JP2515707Y2 - Differential type differential pressure transmitter - Google Patents

Differential type differential pressure transmitter

Info

Publication number
JP2515707Y2
JP2515707Y2 JP1988044363U JP4436388U JP2515707Y2 JP 2515707 Y2 JP2515707 Y2 JP 2515707Y2 JP 1988044363 U JP1988044363 U JP 1988044363U JP 4436388 U JP4436388 U JP 4436388U JP 2515707 Y2 JP2515707 Y2 JP 2515707Y2
Authority
JP
Japan
Prior art keywords
pressure
differential
receiving portion
pressure receiving
spring
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP1988044363U
Other languages
Japanese (ja)
Other versions
JPH01146136U (en
Inventor
隆俊 堀田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shimadzu Corp
Original Assignee
Shimadzu Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shimadzu Corp filed Critical Shimadzu Corp
Priority to JP1988044363U priority Critical patent/JP2515707Y2/en
Publication of JPH01146136U publication Critical patent/JPH01146136U/ja
Application granted granted Critical
Publication of JP2515707Y2 publication Critical patent/JP2515707Y2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

【考案の詳細な説明】 (イ)産業上の利用分野 この考案は、微少圧力を検出するための微分型差圧伝
送器に関する。
DETAILED DESCRIPTION OF THE INVENTION (a) Field of Industrial Application The present invention relates to a differential type differential pressure transmitter for detecting a minute pressure.

(ロ)従来の技術 第3図は、従来の微少圧力検出用微分型差圧伝送器を
示す概略説明図である。
(B) Conventional Technology FIG. 3 is a schematic explanatory view showing a conventional differential pressure differential transmitter for detecting a minute pressure.

この差圧伝送器は、剛体ボディ本体51の内部中央に圧
力検出部52を設けると共に、ボディ本体51の両開口面に
受圧部53、53aを備え、この受圧部53、53aを圧力検出部
52の検出室54に連通させている。受圧部53、53aは、ボ
ディ本体51の開口面にシールダイヤフラム55を張設し、
空室内部56に封入液(シリコーンオイル)57を充填して
いる。そして、受圧部53、53aと検出室54を連通する圧
力伝達部(伝達管)58には、分岐管59を介してオリフィ
ス60を備えると共に、両受圧部53、53aにはそれぞれ逆
向きの一方向リリーフ弁61、61aを備えた連通部(連通
管)62、62aを備えている。また、前記検出室54には中
央部に可動電極63を配備し、可動電極63の両側には対向
状に固定電極64、64aを配備している。前記一方の受圧
部53aは、流量や圧力を計測する配管、或いは液位や圧
力を計測するタンク等のプロセス系(図示せず)に直接
配置されている。
This differential pressure transmitter is provided with a pressure detecting portion 52 at the center of the inside of a rigid body 51, and pressure receiving portions 53 and 53a on both opening surfaces of the body 51. The pressure receiving portions 53 and 53a are used as pressure detecting portions.
It communicates with 52 detection chambers 54. The pressure receiving portion 53, 53a, the seal diaphragm 55 is stretched on the opening surface of the body 51,
A filling liquid (silicone oil) 57 is filled in the inner space 56 of the chamber. The pressure transmitting portion (transmission pipe) 58 that communicates the pressure receiving portions 53 and 53a with the detection chamber 54 is provided with an orifice 60 via a branch pipe 59, and the pressure receiving portions 53 and 53a have opposite directions. Communication parts (communication pipes) 62, 62a having directional relief valves 61, 61a are provided. Further, a movable electrode 63 is provided at the center of the detection chamber 54, and fixed electrodes 64 and 64a are provided on opposite sides of the movable electrode 63 so as to face each other. The one pressure receiving portion 53a is directly arranged in a pipe for measuring a flow rate or pressure, or a process system (not shown) such as a tank for measuring a liquid level or pressure.

差圧の検出に際しては、プロセス系に直接配置された
受圧部53に圧力が導入される。この受圧部53に作用する
圧力は、シールダイヤフラム55により封入液(シリコー
ンオイル)57に伝達され、検出室54に伝えられて、可動
電極(金属板)63に作用する。この高圧と低圧により可
動電極63が変位する。この結果、可動電極63と固定電極
(検出室の壁面に配備された固定電極板)64、64a間の
静電容量が変化し、この容量変化をリード線(図示せ
ず)を介して導出する。つまり、リード線に接続する電
気信号伝達部及び信号増幅・変換部を介して導出し(図
示せず)、差圧を検出して伝達する。前記、リリーフ弁
61、61aは限界を越える圧力が受圧部53に作用した際の
安全保護用として働き、オリフィス60は受圧部53に作用
する急な一定圧のみが検出部54に作用するように、つま
り微分的な圧力のみを検出し得るように働くものであ
る。従って、第4図の圧力信号特性の説明図で示すよう
に、受圧部53に急な圧力変化(ΔP)が作用した時の
み、入力圧力信号が得られ、穏やかな時間のもとで徐々
に加わる圧力に対しては、検出室54は変化せず、急な圧
力変化が作用した時のみ、出力電圧(ΔV)が得られ、
その後オリフィス60により出力電圧は徐々に降下するよ
うになっている。つまり、微分型の差圧伝送構造となっ
ている。
When detecting the differential pressure, the pressure is introduced into the pressure receiving portion 53 directly arranged in the process system. The pressure acting on the pressure receiving portion 53 is transmitted to the enclosed liquid (silicone oil) 57 by the seal diaphragm 55, is transmitted to the detection chamber 54, and acts on the movable electrode (metal plate) 63. The movable electrode 63 is displaced by the high pressure and the low pressure. As a result, the electrostatic capacitance between the movable electrode 63 and the fixed electrodes (fixed electrode plate provided on the wall surface of the detection chamber) 64, 64a changes, and this capacitance change is derived via a lead wire (not shown). . That is, the pressure difference is detected (not shown) via the electric signal transmission unit and the signal amplification / conversion unit connected to the lead wire, and the differential pressure is detected and transmitted. The relief valve
61 and 61a serve as a safety protection when a pressure exceeding the limit acts on the pressure receiving portion 53, and the orifice 60 acts so that only a sudden constant pressure acting on the pressure receiving portion 53 acts on the detecting portion 54, that is, differential. It works so that it can detect only various pressures. Therefore, as shown in the pressure signal characteristic diagram of FIG. 4, the input pressure signal is obtained only when a sudden pressure change (ΔP) is applied to the pressure receiving portion 53, and the input pressure signal is gradually obtained under a moderate time. The detection chamber 54 does not change with respect to the applied pressure, and the output voltage (ΔV) can be obtained only when a sudden pressure change is applied.
After that, the output voltage is gradually decreased by the orifice 60. That is, it has a differential type differential pressure transmission structure.

(ハ)考案が解決しようとする課題 上記、従来の微分型差圧伝送器は、受圧部と圧力検出
部間に封入液(作動流体)を充填する構造のもので、受
圧部の作動流体容量の変化で、差圧を検出する方式であ
る。従って、仮に測定レンジ幅を広くとる場合には、受
圧部の容積を大きくする必要がある。ところが、受圧部
の容積を大きく設定した場合には、受圧部の有効受圧面
積が変化し、直線性が悪くなる。つまり、リニア特性
(直線性)が悪くなる。このため、従来は微少圧力の変
化を低圧力範囲(例えば0乃至5Kg/m2)程度しか検出し
得ない不利があった。
(C) Problems to be Solved by the Invention The above-mentioned conventional differential type differential pressure transmitter has a structure in which the filled liquid (working fluid) is filled between the pressure receiving part and the pressure detecting part, and the working fluid capacity of the pressure receiving part Is a method of detecting the differential pressure by the change of. Therefore, if the measurement range width is wide, it is necessary to increase the volume of the pressure receiving portion. However, when the volume of the pressure receiving portion is set to be large, the effective pressure receiving area of the pressure receiving portion changes and the linearity deteriorates. That is, the linear characteristic (linearity) is deteriorated. For this reason, conventionally, there is a disadvantage that a change in a minute pressure can be detected only in a low pressure range (for example, 0 to 5 Kg / m 2 ).

この考案は、以上のような課題を解消させ、低圧側か
ら高圧側まで広い範囲に亘って、精度よく微少圧力変化
を検出し得る微分型差圧伝送器を提供することを目的と
する。
An object of the present invention is to solve the above problems and to provide a differential pressure differential transmitter capable of accurately detecting a minute pressure change over a wide range from a low pressure side to a high pressure side.

(ニ)課題を解決するための手段及び作用 この目的を達成させるために、この考案の微分型差圧
伝送器では、次のような構成としている。
(D) Means and Actions for Solving the Problem In order to achieve this object, the differential type differential pressure transmitter of the present invention has the following configuration.

微分型差圧伝送器は、ボディ本体の内部中央に圧力検
出部を設けると共に、ボディ本体の両開口面に封入液を
充填した受圧部を設け、この受圧部をそれぞれの伝達管
で前記圧力検出部の検出室に連通させ、且つ前記両伝達
管をオリフィスを備えた分岐管を介して連通させてなる
微分型差圧伝送器において、前記一方の受圧部に、この
受圧部のダイヤフラムに当接されると共に測定圧力に対
向する圧力を付与する静圧付与用部材の充填された平衡
用ベローズと、この平衡用ベローズを受圧部のダイヤブ
ラムに対して付勢する交換可能な平衡スプリングとを有
する圧力平衡手段を設けて構成されている。
The differential type differential pressure transmitter is equipped with a pressure detector in the center of the body, and pressure receivers filled with filled liquid on both openings of the body. In a differential type differential pressure transmitter that communicates with the detection chamber of the other section and communicates both of the transmission tubes through a branch pipe having an orifice, the one pressure receiving section contacts the diaphragm of this pressure receiving section. And a balancing bellows filled with a static pressure imparting member that applies a pressure opposite to the measured pressure, and a replaceable balancing spring that biases the balancing bellows against the diaphragm of the pressure receiving portion. The pressure balancing means is provided.

このような構成を有する微分型差圧伝送器では、例え
ば一方の受圧部(プロセス系から導入する圧力を受圧す
る受圧部に対向する受圧部)側に、圧力平衡手段(圧力
平衡ハウジング)を付設している。この圧力平衡ハウジ
ングは、受圧部のシールダイヤフラムの外側に、例えば
封入液を充填した平衡用ベローズと、この平衡用ベロー
ズに圧力を作用させる平衡スプリングとから構成され
る。この平衡スプリングの圧力を設定することで、最大
測定範囲を設定するようになっている。例えば、第2図
の圧力電圧特性の説明図に示すように、圧力0〜P1の圧
力範囲で、微少圧力を検出する場合には、荷重を0と
し、つまり、平衡スプリング(平衡用ベローズ)により
受圧部に予め作用する圧力を0としておく。これによ
り、プロセス系側の受圧部に作用する導入圧力が0〜P1
の範囲で、平衡スプリングが撓む。この時、平衡ベロー
ズの変位により、最大V1の容積変化があり、その点が最
大の測定範囲となる。つまり、測定圧力の最大測定範囲
が設定される。
In the differential type differential pressure transmitter having such a configuration, for example, a pressure balancing means (pressure balancing housing) is attached to one pressure receiving portion (pressure receiving portion facing the pressure receiving portion for receiving pressure introduced from the process system) side. are doing. This pressure balance housing is composed of a balance bellows filled with, for example, a filling liquid on the outside of the seal diaphragm of the pressure receiving portion, and a balance spring for exerting a pressure on the balance bellows. The maximum measurement range is set by setting the pressure of the balance spring. For example, as shown in the explanatory diagram of the pressure-voltage characteristic of FIG. 2, when detecting a minute pressure in the pressure range of pressure 0 to P 1 , the load is set to 0, that is, the balance spring (balance bellows). Thus, the pressure applied to the pressure receiving portion in advance is set to 0. As a result, the introduction pressure acting on the pressure receiving part on the process side is 0 to P 1
In the range of, the balance spring bends. At this time, the displacement of the equilibrium bellows causes a maximum volume change of V 1 , and that point becomes the maximum measurement range. That is, the maximum measurement range of the measurement pressure is set.

仮に、第2図で示す圧力P2〜P3の範囲で、微少圧力変
化を検出する場合には、平衡スプリングを取替え、つま
りP1測定用のスプリングに変えて、例えば長さの長いス
プリング(P2〜P3用のスプリング)を平衡ハウジングに
装着する。そして、このスプリングを圧縮させ、導入圧
力P2に対応する荷重に設定して、平衡ベローズにより受
圧部に静圧力を作用させる。これにより、(P3−P2)範
囲の容積変化V3をカバーすることが出来る。つまり、平
衡ハウジング(ベローズ、スプリング)により、測定圧
力に対向する圧力(静圧力)を受圧部に予め作用させて
おくことで、従来同様の一定容積の作動流体を使用して
(受圧部の容積を大きくせずに)、広い圧力範囲におけ
る微少圧力変化を精度よく検出し得る。
If a slight pressure change is detected in the pressure range of P 2 to P 3 shown in FIG. 2 , the balance spring is replaced, that is, the spring for measuring P 1 is replaced with, for example, a long spring ( the P 2 to P 3 for the spring) is attached to equilibrate housing. Then, this spring is compressed and set to a load corresponding to the introduction pressure P 2 , and a static pressure is applied to the pressure receiving portion by the balance bellows. As a result, the volume change V 3 in the (P 3 −P 2 ) range can be covered. In other words, by using a balanced housing (bellows, spring) to apply a pressure (static pressure) that opposes the measured pressure to the pressure receiving portion in advance, a constant volume of working fluid similar to the conventional one is used (volume of pressure receiving portion). Can be accurately detected in a wide pressure range.

(ホ)実施例 第1図は、この考案に係る微分型差圧伝送器の具体的
な一実施例を示す概略説明図である。
(E) Embodiment FIG. 1 is a schematic explanatory view showing a specific embodiment of the differential type differential pressure transmitter according to the present invention.

微分型差圧伝送器は、公知のように、剛体ボディ本体
一の内部中央に圧力検出部11を設けると共に、ボディ本
体1の両開口面に受圧部2、2aを備え、この受圧部2、
2aを圧力伝達部(伝達管)14を介して圧力検出部11の検
出室12にに連通させている。受圧部2、2aは、ボディ本
体1の開口面にシールダイヤフラム21を張設し、空室内
部13に封入液(シリコーンオイル)22を充填している。
そして、上記圧力伝達部(伝達管)14には、分岐管15を
介して微分型差圧伝送を可能にするオリフィス16を備え
ると共に、両受圧部2、2aにはそれぞれ逆向きの一方向
リリーフ弁17、17aを備えた連通部(連通管)18、18aを
備えて、受圧部2、2aの安全生を企図している。また、
前記検出室12には中央部に可動電極19を配備し、可動電
極19の両側には対向状に固定電極20、20aを配備してい
る。前記一方の受圧部2は、流量や圧力を計測する配
管、或いは液位や圧力を計測するタンク等のプロセス系
(圧力導入パイプ)4に直接配置されている。
As is well known, the differential type differential pressure transmitter is provided with a pressure detecting portion 11 at the inner center of the rigid body body 1 and pressure receiving portions 2 and 2a on both opening surfaces of the body body 1.
2a is connected to the detection chamber 12 of the pressure detection unit 11 via the pressure transmission unit (transmission pipe) 14. In the pressure receiving portions 2 and 2a, a seal diaphragm 21 is stretched on the opening surface of the body body 1, and a filling liquid (silicone oil) 22 is filled in the space 13 inside.
The pressure transmitting portion (transmission pipe) 14 is provided with an orifice 16 that enables differential type differential pressure transmission via a branch pipe 15, and both pressure receiving portions 2 and 2a have unidirectional reliefs in opposite directions. The communication parts (communication pipes) 18 and 18a provided with the valves 17 and 17a are provided, and the safety of the pressure receiving parts 2 and 2a is intended. Also,
A movable electrode 19 is provided in the center of the detection chamber 12, and fixed electrodes 20 and 20a are provided on opposite sides of the movable electrode 19 so as to face each other. The one pressure receiving portion 2 is directly arranged in a pipe for measuring a flow rate or pressure, or a process system (pressure introducing pipe) 4 such as a tank for measuring a liquid level or pressure.

差圧の検出に際しては、プロセス系4に直接配置され
た受圧部2に圧力P(例えばP1、P2、P3)が導入され
る。この受圧部2に作用する圧力Pは、シールダイヤフ
ラム21により封入液(シリコーンオイル)22に伝達さ
れ、検出室12に伝えられて、可動電極(金属板)19に作
用する。この高圧と低圧により可動電極19が変位する。
この結果、可動電極19と固定電極(検出室12の壁面に配
備された固定電極板)20、20a間の静電容量が変化し、
この容量変化をリード線(図示せず)を介して導出す
る。つまり、リード線に接続する電気信号伝達部及び信
号増幅・変換部を介して導出し(図示せず)、差圧を検
出して伝達する。
When detecting the differential pressure, the pressure P (for example, P 1 , P 2 , P 3 ) is introduced into the pressure receiving portion 2 directly arranged in the process system 4. The pressure P acting on the pressure receiving portion 2 is transmitted to the enclosed liquid (silicone oil) 22 by the seal diaphragm 21, is transmitted to the detection chamber 12, and acts on the movable electrode (metal plate) 19. The movable electrode 19 is displaced by the high pressure and the low pressure.
As a result, the electrostatic capacitance between the movable electrode 19 and the fixed electrode (fixed electrode plate provided on the wall surface of the detection chamber 12) 20, 20a changes,
This capacitance change is derived via a lead wire (not shown). That is, the pressure difference is detected (not shown) via the electric signal transmission unit and the signal amplification / conversion unit connected to the lead wire, and the differential pressure is detected and transmitted.

この考案の特徴は、一方の受圧部2aに圧力平衡手段3
を設け、受圧部2aに作用させる静圧力を選択すること
で、測定圧力Pの測定最大範囲を任意に設定し得る点に
ある。
The feature of this invention is that the pressure balance means 3 is provided on one pressure receiving portion 2a.
Is provided and the static pressure applied to the pressure receiving portion 2a is selected, so that the maximum measurement range of the measurement pressure P can be arbitrarily set.

圧力平衡手段(圧力平衡ハウジング)3は、受圧部
(シールダイヤフラム21)2aに対し、測定圧力Pに対向
する圧力を付与するための平衡ベローズ31と、この平衡
ベローズ31に圧力を附勢する交換可能な平衡スプリング
32とから構成されている。
The pressure balance means (pressure balance housing) 3 includes a balance bellows 31 for applying a pressure opposite to the measured pressure P to the pressure receiving portion (seal diaphragm 21) 2a, and an exchange for energizing the balance bellows 31. Possible balancing springs
It consists of 32 and.

圧力平衡ハウジング3は、受圧部2a側のボディ本体1
に取付けられた、両端開口の偏平な円筒体である。そし
て、このハウジング3の先端部にはフランジ状のアーム
部33を突設している。平衡ベローズ31は、ハウジング3
内部に配備され、周縁部をハウジング3内周縁に止着
し、受圧部2aのシールダイヤフラム21との空間部に、静
圧付与用部材(例えばシリコーンオイル或いは空圧材34
を封入充填している。平衡スプリング32は、前記アーム
部33と平衡ベローズ31との間に介装配備され、交換可能
にハウジング3に取付けられている。この平衡スプリン
グ32は、平衡ベローズ31を介して受圧部2aに対し、測定
圧力Pに対向する圧力を付与し、測定最大範囲を設定す
るためのものである。平衡スプリング32は、第2図の圧
力(荷重)出力電圧特性の説明図で示すように、例えば
圧力P1、P2、P3に対応する圧力を付与し得るようなバネ
力を有する3種類のスプリング32(A、B、C)が用意
される。実施例では、同一のバネ力を有する(同一資材
で形成された)スプリング長さを異にした3種類のスプ
リング32を使用し、測定圧力P(P1、P2、P3)に応じ
て、選択使用するようになっている。例えば、測定圧力
がP1である場合には、最も長さの短いスプリング32を使
用し、測定圧力がP3である場合には、最も長いスプリン
グ32を使用する。
The pressure balance housing 3 is the body 1 on the pressure receiving portion 2a side.
Is a flat cylindrical body with both ends opened. A flange-shaped arm portion 33 is projectingly provided at the tip of the housing 3. Balance bellows 31 is housing 3
A member for static pressure application (for example, silicone oil or a pneumatic material 34) is provided inside and fixed to the inner peripheral edge of the housing 3 in the space between the pressure receiving portion 2a and the seal diaphragm 21.
Is sealed and filled. The balance spring 32 is disposed between the arm portion 33 and the balance bellows 31 and is replaceably attached to the housing 3. The balance spring 32 is for applying a pressure opposite to the measurement pressure P to the pressure receiving portion 2a via the balance bellows 31 and setting the maximum measurement range. As shown in the explanatory diagram of the pressure (load) output voltage characteristic of FIG. 2, the balance spring 32 has, for example, three types of spring forces capable of giving a pressure corresponding to the pressures P 1 , P 2 and P 3. The springs 32 (A, B, C) are prepared. In the embodiment, three types of springs 32 having the same spring force (formed of the same material) and different spring lengths are used, and the three types of springs 32 are used according to the measured pressure P (P 1 , P 2 , P 3 ). , Selectable to use. For example, when the measured pressure is P 1 , the shortest spring 32 is used, and when the measured pressure is P 3 , the longest spring 32 is used.

このような構成を有する微分型差圧伝送器により、例
えば静圧力0〜P1の範囲で微少圧力を検出するには、予
め長さの短いスプリング32をハウジング3に取付ける。
圧力0では、スプリング32より平衡ベローズ31を介して
受圧部2aに荷重が作用しないようにしている。これによ
り、測定圧力の最大範囲P1が設定される。例えば、第2
図の圧力出力電圧特性の説明図に示すように、静圧力が
0〜P1の圧力範囲で、微少圧力差に応じ、平衡スプリン
グ32が撓む。この時、平衡ベローズ31の変位により、最
大V1の容積変化があり、その点が最大の測定範囲とな
る。
In order to detect a minute pressure in the range of static pressure 0 to P 1 by the differential type differential pressure transmitter having such a structure, a spring 32 having a short length is attached to the housing 3 in advance.
At a pressure of 0, the spring 32 prevents the load from acting on the pressure receiving portion 2a via the balance bellows 31. As a result, the maximum range P 1 of measured pressure is set. For example, second
As shown in the diagram for explaining the pressure output voltage characteristic in the figure, the balance spring 32 bends in accordance with the slight pressure difference in the pressure range of static pressure 0 to P 1 . At this time, the displacement of the equilibrium bellows 31 causes a maximum volume change of V 1 , and that point becomes the maximum measurement range.

一方、第2図で示す静圧力P2〜P3の範囲で、微少圧力
変化を検出する場合には、平衡スプリング32を取替え、
例えば長さの長いスプリング32を圧力平衡ハウジング3
に装着する。そして、このスプリング32を圧縮させ、つ
まり導入圧力P2に対応する荷重に設定して、平衡ベロー
ズ31により受圧部2aに荷重を作用させる。これにより、
(P3−P2)範囲の容積変化V3をカバーすることが出来
る。つまり、圧力平衡手段(ベローズ31、スプリング3
2)3により、測定圧力P2〜P3の下限P2に対向する圧力
を、予め受圧部2aに作用させておくことで、受圧部2、
2aの容積を大きくすることなく、広い圧力範囲における
微少圧力変化を精度よく検出し得る。従って、差圧検出
に際しては、測定圧力の最大測定範囲を設定するから、
測定レンジ幅を拡げる必要がなく、入力圧力・出力電圧
特性を大きくとることが出来、測定感度を向上し得る。
On the other hand, in the case of detecting a slight pressure change in the range of static pressure P 2 to P 3 shown in FIG. 2 , replace the balance spring 32,
For example, a long spring 32 may be attached to the pressure balancing housing 3
Attach to. Then, the spring 32 is compressed, that is, the load is set to correspond to the introduction pressure P 2 , and the balance bellows 31 applies the load to the pressure receiving portion 2a. This allows
It is possible to cover the volume change V 3 in the range of (P 3 −P 2 ). In other words, pressure balancing means (bellows 31, spring 3
2) By applying a pressure facing the lower limit P 2 of the measured pressures P 2 to P 3 to the pressure receiving portion 2a in advance by 3 , the pressure receiving portion 2,
It is possible to accurately detect a minute pressure change in a wide pressure range without increasing the volume of 2a. Therefore, when detecting the differential pressure, the maximum measurement range of the measured pressure is set,
There is no need to expand the measurement range width, the input pressure and output voltage characteristics can be increased, and the measurement sensitivity can be improved.

尚、感度特性を一定にするためには、第2図の圧力
(荷重)出力電圧特性の説明図に示すように、直線
「A」のようなバネ特性(バネ定数)を有するスプリン
グを選定する必要がある。直線「B」或いは直線「C」
の特性を有するスプリングを選択する場合には、圧力信
号特性も変わることとなる。
In order to keep the sensitivity characteristic constant, a spring having a spring characteristic (spring constant) like a straight line "A" is selected as shown in the explanatory diagram of the pressure (load) output voltage characteristic in FIG. There is a need. Straight line "B" or straight line "C"
When a spring having the characteristic of 1 is selected, the pressure signal characteristic will also change.

(ヘ)考案の効果 この考案では、以上のように、一方の受圧部に測定圧
力範囲内の下限に対向する圧力を付与するための圧力平
衡手段を配備し、測定範囲の上限を任意に選択設定する
こととしたから、一定容積の受圧部で広い範囲にわたり
微少な圧力変化を正確に検出し得る。また、この考案で
は受圧部に対し測定圧力に対向する圧力を付与する平衡
スプリングを交換可能とし、平衡スプリングの選択によ
り任意の最大測定範囲を設定し得るから、測定レンジ幅
を広くとる必要がなく、入力圧力・出力電圧特性を大き
くとることが出来、測定感度を向上し得る。更に、圧力
平衡手段の付与力を測定レンジ毎に変えて(平衡スプリ
ングの特性を変えて)、差圧を検出するため、全体の構
成を小型化し得る。また、受圧部の容積を大きくする必
要がないから、受圧部の有効受圧面積が変化せず、リニ
ア特性(直線性)が低下しない等、考案目的を達成した
優れた効果を有する。
(F) Effect of the device In this device, as described above, the pressure balancing means for applying a pressure opposite to the lower limit of the measurement pressure range is provided to one pressure receiving part, and the upper limit of the measurement range is arbitrarily selected. Since the setting is made, it is possible to accurately detect a minute pressure change over a wide range in the pressure receiving portion having a constant volume. Further, in this invention, the balance spring for applying a pressure opposite to the measured pressure to the pressure receiving portion can be exchanged, and an arbitrary maximum measurement range can be set by selecting the balance spring, so that it is not necessary to widen the measurement range width. The input pressure and output voltage characteristics can be made large, and the measurement sensitivity can be improved. Furthermore, since the differential pressure is detected by changing the applied force of the pressure balancing means for each measurement range (changing the characteristics of the balancing spring), the overall configuration can be miniaturized. Further, since it is not necessary to increase the volume of the pressure receiving portion, the effective pressure receiving area of the pressure receiving portion does not change, and the linear characteristic (linearity) does not deteriorate.

【図面の簡単な説明】[Brief description of drawings]

第1図は、実施例差圧伝送器を示す概略説明図、第2図
は、実施例差圧伝送器の圧力(荷重)出力電圧特性を示
す説明図、第3図は、従来の差圧伝送器を示す概略説明
図、第4図は、微分型差圧伝送器の圧力信号特性を示す
説明図である。 1:ボディ本体、2・2a:受圧部、3:圧力平衡手段、11:圧
力検出部、12:検出室、14:伝達管、15:分岐管、16:オリ
フィス、21:ダイヤフラム、31:平衡用ベローズ、32:平
衡スプリング、34:静圧付与用部材
FIG. 1 is a schematic explanatory view showing the differential pressure transmitter of the embodiment, FIG. 2 is an explanatory view showing pressure (load) output voltage characteristics of the differential pressure transmitter of the embodiment, and FIG. 3 is a conventional differential pressure transmitter. FIG. 4 is a schematic explanatory diagram showing the transmitter, and FIG. 4 is an explanatory diagram showing pressure signal characteristics of the differential type differential pressure transmitter. 1: Body body, 2 ・ 2a: Pressure receiving part, 3: Pressure balancing means, 11: Pressure detecting part, 12: Detection chamber, 14: Transfer pipe, 15: Branch pipe, 16: Orifice, 21: Diaphragm, 31: Balance Bellows, 32: Balance spring, 34: Static pressure applying member

Claims (1)

(57)【実用新案登録請求の範囲】(57) [Scope of utility model registration request] 【請求項1】ボディ本体の内部中央に圧力検出部を設け
ると共に、ボディ本体の両開口面に封入液を充填した受
圧部を設け、この受圧部をそれぞれの伝達管で前記圧力
検出部の検出室に連通させ、且つ前記両伝達管をオリフ
ィスを備えた分岐管を介して連通させてなる微分型差圧
伝送器において、前記一方の受圧部に、この受圧部のダ
イヤフラムに当接されると共に測定圧力に対向する圧力
を付与する静圧付与用部材の充填された平衡用ベローズ
と、この平滑用ベローズを受圧部のダイヤフラムに対し
て付勢する交換可能な平衡スプリングとを有する圧力平
行手段を設けたことを特徴とする微分型差圧伝送器。
1. A pressure detecting portion is provided at the center of the inside of a body body, and pressure receiving portions filled with an enclosed liquid are provided on both opening surfaces of the body body. The pressure receiving portions are detected by the respective transmission pipes by the pressure detecting portion. In a differential type differential pressure transmitter, which communicates with a chamber and communicates both of the transmission pipes through a branch pipe having an orifice, the differential pressure transmitter of the one pressure receiving portion is brought into contact with the diaphragm of the pressure receiving portion. A pressure parallel means having a balance bellows filled with a static pressure applying member for applying a pressure opposite to the measured pressure and an exchangeable balance spring for biasing the smoothing bellows against the diaphragm of the pressure receiving portion. A differential type differential pressure transmitter characterized by being provided.
JP1988044363U 1988-03-31 1988-03-31 Differential type differential pressure transmitter Expired - Lifetime JP2515707Y2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1988044363U JP2515707Y2 (en) 1988-03-31 1988-03-31 Differential type differential pressure transmitter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1988044363U JP2515707Y2 (en) 1988-03-31 1988-03-31 Differential type differential pressure transmitter

Publications (2)

Publication Number Publication Date
JPH01146136U JPH01146136U (en) 1989-10-09
JP2515707Y2 true JP2515707Y2 (en) 1996-10-30

Family

ID=31270724

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1988044363U Expired - Lifetime JP2515707Y2 (en) 1988-03-31 1988-03-31 Differential type differential pressure transmitter

Country Status (1)

Country Link
JP (1) JP2515707Y2 (en)

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0345159Y2 (en) * 1984-12-29 1991-09-24

Also Published As

Publication number Publication date
JPH01146136U (en) 1989-10-09

Similar Documents

Publication Publication Date Title
US3559488A (en) Differential pressure measuring apparatus
US4072057A (en) Differential pressure cell with diaphragm tension and overpressure protection
GB1603823A (en) Differential pressure sensing device
US4172387A (en) Pressure responsive apparatus
JP2515707Y2 (en) Differential type differential pressure transmitter
US4299129A (en) Pressure measuring device
US3313158A (en) High overload pressure transducer
US3350931A (en) System for measuring changes in fluid pressure
DE50205473D1 (en) PRESSURE TRANSDUCER WITH DISCONNECTED MEMBRANE AND TEMPERATURE COMPENSATION
GB1558770A (en) Differential pressure transducers
JPH046890B2 (en)
JPH0749397Y2 (en) Differential pressure transmitter
JPH0833334B2 (en) Differential pressure transmitter
JPH0752601Y2 (en) Differential pressure transmitter
RU2034254C1 (en) Semiconducting pressure gauge
JPH0395425A (en) Semiconductor device for measuring differential pressure
SU1527529A1 (en) Pressure transducer
JPS5930444Y2 (en) differential pressure detector
JPS601404Y2 (en) differential pressure transmitter
JPS5739331A (en) Differential pressure and pressure detector
JPS62175638A (en) Differential transmitter
JPS58179328A (en) Pressure variation detecting device
JPS57191526A (en) Pressure sensor
JPH05223674A (en) Differential pressure transmitter
JPS63204152A (en) Acceleration detector