JP2517762Y2 - Centering mechanism of injection mold - Google Patents
Centering mechanism of injection moldInfo
- Publication number
- JP2517762Y2 JP2517762Y2 JP10482490U JP10482490U JP2517762Y2 JP 2517762 Y2 JP2517762 Y2 JP 2517762Y2 JP 10482490 U JP10482490 U JP 10482490U JP 10482490 U JP10482490 U JP 10482490U JP 2517762 Y2 JP2517762 Y2 JP 2517762Y2
- Authority
- JP
- Japan
- Prior art keywords
- mold
- die
- centering
- fixed
- movable
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Landscapes
- Moulds For Moulding Plastics Or The Like (AREA)
Description
【考案の詳細な説明】 〔産業上の利用分野〕 本考案は射出成形用金型の芯合わせ機構に係り、光デ
ィスク基板等の精密プラスチック製品を成形する射出成
形用金型に利用できる。DETAILED DESCRIPTION OF THE INVENTION [Industrial field of application] The present invention relates to a centering mechanism of an injection molding die, and can be used for an injection molding die for molding precision plastic products such as optical disk substrates.
従来より、プラスチック製品の製造方法としては射出
成形が多用されており、光ディスク基板等の精密プラス
チック製品の成形には専ら射出成形が利用される。ここ
で、精密な射出成形を行う場合、成形用金型を構成する
固定型と可動型とを型締めする際の中心軸線などの位置
精度等を高く維持する必要があり、各型の間に芯合わせ
機構が設置される。Conventionally, injection molding has been widely used as a method for manufacturing plastic products, and injection molding is exclusively used for molding precision plastic products such as optical disk substrates. Here, in the case of performing precision injection molding, it is necessary to maintain high positional accuracy such as the central axis when clamping the fixed mold and the movable mold that form the molding die, and between the molds. A centering mechanism is installed.
第6図において、射出成形用金型60は固定型61と可動
型62とを有し、図示の型締め状態では各型61,62の間に
所定形状のキャビティ63が形成される。そして、キャビ
ティ63内に射出用通路64を通して溶融樹脂を注入するこ
とで射出成形が行われ、可動型62を離隔させることで型
開きが行われ、キャビティ63内の成形品が取り出され
る。In FIG. 6, an injection molding die 60 has a fixed die 61 and a movable die 62, and a cavity 63 having a predetermined shape is formed between the respective dies 61 and 62 in the mold clamping state shown. Then, injection molding is performed by injecting the molten resin into the cavity 63 through the injection passage 64, and the movable mold 62 is separated to perform mold opening, and the molded product in the cavity 63 is taken out.
ここで、固定型61にはガイドピン65が立設され、可動
型62にはガイドスリーブ66が形成されており、型開き状
態から型締めを行う際にはガイドピン65がガイドスリー
ブ66に挿通案内される。これにより、可動型62は固定型
61に対して正確な位置へと移動され、所期の型締め状態
とされる。Here, a guide pin 65 is provided upright on the fixed die 61, and a guide sleeve 66 is formed on the movable die 62.When the die is clamped from the opened state, the guide pin 65 is inserted into the guide sleeve 66. Be guided. As a result, the movable die 62 is a fixed
It is moved to the correct position with respect to 61, and the desired mold clamping state is set.
さらに、精密射出成形用にはより高い位置精度を確保
するために、固定型61と可動型62との間には芯合わせ機
構70が設置される。第7図にも示すように、固定型61お
よび可動型62の対向する周縁には環状の段差部71,72が
形成され、各々は型締めの際にウェアリング73を介して
嵌合される。これにより、型締め状態では各型61,62の
中心軸線Cf,Cmが互いに一致するように確実な芯合わせ
が行われる。Further, for precision injection molding, a centering mechanism 70 is installed between the fixed die 61 and the movable die 62 in order to ensure higher positional accuracy. As shown in FIG. 7, annular step portions 71 and 72 are formed on the opposite peripheral edges of the fixed die 61 and the movable die 62, and they are fitted to each other via a wear ring 73 when the die is clamped. . As a result, in the mold clamped state, reliable centering is performed so that the center axes Cf and Cm of the respective molds 61 and 62 coincide with each other.
ところで、前述のような射出成形用金型60により精密
成形を行う場合、成形品の品質を制御するために固定型
61と可動型62とで温度差をつけることがある。By the way, when performing precision molding with the injection mold 60 as described above, a fixed mold is used to control the quality of the molded product.
There may be a temperature difference between 61 and the movable mold 62.
このような温度差がある場合、一般的なガイドピン65
とガイドスリーブ66とによる案内方式では熱膨張の影響
が大きくなり、正確な芯合わせが困難となる。If there is such a temperature difference, a general guide pin 65
With the guide method using the guide sleeve 66 and the guide sleeve 66, the influence of thermal expansion becomes large, and accurate centering becomes difficult.
一方、環状段差式の芯合わせ機構70を用いれば全方向
に均等に膨張するため芯ずれ等は生じにくいが、膨張に
伴ってウェアリング73を介しての嵌合部分の隙間が増減
することになり、この隙間による芯ずれ等が避けられな
い。On the other hand, if the annular step-type centering mechanism 70 is used, the cores are expanded uniformly in all directions, so core misalignment is unlikely to occur, but the expansion of the clearance of the fitting portion via the wear ring 73 increases or decreases with the expansion. Therefore, misalignment due to this gap is unavoidable.
このため、ウェアリング73に弾性材料を用い、環状の
段差部71,72の間の隙間の増減を全方向に均等に吸収す
ることも考えられる。しかし、弾性材料によるウェアリ
ング73では、嵌合および解除の繰返しに伴って摩耗耐久
性に問題があり、摩耗によるダストの発生、偏荷重等の
問題が避けられず、精密成形には不適当であるという問
題があった。Therefore, it is conceivable that an elastic material is used for the wear ring 73 to evenly absorb the increase or decrease in the gap between the annular step portions 71, 72 in all directions. However, with the wear ring 73 made of an elastic material, there is a problem in wear durability due to repeated fitting and disengagement, and problems such as generation of dust due to wear and eccentric load cannot be avoided, and are not suitable for precision molding. There was a problem.
本考案の目的は、確実な芯合わせが行えるとともに、
温度変化による精度低下を防止でき、かつ耐摩耗性を高
められる射出成形用金型の芯合わせ機構を提供すること
にある。The purpose of the present invention is to perform reliable centering and
An object of the present invention is to provide a centering mechanism for an injection molding die, which can prevent deterioration of accuracy due to temperature change and can improve wear resistance.
本考案は、金型の型分割部分に型締め状態で金型の径
方向へ摺動可能に凹凸嵌合する複数の嵌合部を設け、各
嵌合部は摺動方向が互いに金型の中心軸線で交叉するよ
うに配置したものである。According to the present invention, a plurality of fitting parts are provided in a mold-divided part of a mold for fitting in a concave and convex shape so as to be slidable in a radial direction of the mold. It is arranged so as to intersect with the central axis.
ここで、凹凸嵌合する嵌合部としては、金型を構成す
る固定型および可動型の各々に形成された溝状部分およ
びこれに嵌合する突起部分が利用できる。そして、嵌合
部の凹凸を周方向寸法よりも径方向寸法が大きくなるよ
うに形成し、熱膨張の影響が周方向よりも径方向に表れ
るようにすることが望ましい。Here, as the fitting portion to be fitted into the concave and convex, a groove-like portion formed in each of the fixed die and the movable die forming the die and a projection portion fitted to this can be used. Then, it is desirable to form the unevenness of the fitting portion so that the radial dimension is larger than the circumferential dimension so that the influence of thermal expansion appears in the radial direction rather than in the circumferential direction.
このような本考案においては、金型の型締めの際に固
定型および可動型の各々の嵌合部が凹凸嵌合することに
なる。この際、各型の複数の嵌合部は摺動方向が各型の
中心軸線で交叉されており、各嵌合部により各型の中心
軸線位置が一意に決定される。従って、型締めされて各
型の嵌合部が凹凸嵌合することにより、各型の中心軸線
は互いに一致され、芯合わせが行われる。In the present invention as described above, the fitting portions of the fixed die and the movable die are engaged with each other when the die is clamped. At this time, the sliding direction of the plurality of fitting portions of each die intersects with the center axis of each die, and the center axis position of each die is uniquely determined by each fitting portion. Therefore, when the molds are clamped and the fitting portions of the respective molds are fitted into each other by projections and depressions, the center axes of the respective molds are aligned with each other and the centers of the molds are aligned.
そして、各型の芯合わせは各嵌合部の摺動方向により
規定されるため、固定型と可動型との間で異なる熱膨張
が生じても、各嵌合部が径方向に均等に摺動することで
変形等が緩和され、芯合わせ精度には何ら変化を生じな
い。従って、温度変化に拘らず芯合わせ状態は一定に維
持され、かつ従来のように弾性部材によるウェアリング
等を用いる必要がないため耐摩耗性の向上が可能であ
り、これらにより前記目的が達成される。Since the centering of each mold is defined by the sliding direction of each fitting part, even if different thermal expansion occurs between the fixed mold and the movable mold, each fitting part slides evenly in the radial direction. By moving, deformation and the like are alleviated, and there is no change in the centering accuracy. Therefore, the centering state is kept constant regardless of the temperature change, and it is possible to improve the wear resistance because it is not necessary to use the wear ring or the like by the elastic member unlike the conventional case, and the above-mentioned objects are achieved by these. It
以下、本考案の一実施例を図面に基づいて説明する。 An embodiment of the present invention will be described below with reference to the drawings.
第1図において、本実施例の射出成形用金型10は固定
型11と可動型12とを有し、図示の型締め状態では各型1
1,12の間に所定形状のキャビティ13が形成される。そし
て、キャビティ13内に射出用通路14を通して溶融樹脂を
注入することで射出成形が行われ、可動型12を離隔させ
ることで型開きが行われ、キャビティ13内の成形品が取
り出される。In FIG. 1, an injection molding die 10 of this embodiment has a fixed die 11 and a movable die 12, and each die 1 is in a clamped state as shown.
A cavity 13 having a predetermined shape is formed between the first and the second portions 12. Then, injection molding is performed by injecting the molten resin into the cavity 13 through the injection passage 14, and mold opening is performed by separating the movable mold 12, and the molded product in the cavity 13 is taken out.
固定型11および可動型12は、ぞれぞれ第2図および第
3図に示すようなものである。すなわち、固定型11はダ
イプレート15に固定された円筒状とされ、可動型12はダ
イプレート16に固定された円筒状とされており、キャビ
ティ13は各々の型分割面17,18の中央に形成される。The fixed die 11 and the movable die 12 are as shown in FIGS. 2 and 3, respectively. That is, the fixed mold 11 has a cylindrical shape fixed to the die plate 15, the movable mold 12 has a cylindrical shape fixed to the die plate 16, and the cavity 13 is at the center of each mold dividing surface 17, 18. It is formed.
固定型11の型分割面17の周辺縁部にはガイドピン21が
立設され、可動型12の型分割面18の周辺縁部にはガイド
スリーブ22が形成されている。そして、型開き状態から
型締めを行う際にはガイドピン21がガイドスリーブ22に
挿通案内され、可動型12は固定型11に対して正確な位置
へと移動され、所期の型締め状態とされるようになって
いる。これらにより、ガイドピン式の型締めガイド機構
20が構成されている。A guide pin 21 is provided upright on the peripheral edge of the mold dividing surface 17 of the fixed mold 11, and a guide sleeve 22 is formed on the peripheral edge of the mold dividing surface 18 of the movable mold 12. Then, when performing mold clamping from the mold open state, the guide pin 21 is inserted and guided through the guide sleeve 22, the movable mold 12 is moved to an accurate position with respect to the fixed mold 11, and the desired mold clamping state is obtained. It is supposed to be done. With these, the guide pin type mold clamping guide mechanism
20 are configured.
固定型11および可動型12の間には、より高い軸芯精度
を確保するために、本考案に基づく芯合わせ機構30が形
成される。A centering mechanism 30 according to the present invention is formed between the fixed mold 11 and the movable mold 12 in order to secure higher axial center accuracy.
第4図および第5図にも示すように、固定型11および
可動型12の対向する型分割面17,18の周縁には環状の段
差部31,32が形成され、各々は同径とされて型締めの際
に互いに連続するように突き合わせられる。As shown in FIGS. 4 and 5, annular step portions 31 and 32 are formed on the peripheral edges of the facing mold dividing surfaces 17 and 18 of the fixed die 11 and the movable die 12, and they have the same diameter. Butt to be continuous with each other when clamping.
固定型11の段差部31には周方向に所定間隔で複数の凸
型部材33が配置されている。凸型部材33は表面に突起部
34を有し、突起部34は固定型11の中心軸線Cmに至る径方
向に沿って延長されている。In the step portion 31 of the fixed mold 11, a plurality of convex members 33 are arranged at predetermined intervals in the circumferential direction. The convex member 33 has a protrusion on the surface.
34, the protrusion 34 extends in the radial direction up to the central axis Cm of the fixed mold 11.
可動型12の段差部32には凹型部材33に対応した位置に
複数の凹型部材35が配置されている。溝状部材35に表面
を縦断する溝部36を有し、溝部36は突起部34を挿入嵌合
可能とされ、固定型11の中心軸線Cfに向かって径方向に
沿って延びるように配置されている。In the step portion 32 of the movable mold 12, a plurality of concave mold members 35 are arranged at positions corresponding to the concave mold members 33. The groove-shaped member 35 has a groove portion 36 that longitudinally cuts the surface, and the groove portion 36 is capable of inserting and fitting the protrusion portion 34, and is arranged so as to extend in the radial direction toward the central axis Cf of the fixed mold 11. There is.
これらの突起部34の稜線部分および溝部36の開口部分
はそれぞれ面取りされており、固定型11と可動型12との
型締めの際には突起部34が容易に溝部36に挿入され、凸
型部材33と凹型部材35とが凹凸嵌合されるようになって
いる。この際、凸型部材33と凹型部材35とは突起部34と
溝部36との嵌合により周方向に移動不能であるが、各々
の連続方向である径方向には摺動可能である。The ridges of the protrusions 34 and the openings of the grooves 36 are chamfered, and the protrusions 34 are easily inserted into the groove 36 when the fixed mold 11 and the movable mold 12 are clamped, and the convex molds are formed. The member 33 and the concave member 35 are adapted to be fitted in a recess and projection. At this time, the convex member 33 and the concave member 35 are immovable in the circumferential direction due to the fitting of the protrusion 34 and the groove 36, but are slidable in the continuous radial direction.
このような本実施例においては、型締め動作の際に固
定型11に接近する可動型12は、ガイドピン式の案内機構
20によって略一定の状態でガイドされている。そして、
可動型12が固定型11に更に接近すると、凸型部材33の突
起部34の先端が凹型部材35の溝部36内に挿入され、固定
型11と可動型12との芯合わせは凹凸嵌合式の芯合わせ機
構30により正確に行われる。In this embodiment, the movable die 12, which approaches the fixed die 11 during the die clamping operation, is a guide pin type guide mechanism.
It is guided by 20 in a substantially constant state. And
When the movable die 12 further approaches the fixed die 11, the tip of the protrusion 34 of the convex die member 33 is inserted into the groove portion 36 of the concave die member 35, and the center alignment between the fixed die 11 and the movable die 12 is a concave-convex fitting type. Accurately performed by the centering mechanism 30.
ここで、固定型11の凸型部材33および可動型12の凹型
部材35は、各々突起部34および溝部36が各型11,12の中
心軸線Cf,Cmに向かう方向に形成されており、これらの
嵌合により各々の方向が一致されることで各型11,12の
中心軸線Cf,Cmも一致することになり、型締め状態での
確実な芯出しが行われることになる。Here, in the convex mold member 33 of the fixed mold 11 and the concave mold member 35 of the movable mold 12, the protrusion 34 and the groove 36 are formed in the direction toward the central axes Cf and Cm of the molds 11 and 12, respectively. Since the respective directions are matched by the fitting, the central axis lines Cf, Cm of the molds 11, 12 also match, and reliable centering is performed in the mold clamped state.
このような本実施例によれば、固定型11と可動型12と
の型締めにあたって、凸型部材33と凹型部材35とが凹凸
嵌合することにより各型11,12の中心軸線Cf,Cmを同一軸
線上に一致させることができ、各型11,12の正確な芯合
わせを行うことができる。According to the present embodiment as described above, when the fixed mold 11 and the movable mold 12 are clamped, the convex mold member 33 and the concave mold member 35 are engaged with each other by concavo-convex fitting so that the center axes Cf and Cm of the respective molds 11 and 12 are reduced. Can be aligned on the same axis, and accurate alignment of the molds 11 and 12 can be performed.
この際、凸型部材33と凹型部材35との間で実際に嵌合
する突起部34および溝部36には、各々角部の面取りをし
ておくため、嵌合にあたっての相互の挿入を円滑なもの
にできる。At this time, the protrusions 34 and the grooves 36 that are actually fitted between the convex member 33 and the concave member 35 are chamfered at the corners, respectively, so that they can be smoothly inserted into each other during fitting. It can be something.
また、前述のような芯合わせ機構30による芯合わせに
先立ってガイドピン式の案内機構20により各型11,12を
案内しておくようにしたため、突起部34および溝部36の
挿入を容易に行うことができる。Further, since the guide pins 20 are used to guide the molds 11 and 12 prior to the centering by the centering mechanism 30 as described above, the protrusion 34 and the groove 36 can be easily inserted. be able to.
一方、芯合わせ機構30の凸型部材33と凹型部材35とは
径方向に摺動自在であるため、固定型11と可動型12との
間で異なる熱膨張が生じても径方向に均等に摺動するこ
とで変形等が緩和され、芯合わせ精度の低下を未然に防
止できる。On the other hand, since the convex member 33 and the concave member 35 of the centering mechanism 30 are slidable in the radial direction, even if different thermal expansions occur between the fixed mold 11 and the movable mold 12, they are even in the radial direction. By sliding, deformation and the like are alleviated, and deterioration of centering accuracy can be prevented in advance.
このため、光ディスク製品の成形のように固定型11と
可動型12とで温度差をつける場合でも、熱変形の違いに
よる芯合わせ精度の低下が極めて小さく、高い成形精度
を確保することができる。Therefore, even when a temperature difference is created between the fixed die 11 and the movable die 12 as in the case of molding an optical disk product, a decrease in centering accuracy due to a difference in thermal deformation is extremely small, and high molding accuracy can be secured.
さらに、固定型11と可動型12との芯合わせ精度が温度
状態に拘らず一定に維持できるため、従来のように弾性
部材によるウェアリング等を用いる必要がないため耐摩
耗性を向上でき、摩耗に伴うダストの発生や偏荷重等の
問題を解決することができ、精密成形に最適な芯合わせ
を実現することができる。Further, since the centering accuracy of the fixed mold 11 and the movable mold 12 can be kept constant regardless of the temperature state, it is not necessary to use a wear ring or the like made of an elastic member unlike the conventional case, so that the wear resistance can be improved and the wear can be improved. It is possible to solve problems such as dust generation and eccentric load due to the above, and it is possible to realize optimum centering for precision molding.
ここで、本実施例による芯合わせ精度の向上効果につ
いて具体的な数値を挙げて説明する。Here, the effect of improving the centering accuracy according to the present embodiment will be described with specific numerical values.
直径130mmの光ディスク基板を製造するにあたり、射
出成形用金型10の中心より半径100mmの位置に四本のガ
イドピン21を有するガイド機構20を用いた場合、ガイド
ピン21の寸法公差を±1μmとすれば、固定型11と可動
型12との偏芯を5μm以下とするためには、ガイドピン
21の取付け位置精度を±2μm以下とする必要がある。When manufacturing an optical disk substrate with a diameter of 130 mm, when using a guide mechanism 20 having four guide pins 21 at a position with a radius of 100 mm from the center of the injection molding die 10, the dimensional tolerance of the guide pins 21 is ± 1 μm. If the eccentricity between the fixed die 11 and the movable die 12 is set to 5 μm or less, the guide pin
The mounting position accuracy of 21 must be within ± 2 μm.
しかし、光ディスク基板を製造する場合には、固定型
11と可動型12との間に温度差をつける必要があり、ガイ
ドピン21によるガイド機構20では熱変形により狂いが生
じる。However, when manufacturing an optical disk substrate, the fixed type
It is necessary to make a temperature difference between 11 and the movable die 12, and the guide mechanism 20 by the guide pin 21 is deformed due to thermal deformation.
例えば、温度差1度あたりガイドピン21の位置が2.6
μmづつずれるとすれば、温度差を2度としたい場合に
はガイドピン21の寸法公差を5.2μm以上にしておかな
ければならず、このような温度差の有無の何れにおいて
も偏芯を5μm以下とすることは困難であり、ガイドピ
ン21だけでは充分な芯合わせ精度が確保できない。For example, the position of the guide pin 21 is 2.6 per 1 degree of temperature difference.
If the temperature difference is 2 degrees, the dimensional tolerance of the guide pin 21 must be 5.2 μm or more, and the eccentricity is 5 μm with or without such a temperature difference. It is difficult to set the following, and sufficient alignment accuracy cannot be ensured only with the guide pin 21.
これに対し、本考案に係る芯合わせ機構30においては
凹凸嵌合する突起部34と溝部36は相互の摺動により径方
向の熱膨張が無関係であり、周方向の僅かな熱膨張だけ
を考慮すればよい。ここで、突起部34の径方向の長さを
30mm、周方向の幅を10mmとすると、径方向の膨張は摺動
により吸収され、周方向の熱膨張量は2度の温度差でも
0.26μmであり、突起部34の周方向の寸法公差を±1μ
m、取付け位置精度を±2μm以下とすれば、温度差4
度をつけても偏芯を±2μm以下に抑えることができ
る。On the other hand, in the centering mechanism 30 according to the present invention, the projection 34 and the groove 36, which are fitted in the concavo-convex structure, are not related to the thermal expansion in the radial direction due to the mutual sliding, and only a slight thermal expansion in the circumferential direction is considered. do it. Here, the radial length of the protrusion 34 is
If the width in the circumferential direction is 30 mm and the width in the circumferential direction is 10 mm, the expansion in the radial direction is absorbed by sliding, and the amount of thermal expansion in the circumferential direction is even with a temperature difference of 2 degrees.
0.26μm, the circumferential dimensional tolerance of the protrusion 34 is ± 1μ
m, and the mounting position accuracy is ± 2 μm or less, the temperature difference is 4
Even if the degree is increased, the eccentricity can be suppressed to ± 2 μm or less.
なお、本考案は前記実施例に限定されるものではな
く、芯合わせ機構30の具体的形状や寸法、配置する数や
位置等は実施にあたって適宜選択すればよい。It should be noted that the present invention is not limited to the above-described embodiment, and the specific shape and size of the centering mechanism 30, the number and position of the centering mechanism 30 and the like may be appropriately selected for implementation.
また、ガイドピン式のガイド機構20を併用するか否か
は実施にあたって適宜選択すればよく、併用するガイド
機構20の形式も任意である。Whether or not the guide mechanism 20 of the guide pin type is used together may be appropriately selected in practice, and the type of the guide mechanism 20 used together is also arbitrary.
さらに、本考案が適用される射出成形用金型10の用
途、形式、寸法、形状等は任意であり、本考案は多様な
射出成形用金型に適用されて優れた効果を奏することが
できる。Further, the use, type, size, shape, etc. of the injection mold 10 to which the present invention is applied are arbitrary, and the present invention can be applied to various injection molds and can exhibit excellent effects. .
以上に述べたように、本考案によれば径方向に摺動す
る凹凸係合を複数方向に配置することで確実な芯合わせ
が行えるとともに、温度変化があっても径方向の摺動に
より芯合わせに影響を及ぼすことがなく、精度低下を防
止できる。さらに、従来のような弾性部材によるウェア
リング等で対応する必要がなく、耐摩耗性を高めて精密
射出成形に最適な芯合わせを行うことができる。As described above, according to the present invention, it is possible to perform reliable centering by arranging the concave and convex engagements that slide in the radial direction in a plurality of directions, and even if there is a temperature change, the core can be moved by the radial sliding. The accuracy can be prevented without affecting the alignment. Further, it is not necessary to deal with the conventional wear ring using an elastic member or the like, and it is possible to improve wear resistance and perform optimum centering for precision injection molding.
第1図は本考案の一実施例を示す断面図、第2図は同実
施例の分解状態を示す斜視図、第3図は同実施例の分解
状態を示す斜視図、第4図は前記第1図IV-IV線を示す
断面図、第5図は前記第4図V−V線を示す断面図、第
6図は従来例を示す断面図、第7図は前記従来例を示す
断面図である。 10……射出成形用金型、11……固定型、12……可動型、
17,18……型分割面、30……芯合わせ機構、33……凸型
部材、34……突起部、35……凹型部材、36……溝部。FIG. 1 is a sectional view showing an embodiment of the present invention, FIG. 2 is a perspective view showing an exploded state of the same embodiment, FIG. 3 is a perspective view showing an exploded state of the same embodiment, and FIG. 1 is a sectional view taken along line IV-IV, FIG. 5 is a sectional view taken along line VV of FIG. 4, FIG. 6 is a sectional view showing a conventional example, and FIG. 7 is a sectional view showing the conventional example. It is a figure. 10 …… Injection mold, 11 …… Fixed mold, 12 …… Movable mold,
17,18 …… Mold split surface, 30 …… Centering mechanism, 33 …… Convex member, 34 …… Projection part, 35 …… Concave member, 36 …… Groove part.
Claims (1)
方向へ摺動可能に凹凸嵌合する複数の嵌合部を有し、各
嵌合部は摺動方向が互いに金型の中心軸線で交叉するよ
うに配置されていることを特徴とする射出成形用金型の
芯合わせ機構。1. A mold split portion of a mold has a plurality of fitting portions for fitting in a concave and convex shape so as to be slidable in a radial direction of the mold in a clamped state. A centering mechanism for an injection molding die, which is arranged so as to intersect with a central axis of the die.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP10482490U JP2517762Y2 (en) | 1990-10-03 | 1990-10-03 | Centering mechanism of injection mold |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP10482490U JP2517762Y2 (en) | 1990-10-03 | 1990-10-03 | Centering mechanism of injection mold |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH0463217U JPH0463217U (en) | 1992-05-29 |
JP2517762Y2 true JP2517762Y2 (en) | 1996-11-20 |
Family
ID=31850252
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP10482490U Expired - Fee Related JP2517762Y2 (en) | 1990-10-03 | 1990-10-03 | Centering mechanism of injection mold |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2517762Y2 (en) |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4713146B2 (en) * | 2004-12-27 | 2011-06-29 | 東洋機械金属株式会社 | Injection molding machine |
JP5540696B2 (en) * | 2009-12-25 | 2014-07-02 | コニカミノルタ株式会社 | Imaging lens unit manufacturing method and mold apparatus |
CN103025496A (en) * | 2010-07-30 | 2013-04-03 | 柯尼卡美能达先进多层薄膜株式会社 | Molding device and molding method |
US9423826B2 (en) * | 2014-03-28 | 2016-08-23 | Microsoft Technology Licensing, Llc | Mechanical attach and retention feature |
-
1990
- 1990-10-03 JP JP10482490U patent/JP2517762Y2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JPH0463217U (en) | 1992-05-29 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JPH0146296B2 (en) | ||
JPH0557760A (en) | Injection mold having undercut part | |
JP3296844B2 (en) | Mold for molding cylindrical objects with inner diameter undercut | |
JP2517762Y2 (en) | Centering mechanism of injection mold | |
JPH0929785A (en) | Injection mold | |
JP5485806B2 (en) | Mold positioning and fixing device | |
JP3706169B2 (en) | Injection mold | |
JP3138562B2 (en) | Disc base injection mold | |
US6252721B1 (en) | Mold for molding optical element, mold structure for molding optical element, molding apparatus, optical element molded from resin material, and optical element constituted by plurality of optical surfaces | |
KR20190022098A (en) | In mold decoration film clamp and in mold decoration injection mold with the same | |
JPH04226714A (en) | Mold for molding | |
US20020020937A1 (en) | Method for molding cam ring with convex cams, molding die assembly, and molded cam ring | |
JPS63242617A (en) | Injection mold equipped with expansion core | |
JP2963205B2 (en) | Injection mold | |
JP4590135B2 (en) | Mold for molding | |
JP2007001282A (en) | Molding die and its manufacturing method | |
JP3317621B2 (en) | Mold using air blow | |
JPH04307217A (en) | Mold for insert molding | |
JP3760464B2 (en) | Mold equipment for molding | |
JPH0465210A (en) | Molding die | |
JPH0711949Y2 (en) | Insert molding die | |
JPH0687140A (en) | Large roller and production equipment thereof | |
JPS63116817A (en) | Insert mold | |
JPH0540987Y2 (en) | ||
JP3325508B2 (en) | Mold mounting structure of injection molding machine |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
LAPS | Cancellation because of no payment of annual fees |