JP2515880B2 - Rear wheel steering system - Google Patents

Rear wheel steering system

Info

Publication number
JP2515880B2
JP2515880B2 JP11405289A JP11405289A JP2515880B2 JP 2515880 B2 JP2515880 B2 JP 2515880B2 JP 11405289 A JP11405289 A JP 11405289A JP 11405289 A JP11405289 A JP 11405289A JP 2515880 B2 JP2515880 B2 JP 2515880B2
Authority
JP
Japan
Prior art keywords
rear wheel
wheel steering
steering angle
angle
steering
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP11405289A
Other languages
Japanese (ja)
Other versions
JPH02293274A (en
Inventor
孝彰 江口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP11405289A priority Critical patent/JP2515880B2/en
Publication of JPH02293274A publication Critical patent/JPH02293274A/en
Application granted granted Critical
Publication of JP2515880B2 publication Critical patent/JP2515880B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は車両の後輪操舵装置に関するものである。The present invention relates to a rear wheel steering system for a vehicle.

(従来の技術) 後輪操舵装置は前輪操舵時車両の低速小廻り性能や高
速旋回安定性を向上させるために後輪も操舵するもので
ある。この種装置としては従来より種々のものが提案さ
れてきたが、本願出願人も先に特願昭62−330283号によ
り、前輪舵角δに対し後輪舵角δを次の伝達関数 が満足されるよう与えて、後輪非操舵車両において第6
図中a1で示す如く変化していた車両の重心点横すべり角
を同図中a2で示す如く0に保つ後輪操舵装置を提案済で
ある。
(Prior Art) A rear wheel steering system steers rear wheels in order to improve low-speed small turning performance and high-speed turning stability of a vehicle when steering front wheels. Various devices have been proposed as this type of device, and the applicant of the present application has previously disclosed, in Japanese Patent Application No. 62-330283, that the rear wheel steering angle δ r is compared with the following transfer function with respect to the front wheel steering angle δ f. Is satisfied so that in the rear-wheel non-steering vehicle, the sixth
A rear wheel steering system has been proposed which keeps the side-slip angle of the center of gravity of the vehicle, which has changed as indicated by a1 in the figure, at 0 as indicated by a2 in the figure.

そしてこの場合、比例定数K、微分定数τ及び時定数
Tはそれぞれ次式 (発明が解決しようとする課題) しかしこの後輪操舵装置においては、前輪舵角を一定
に保つ(S=0の)定常時も、車両の重心点横すべり角
を0に保つこととなり、又この定常時のヨーレートゲイ
ン(後輪舵角)、つまり定常ヨーレートゲイン を決める比例定数Kが(2)式の如く車速Vと車両諸元
とで決定される。従って、車速毎の定常ヨーレートゲイ
ンが車両諸元で決まる一定値であり、車両諸元次第では
第7図により後片輪等価コーナリングパワーCprが7692.
2kg/rad、前片輪等価コーナリングパワーCpfがCpf1の車
両について例示すると、定常ヨーレートゲインが後輪非
操舵車両(b1)に対し3.2dBも低下してb2となる。この
場合、好適なステア特性に対応した定常ヨーレートゲイ
に対し定常ヨーレートゲインが大きく不足して当該車両
は強いアンダーステア傾向となる。
And in this case, the proportional constant K, the differential constant τ and the time constant T are respectively expressed by the following equations. (Problems to be Solved by the Invention) However, in this rear wheel steering system, even when the front wheel steering angle is kept constant (S = 0), the center of gravity side slip angle of the vehicle is kept at 0, and Normal yaw rate gain (rear wheel steering angle), that is, steady-state yaw rate gain The proportionality constant K that determines is determined by the vehicle speed V and vehicle specifications as shown in equation (2). Therefore, the steady-state yaw rate gain for each vehicle speed is a constant value determined by the vehicle specifications, and depending on the vehicle specifications, the rear one-wheel equivalent cornering power C pr is 7692.
As an example of a vehicle having 2 kg / rad and a front one-wheel equivalent cornering power C pf of C pf1 , the steady-state yaw rate gain is 3.2 dB lower than that of the rear-wheel non-steering vehicle (b1) to be b2. In this case, the steady-state yaw rate gain corresponding to the appropriate steer characteristic On the other hand, the steady-state yaw rate gain is largely insufficient, and the vehicle tends to have a strong understeer tendency.

車両の重心点横すべり角を0に保つ制御はそのままに
上記問題を解決するためには第7図において、前輪タイ
ヤの変更により前片輪等価コーナリングパワーをΔCpf
だけ増大させることが考えられる。しかし、特性b2は特
性b1に対し傾斜がゆるく、ΔCpf1は相当な大きさとな
り、前輪タイヤの変更により達成される前片輪等価コー
ナリングパワーの最大増大量ΔCpf2より遥かに大きく、
前輪タイヤの変更では上述の問題を解消し得ない。
In order to solve the above-mentioned problem while keeping the control for keeping the sideslip angle of the center of gravity of the vehicle at 0, the front one-wheel equivalent cornering power is changed to ΔC pf by changing the front tires in Fig. 7.
It is possible to increase it only. However, the characteristic b2 has a gentle inclination with respect to the characteristic b1, and ΔC pf1 has a considerable magnitude, which is much larger than the maximum increase amount ΔC pf2 of the front single-wheel equivalent cornering power achieved by changing the front tires.
Changing the front tires cannot solve the above problems.

本発明は、定常ヨーレートゲインが比例定数Kに依存
することから、先ずこの比例定数を好適な定常ヨーレー
トゲインが得られるような値に修正する。しかしてこの
修正は、前輪舵角速度が発生している間後輪舵角を重心
点横すべり角0用の前記理論式から外れた値にしてしま
い、操舵周波数の高い領域で操舵周波数−後輪舵角ゲイ
ン特性の勾配が重心点横すべり角0制御時の勾配と異っ
たり、位相遅れが異なって、乗員に違和感を与える。
According to the present invention, since the steady-state yaw rate gain depends on the proportional constant K, the proportional constant is first corrected to a value such that a suitable steady-state yaw rate gain can be obtained. However, this correction corrects the rear wheel rudder angle to a value outside the theoretical formula for the center of gravity side slip angle of 0 while the front wheel rudder angular velocity is generated, and the steering frequency-rear wheel rudder is set in the high steering frequency region. The gradient of the angular gain characteristic is different from the gradient when the center of gravity side slip angle is controlled to 0, or the phase delay is different, which gives the occupant a feeling of strangeness.

そこで本発明は微分定数も修正して、操舵周波数−後
輪舵角ゲイン特性を重心点横すべり角0制御時のそれに
相似させることにより、上記の違和感なしに定常ヨーレ
ートゲインを好適値にして狙い通りのステア特性が得ら
れるようにすることを目的とする。
Therefore, the present invention corrects the differential constant to make the steering frequency-rear wheel steering angle gain characteristic similar to that at the time of control of the center-of-gravity point side slip angle, so that the steady-state yaw rate gain is set to a suitable value without the above-mentioned discomfort. The purpose is to obtain the steer characteristics of.

(課題を解決するための手段) この目的のため本発明は第1図に概念を示す如く、 前輪操舵時、前輪舵角δに対し後輪舵角δを次の
伝達関数 が満足されるよう与えて、車両の重心点横すべり角を0
に保つ後輪操舵装置において、 前記比例定数Kを、定常ヨーレートゲインが好適値と
なるよう修正する比例定数修正手段と、 比例定数の修正後における操舵周波数−後輪舵角ゲイ
ン特性が前記伝達関数による操舵周波数−後輪舵角ゲイ
ン特性と相似になるよう前記微分定数を修正する微分定
数修正手段とを設けて構成したものである。
(Means for Solving the Problem) For this purpose, the present invention is based on the concept shown in FIG. 1. When steering the front wheels, the rear wheel steering angle δ r is converted into the following transfer function with respect to the front wheel steering angle δ f. Is satisfied so that the side slip angle of the center of gravity of the vehicle is 0
In the rear wheel steering device which maintains the proportional constant K, the proportional constant K is modified so that the steady-state yaw rate gain becomes a suitable value, and the steering frequency-rear wheel steering angle gain characteristic after the correction of the proportional constant is the transfer function. And a differential constant correcting means for correcting the differential constant so as to be similar to the steering frequency-rear wheel steering angle gain characteristic.

(作 用) 後輪操舵装置は前輪操舵時、前輪舵角δに対し後輪
舵角δを伝達関数 が満足されるよう与えて、後輪を操舵するが、この際比
例定数修正手段は比例定数Kを、定常ヨーレートゲイン
が好適値となるよう修正し、微分定数修正手段は微分定
数τを、比例定数の修正にともなう操舵周波数−後輪舵
角ゲイン特性が上記伝達関数による操舵周波数−後輪舵
角ゲイン特性と相似になるよう修正する。
(Operation) The rear wheel steering system transfers the rear wheel steering angle δ r to the front wheel steering angle δ f when the front wheels are steered. Is satisfied so that the rear wheels are steered. At this time, the proportional constant correcting means corrects the proportional constant K so that the steady-state yaw rate gain becomes a suitable value, and the differential constant correcting means changes the differential constant τ by proportionally. The steering frequency-rear wheel steering angle gain characteristic due to the correction of the constant is corrected so as to be similar to the steering frequency-rear wheel steering angle gain characteristic by the transfer function.

よって、比例定数Kの修正により定常ヨーレートゲイ
ンが好適なものとなり、車両諸元にかかわらず定常円旋
回中のステア特性を狙い通りのものとすることができ
る。そしてこの修正にともなう操舵周波数−後輪舵角ゲ
イン特性の勾配変化を微分定数の修正により補正するこ
とができ、比例定数の修正によっても前輪舵角変更中に
おける過渡期に車両の運動性能が違和感をもったものに
なるのを防止することができる。
Therefore, the steady-state yaw rate gain becomes appropriate by modifying the proportional constant K, and the steer characteristic during steady-state circular turning can be achieved as desired regardless of the vehicle specifications. The gradient change in the steering frequency-rear wheel steering angle gain characteristic due to this modification can be corrected by modifying the differential constant, and the modification of the proportional constant also causes the vehicle's motion performance to be uncomfortable during the transitional period during the change of the front wheel steering angle. It is possible to prevent it from becoming a thing with.

(実施例) 以下、本発明の実施例を図面に基づき詳細に説明す
る。
(Example) Hereinafter, the Example of this invention is described in detail based on drawing.

第2図は本発明後輪操舵装置のシステムを示し、図中
1L,1Rは夫々左右前輪、2L,2Rは夫々左右後輪である。前
輪1L,1Rを夫々ステアリングホイール3によりステアリ
ングギヤ4を介して転舵可能とし、トランスバースリン
ク5L,5R及びアッパアーム6L,6Rを含むリヤサスペンショ
ン装置により車体のリヤサスペンションメンバ7に懸架
された後輪2L,2Rも転舵可能とするため、後輪のナック
ルアーム8L,8R間をアクチュエータ9及びその両端にお
けるサイドロッド10L,10Rにより相互に連結する。
FIG. 2 shows a system of the rear wheel steering device according to the present invention.
1L and 1R are left and right front wheels respectively, and 2L and 2R are left and right rear wheels respectively. The front wheels 1L, 1R can be steered by the steering wheel 3 via the steering gear 4, and the rear wheels suspended by the rear suspension member 7 of the vehicle body by the rear suspension device including the transverse links 5L, 5R and the upper arms 6L, 6R. Since the 2L and 2R can also be steered, the knuckle arms 8L and 8R of the rear wheels are interconnected by the actuator 9 and side rods 10L and 10R at both ends thereof.

アクチュエータ9はスプリングセンタ式復動液圧シリ
ンダとし、その2室を夫々管路11L,11Rにより電磁比例
式圧力制御弁12に接続する。この制御弁12には更にポン
プ13及びリザーバタンク14を含む液圧源の液圧管路15及
びドレン管路16を夫々接続する。制御弁12はスプリング
センタ式3位置弁とし、両ソレノイド12L,12RのOFF時管
路11L,11Rを無圧状態にし、ソレノイド12LのON時通電量
iLに比例した圧力を管路11Lに供給し、ソレノイド12Rの
ON時通電量iRに比例した圧力を管路11Rに供給するもの
とする。管路11Lからの圧力はその値に応じた舵角だけ
後輪をアクチュエータ9により左転舵し、管路11Rから
の圧力はその値に応じた舵角だけ後輪をアクチュエータ
9により右転舵する。
The actuator 9 is a spring-centered backward hydraulic cylinder, and its two chambers are connected to the electromagnetic proportional pressure control valve 12 by pipe lines 11L and 11R, respectively. The control valve 12 is further connected to a hydraulic line 15 and a drain line 16 of a hydraulic source including a pump 13 and a reservoir tank 14, respectively. The control valve 12 is a spring-centered three-position valve. When both solenoids 12L and 12R are OFF, the lines 11L and 11R are in a non-pressure state, and when the solenoid 12L is ON, the amount of electricity is ON.
The pressure proportional to i L supplied to the conduit 11L, the solenoid 12R
The pressure proportional to the energization amount i R ON and supplies the pipe 11R. The pressure from the pipeline 11L turns the rear wheel to the left by the actuator 9 by the steering angle corresponding to the value, and the pressure from the pipeline 11R turns the rear wheel to the right by the actuator 9 at the steering angle corresponding to the value. To do.

ソレノイド12L,12RのON,OFF及び通電量はコントロー
ラ17により電子制御し、このコントローラ17は第3図に
示す如くデジタル演算回路17aと、デジタル入力検出回
路17bと、記憶回路17cと、D/A変換器17dと、駆動回路17
eとで構成する。コントローラ17には、ステアリングホ
イール3の操舵角θを検出する操舵角センサ18からの信
号及び車速Vを検出する車速センサ19からの信号を夫
々、デジタル入力検出回路17bを経て入力する。コント
ローラ17のデジタル演算回路17aはこれら入力情報及び
記憶回路17cの格納情報から第4図の制御プログラムを
実行して後輪を操舵する。
The ON / OFF and energizing amounts of the solenoids 12L and 12R are electronically controlled by a controller 17, and the controller 17 includes a digital operation circuit 17a, a digital input detection circuit 17b, a storage circuit 17c, and a D / A as shown in FIG. Converter 17d and drive circuit 17
and e. A signal from a steering angle sensor 18 for detecting the steering angle θ of the steering wheel 3 and a signal from a vehicle speed sensor 19 for detecting the vehicle speed V are input to the controller 17 via a digital input detection circuit 17b. The digital operation circuit 17a of the controller 17 executes the control program shown in FIG. 4 from the input information and the information stored in the storage circuit 17c to steer the rear wheels.

第4図中ステップ31では、操舵角θ及び車速Vを読込
み、次のステップ32で前輪舵角δをステアリングホイ
ール操舵角θ及びステアリングギヤ比Nから の演算により求める。そしてステップ33,34で夫々、車
速Vから前記(2),(3)式により求めた比例定数K
及び微分定数τを演算又はルックアップする。比例定数
Kは正の値で、前記(1)式に照らして明らかな如く前
輪舵角δに応じた同相後輪舵角量を決定し、微分定数
τは負の値で、前記(1)式に照らして明らかな如く前
輪舵角速度δに応じた逆相後輪舵角量を決定する。
In Figure 4 in step 31, the steering angle θ and the vehicle speed V read, a front wheel steering angle [delta] f in the next step 32 from the steering wheel steering angle θ and the steering gear ratio N Calculated by Then, in steps 33 and 34, the proportional constant K obtained from the vehicle speed V by the equations (2) and (3), respectively.
And calculate or look up the differential constant τ. The proportionality constant K is a positive value, the in-phase rear wheel steering angle amount corresponding to the front wheel steering angle δ f is determined, and the differential constant τ is a negative value, as is clear from the above equation (1). ), The anti-phase rear wheel steering angle amount corresponding to the front wheel steering angular velocity δ f is determined.

ステップ35では、定常ヨーレートゲインに関与する比
例定数Kを、定常円旋回中の要求ステア特性に対応した
定常ヨーレートゲイン(第7図につき前述した車両にお
いては が得られるようΔKだけ低下させて、第7図中b2で示す
定常ヨーレートゲイン特性をb3まで上昇させる。この場
合、操舵周波数(操舵速度)fに対する後輪舵角ゲイン
及び位相遅れが夫々第5図にC3で示す特性となり、重心
点横すべり角O制御による後輪舵角ゲイン特性及び位相
角特性C2に対し、操舵周波数当りのゲイン変化割合を異
にすると共に位相遅れを大きくされる。よって操舵周波
数の高い高速操舵中、車両挙動が重心点横すべり角O制
御の場合と異なり、乗員に違和感を与える。そこでステ
ップ36では、これら後輪舵角ゲイン及び位相角特性に関
与する微分定数τをも、該特性がC2に相似するC4となる
ようΔτだけ小さくする。ここで微分定数τは負の値で
あるから、正の修正量Δτを加算することにより微分定
数τをその絶対値が小さくなるよう修正する。
In step 35, the proportional constant K relating to the steady-state yaw rate gain is set to the steady-state yaw rate gain corresponding to the required steer characteristic during steady circle turning (in the vehicle described above with reference to FIG. 7, Is decreased by ΔK so that the steady yaw rate gain characteristic shown by b2 in FIG. 7 is increased to b3. In this case, the rear wheel steering angle gain and the phase delay with respect to the steering frequency (steering speed) f have the characteristics shown by C3 in FIG. 5, respectively, and the rear wheel steering angle gain characteristic and the phase angle characteristic C2 by the center of gravity side slip angle O control become On the other hand, the gain change rate per steering frequency is made different and the phase delay is increased. Therefore, during high-speed steering with a high steering frequency, the vehicle behavior is different from that in the case of the center-of-gravity point side slip angle O control, which gives an occupant an uncomfortable feeling. Therefore, in step 36, the differential constant τ related to the rear wheel steering angle gain and the phase angle characteristic is also reduced by Δτ so that the characteristic becomes C4 which is similar to C2. Here, since the differential constant τ is a negative value, the positive correction amount Δτ is added to correct the differential constant τ so that its absolute value becomes small.

ステップ37ではステップ35,36で修正したK,τを基に
前記(1)と同様な の演算により後輪舵角δを演算する。次にステップ38
で、この演算舵角δに応じた電流iL又はiRを第2図の
弁12へ出力して後輪を演算通りに操舵する。
In step 37, based on K and τ corrected in steps 35 and 36, the same as (1) above The rear wheel steering angle δ r is calculated by calculating Then step 38
Then, the current i L or i R corresponding to the calculated steering angle δ r is output to the valve 12 in FIG. 2 to steer the rear wheels as calculated.

ところで、比例定数Kを上述のように修正したことで
定常ヨーレートゲインが狙い通りのものとなり、定常円
旋回中におけるステア特性を車両諸元に関係なく好適な
ものにすることができる。又かかる比例定数Kの修正に
もかかわらず、微分定数τを合せて前述のように修正す
ることで操舵周波数に対する後輪舵角ゲイン特性が重心
点横すべり角O制御を行う時の特性と相似することか
ら、操舵周波数に対する後輪舵角ゲインの変化が重心点
横すべり角O制御のそれと同じであり、乗員に違和感を
与えることがない。
By modifying the proportional constant K as described above, the steady-state yaw rate gain becomes the target value, and the steer characteristic during steady-state circular turning can be made suitable regardless of the vehicle specifications. Despite the correction of the proportional constant K, the rear wheel steering angle gain characteristic with respect to the steering frequency resembles the characteristic at the time of performing the center-of-gravity point side slip angle O control by modifying the differential constant τ as described above. Therefore, the change of the rear wheel steering angle gain with respect to the steering frequency is the same as that of the center-of-gravity point side slip angle O control, and the occupant does not feel uncomfortable.

かかる作用効果を第6図に示す重心点横すべり角の時
系列変化につき付言する。この横すべり角は、比例定数
Kのみを低下させた場合a3で示す如く過渡期において急
増し、その後一旦低下後に漸増するが、微分定数τも同
時に低下させることでa4により示す如く、重心点横すべ
り角を終始徐々に増加させることとなって乗員の違和感
をなくすことができる。
The action and effect will be additionally described with respect to a time-series change of the sideslip angle of the center of gravity shown in FIG. This side slip angle sharply increases in the transition period as shown by a3 when only the proportional constant K is decreased, and then gradually decreases and then gradually increases, but by decreasing the differential constant τ at the same time, as shown by a4, the barycenter side slip angle Will be gradually increased throughout, and the discomfort of the passengers can be eliminated.

(発明の効果) かくして本発明後輪操舵装置は上述の如く、比例定数
Kを定常ヨーレートゲインが車両諸元にかかわらず好適
値となるよう修正する構成としたから、定常円旋回中の
ステア特性を狙い通りのものにすることができる。又同
時に微分定数τをも修正して、比例定数の修正にともな
う操舵周波数−後輪舵角ゲイン特性の勾配変化を補正す
る構成としたから、比例定数の修正にもかかわらず、前
輪操舵過渡期における車両の挙動変化が違和感をもった
ものになるのを防止することができる。
(Advantages of the Invention) As described above, the rear wheel steering system of the present invention is configured to correct the proportional constant K so that the steady-state yaw rate gain becomes a suitable value regardless of vehicle specifications. Can be exactly what you want. At the same time, the differential constant τ is also corrected to correct the gradient change of the steering frequency-rear wheel steering angle gain characteristic due to the correction of the proportional constant. It is possible to prevent the behavior change of the vehicle from becoming uncomfortable.

【図面の簡単な説明】[Brief description of drawings]

第1図は本発明後輪操舵装置を示す概念図、 第2図は本発明装置の一実施例を示す4輪操舵車両の操
舵システム図、 第3図は同システムにおけるコントローラのブロック線
図、 第4図は同コントローラの制御プログラムを示すフロー
チャート、 第5図は操舵周波数に対する後輪舵角ゲイン及び位相角
の特性図、 第6図は重心点横すべり角の変化具合を示すタイムチャ
ート、 第7図は定常ヨーレートゲイン特性図である。 1L,1R……前輪、2L,2R……後輪 3……ステアリングホイール 4……ステアリングギヤ 5L,5R……トランスバースリンク 6L,6R……アッパアーム 7……リヤサスペンションメンバ 9……アクチュエータ 12……電磁比例式圧力制御弁 17……コントローラ、18……操舵角センサ 19……車速センサ
FIG. 1 is a conceptual diagram showing a rear wheel steering device of the present invention, FIG. 2 is a steering system diagram of a four-wheel steering vehicle showing an embodiment of the present invention device, and FIG. 3 is a block diagram of a controller in the system. FIG. 4 is a flow chart showing a control program of the controller, FIG. 5 is a characteristic diagram of a rear wheel steering angle gain and a phase angle with respect to a steering frequency, FIG. 6 is a time chart showing how the center of gravity side slip angle changes, and FIG. The figure is a steady-state yaw rate gain characteristic diagram. 1L, 1R front wheel, 2L, 2R rear wheel 3 steering wheel 4 steering gear 5L, 5R transverse link 6L, 6R upper arm 7 rear suspension member 9 actuator 12 … Electromagnetic proportional pressure control valve 17 …… Controller, 18 …… Steering angle sensor 19 …… Vehicle speed sensor

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】前輪操舵時、前輪舵角δに対し後輪舵角
δを次の伝達関数 が満足されるよう与えて、車両の重心点横すべり角を0
に保つ後輪操舵装置において、 前記比例定数Kを、定常ヨーレートゲインが好適値とな
るよう修正する比例定数修正手段と、 比例定数の修正後における操舵周波数−後輪舵角ゲイン
特性が前記伝達関数による操舵周波数−後輪舵角ゲイン
特性と相似になるよう前記微分定数を修正する微分定数
修正手段とを具備してなることを特徴とする後輪操舵装
置。
1. When steering front wheels, the rear wheel steering angle δ r is expressed by the following transfer function with respect to the front wheel steering angle δ f. Is satisfied so that the side slip angle of the center of gravity of the vehicle is 0
In the rear wheel steering device which maintains the proportional constant K, the proportional constant K is modified so that the steady-state yaw rate gain becomes a suitable value, and the steering frequency-rear wheel steering angle gain characteristic after the correction of the proportional constant is the transfer function. A rear wheel steering device, comprising: a steering frequency-rear wheel steering angle gain characteristic according to 1.
JP11405289A 1989-05-09 1989-05-09 Rear wheel steering system Expired - Fee Related JP2515880B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11405289A JP2515880B2 (en) 1989-05-09 1989-05-09 Rear wheel steering system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11405289A JP2515880B2 (en) 1989-05-09 1989-05-09 Rear wheel steering system

Publications (2)

Publication Number Publication Date
JPH02293274A JPH02293274A (en) 1990-12-04
JP2515880B2 true JP2515880B2 (en) 1996-07-10

Family

ID=14627832

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11405289A Expired - Fee Related JP2515880B2 (en) 1989-05-09 1989-05-09 Rear wheel steering system

Country Status (1)

Country Link
JP (1) JP2515880B2 (en)

Also Published As

Publication number Publication date
JPH02293274A (en) 1990-12-04

Similar Documents

Publication Publication Date Title
US5964819A (en) Vehicle yawing behavior control apparatus
JPH07257416A (en) Control method of front and rear wheel steering vehicle
JP4032985B2 (en) Vehicle motion control device
JP2578142B2 (en) Auxiliary steering system for vehicles
JPH0825470B2 (en) Rear wheel rudder angle control method
JP4806930B2 (en) Vehicle steering system
JP5321107B2 (en) Turning behavior control device and turning behavior control method
US5180026A (en) Rear wheel steering angle control system for vehicle
JP2515880B2 (en) Rear wheel steering system
JP2510279B2 (en) Rear wheel steering angle control method
JP2520144B2 (en) Rear wheel steering angle control device
JP2505238B2 (en) 4-wheel steering control device
JPS63188512A (en) Vehicle attitude control device
JP3182972B2 (en) Rear wheel steering control device for vehicle
JP2548294B2 (en) Vehicle drive controller
JP2921311B2 (en) Cooperative control method between driving force movement and four-wheel steering
JP2591236B2 (en) Rear wheel steering system for front wheel drive vehicles
JP2539035B2 (en) Rear wheel steering system
JP2502761B2 (en) Four-wheel steering system for vehicles
JPH072130A (en) Method for controlling rear wheel steering device
JP2746002B2 (en) Driving force distribution device for four-wheel drive vehicle with four-wheel steering device
JP2770505B2 (en) Vehicle rear wheel steering angle control device
JP3082580B2 (en) Alignment control device
JP2528918B2 (en) Rear wheel steering angle control device
JP2520146B2 (en) Rear wheel steering angle control device

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees