使用して焼成する方法が広く採用されてい
た。
It has been conventionally practiced to use a conventional natural glassy mineral and / or an artificial glassy material as a raw material, grind it, granulate it into suitable particles, and fire and foam it to produce a lightweight foam. As a conventional firing method, a method of firing using a rotary kiln has been widely adopted.

〔発明が解決しようとする課題〕[Problems to be Solved by the Invention]

しかしながら、1mm以下の細粒を上記ロータリキルン
で焼成発泡する場合には、熱効率が低く、発泡の過程で
ガラス質が軟化し、これによって相互の細粒が付着し、
粒として焼成発泡できないという問題点があるので大量
の融着防止剤を投入しており、歩留りが悪いという問題
点があった。
However, in the case of firing and foaming fine particles of 1 mm or less with the rotary kiln, the thermal efficiency is low, the vitreous material is softened in the process of foaming, and thereby mutual fine particles are attached,
Since there is a problem that the particles cannot be fired and foamed, a large amount of anti-fusion agent is added, and there is a problem that the yield is poor.

一方、気流式焼成炉は従来、下水汚泥の焼成に使用し
ていたが、焼成温度が1100〜1150℃と高く気流速度が早
いため、例えば1mm以下の細粒の焼成ができないという
問題点を有していた。
On the other hand, the air flow type firing furnace has been conventionally used for firing sewage sludge, but since the firing temperature is as high as 1100 to 1150 ° C and the air flow rate is high, there is a problem that fine particles of 1 mm or less cannot be fired. Was.

本発明はかかる事情に鑑みてなされたもので、1mm以
下の細粒であって焼成発泡が効率的に行なえる連続気流
焼成炉による細粒セラミックバルーンの製造方法を提供
することを目的とする。
The present invention has been made in view of the above circumstances, and an object of the present invention is to provide a method for producing a fine-grain ceramic balloon in a continuous airflow firing furnace which is a fine grain of 1 mm or less and which can efficiently perform firing and foaming.

〔課題を解決するための手段〕[Means for solving the problem]

上記目的に沿う請求項第1項記載の連続気流焼成炉に
よる細粒セラミックバルーンの製造方法は、微粉砕した
天然ガラス質鉱物及び/または人工のガラス質素材を焼
成炉に入れて発泡焼成させる細粒セラミックバルーンの
製造方法において、焼成炉が連続気流焼成炉であり、し
かも上記連続気流焼成炉に入れる前に予め原料を造粒し
て所定の粒度とし、しかも該造粒物を高融点微粉末によ
って予めコーテングして構成されている。
According to the first object of the present invention, a method for producing a fine-grained ceramic balloon by a continuous airflow firing furnace according to claim 1, wherein a finely pulverized natural glassy mineral and / or artificial glassy material is placed in a firing furnace and foamed and fired. In the method for producing a granular ceramic balloon, the firing furnace is a continuous airflow firing furnace, and the raw material is granulated in advance to a predetermined particle size before being put into the continuous airflow firing furnace, and the granulated product is a high melting point fine powder. It is configured by coating in advance.

また、請求項2項記載の連続気流焼成炉による細粒セ
ラミックバルーンの製造方法は、請求項第1項記載の方
法において、高融点微粉末が粒度20μm以下のカオリ及
び/またはアルミナであり、しかもその投入量は造粒物
の5〜20%であるようにして構成されている。
Further, the method for producing a fine-grained ceramic balloon by the continuous airflow firing furnace according to claim 2 is the method according to claim 1, wherein the high melting point fine powder is kaori and / or alumina having a particle size of 20 μm or less, and The input amount is 5 to 20% of the granulated product.

そして、請求項第3項記載の連続気流焼成炉による細
粒セラミックバルーンの製造方法は、請求項第1項また
は第2項記載の方法において、連続気流焼成炉が上部に
拡径した竪型気流焼成炉であり、しかも炉内の熱風上昇
速度が炉内の最大断面積部分で0.5m/sec以下であるよう
にして構成されている。
A method for producing a fine-grained ceramic balloon by a continuous airflow firing furnace according to claim 3 is the method according to claim 1 or 2, wherein the continuous airflow firing furnace has a vertical airflow with an enlarged diameter. It is a firing furnace, and is configured so that the rising velocity of hot air in the furnace is 0.5 m / sec or less in the maximum cross-sectional area portion in the furnace.

〔作用〕[Action]

請求項第1項〜第3項記載の連続気流焼成炉による細
粒セラミックバルーンの製造方法においては、微粉砕し
た原料を一旦造粒して、粒の揃った細粒とし、これに高
融点微粉末によって予めコーティングしているので、焼
成の過程においてガラス質が軟化しても、隣合う細粒の
付着を防止できる。
In the method for producing a fine-grained ceramic balloon by the continuous airflow firing furnace according to any one of claims 1 to 3, the finely pulverized raw material is once granulated to form fine grains having uniform grain size, and the high melting point fine grain Since the powder is coated in advance, even if the vitreous material is softened during the firing process, it is possible to prevent the adhering of adjacent fine particles.

そして、特に請求項第3項記載の連続気流焼成炉によ
る細粒セラミックバルーンの製造方法において、竪型気
流焼成炉の熱風上昇速度が、焼成部分で0.5m/sec以下で
あるので、0.1〜1mm程度の細粒が飛散することなく焼成
を行うことができる。
And, particularly in the method for producing a fine-grained ceramic balloon by the continuous airflow firing furnace according to claim 3, since the hot air rising speed of the vertical airflow firing furnace is 0.5 m / sec or less in the firing portion, 0.1 to 1 mm. It is possible to perform firing without scattering fine particles.

〔実施例〕〔Example〕

続いて、添付した図面を参照しつつ、本発明を具体化
した実施例につき説明し、本発明の理解に供する。
Next, embodiments of the present invention will be described with reference to the accompanying drawings to provide an understanding of the present invention.

ここに、第1図は本発明の一実施例に使用した連続気
流焼成炉の一部切欠き斜視図、第2図は同断面図であ
る。
Here, FIG. 1 is a partially cutaway perspective view of a continuous airflow firing furnace used in an embodiment of the present invention, and FIG. 2 is a sectional view thereof.

まず、本発明の一実施例方法に使用した連続気流焼成
炉について説明すると、第1図に示すように、該連続気
流焼成炉10は、下部にバーナー11〜13を備え、上部に排
気口14及び原料投入口15を備える竪型気流炉からなっ
て、中間部に傘状の周壁噴流板16、17を備えている。そ
して、該連続気流焼成炉10は上部に拡径し、上部の原料
を押し上げる風速を遅くし、排気口から原料が飛ばない
ように、上部の燃焼室での風速が0.5m/sec以下になるよ
うに、バーナー11〜13を制御している。そして、上部の
周壁噴流板16の頂部にはロッド18が設けられ、上部から
側壁との隙間を上部の調整装置(この例においてはスプ
リング)19によって調整し、噴流速度を制御できるよう
になっている。
First, the continuous airflow firing furnace used in the method of one embodiment of the present invention will be described. As shown in FIG. 1, the continuous airflow firing furnace 10 is equipped with burners 11 to 13 in the lower part and an exhaust port 14 in the upper part. And a vertical airflow furnace having a raw material charging port 15, and umbrella-shaped peripheral wall jet plates 16 and 17 in the middle. Then, the continuous airflow firing furnace 10 is expanded to the upper part to slow down the wind speed that pushes up the raw material in the upper part, so that the raw material does not fly from the exhaust port, the wind speed in the upper combustion chamber becomes 0.5 m / sec or less. So that it controls burners 11-13. Then, a rod 18 is provided on the top of the peripheral wall jet plate 16 on the upper side, and the gap between the upper side and the side wall is adjusted by an adjusting device (spring in this example) 19 on the upper side, so that the jet velocity can be controlled. There is.

従って、上部の原料投入口15から投入された原料は、
周壁噴流板16の周囲から吹上られる噴流によって加熱さ
れ、徐々に下部に落下して、下部の周壁噴流板17の周囲
から吹上られる熱風によっても加熱され、更に下部の85
0〜950℃の雰囲気に曝されて発泡し、徐々に落下して下
部の製品排出口20から排出されるようになっている。な
お、原料の粒径によって発泡時間が異なるので、排気フ
ァン21を制御することによって投入された原料の滞留時
間を30秒〜3分程度にするようにしている。
Therefore, the raw material charged from the upper raw material charging port 15 is
It is heated by the jet flow blown up from around the peripheral wall jet plate 16, gradually falls to the lower part, and is also heated by the hot air blown up from around the peripheral wall jet plate 17 at the lower part, and further 85 at the lower part.
It is exposed to an atmosphere of 0 to 950 ° C., foams, gradually drops, and is discharged from the product discharge port 20 at the bottom. Since the foaming time varies depending on the particle size of the raw material, the residence time of the charged raw material is controlled to be about 30 seconds to 3 minutes by controlling the exhaust fan 21.

続いて、原料として天然ガラス質鉱物の一例であるシ
ラスを使用した場合の実施例について以下に説明する。
まず、原料である天然ガラス質鉱物の一例であるシラス
の成分を第1表に示し、使用したシラスの粒度分布を第
2表に示す。
Next, an example in which Shirasu, which is an example of a natural glassy mineral, is used as a raw material will be described below.
First, Table 1 shows the components of Shirasu, which is an example of the raw material natural glassy mineral, and Table 2 shows the particle size distribution of the Shirasu used.

なお、第1表においてIg・lossは結晶水が主成分であ
る。
In Table 1, Ig · loss is mainly composed of crystal water.

上記シラスの原料において大粒の物を含むとその後の
処理に支障を生ずるので、篩に通し44μm以下の微粉を
原料として使用する。
If the raw material of the above-mentioned shirasu contains large particles, it will hinder the subsequent processing, so fine powder of 44 μm or less is used as a raw material through a sieve.

次に、このシラスの微粉を内部に撹拌羽根を有し底面
が可撓性素材からなる揺動型ミシサー(商品名、オムニ
ミキサー)にいれ、融点降下剤の一例である水酸化ナト
リウム水溶液を投入する。この水酸化ナトリウム水溶液
は、NaOH純分の添加量が外割りでシラス微粉の9〜111
重量%の範囲になるようにして添加する。水の量は、シ
ラス微粉に適当な湿りを与える程度とする。
Next, put this fine powder of shirasu into an oscillating type Mississor (trade name, Omnimixer) with a stirring blade inside and a flexible material on the bottom surface, and add an aqueous sodium hydroxide solution, which is an example of a melting point depressant. To do. This sodium hydroxide aqueous solution contains 9 to 111 of fine powder of Shirasu, with the amount of pure NaOH added outside
It is added in the range of weight%. The amount of water should be such that the Shirasu fine powder is appropriately moistened.

これによって、種々の粒度の細粒が造られるがこの後
造粒物を乾燥し、篩分けした場合の粒度分布は第3表の
通りであった。
As a result, fine granules having various particle sizes were produced. After that, when the granulated product was dried and sieved, the particle size distribution was as shown in Table 3.

ここで1.0mm以上の粒度の物は、そのまま発泡焼成す
ると、製品の粒径が大きくなるので、一旦クラッシャで
破砕して粒径を小さくし、再度篩分する。そして、粒径
が0.1mm以下の物は、再度原料として還元する。
If the product having a particle size of 1.0 mm or more is foamed and fired as it is, the product particle size becomes large, so the product is once crushed by a crusher to reduce the particle size and then sieved again. Then, those having a particle size of 0.1 mm or less are reduced again as a raw material.

従って、以上の工程を経て製造された破砕された細粒
を前記造粒された細粒に混合してジャイロシフターによ
って篩分ける。
Therefore, the crushed fine particles produced through the above steps are mixed with the granulated fine particles and sieved by a gyro shifter.

この後、必要な粒度の細粒を選択し、高融点微粉末の
一例であるカオリン、アルミナ等を該細粒に塗布する。
この操作は上記揺動型ミキサーによって行う。
After that, fine particles having a required particle size are selected, and kaolin, alumina, etc., which are examples of high melting point fine powder, are applied to the fine particles.
This operation is performed by the above-mentioned oscillating mixer.

なお、これらの投入量について粒径が20μm以内のカ
オリンからなる高融点微粉末を使用した場合には、上記
造粒された細粒の15〜25重量%(好ましくは20重量%)
程度、粒径が1μm以下のアルミナを使用する場合には
上記細粒の10%以内でも充分効果があることが確認され
た。
When high-melting point fine powder of kaolin having a particle size of 20 μm or less is used, 15 to 25% by weight (preferably 20% by weight) of the granulated fine particles is used.
It was confirmed that when alumina having a particle size of 1 μm or less is used, even if it is within 10% of the above fine particles, it is sufficiently effective.

次に、第2図に示すようにこれらの細粒を上記原料投
入口15から徐々に投入して、連続気流焼成炉10内に導き
発泡させるが、炉内の温度は下部のバーナー11、12、13
の燃焼量及び排気ファン21を調整して、常時850〜950℃
の温度を焼成帯22が保つように調整されている。これに
よって細粒内部のガラス質が軟化すると共に、シラス細
粒が発泡して直径が20%程度増加し、細粒のセラミック
バルーンが製造される。
Next, as shown in FIG. 2, these fine particles are gradually charged from the raw material charging port 15 and guided into the continuous air flow firing furnace 10 to be foamed, but the temperature inside the furnace is lower burners 11 and 12. ,13
850-950 ℃ at all times by adjusting the combustion amount and exhaust fan 21
Is adjusted so that the temperature of the firing zone 22 is maintained. As a result, the vitreous material inside the fine particles is softened, and the fine particles of Shirasu are foamed to increase the diameter by about 20%, whereby fine-grained ceramic balloons are manufactured.

なお、このようにして製造されたセラミックバルーン
の性状を第4表に示す。
The properties of the ceramic balloon thus manufactured are shown in Table 4.

ここで、上記吸水率はJISA1109細骨材の吸水率試験方
法によって行い、強度は木屋式硬度計を使用して20点の
平均の圧潰強度をいう。
Here, the water absorption rate is measured by the water absorption rate test method of JIS A1109 fine aggregate, and the strength means an average crushing strength of 20 points using a Kiya type hardness meter.

上記実施例においては、天然ガラス質鉱物としてシラ
ス使用したが、抗火石、真珠岩、火山質流紋岩等であっ
ても本発明は適用される。
In the above examples, Shirasu was used as the natural glassy mineral, but the present invention is also applicable to anti-firestone, pearlite, volcanic rhyolite and the like.

次に、0.44μm以下に粉砕された人工のガラス質素材
を原料とし、これに水酸化ナトリウム水溶液を水酸化ナ
トリウム純分が外割りで上記原料の約11%程度、炭酸カ
ルシウムを外割りで上記原料の約3%程度混入して、充
分に撹拌し上記揺動型ミキサーを使用して上記実施例と
同様な処理を行ってセラミックバルーンを製造した。そ
の性状を第5表に示す。
Next, artificial glassy material crushed to 0.44 μm or less is used as a raw material, and about 11% of the above raw material is sodium hydroxide aqueous solution with sodium hydroxide pure content, and calcium carbonate is About 3% of the raw material was mixed, sufficiently stirred, and the same treatment as in the above example was carried out using the above oscillating mixer to produce a ceramic balloon. The properties are shown in Table 5.

〔発明の効果〕 本発明に係る連続気流焼成炉による細粒セラミックバ
ルーンの製造方法においては、以上の説明からも明らか
なように、原料を造粒して製造し、乾燥した造粒に高融
点微粉末を塗布し、しかる後に焼成しているので、従来
連続焼成が困難であった1mm以下の天然ガラス質鉱物あ
るいは人工ガラス質素材を原料とする細粒であっても、
支障なく連続的に焼成発泡ができることになった。
[Effect of the Invention] In the method for producing a fine-grain ceramic balloon by the continuous airflow firing furnace according to the present invention, as is clear from the above description, the raw material is granulated and produced, and the dried granulation has a high melting point. Since fine powder is applied and fired after that, even fine particles made of natural glassy mineral or artificial glassy material of 1 mm or less, which was difficult to burn continuously in the past,
It became possible to continuously perform firing and foaming without any trouble.

【図面の簡単な説明】[Brief description of drawings]

第1図は本発明の一実施例に使用した連続気流焼成炉の
一部切欠き斜視図、第2図は同断面図である。 〔符号の説明〕 10……連続気流焼成炉、11〜13……バーナー、14……排
気口、15……原料投入口、16、17……周壁噴流板、18…
…ロッド、19……調整装置、20……製品排出口、21……
排気ファン、22……焼成帯
FIG. 1 is a partially cutaway perspective view of a continuous airflow firing furnace used in one embodiment of the present invention, and FIG. 2 is a sectional view of the same. [Explanation of Codes] 10 …… Continuous air flow firing furnace, 11 to 13 …… Burner, 14 …… Exhaust port, 15 …… Raw material input port, 16,17 …… Peripheral wall jet plate, 18…
… Rod, 19 …… Adjustment device, 20 …… Product outlet, 21 ……
Exhaust fan, 22 ... Baking zone

Claims (3)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】微粉砕した天然ガラス質鉱物及び/または
人工のガラス質素材を焼成炉に入れて発泡焼成させる細
粒セラミックバルーンの製造方法において、焼成炉が連
続気流焼成炉であり、しかも上記連続気流焼成炉に入れ
る前に予め原料を造粒して所定の粒度とし、しかも該造
粒物を高融点微粉末によって予めコーテングしたことを
特徴とする連続気流焼成炉による細粒セラミックバルー
ンの製造方法。
1. A method for producing a fine-grained ceramic balloon in which finely pulverized natural glassy mineral and / or artificial glassy material is placed in a firing furnace and foamed and fired, wherein the firing furnace is a continuous airflow firing furnace, and Manufacture of fine-grained ceramic balloons in a continuous-flow firing furnace, characterized in that the raw material is granulated in advance to a predetermined particle size before being put into the continuous-flow firing furnace, and the granulated material is previously coated with high melting point fine powder. Method.
【請求項2】高融点微粉末が粒度20μm以下のカオリン
及び/またはアルミナであり、しかもその投入量は造粒
物の5〜20%である請求項第1項記載の連続気流焼成炉
によるセラミックバルーンの製造方法。
2. The ceramic according to claim 1, wherein the high melting point fine powder is kaolin and / or alumina having a particle size of 20 μm or less, and the amount thereof is 5 to 20% of the granulated product. Method of manufacturing balloon.
【請求項3】連続気流焼成炉が上部に拡径した竪型気流
焼成炉であり、しかも炉内の熱風上昇速度が炉内の最大
断面積部分で0.5m/sec以下である請求項第1項または第
2項記載の連続気流焼成炉による細粒セラミックバルー
ンの製造方法。
3. The vertical airflow firing furnace in which the continuous airflow firing furnace is expanded in diameter at the upper portion, and the hot air rising speed in the furnace is 0.5 m / sec or less in the maximum cross-sectional area portion in the furnace. Item 2. A method for producing a fine-grained ceramic balloon by the continuous airflow firing furnace according to Item 2 or Item 2.
JP2339213A 1990-11-30 1990-11-30 Manufacturing method of fine-grained ceramic balun by continuous air flow firing furnace Expired - Lifetime JP2518738B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2339213A JP2518738B2 (en) 1990-11-30 1990-11-30 Manufacturing method of fine-grained ceramic balun by continuous air flow firing furnace

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2339213A JP2518738B2 (en) 1990-11-30 1990-11-30 Manufacturing method of fine-grained ceramic balun by continuous air flow firing furnace

Publications (2)

Publication Number Publication Date
JPH04200740A JPH04200740A (en) 1992-07-21
JP2518738B2 true JP2518738B2 (en) 1996-07-31

Family

ID=18325319

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2339213A Expired - Lifetime JP2518738B2 (en) 1990-11-30 1990-11-30 Manufacturing method of fine-grained ceramic balun by continuous air flow firing furnace

Country Status (1)

Country Link
JP (1) JP2518738B2 (en)

Also Published As

Publication number Publication date
JPH04200740A (en) 1992-07-21

Similar Documents

Publication Publication Date Title
US2948948A (en) Fly ash reclamation by pelletizing
US4772330A (en) Process for producing low water-absorption artificial lightweight aggregate
JP2011235284A (en) Method for producing low density product
JPS6086062A (en) Manufacture and apparatus for expandable mineral material
JP2008019149A (en) Low water-absorbing perlite and method for producing the same
JP2001240439A (en) Method for producing artificial light weight ceramic particle using fluidizing bed system
JP2518738B2 (en) Manufacturing method of fine-grained ceramic balun by continuous air flow firing furnace
US2531975A (en) Method and apparatus for expanding minerals
CA2071519A1 (en) Process for making building products, production line, process for firing, apparatus for firing, batch, building product
JPH0234884B2 (en)
WO2019002561A1 (en) Preparation of sintered granulate for the manufacturing of a foamed glass pellets
EP0088181B1 (en) Manufacture of highly porous refractory material
JP2518737B2 (en) Fine-grained ceramic balloon manufacturing method
JPS6217013A (en) Production of gamma-type dicalcium silicate powder
JPS59182223A (en) Hollow silica sphere and its preparation
JP6912696B2 (en) Hydraulic lime and its manufacturing method
JPS5913660A (en) Manufacture of artificial lightweight aggregate
JP2001278646A (en) Method of producing baked and foamed fine particles
US3488043A (en) Apparatus for manufacturing high strength,lightweight aggregates for lightweight concrete and the like
JP2004067400A (en) Process for manufacturing foam glass
JP2010064933A (en) Method of producing high strength glassy hollow sphere
JPH1029842A (en) Method for preheating lightweight aggregate raw material and device therefor
RU2611093C1 (en) Method to produce foamed granules
CA2034334C (en) Cement shaft suspension furnace and process
JP3892545B2 (en) Lightweight aggregate manufacturing method