JP2514689B2 - Manufacturing method for optical fiber preform - Google Patents

Manufacturing method for optical fiber preform

Info

Publication number
JP2514689B2
JP2514689B2 JP10426188A JP10426188A JP2514689B2 JP 2514689 B2 JP2514689 B2 JP 2514689B2 JP 10426188 A JP10426188 A JP 10426188A JP 10426188 A JP10426188 A JP 10426188A JP 2514689 B2 JP2514689 B2 JP 2514689B2
Authority
JP
Japan
Prior art keywords
gas
optical fiber
glass
transparent
preform
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP10426188A
Other languages
Japanese (ja)
Other versions
JPH01275441A (en
Inventor
俊雄 彈塚
弘 横田
一郎 土屋
真澄 伊藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP10426188A priority Critical patent/JP2514689B2/en
Publication of JPH01275441A publication Critical patent/JPH01275441A/en
Application granted granted Critical
Publication of JP2514689B2 publication Critical patent/JP2514689B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B37/00Manufacture or treatment of flakes, fibres, or filaments from softened glass, minerals, or slags
    • C03B37/01Manufacture of glass fibres or filaments
    • C03B37/012Manufacture of preforms for drawing fibres or filaments
    • C03B37/014Manufacture of preforms for drawing fibres or filaments made entirely or partially by chemical means, e.g. vapour phase deposition of bulk porous glass either by outside vapour deposition [OVD], or by outside vapour phase oxidation [OVPO] or by vapour axial deposition [VAD]
    • C03B37/01446Thermal after-treatment of preforms, e.g. dehydrating, consolidating, sintering
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B37/00Manufacture or treatment of flakes, fibres, or filaments from softened glass, minerals, or slags
    • C03B37/01Manufacture of glass fibres or filaments
    • C03B37/012Manufacture of preforms for drawing fibres or filaments
    • C03B37/014Manufacture of preforms for drawing fibres or filaments made entirely or partially by chemical means, e.g. vapour phase deposition of bulk porous glass either by outside vapour deposition [OVD], or by outside vapour phase oxidation [OVPO] or by vapour axial deposition [VAD]
    • C03B37/01446Thermal after-treatment of preforms, e.g. dehydrating, consolidating, sintering
    • C03B37/0146Furnaces therefor, e.g. muffle tubes, furnace linings

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は光ファイバ用多孔質ガラス母材(以下多孔質
母材と略す)を透明ガラス化して光ファイバ用プリフォ
ームを安定に製造する方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention is a method for stably producing a preform for an optical fiber by making a porous glass preform for an optical fiber (hereinafter abbreviated as a porous preform) transparent glass. Regarding

[従来の技術] 光ファイバ用プリフォームを製造する方法としては、
従来、気相軸付け法(Vapour−phase Axial Depositi
on method,VAD法と略記する)、外付け法(Outside V
apour Deposition or Outside Vapour−phase Oxi
dation method,OVDまたはOVPO法と略称する)等の気相
合成法により、ガラス微粒子集合体または石英ロッドと
その外周に形成したガラス微粒子集合体との複合体等の
多孔質母材を合成し、これを加熱して焼結し、透明ガラ
ス化することにより光ファイバ用プリフォームを得る方
法がある。また、別途合成したガラス微粒子を高圧下で
固める圧粉法によりガラス微粒子集合体の多孔質母材を
合成して、これを加熱透明化する方法もある。
[Prior Art] As a method of manufacturing an optical fiber preform,
Conventionally, vapor-phase axial deposition method (Vapour-phase Axial Depositi
on method, abbreviated as VAD method), Outside V
apour Deposition or Outside Vapour−phase Oxi
dation method, abbreviated as OVD or OVPO method), etc. to synthesize a porous matrix such as a glass particle aggregate or a composite of a glass rod and a glass rod aggregate formed on the outer periphery thereof. There is a method of obtaining a preform for an optical fiber by heating and sintering this and making it transparent glass. In addition, there is also a method of synthesizing a porous base material of a glass fine particle aggregate by a powder compacting method in which separately synthesized glass fine particles are solidified under high pressure, and heating and transparentizing the same.

このような多層質母材を加熱透明化する方法として
は、加熱炉中の高純度の石英製容器(炉芯管と称する)
内に多孔質母材を挿入しておき、この容器内をHe雰囲気
として加熱透明化する方法(文献;研究実用化報告、第
29巻第10号、1980年、p.1719〜1729)、または容器内を
真空状態として加熱透明化する方法(特開昭54−14222
2,同56−63833各号公報)がある。Heまたは真空雰囲気
とする理由は、透明ガラス化の際にガラス内にガスが残
存するのを防ぐことにより、プリフォーム中の気泡生成
をなくして高品質な透明ガラス体を得るためである。
As a method for making such a multilayer base material transparent by heating, a high-purity quartz container in a heating furnace (referred to as a furnace core tube)
A method in which a porous base material is inserted in the container and the inside of this container is heated and made transparent by heating it in a He atmosphere (reference;
29, No. 10, 1980, pp. 1719 to 1729), or a method of heating and transparentizing the inside of a container in a vacuum state (JP-A-54-14222).
2, gazette 56-63833). The reason for using He or a vacuum atmosphere is to prevent gas from remaining in the glass during transparent vitrification, thereby eliminating bubble generation in the preform and obtaining a high-quality transparent glass body.

[発明が解決しようとする課題] 上記従来法のうちでは、He雰囲気での焼結がより一般
的であるが、He雰囲気にした場合でも透明ガラス中に残
存する気泡の問題を完全に解消するには至っていなかっ
た。
[Problems to be Solved by the Invention] Among the above conventional methods, sintering in a He atmosphere is more common, but the problem of bubbles remaining in the transparent glass is completely solved even in a He atmosphere. Had not reached.

気泡中のガスについては多孔質ガラス体中に初めから
含まれていたガス、例えばN2,H2,O2,Ar等のガラス微粒
子集合体合成時の雰囲気ガスが十分にHeガスに置換され
ないで残っていると考えられ、透明化時の条件を種々改
善して気泡解消につとめたが、無くすことはできなかっ
た。そこで、この気泡中のガス分析を行ったところ、ガ
スはその殆どがHeであることが解った。すなわち、透明
化時に母材中から抜けきらずに吸着されていたHeガスに
より、気泡が発生することが明らかとなった。
Not substituted on porous gas contained from the beginning in the vitreous, for example N 2, H 2, O 2 , Ar ambient gas is sufficiently He gas at the time of glass fine particle aggregates synthesis such as for gas bubble It was considered that the bubbles remained, and various conditions at the time of making transparent were improved to try to eliminate bubbles, but they could not be eliminated. Then, when the gas in this bubble was analyzed, it was found that most of the gas was He. That is, it was clarified that bubbles were generated by the He gas that was adsorbed without being completely removed from the base material during the transparentization.

そこで本発明者らは、透明化時の雰囲気として真空状
態(減圧下)で透明化する方法を検討した。
Therefore, the present inventors have studied a method of making transparent in a vacuum state (under reduced pressure) as an atmosphere for making transparent.

真空下で加熱し透明ガラス化する場合には、強度上の
問題および構造上の問題から、容器すべてに高純度石英
を使用することはできないため、カーボン製のものを使
用するのが一般的である。しかし、カーボン製の容器を
使用すると、カーボンの粉末等の不純物が炉内に浮遊し
やすく、これがガラス内に含有されやすくなる。
When heating in a vacuum to produce transparent glass, it is not possible to use high-purity quartz for the entire container due to strength and structural problems, so it is common to use a carbon product. is there. However, when a container made of carbon is used, impurities such as carbon powder tend to float in the furnace and are easily contained in the glass.

そこで、これらの不純物を取り去る目的で、炉芯管内
に微量のガスを吹き流す。または、母材中に含まれるOH
基を取り去り、ファイバー化した後のOH基吸収ピークを
減らし、伝送損失の少ないファイバを得るために、ハロ
ゲン系ガス一般的にはCl2ガスを少量流す、といった方
法がとられる。
Therefore, a small amount of gas is blown into the furnace core tube for the purpose of removing these impurities. Or OH contained in the base material
In order to reduce the OH group absorption peak after removing the group and forming a fiber and to obtain a fiber with a small transmission loss, a method of flowing a small amount of halogen gas, generally Cl 2 gas is used.

ところが、ガスを流しなが減圧下(10Pa程度)で加熱
し、透明ガラス化した場合、ガラス微粒子集合体に割れ
が発生する(スス割れという)問題が生じた。ひどいも
のは、母材全体に割れが発生したが、特に炉芯管のガス
供給口近くで発生する割れが多かった。
However, when a transparent glass is formed by heating under reduced pressure (about 10 Pa) while flowing a gas, a problem occurs in which glass particle aggregates are cracked (so-called cracking). For the severe ones, cracks were generated in the entire base material, but especially near the gas supply port of the furnace core tube.

本発明は上記のような、ガスを流しつつ減圧下で加熱
透明化する際に発生する問題点を解決することを、目的
としてなされたものである。
The present invention has been made for the purpose of solving the above-mentioned problems that occur when heating and making transparent under reduced pressure while flowing a gas.

[課題を解決するための手段] 本発明は上記問題点を解決できる手段として、光ファ
イバ用多孔質ガラス母材をガス供給口を持つ圧力容器中
に設置して、不活性ガスまたはハロゲン系ガス雰囲気減
圧下で加熱透明化する方法において、圧力容器中に導入
した上記不活性ガスまたはハロゲン系ガスが供給口から
直接上記光ファイバ用多孔質ガラス母材に当たらないよ
うにして加熱透明化することを特徴とする光ファイバ用
プリフォームの製造方法を提供するものである。
[Means for Solving the Problems] As a means for solving the above problems, the present invention provides an inert gas or a halogen-based gas by installing a porous glass preform for optical fibers in a pressure vessel having a gas supply port. In the method of heating and transparentizing under reduced pressure in the atmosphere, heating and transparentizing so that the inert gas or halogen-based gas introduced into the pressure vessel does not directly hit the porous glass preform for optical fiber from the supply port. The present invention provides a method for manufacturing an optical fiber preform characterized by the following.

上記において、ガス供給口と光ファイバ用多孔質ガラ
ス母材の間にジャマ板を設置する方法は簡単かつ有効で
あり、特に好ましい実施態様として挙げられる。
In the above, the method of installing the baffle plate between the gas supply port and the porous glass preform for optical fiber is simple and effective, and is mentioned as a particularly preferable embodiment.

本発明における多孔質母材としては、上記したよう
に、VAD法、OVD法またはOVPO法等の気相合成法により製
造したガラス微粒子集合体、石英ロッドとその外周に形
成したガラス微粒子集合体とからなる複合体、または圧
粉法によるガラス微粒子集合体等種々の製法によるもの
を用いることができる。また、多孔質母材の組成につい
ては、特に限定されるところはない。
As the porous base material in the present invention, as described above, VAD method, glass fine particle aggregate produced by a vapor phase synthesis method such as OVD method or OVPO method, a glass fine particle aggregate formed on the quartz rod and its periphery and It is possible to use a composite made of, or one produced by various production methods such as an aggregate of glass fine particles by a powder compacting method. The composition of the porous base material is not particularly limited.

本発明に用いる不活性ガスまたはハロゲン系ガスとし
て、Heガス,Cl2ガスのほかに、N2,CF4,SiF4,SF6,CCl4
のガスの使用も可能である。
As the inert gas or halogen-based gas used in the present invention, in addition to He gas and Cl 2 gas, gases such as N 2 , CF 4 , SiF 4 , SF 6 and CCl 4 can be used.

本発明における加熱透明化の温度としては、1600℃〜
1650℃で行うのが一般的であり、また、減圧は数Pa〜10
0Pa程度もしくは真空が好ましい。このように減圧もし
くは真空で行うため、圧力容器は金属製が好ましく、光
ファイバ用多孔質母材中には塩素系の腐食性ガスが含ま
れることが多いことから、耐食性のある金属例えばSUS
製等が特に好ましい。
The temperature of the heat transparentization in the present invention, 1600 ℃ ~
It is generally performed at 1650 ° C, and depressurization is several Pa to 10
About 0 Pa or vacuum is preferable. Since the pressure vessel is made under reduced pressure or vacuum as described above, the pressure vessel is preferably made of metal, and since a corrosive gas containing chlorine is often contained in the porous preform for optical fiber, a metal having corrosion resistance such as SUS is used.
Manufacturing and the like are particularly preferable.

この圧力容器のガス供給口に導入した雰囲気ガスが、
直接多孔質母材に当たらないようにして加熱透明化する
点に本発明の特徴があるが、このようにする理由は次の
項で説明する。
Atmospheric gas introduced into the gas supply port of this pressure vessel,
The feature of the present invention lies in the point that the material is heated and made transparent so as not to directly contact the porous base material, and the reason for doing so will be explained in the next section.

[作用] 第4図に従来のガス供給口を持った圧力容器の構成を
示す。ガス供給口2を有する圧力容器1内にガラス微粒
子集合体3を固定し、ヒータ5により加熱し、透明ガラ
ス化する。
[Operation] FIG. 4 shows the structure of a conventional pressure vessel having a gas supply port. The glass fine particle aggregate 3 is fixed in a pressure vessel 1 having a gas supply port 2 and heated by a heater 5 to form a transparent glass.

このとき、圧力容器1内はロータリーポンプ4により
減圧(もしくは真空)にされ、ガス供給口2からは、不
活性ガスあるいはハロゲン系ガスが供給されるが、ガス
の圧力は第5図に示すように、圧力容器1内で急激に減
圧される。このため、断熱膨張されたガスはガス温度を
急激に下げ(急激に減圧され体積膨張させられた気体
は、その仕事量に見合った分だけ熱を奪われる。)、こ
の温度低下したガスが、第4図に矢印6で示すようにガ
ラス微粒子集合体に直接あたることになる。このため
に、ガスが衝突する部分の温度が下がる。これによりガ
ラス微粒子集合体中に熱歪が生じ、これが原因となって
ススが割れると考えられる。
At this time, the pressure container 1 is depressurized (or evacuated) by the rotary pump 4, and the inert gas or the halogen-based gas is supplied from the gas supply port 2. The gas pressure is as shown in FIG. Then, the pressure inside the pressure vessel 1 is rapidly reduced. Therefore, the adiabatic expansion gas sharply lowers the gas temperature (the gas that is abruptly decompressed and expanded in volume loses heat by an amount commensurate with its work amount), and the gas whose temperature has decreased is As shown by the arrow 6 in FIG. 4, the glass fine particle aggregate is directly hit. For this reason, the temperature of the portion where the gas collides decreases. It is considered that this causes thermal strain in the glass fine particle aggregate, which causes the soot to crack.

そこで本発明者等は、この膨張したガスが直接ガラス
微粒子集合体にあたらず、さらに圧力容器内の温度分布
に大きな影響を与えない構成とすることが、スス割れの
防止には有効であると考えつき、本発明に至ったのであ
る。
Therefore, the present inventors say that it is effective for preventing soot cracking that the expanded gas does not directly impinge on the glass fine particle aggregate and does not significantly affect the temperature distribution in the pressure vessel. It came to the present invention with the idea.

本発明の一構成例を第1図に示す。基本的構成は第4
図と同様であるが、ガス供給口2とガラス微粒子集合体
3の間にジャマ板7が設置されており、圧力容器1内に
導入されたガスは、容器内に入った直後に膨張し、ガス
温度が急激に下がるが、この低温(炉内温度そのものは
800℃〜1600℃に保たれている。)ガスはジャマ板7に
衝突し、矢印8で示す方向に流れる。このため低温ガス
は直接母材3に当たることはなく、かつジャマ板7で方
向をかえられたガスは、ジャマ板7を迂回して圧力容器
1の主要部に至る間にヒータ5により加熱されるため、
炉芯管(圧力容器)1内に大きな温度分布をつくること
はなく、スス割れのない良好な光ファイバ用プリフォー
ムを製造することができる。
An example of the structure of the present invention is shown in FIG. The basic structure is the fourth
Similar to the figure, but the baffle plate 7 is installed between the gas supply port 2 and the glass fine particle aggregate 3, and the gas introduced into the pressure vessel 1 expands immediately after entering the vessel, The gas temperature drops sharply, but this low temperature (the furnace temperature itself
It is kept at 800 ℃ ~ 1600 ℃. ) The gas collides with the baffle plate 7 and flows in the direction indicated by the arrow 8. Therefore, the low-temperature gas does not directly hit the base material 3, and the gas whose direction is changed by the baffle plate 7 is heated by the heater 5 while bypassing the baffle plate 7 and reaching the main part of the pressure vessel 1. For,
A large temperature distribution is not formed in the furnace core tube (pressure vessel) 1, and a good optical fiber preform without soot cracking can be manufactured.

第1図の構成はジャマ板を介したものであるが、ガラ
ス微粒子集合体にガスが直接あたらない構成であれば、
第2図に示すような構成でも十分大きな効果が期待でき
る。
The configuration of FIG. 1 is via a jammer plate, but if the gas does not directly hit the glass fine particle aggregate,
Even with the structure shown in FIG. 2, a sufficiently large effect can be expected.

第2図は圧力容器が内壁9を持つ二重構造となってお
り、この隙間10にガスが供給される。この隙間10も減圧
されているため、使用されたガスは二重構造の内部で温
度低下をおこすが、隙間10を流れ圧力容器1の主要部に
入るまでには昇温され上記第1図の構成同様の効果が得
られる。
In FIG. 2, the pressure vessel has a double structure having an inner wall 9, and gas is supplied to this gap 10. Since the gap 10 is also decompressed, the temperature of the used gas drops inside the double structure, but the gas flows through the gap 10 and is heated up until it enters the main part of the pressure vessel 1. The same effect as the configuration can be obtained.

[実施例] 比較例1 第4図に示す構成でガラス微粒子集合体の加熱を行っ
た。ガラス微粒子集合体はVAD法により製造した母材
で、外径150mmφ,長さ500mml,カサ密度0.25g/cm3のも
のを使用した。ガスは炉内パージ用として、Heガスを20
0cc/分流し、容器内圧力は10Paになるように調整した。
ヒータ4により容器内圧力は室温から1600℃まで8℃/
分で昇温し、降温した。この条件で上記母材3本の透明
化を試みたが、1本は全長にクラックが入り、残りの2
本もガラス微粒子集合体の先端部にクラックが入った。
[Example] Comparative Example 1 The glass fine particle aggregate was heated with the configuration shown in FIG. The glass fine particle aggregate was a base material produced by the VAD method and had an outer diameter of 150 mmφ, a length of 500 mml, and a bulk density of 0.25 g / cm 3 . The gas used for purging in the furnace is He gas of 20
The flow rate was 0 cc / minute, and the pressure inside the container was adjusted to 10 Pa.
With the heater 4, the pressure inside the container is 8 ℃ / from room temperature to 1600 ℃.
The temperature was raised in minutes and then lowered. Under these conditions, an attempt was made to make the above three base materials transparent, but one had cracks in the entire length, and the remaining 2
The book also had a crack at the tip of the glass particle aggregate.

実施例1 第1図に示すように、ガス供給部入口部にジャマ板を
セットした構成でガラス微粒子集合体の透明ガラス化を
行なった。ガラス微粒子集合体はいずれもVAD法により
製造した母材で、母材寸法はほぼ比較例1と同様のもの
を用いた。ガスは、脱水用として、Cl2ガスを100cc/分
流し、容器内圧力は10Paになるように調整した。Cl2
スは1000℃まで流し、1000℃を越えた時点で、Heガスに
切りかえた。温度パターンは、室温から1000℃までは6
℃/分、1000℃から1600℃まで8℃/分で昇温して、透
明化を行なった。この条件で、上記母材2本の透明化を
行なった結果、クラックは発生せず、気泡のない良好な
光ファイバ用プリフォームを得ることができた。
Example 1 As shown in FIG. 1, a glass fine particle aggregate was made transparent by vitrification with a configuration in which a baffle plate was set at the inlet of the gas supply section. All the glass fine particle aggregates were base materials manufactured by the VAD method, and the base material dimensions were almost the same as those in Comparative Example 1. For the gas, Cl 2 gas was flowed at 100 cc / minute for dehydration, and the pressure inside the container was adjusted to 10 Pa. Cl 2 gas was made to flow up to 1000 ° C., and when it exceeded 1000 ° C., it was switched to He gas. The temperature pattern is 6 from room temperature to 1000 ° C.
C./min. The temperature was raised from 1000.degree. C. to 1600.degree. C. at 8.degree. C./min to make it transparent. As a result of making the above two base materials transparent under these conditions, cracks did not occur, and a good optical fiber preform without bubbles could be obtained.

実施例3 屈折率の異なる光信号伝送用のコア部を有するガラス
ロッド(第3図の屈折率分布を示す)の外周に、VAD法
によりガラス微粒子集合体の合成した複合体を用いて、
透明ガラス化を試みた。ガスは、Heガスを流し、装置構
成は第1図に示すものを用いた。条件は以下の通りであ
る。He:200cc/分,温度:室温から1600℃まで8℃/分
で昇温。計6本の透明化を行った結果、透明度の良好な
高品質の光ファイバ用プリフォームをクラックなしで得
ることができた。気泡は発見できなかった。
Example 3 A glass rod having a core portion for transmitting an optical signal having a different refractive index (showing the refractive index distribution in FIG. 3) was used on the outer periphery of a composite body in which glass particle aggregates were synthesized by the VAD method.
I tried to make it transparent. As the gas, He gas was flown, and the apparatus configuration used was that shown in FIG. The conditions are as follows. He: 200 cc / min, temperature: temperature rise from room temperature to 1600 ° C at 8 ° C / min. As a result of making a total of 6 transparent films, a high-quality optical fiber preform having good transparency could be obtained without cracks. No bubbles could be found.

以上の実施例では、VAD法により製造したガラス微粒
子集合体を使用したが、ガラス微粒子集合体を高温炉で
透明ガラス化する方法であれば、圧粉法,OVPO法等の製
法にも有効である。
In the above examples, the glass fine particle aggregates produced by the VAD method were used, but if the method of making the glass fine particle aggregates into transparent vitrification in a high temperature furnace is also effective in the production methods such as the powder compacting method and the OVPO method. is there.

[発明の効果] 以上説明したように、本発明を用いれば、気泡、クラ
ックの発生を防ぐことができ、高品質な光ファイバ用プ
リフォームを容易に得ることができる。
[Effects of the Invention] As described above, by using the present invention, it is possible to prevent the occurrence of bubbles and cracks, and easily obtain a high-quality optical fiber preform.

【図面の簡単な説明】[Brief description of drawings]

第1図は本発明の実施態様を示す断面図、第2図は本発
明の別の実施態様を示す断面図、第3図は実施例2に用
いたガラスロッドの屈折率分布を示す図、第4図は従来
法の装置構成を示す断面図、第5図は従来法で容器内に
導入されるガスの圧力変化の様子を示す図である。 1:圧力容器、2:ガス供給口、3:ガラス微粒子集合体、4:
ロータリーポンプ、5:ヒータ、6:ガスの流線、7:ガスの
ジャマ板、8:ガスの流線、9:内壁、10:隙間。
FIG. 1 is a sectional view showing an embodiment of the present invention, FIG. 2 is a sectional view showing another embodiment of the present invention, and FIG. 3 is a view showing a refractive index distribution of a glass rod used in Example 2, FIG. 4 is a cross-sectional view showing an apparatus configuration of a conventional method, and FIG. 5 is a view showing a change in pressure of gas introduced into a container by the conventional method. 1: Pressure vessel, 2: Gas supply port, 3: Glass particle aggregate, 4:
Rotary pump, 5: heater, 6: gas streamline, 7: gas jam plate, 8: gas streamline, 9: inner wall, 10: gap.

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】光ファイバ用多孔質ガラス母材をガス供給
口をもつ圧力容器中に設置して、不活性ガスまたはハロ
ゲン系ガス雰囲気中減圧下で加熱透明化する方法におい
て、圧力容器中に導入した上記不活性ガスまたはハロゲ
ン系ガスが供給口から直接上記光ファイバ用多孔質ガラ
ス母材に当たらないようにして加熱透明化することを特
徴とする光ファイバ用プリフォームの製造方法。
1. A method in which a porous glass preform for an optical fiber is placed in a pressure vessel having a gas supply port to heat and make transparent under a reduced pressure in an inert gas or halogen-based gas atmosphere. A method for producing an optical fiber preform, characterized in that the introduced inert gas or halogen-based gas is heated and made transparent so as not to directly contact the porous glass preform for optical fiber from a supply port.
【請求項2】ガス供給口と光ファイバ用多孔質ガラス母
材との間にジャマ板を設置することを特徴とする特許請
求の範囲(1)記載の光ファイバ用プリフォームの製造
方法。
2. A method of manufacturing an optical fiber preform according to claim 1, wherein a jammer plate is installed between the gas supply port and the porous glass preform for optical fiber.
JP10426188A 1988-04-28 1988-04-28 Manufacturing method for optical fiber preform Expired - Fee Related JP2514689B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10426188A JP2514689B2 (en) 1988-04-28 1988-04-28 Manufacturing method for optical fiber preform

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10426188A JP2514689B2 (en) 1988-04-28 1988-04-28 Manufacturing method for optical fiber preform

Publications (2)

Publication Number Publication Date
JPH01275441A JPH01275441A (en) 1989-11-06
JP2514689B2 true JP2514689B2 (en) 1996-07-10

Family

ID=14375988

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10426188A Expired - Fee Related JP2514689B2 (en) 1988-04-28 1988-04-28 Manufacturing method for optical fiber preform

Country Status (1)

Country Link
JP (1) JP2514689B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04260630A (en) * 1991-02-08 1992-09-16 Sumitomo Electric Ind Ltd Production of preform optical fiber
JP3175247B2 (en) * 1991-12-16 2001-06-11 住友電気工業株式会社 Heat clearing method for porous preform for optical fiber

Also Published As

Publication number Publication date
JPH01275441A (en) 1989-11-06

Similar Documents

Publication Publication Date Title
US5185020A (en) Method for manufacturing a silica-base material for optical fiber
TW201736291A (en) Increase in silicon content in the preparation of quartz glass
TW201736290A (en) Preparation and post-treatment of a quartz glass body
TW201733925A (en) Spray granulation of silicon dioxide in the preparation of quartz glass
JPH0550448B2 (en)
KR20040008223A (en) Device and method for producing stack of fine glass particles
JP2514689B2 (en) Manufacturing method for optical fiber preform
JP2002097033A (en) Method for producing optical fiber accompanied by over- cladding during sintering
WO2003062159A1 (en) Method of manufacturing glass particulate sedimentary body, and method of manufacturing glass base material
US6050108A (en) Method for producing glass preform
JPS62246834A (en) Production of base material for optical fiber
US5236482A (en) Method for producing glass preform for optical fiber
JPH09169535A (en) Production of optical fiber
JPH04362034A (en) Production of fine glass particle deposit
JP4487560B2 (en) Optical fiber preform manufacturing method
JP4292862B2 (en) Optical fiber preform manufacturing method and optical fiber manufacturing method
JP2002104830A (en) Method of manufacturing glass preform
JPS63151639A (en) Production of glass preformer for optical fiber
JP2004175663A (en) Optical fiber and its fabrication method
JPS63139028A (en) Production of optical fiber glass base material
JP4640292B2 (en) Quartz glass body manufacturing method
JP3489630B2 (en) Method and apparatus for producing hermetic coated fiber
JPS63156032A (en) Formation of suit for preform
JPS6065742A (en) Production of porous glass base material for optical fiber by vad method
JPS62162646A (en) Production of glass fine particle deposit

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees