JP2518454B2 - Band compression transmission method - Google Patents

Band compression transmission method

Info

Publication number
JP2518454B2
JP2518454B2 JP13775890A JP13775890A JP2518454B2 JP 2518454 B2 JP2518454 B2 JP 2518454B2 JP 13775890 A JP13775890 A JP 13775890A JP 13775890 A JP13775890 A JP 13775890A JP 2518454 B2 JP2518454 B2 JP 2518454B2
Authority
JP
Japan
Prior art keywords
polynomial
signal
transmission
generator
order
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP13775890A
Other languages
Japanese (ja)
Other versions
JPH0435325A (en
Inventor
則義 曽根高
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
Nippon Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Electric Co Ltd filed Critical Nippon Electric Co Ltd
Priority to JP13775890A priority Critical patent/JP2518454B2/en
Publication of JPH0435325A publication Critical patent/JPH0435325A/en
Application granted granted Critical
Publication of JP2518454B2 publication Critical patent/JP2518454B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は帯域圧縮伝送方式に係り、特に任意のディジ
タル信号の伝送において送信信号のビットを割り引いて
伝送する帯域圧縮伝送方式に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a band compression transmission system, and more particularly to a band compression transmission system in which a bit of a transmission signal is discounted and transmitted in transmission of an arbitrary digital signal.

(従来の技術) 周知のように、画像信号の伝送では、信号帯域幅が広
いので、伝送コストの低減を図るために伝送すべき情報
を削減し伝送帯域幅を実効的に減らす方法である帯域圧
縮技術が採用されている。この場合の帯域圧縮は、例え
ばテレビ信号で言えば、同じフレームの中や隣り合うフ
レーム間で互いに近い位置にある画素は極めて似通って
いるという画像信号の統計的性質を利用した信号処理に
よって、画像に歪を生じさせず伝送する情報を削減す
る、あるいは、画像信号の視覚特性を利用して画像に歪
を生じてもそれが視覚的に妨害とならないような情報を
削減する、等によって行われる。
(Prior Art) As is well known, since a signal bandwidth is wide in image signal transmission, it is a method of effectively reducing the transmission bandwidth by reducing the information to be transmitted in order to reduce the transmission cost. The compression technology is adopted. Bandwidth compression in this case is, for example, in the case of a television signal, image processing is performed by signal processing using the statistical property of the image signal that pixels that are close to each other in the same frame or between adjacent frames are very similar. To reduce the amount of information to be transmitted without causing distortion, or to reduce the amount of information that uses the visual characteristics of the image signal so that it does not visually interfere even if distortion occurs in the image. .

(発明が解決しようとする課題) 上述したように、従来の帯域圧縮伝送方式は、簡単に
言えば、前回送信した信号との比較からそのビットを削
除する方式であるから、例えばテレビ画面において同一
背景内で一部が変化する場合には効果的にあるが、全く
異なる場面の場合には削除できず1画面データの全てを
伝送する必要があるという問題がある。
(Problems to be Solved by the Invention) As described above, the conventional band compression transmission method is simply a method of deleting the bit from the comparison with the signal transmitted last time. This is effective when a part of the background changes, but in the case of a completely different scene, there is a problem in that it cannot be deleted and it is necessary to transmit all of one screen data.

また、伝送帯域幅の削減は、画像信号の伝送だけでな
く、コンピュータ間のデータ信号の伝送においても要請
されているが、データ信号は相関性の乏しい信号である
から、従来の帯域圧縮技術は適用できないという問題が
ある。
Further, the reduction of the transmission bandwidth is required not only in the transmission of the image signal but also in the transmission of the data signal between computers. However, since the data signal has a poor correlation, the conventional band compression technique is There is a problem that it cannot be applied.

本発明は、このような問題に鑑みなされたもので、そ
の目的は、任意のディジタル信号の伝送において情報を
損なわずに送信信号のビット割り引きをなし得る新規構
成の帯域圧縮伝送方式を提供することにある。
The present invention has been made in view of the above problems, and an object thereof is to provide a band compression transmission system having a novel configuration capable of performing bit discounting of a transmission signal without losing information in transmission of an arbitrary digital signal. It is in.

(課題を解決するための手段) 前記目的を達成するために、本発明の帯域圧縮伝送方
式は次の如き構成を有する。
(Means for Solving the Problem) In order to achieve the above object, the band compression transmission system of the present invention has the following configuration.

即ち、本発明の帯域圧縮伝送方式は、送信側が、任意
のディジタル信号からなる情報信号を示すK−1次の多
項式M(x)と任意のm次の生成多項式G(x)との大
小関係を比較する手段と;比較結果M(x)≧G(x)
のとき多項式M(x)を生成多項式G(x)で除算し、
K−m−1次の両多項式Q(x)とm−1次の剰余多項
式R(x)を求める手段と;商多項式Q(x)と生成多
項式G(x)の大小関係を比較する手段と;比較結果Q
(x)≧G(x)のとき商多項式を生成多項式G(x)
で除算する操作をその被除算多項式Q(x)(i)(i回
除算したときの商多項式で、i=1,2,……)が生成多項
式G(x)よりも小さくなるまで繰り返し行い、商多項
式Q(x)(i)と剰余多項式 と全ての除算回数n(n=0,1,2,……)と示す除算回数
情報ビットL0とを形成する手段と;伝送路へ送出する送
信信号である多項式I(x)を、M(x)<G(x)の
ときは I(x)=M(x)+L0 ……(4) として、Q(x)<G(x)のときは I(x)=Q(x)+R(x)+L0 ……(5) として、またQ(x)≧G(x)のときは としてそれぞれ形成する手段と;を備え、受信側が、伝
送路から取り込んだ受信信号である多項式I′(x)に
おける除算回数情報ビットL0′の内容を検定しその多項
式I′(x)が前記式(4)乃至同(6)のいずれであ
るかを判断する手段と;前記式(5)である場合には多
項式I′(x)、即ち、 I′(x)=Q′(x)+R′(x) と任意のm次の生成多項式G(x)とを用いて M′(x)=G(x)Q′(x)+R′(x) なる1回の乗算操作をし、前記式(3)である場合には
多項式I′(x)、即ち、 と任意のm次の生成多項式G(x)を用いて なる乗算操作を除算回数情報ビットL0が示す除算回数と
同回数行い、情報信号であるK−1次の多項式M′
(x)を形成する手段と;を備えたことを特徴とするも
のである。
That is, in the band compression transmission system of the present invention, on the transmission side, the magnitude relationship between the K−1 order polynomial M (x) indicating an information signal composed of an arbitrary digital signal and the arbitrary m order generator polynomial G (x). And a comparison result M (x) ≧ G (x)
Then the polynomial M (x) is divided by the generator polynomial G (x),
K-m-1 degree polynomial Q (x) and m-1 degree remainder polynomial R (x); means for comparing quotient polynomial Q (x) and generator polynomial G (x) And; Comparison result Q
Generate a quotient polynomial when (x) ≧ G (x) Polynomial G (x)
The operation of dividing by is repeated until the divided polynomial Q (x) (i) (i is a quotient polynomial when divided i times, i = 1, 2, ...) Is smaller than the generator polynomial G (x). , Quotient polynomial Q (x) (i) and remainder polynomial And means for forming a division number information bit L 0 indicating all division numbers n (n = 0, 1, 2, ...); a polynomial I (x) which is a transmission signal to be transmitted to a transmission line, When (x) <G (x) I (x) = M (x) + L 0 (4) When Q (x) <G (x) I (x) = Q (x) + R (x) + L 0 (5) and when Q (x) ≧ G (x) And a means for forming each of them as follows, the receiving side verifies the content of the division number information bit L 0 ′ in the polynomial I ′ (x) which is the received signal fetched from the transmission line, and the polynomial I ′ (x) is A means for judging which one of the expressions (4) to (6); a polynomial I ′ (x), that is, I ′ (x) = Q ′ (x) in the case of the expression (5). + R '(x) and an arbitrary m-th order generator polynomial G (x) are used to perform one multiplication operation M' (x) = G (x) Q '(x) + R' (x), In the case of the above equation (3), the polynomial I ′ (x), that is, And using an arbitrary m-th order generator polynomial G (x) The same multiplication operation as the number of divisions indicated by the division number information bit L 0 is performed, and a K−1 order polynomial M ′ that is an information signal is obtained.
And a means for forming (x).

(作 用) 次に、前記の如く構成される本発明の帯域圧縮伝送方
式の作用を説明する。
(Operation) Next, the operation of the band compression transmission system of the present invention configured as described above will be described.

本発明の帯域圧縮伝送方式は、所謂巡回符号の生成過
程類似の過程を経て実現される。即ち、送信側では、任
意のディジタル信号からなる情報信号を示すK−1次の
多項式 M(x)=i0+i1・X+i2・X2+……+iK-1・XK-1……
(7) と、任意のm次の生成多項式 G(x)=g0+g1・X+g2・X2+……+gm・Xm ……
(8) との大小関係を比較し、M(x)≧G(x)ならば、 M(x)/G(x)=Q(x)+R(x) ……(9) なる除算をする。ここに、 Q(x)=q0+q1・X+q2・X2+……+qK-m-1・XK-m-1
……(10) R(x)=r0+r1・X+r2・X2+……+rm-1・Xm-1……
(11) である。
The band compression transmission system of the present invention is realized through a process similar to the so-called cyclic code generation process. That is, the transmitting side indicates an information signal consisting of an arbitrary digital signal K-1 degree polynomial M (x) = i 0 + i 1 · X + i 2 · X 2 + ...... + i K-1 · X K-1 ... …
(7) and an arbitrary m-th order generator polynomial G (x) = g 0 + g 1 · X + g 2 · X 2 + …… + g m · X m ……
Compare the magnitude relation with (8), and if M (x) ≧ G (x), divide by M (x) / G (x) = Q (x) + R (x) (9) . Here, Q (x) = q 0 + q 1 · X + q 2 · X 2 + ...... + q Km-1 · X Km-1
…… (10) R (x) = r 0 + r 1 · X + r 2 · X 2 + …… + r m-1 · X m-1 ……
(11)

そして、再びQ(x)とG(x)の大小関係を比較
し、Q(x)≧G(x)ならば、 なる除算操作をQ(x)(i)<G(x)となるまで繰り
返し行い、商多項式Q(x)(i)と剰余多項式 と除算回数情報ビットL0を形成する。ここに、除算回数
情報ビットL0は、式(9)の除算を含む全ての除算回数
をn(n=0,1,2,……)とすると、 L0≒log2(n+1) ……(13) で示される。
Then, the magnitude relationship between Q (x) and G (x) is compared again, and if Q (x) ≧ G (x), The division operation is repeated until Q (x) (i) <G (x), and the quotient polynomial Q (x) (i) and the remainder polynomial are obtained. And the division number information bit L 0 is formed. Here, the division number information bit L 0 is L 0 ≈log 2 (n + 1) ......, where n (n = 0,1,2, ...) is the number of all divisions including the division of the equation (9). It is indicated by (13).

その結果伝送路へ送出される送信信号である多項式I
(x)は、n=0であるM(x)<G(x)のときは、 I(x)=M(x)+L0 ……(14) となり、何等変化しないが、n=1であるQ(x)<G
(x)のときは、 I(x)=Q(x)+R(x)+L0 ……(15) となる。I(x)はK−2次の多項式であり、K−1次
の情報信号が1ビット割り引かれて伝送されるのであ
る。さらに、Q(x)≧G(x)のときは、 となり、n≧2の場合であるから、K−1次の情報信号
がnビット割り引かれて伝送される。実際には除算回数
情報ビットL0があるので、情報信号M(x)のビット数
にL0を加えたものからnビット引いたビット数が伝送信
号I(x)のビット数ということになる。
As a result, the polynomial I which is the transmission signal sent to the transmission line
(X) is M (x) <G (x) where n = 0, then I (x) = M (x) + L 0 (14), which does not change at all, but n = 1 Some Q (x) <G
In case of (x), I (x) = Q (x) + R (x) + L 0 (15) I (x) is a K-2 order polynomial, and the K-1 order information signal is transmitted with one bit discounted. Furthermore, when Q (x) ≧ G (x), Since n ≧ 2, the K−1 order information signal is discounted by n bits and transmitted. Actually, since there is the division number information bit L 0, the number of bits obtained by subtracting n bits from the number of bits of the information signal M (x) plus L 0 is the number of bits of the transmission signal I (x). .

受信側では、伝送路から取り込んだ受信信号を示す多
項式I′(x)における除算回数情報ビットL0′の内容
がn=0またはn≧1のいずれであるかを判断し、n=
1のときは、 I′(x)=Q′(x)+R′(x) ……(17) であるから、これと任意のm次の生成多項式G(x)を
用いて、 M′(x)=G(x)Q′(x)+R′(x) ……(1
8) なる1回の乗算操作をし、情報信号であるK−1次の多
項式M′(x)を得る。また、n≧2のときは、 であるから、これと任意のm次の生成多項式G(x)を
用いて、 なるn回の乗算操作をし、情報信号であるK−1次の多
項式M′(x)を得る。
On the receiving side, it is determined whether the content of the division number information bit L 0 ′ in the polynomial I ′ (x) indicating the received signal fetched from the transmission path is n = 0 or n ≧ 1, and n =
When it is 1, I '(x) = Q' (x) + R '(x) (17), so using this and an arbitrary m-th order generator polynomial G (x), M' ( x) = G (x) Q '(x) + R' (x) (1
8) The following multiplication operation is performed to obtain a K-1 order polynomial M '(x) which is an information signal. When n ≧ 2, Therefore, using this and an arbitrary mth-order generator polynomial G (x), Then, the multiplication operation is performed n times to obtain a K−1-order polynomial M ′ (x) that is an information signal.

以上説明したように、本発明の帯域圧縮伝送方式によ
れば、送信情報信号たるK−1次の多項式M(x)と任
意のm次の生成多項式G(x)の関係において、M
(x)≧G(x)であれば1回の除算操作によってその
送信情報信号(x)はK−2次の多項式I(x)である
送信信号となり、1ビット帯域圧縮される。この効果は
除算回数に比例する。
As described above, according to the band compression transmission method of the present invention, in the relation between the K−1-order polynomial M (x) which is the transmission information signal and the arbitrary m-order generator polynomial G (x), M
If (x) ≧ G (x), the transmission information signal (x) becomes a transmission signal that is a K−2 polynomial I (x) by one division operation, and 1-bit band compression is performed. This effect is proportional to the number of divisions.

(実 施 例) 以下、本発明の実施例を図面を参照して説明する。(Examples) Examples of the present invention will be described below with reference to the drawings.

第1図は本発明の一実施例に係る帯域圧縮伝送方式の
構成を示す。第1図(a)において、送信側では、生成
多項式比較回路T1は、まず、送信すべき情報信号S1・1
と生成多項式レジスタT3の出力S1・2との大小関係を比
較する。情報信号S1・1は任意のディジタル信号からな
り、前記式(7)に示すように、K−1次の多項式M
(x)で表される。また、生成多項式レジスタT3の出力
S1・2は、前記式(8)に示すように、任意のm次の生
成多項式G(x)である。除算回数積算回路T4には、除
算回数カウンタを設けてあり、生成多項式比較回路T1が
M(x)とG(x)の大小関係の比較を行うときは、制
御信号C1・1にてそのカウンタをリセットし除算回数n
をn=0としておく。
FIG. 1 shows the configuration of a band compression transmission system according to an embodiment of the present invention. In FIG. 1 (a), on the transmitting side, the generator polynomial comparing circuit T1 first transmits an information signal S1.1
Is compared with the output S1 · 2 of the generator polynomial register T3. The information signal S1.1 is composed of an arbitrary digital signal, and as shown in the equation (7), a K−1 polynomial M
It is represented by (x). Also, the output of the generator polynomial register T3
S1 · 2 is an arbitrary m-th order generator polynomial G (x) as shown in the equation (8). The division number integration circuit T4 is provided with a division number counter, and when the generator polynomial comparison circuit T1 compares the magnitude relation between M (x) and G (x), the counter is controlled by the control signal C1.1. Reset the number of divisions n
Is set to n = 0.

比較結果、M(x)<G(x)であれば、情報信号
(M(x))S1・1のそのまま送信信号S1・4′として
送信信号多項式生成回路T6へ送出し、また除算回数積算
回路T4へ制御信号C1・1を出力する。除算回数積算回路
T4は、カウンタリセット後に入力される制御信号C1・1
に応答して除算回数情報ビットL0(前記式(13))を形
成し、それを除算回数信号S1・6として送信信号多項式
生成回路T6へ出力する。上記の場合、L0の内容はn=0
である。送信信号多項式生成回路T6では、前記式(14)
で示される多項式I(x)からなる送信信号S1・7を形
成し出力することになる。
If the comparison result shows that M (x) <G (x), the information signal (M (x)) S1.1 is sent as it is to the transmission signal polynomial generating circuit T6 as the transmission signal S1.4 ', and the number of divisions is integrated. It outputs the control signal C1.1 to the circuit T4. Division frequency integration circuit
T4 is the control signal C1 · 1 input after the counter is reset.
In response to this, the division number information bit L 0 (formula (13) above) is formed, and it is output to the transmission signal polynomial generating circuit T6 as the division number signal S1.6. In the above case, the content of L 0 is n = 0
Is. In the transmission signal polynomial generation circuit T6, the above equation (14)
The transmission signal S1 · 7 composed of the polynomial I (x) represented by is formed and output.

一方、比較結果がM(x)≧G(x)であれば、情報
信号(M(x))S1・1を除算回路T2へ被除算信号S1・
1′として送出する。すると、除算回路T2では、前記式
(9)で示すように、被除算信号(M(x))S1・1′
を生成多項式レジスタT3の出力(G(x))S1・2にて
除算し、商多項式(Q(x))S1・4を除算回数積算回
路T4へ送出し、剰余多項式(R(x))S1・3を剰余多
項式加算回路T5へ送出する。除算回数積算回路T4では、
除算回数カウンタを1つ歩進してn=1とするととも
に、その入力された商多項式(Q(x))S1・4をその
まま生成多項式比較回路T1へ送出する。
On the other hand, if the comparison result is M (x) ≧ G (x), the information signal (M (x)) S1.1 is sent to the division circuit T2 and the divided signal S1.
It is sent as 1 '. Then, in the division circuit T2, the divided signal (M (x)) S1'1 'is obtained as shown in the equation (9).
Is divided by the output (G (x)) S1 · 2 of the generator polynomial register T3, and the quotient polynomial (Q (x)) S1 · 4 is sent to the division number integration circuit T4 to generate the remainder polynomial (R (x)). Send S1 · 3 to the remainder polynomial addition circuit T5. In the division number integration circuit T4,
The division counter is incremented by 1 to n = 1, and the inputted quotient polynomial (Q (x)) S1 · 4 is sent to the generator polynomial comparison circuit T1 as it is.

そこで、生成多項式比較回路T1では、次に、商多項式
Q(x)と生成多項式G(x)との大小関係を比較し、
Q(x)<G(x)ならば、その商多項式Q(x)を送
信信号S1・4′として送信信号多項式生成回路T6へ出力
するとともに、制御信号C1・1を除算回数積算回路T4へ
出力する。除算回数積算回路T4はn=1を内容とする除
算回数情報ビットL0である除算回数信号S1・6を送信信
号多項式生成回路T6へ出力する。送信信号多項式生成回
路T6は、剰余多項式加算回路T5から剰余多項式R(x)
を得、これと送信信号S1・4′と除算回数信号S1・6と
から前記式(15)で示される多項式I(x)からなる送
信信号S1・7を形成し出力する。
Therefore, in the generator polynomial comparison circuit T1, next, the magnitude relationship between the quotient polynomial Q (x) and the generator polynomial G (x) is compared,
If Q (x) <G (x), the quotient polynomial Q (x) is output to the transmission signal polynomial generation circuit T6 as the transmission signal S1 / 4 ', and the control signal C1.1 is output to the division number integration circuit T4. Output. The division number integration circuit T4 outputs the division number signal S1 · 6 which is the division number information bit L 0 having n = 1 to the transmission signal polynomial generation circuit T6. The transmission signal polynomial generation circuit T6 uses the remainder polynomial addition circuit T5 to generate the remainder polynomial R (x).
From this, the transmission signal S1.4 'and the division number signal S1.6 are formed and output as a transmission signal S1.7 composed of the polynomial I (x) expressed by the equation (15).

他方、生成多項式比較回路T1では、比較結果Q≧G
(x)ならば、その商多項式Q(x)を被除算信号S1・
1′として除算回路T2へ与える。その結果、商多項式Q
(x)(1)が除算回数積算回路T4を介して生成多項式比
較回路T1へ与えられるとともに、カウンタが歩進されて
n=2となり、また剰余多項式R(x)(1)が剰余多項
式加算回路T5にて前回の剰余多項式R(x)に加算され
る。そして、生成多項式比較回路T1では、商多項式Q
(x)(1)と生成多項式G(x)の大小関係を比較す
る。比較結果Q(x)(1)≧G(x)ならばさらに除算
操作が行われる。以上のことが商多項式(Q
(x)(i))S1・4が生成多項式(G(x))S1・2よ
りも小さくなるまで繰り返し行われる(前記式(1
2))。そして、生成多項式比較回路T1では、Q(x)
(i)<G(x)を検出すると、その商多項式Q(x)(i)
を送信信号S1・4′として送信信号多項式生成回路T6へ
送出するとともに、制御信号C1・1を除算回数積算回路
T4へ出力する。除算回数積算回路T4はカウンタの内容n
を示す除算回数情報ビットL0を形成し、それを除算回数
信号S1・6として送信信号多項式生成回路T6へ送出す
る。送信信号多項式生成回路T6では、剰余多項式加算回
路T5から剰余多項式 を得、これと送信信号S1・4′と除算回数信号S1・6と
から前記式(16)で示される多項式I(x)からなる送
信信号S1・7を形成し出力する。
On the other hand, in the generator polynomial comparison circuit T1, the comparison result Q ≧ G
If (x), then the quotient polynomial Q (x) is divided by the signal S1.
It is given to the division circuit T2 as 1 '. As a result, the quotient polynomial Q
(X) (1) is given to the generator polynomial comparison circuit T1 via the division number integration circuit T4, the counter is incremented to n = 2, and the remainder polynomial R (x) (1) is added to the remainder polynomial addition. The circuit T5 adds it to the previous remainder polynomial R (x). Then, in the generator polynomial comparison circuit T1, the quotient polynomial Q
(X) The magnitude relation between (1) and the generator polynomial G (x) is compared. If the comparison result Q (x) (1) ≧ G (x), a division operation is further performed. The above is the quotient polynomial (Q
(X) (i) ) S1 · 4 is repeated until the generator polynomial (G (x)) S1 · 2 becomes smaller (the above equation (1
2)). Then, in the generator polynomial comparison circuit T1, Q (x)
(i) <G (x) is detected, its quotient polynomial Q (x) (i)
Is sent to the transmission signal polynomial generation circuit T6 as the transmission signal S1 / 4 ', and the control signal C1.1 is divided by the number-of-divisions integration circuit.
Output to T4. The division number integration circuit T4 has a counter content n
A division number information bit L 0 is formed and is sent to the transmission signal polynomial generating circuit T6 as the division number signal S1 · 6. In the transmission signal polynomial generation circuit T6, the remainder polynomial from the remainder polynomial addition circuit T5 From this, the transmission signal S1.4 'and the division number signal S1.6 are formed and output as a transmission signal S1.7 composed of the polynomial I (x) represented by the above equation (16).

以上のように、M(x)<G(x)であれば何等帯域
圧縮は行われないが、1回の除算操作でK−1次の送信
情報が1ビット割り引かれたK−2次の送信情報として
伝送路へ送出されので、M(x)≧G(x)であれば、
確実に1ビット以上の割り引きが行われ、伝送路へ送出
される信号のビット数はM(x)のビット数に除算回数
情報ビットL0を加えたものから除算回数nのビット数を
引いたビット数ということになる。なお、以上の圧縮操
作は情報を損なわずに行われることは言うまでもない。
As described above, if M (x) <G (x), no band compression is performed, but K-1 order transmission information obtained by discounting 1 bit of K-1 order transmission information by one division operation is used. Since it is sent to the transmission path as transmission information, if M (x) ≧ G (x),
Ensure that one or more bits of the discount performed, and the number of bits of the signal transmitted to the transmission path by subtracting the number of bits of the division number n from plus division number information bits L 0 to the number of bits in M (x) It means the number of bits. Needless to say, the above compression operation is performed without losing information.

次に、第1図(b)において、受信側では、伝送路か
ら取り込んだ受信信号S2・1は除算回数積算値比較回路
R1と剰余値加算回路R4とに入力する。
Next, in FIG. 1 (b), on the receiving side, the received signal S2.1 taken in from the transmission line is the division number integrated value comparison circuit.
It is input to R1 and the remainder value adding circuit R4.

除算回数積算値比較回路R1では、受信信号S2・1を示
す多項式I′(x)における除算回数情報ビットL0′の
内容がn=0であるか、または、n≧1であるかを判断
し、n=0であればI′(x)=M′(x)であるか
ら、それを受信信号S2・4′として外部へ送出する。ま
た、n≧1であれば、そのnの値をセットするととも
に、多項式I′(x)中の商多項式を被乗算信号S2・
1′として乗算回路R3へ送出する。ここに、多項式I′
(x)中の商多項式は、n=1のときはQ′(x)、n
≧2のときはQ′(X)(i)である。
The division number integrated value comparison circuit R1 determines whether the content of the division number information bit L 0 ′ in the polynomial I ′ (x) indicating the received signal S2.1 is n = 0 or n ≧ 1. However, if n = 0, then I '(x) = M' (x), so that it is sent to the outside as a reception signal S2.4. If n ≧ 1, the value of n is set and the quotient polynomial in the polynomial I ′ (x) is multiplied by the signal S2 ·
It is sent to the multiplication circuit R3 as 1 '. Where polynomial I '
The quotient polynomial in (x) is Q ′ (x), n when n = 1.
When ≧ 2, Q ′ (X) (i) .

乗算回路R3では、被乗算信号S2・1′と生成多項式レ
ジスタR2の出力S2・2たる生成多項式G(x)との乗算
操作をし、その結果である出力S2・3を剰余値加算回路
R4へ送出する。出力S2・3は、G(x)・Q′(x)ま
たはG(x)・Q′(x)(i)のいずれかである。
The multiplication circuit R3 multiplies the multiplied signal S2.1 'by the generator polynomial G (x), which is the output S2.2 of the generator polynomial register R2, and outputs the resulting output S2.3 as a remainder value addition circuit.
Send to R4. The output S2.3 is either G (x) .Q '(x) or G (x) .Q' (x) (i) .

剰余値加算回路R4では、受信信号S2・1たる多項式
I′(x)中の剰余多項式と出力S2・3とを加算し、そ
の結果である出力S2・4を除算回数積算値比較回路R1へ
送出する。除算回数nがn=1であるか、n≧2である
かは除算回数積算値比較回路R1から剰余値加算回路R4へ
通知されるようになっている。多項式I′(x)中の剰
余多項式はn=1のときはR′(x)、n≧2のときは である。従って、剰余値加算回路R4では、n=1のとき
は出力S2・3にR′(x)を加算してG(x)・Q′
(x)+R′(x)を形成する。これは除算回数積算値
比較回路R1から受信信号S2・4′として外部へ出力され
る(前記式(18))。
In the remainder value adding circuit R4, the remainder polynomial in the received signal S2.1 · polynomial I ′ (x) and the outputs S2.3 are added, and the resulting output S2.4 is added to the division number integrated value comparison circuit R1. Send out. Whether the division number n is n = 1 or n ≧ 2 is notified from the division number integrated value comparison circuit R1 to the remainder value addition circuit R4. The remainder polynomial in the polynomial I ′ (x) is R ′ (x) when n = 1 and when n ≧ 2. Is. Therefore, in the remainder value adding circuit R4, when n = 1, R '(x) is added to the output S2.3 to add G (x) .Q'.
(X) + R '(x) is formed. This is output from the division number integrated value comparison circuit R1 as a reception signal S2.4 'to the outside (Equation (18)).

また、n≧2のときは、剰余値加算回路R4は、剰余多
項式 中の最終剰余多項式R′(x)(i)を出力S2・3に加算
してG(x)・Q′(x)(i)+R′(x)(i)を形成す
る。これは除算回数積算値比較回路R1において商多項式
Q′(x)(i-1)とされ、乗算回路R3に入力する。乗算
結果出力S2・3はG(x)・Q′(x)(i-1)であり、
これに剰余多項式R′(x)(i-1)が加算され除算回数
積算値比較回路R1に入力し、商多項式Q′(x)(i-2)
となる。以上のことが除算回数nを満足するまで繰り返
し行われる。除算回数積算値比較回路R1ではn回の乗算
操作を確認できると、剰余値加算回路R4の出力S2・4を
受信信号S2・4′として外部へ送出する(前記式(2
0))。
When n ≧ 2, the remainder value adding circuit R4 determines that the remainder polynomial The final remainder polynomial R '(x) (i) in is added to the output S2.3 to form G (x) .Q' (x) (i) + R '(x) (i) . This is converted into a quotient polynomial Q '(x) (i-1) in the division number integrated value comparison circuit R1 and input to the multiplication circuit R3. The multiplication result output S2.3 is G (x) .Q '(x) (i-1) ,
The remainder polynomial R '(x) (i-1) is added to this and is input to the division number integrated value comparison circuit R1 to obtain the quotient polynomial Q' (x) (i-2).
Becomes The above is repeated until the number of divisions n is satisfied. When n times of multiplication operations can be confirmed in the division number integrated value comparison circuit R1, the output S2.4 of the remainder value addition circuit R4 is sent to the outside as the reception signal S2.4 '(the above equation (2
0)).

最後に、第2図は本発明方式による帯域圧縮特性を示
す。第2図において、横軸は送信すべき情報信号S1・1
のビット数、縦軸は送信信号S1・7のビット数を情報信
号S1・1のビット数で除して100倍した帯域圧縮率
(%)である。
Finally, FIG. 2 shows the band compression characteristic according to the method of the present invention. In FIG. 2, the horizontal axis represents the information signal S1.1 to be transmitted.
, And the vertical axis represents the band compression rate (%) obtained by dividing the number of bits of the transmission signal S1 · 7 by the number of bits of the information signal S1.1 and multiplying by 100.

また、図中mは生成多項式G(x)の次数である。生
成多項式G(x)の次数が大きい場合に大きな圧縮率が
得られることが示されている。
Further, m in the figure is the order of the generator polynomial G (x). It is shown that a large compression ratio is obtained when the degree of the generator polynomial G (x) is large.

(発明の効果) 以上説明したように、本発明の帯域圧縮伝送方式によ
れば、送信情報信号たるK−1次の多項式M(x)と任
意のm次の生成多項式G(x)の関係において、M
(x)≧G(x)であれば1回の除算操作によってその
送信情報信号M(x)はK−2次の多項式I(x)であ
る送信信号となり、1ビット帯域圧縮される。この効果
は除算回数nに比例し、除算回数情報ビットをL0とすれ
ば、伝送路へ送出される送信信号のビット数はM(x)
+L0−nとなり、1ビット以上の所定の帯域圧縮を行え
る効果がある。また、コンピュータ間通信におけるデー
タ信号についても帯域圧縮が可能となる効果もある。
(Effects of the Invention) As described above, according to the band compression transmission method of the present invention, the relationship between the K−1-order polynomial M (x) that is a transmission information signal and an arbitrary m-order generator polynomial G (x). At M
If (x) ≧ G (x), the transmission information signal M (x) becomes a transmission signal which is a K-2 order polynomial I (x) by one division operation, and 1-bit band compression is performed. This effect is proportional to the number of divisions n, and if the division number information bit is L 0 , the number of bits of the transmission signal sent to the transmission path is M (x).
It becomes + L 0 −n, and there is an effect that a predetermined band compression of 1 bit or more can be performed. Further, there is also an effect that band compression can be performed for a data signal in inter-computer communication.

【図面の簡単な説明】[Brief description of drawings]

第1図は本発明の一実施例に係る帯域圧縮伝送方式の構
成ブロック図、第2図は本発明方式による帯域圧縮特性
図である。 T1……生成多項式比較回路、T2……除算回路、T3……生
成多項式レジスタ、T4……除算回数積算回路、T5……剰
余多項式加算回路、T6……送信信号多項式生成回路、R1
……除算回数積算値比較回路、R2……生成多項式レジス
タ、R3……乗算回路、R4……剰余値加算回路。
FIG. 1 is a block diagram of a band compression transmission system according to an embodiment of the present invention, and FIG. 2 is a band compression characteristic diagram according to the system of the present invention. T1 ... Generator polynomial comparison circuit, T2 ... Division circuit, T3 ... Generation polynomial register, T4 ... Division frequency integration circuit, T5 ... Remainder polynomial addition circuit, T6 ... Transmission signal polynomial generation circuit, R1
...... Division count integrated value comparison circuit, R2 …… Generator polynomial register, R3 …… Multiplication circuit, R4 …… Remainder value addition circuit.

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】送信側が、任意のディジタル信号からなる
情報信号を示すK−1次の多項式(x)と任意のm次の
生成多項式G(x)との大小関係を比較する手段と;比
較結果M(x)≧G(x)のとき多項式M(x)を生成
多項式G(x)で除算し、K−m−1次の両多項式Q
(x)とm−1次の剰余多項式R(x)を求める手段
と;商多項式Q(x)と生成多項式G(x)の大小関係
を比較する手段と;比較結果Q(x)≧G(x)のとき
商多項式を生成多項式G(x)で除算する操作をその被
除算多項式Q(x)(i)(i回除算したときの商多項式
で、i=1,2,……)が生成多項式G(x)よりも小さく
なるまで繰り返し行い、商多項式Q(x)(i)と剰余多
項式 と全ての除算回数n(n=0,1,2,……)と示す除算回数
情報ビットL0とを形成する手段と;伝送路へ送出する送
信信号である多項式I(x)を、M(x)<G(x)の
ときは I(x)=M(x)+L0 ……(1) として、Q(x)<G(x)のときは I(x)=Q(x)+R(x)+L0 ……(2) として、またQ(x)≧G(x)のときは としてそれぞれ形成する手段と;を備え、受信側が、伝
送路から取り込んだ受信信号である多項式I′(x)に
おける除算回数情報ビットL0′の内容を検定しその多項
式I′(x)が前記式(1)乃至同(3)のいずれであ
るかを判断する手段と;前記式(2)である場合には多
項式I′(x)、即ち、 I′(x)=Q′(x)+R′(x) と任意のm次の生成多項式G(x)とを用いて M′(x)=G(x)Q′(x)+R′(x) なる1回の乗算操作をし、前記式(3)である場合には
多項式I′(x)、即ち、 と任意のm次の生成多項式G(x)を用いて なる乗算操作を除算回数情報ビットL0が示す除算回数と
同回数行い、情報信号であるK−1次の多項式M′
(x)を形成する手段と;を備えたことを特徴とする帯
域圧縮伝送方式。
1. A means for the transmitting side to compare the magnitude relationship between a polynomial (x) of degree K-1 indicating an information signal composed of an arbitrary digital signal and a generator polynomial G (x) of order m; When the result M (x) ≧ G (x), the polynomial M (x) is divided by the generator polynomial G (x), and both polynomials Q of K−m−1 order
(X) and means for obtaining the m-1th-order remainder polynomial R (x); means for comparing the magnitude relationship between the quotient polynomial Q (x) and the generator polynomial G (x); comparison result Q (x) ≧ G In the case of (x), the operation of dividing the quotient polynomial by the generator polynomial G (x) is the divided polynomial Q (x) (i) (quotient polynomial when i times are divided, i = 1, 2, ...) Is repeated until it becomes smaller than the generator polynomial G (x), and the quotient polynomial Q (x) (i) and the remainder polynomial And means for forming a division number information bit L 0 indicating all division numbers n (n = 0, 1, 2, ...); a polynomial I (x) which is a transmission signal to be transmitted to a transmission line, When (x) <G (x), I (x) = M (x) + L 0 (1) and when Q (x) <G (x), I (x) = Q (x) + R (x) + L 0 (2) and when Q (x) ≧ G (x) And a means for forming each of them as follows, the receiving side verifies the content of the division number information bit L 0 ′ in the polynomial I ′ (x) which is the received signal fetched from the transmission line, and the polynomial I ′ (x) is Means for determining which of equations (1) to (3); polynomial I ′ (x), that is, I ′ (x) = Q ′ (x) in the case of equation (2) + R '(x) and an arbitrary m-th order generator polynomial G (x) are used to perform one multiplication operation M' (x) = G (x) Q '(x) + R' (x), In the case of the above equation (3), the polynomial I ′ (x), that is, And using an arbitrary m-th order generator polynomial G (x) The multiplication operation is performed the same number of times as the number of divisions indicated by the division number information bit L 0 , and a K−1 th degree polynomial M ′ that is an information signal is obtained.
A means for forming (x); and a band compression transmission system.
JP13775890A 1990-05-28 1990-05-28 Band compression transmission method Expired - Lifetime JP2518454B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13775890A JP2518454B2 (en) 1990-05-28 1990-05-28 Band compression transmission method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13775890A JP2518454B2 (en) 1990-05-28 1990-05-28 Band compression transmission method

Publications (2)

Publication Number Publication Date
JPH0435325A JPH0435325A (en) 1992-02-06
JP2518454B2 true JP2518454B2 (en) 1996-07-24

Family

ID=15206150

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13775890A Expired - Lifetime JP2518454B2 (en) 1990-05-28 1990-05-28 Band compression transmission method

Country Status (1)

Country Link
JP (1) JP2518454B2 (en)

Also Published As

Publication number Publication date
JPH0435325A (en) 1992-02-06

Similar Documents

Publication Publication Date Title
GB2162018A (en) Moving picture frame rate conversion system
JPH09326958A (en) Image processing unit and processing method
US4411001A (en) Differential pulse code modulation transmission system
JPS5844883A (en) Method and device for adjusting digital color signal
JP2518454B2 (en) Band compression transmission method
JP2836508B2 (en) Electronic conference terminal
JPH0795817B2 (en) Digital television signal processor with error correction
JPH03165633A (en) Band compression transmission system
JPH0771301B2 (en) Color video signal conversion method
JPH06203148A (en) Method and device for processing image
US7095446B2 (en) Method and device for phase correction of a vertically distorted digital image
US5319458A (en) Method and circuit for generating an adaptive constant for band compression of video signals
JP3079612B2 (en) Video data processing apparatus and video data processing method
JP2550597B2 (en) Squarer
KR100219230B1 (en) Run-length encoding device and method
JPH0752953B2 (en) Motion vector evaluation method in motion compensation coding
JPS62254524A (en) Data reduction circuit equipped with video signal pulse codemodulator
JP2611040B2 (en) Video camera
SU1672488A1 (en) Corrector for video television signals
JPH0354981A (en) Amplitude evaluating apparatus
SU594599A1 (en) Tv aperture corrector
JPH05114924A (en) Method and device for data transfer
JPS59211378A (en) Thinning-out system of picture
JPS63141452A (en) Resolution correcting and processing method
JPS6055774A (en) Generator of special effect waveform