JP2514529B2 - Optical interference gyro - Google Patents

Optical interference gyro

Info

Publication number
JP2514529B2
JP2514529B2 JP12345192A JP12345192A JP2514529B2 JP 2514529 B2 JP2514529 B2 JP 2514529B2 JP 12345192 A JP12345192 A JP 12345192A JP 12345192 A JP12345192 A JP 12345192A JP 2514529 B2 JP2514529 B2 JP 2514529B2
Authority
JP
Japan
Prior art keywords
light
optical path
interference
phase difference
output
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP12345192A
Other languages
Japanese (ja)
Other versions
JPH05322588A (en
Inventor
健一 岡田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Aviation Electronics Industry Ltd
Original Assignee
Japan Aviation Electronics Industry Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Aviation Electronics Industry Ltd filed Critical Japan Aviation Electronics Industry Ltd
Priority to JP12345192A priority Critical patent/JP2514529B2/en
Priority to US08/051,995 priority patent/US5386290A/en
Priority to EP96100077A priority patent/EP0725261B1/en
Priority to DE69322797T priority patent/DE69322797T2/en
Priority to EP93107088A priority patent/EP0568105B1/en
Priority to DE69305778T priority patent/DE69305778T2/en
Publication of JPH05322588A publication Critical patent/JPH05322588A/en
Application granted granted Critical
Publication of JP2514529B2 publication Critical patent/JP2514529B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Gyroscopes (AREA)

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明は、クローズドループ方
式の光干渉角速度計(光ファイバジャイロとも言い以下
FOGと称す)の自己診断機能に関し、FOGが故障等
によって機能・性能が損なわれた時に自ら故障を判断し
外部装置に知らせたり又診断するための信号を外部装置
に送出する機能に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a self-diagnosis function of a closed loop type optical interference angular velocity meter (also referred to as an optical fiber gyro, hereinafter also referred to as a FOG), and is provided when the function and performance of the FOG is impaired due to a failure or the like. The present invention relates to a function of sending a signal to an external device for judging a failure and notifying or diagnosing the external device.

【0002】[0002]

【従来の技術】従来のFOGを図4に基づき説明する。
光源11からの光Iは、光カプラ12、偏光子13、光
カプラ14を経て光ファイバコイル17の両端に投入さ
れる。光ファイバコイル17を伝搬する左右両光(CW
光とCCW光)は、光ファイバのコイル17の片端に配
置した位相変調器15により位相変調される。位相変調
を受けた両光は、光カプラ14で結合されて相互干渉
し、再び偏光子13を経て光カプラ12により受光器1
8へ分岐される。この時の受光器18の出力VP は、光
の位相を変調する信号波(変調波)をP(t)=Asi
nωP tとすると、 VP =(I/2)・KOPT ・KPD{1+cosΔΦ(Σεn ・(−1)n ・J2n (X)・cos2nωP t′)−sinΔΦ(2Σ(−1)n ・J2n+1 (X)・cos(2n+1)ωP t′)} …(1) ここで、Σはn=0から∞までとるものとし、 t′=t−τ/2 εn = 1;n=0 2;n≧1 KOPT :光源11からの出射光Iが光ファイバコイル1
7を経て受光器18に至るまでの光学的損失 KPD:光電変換係数やアンプゲイン等で決まる定数 I:光源11からの出射光 IO :受光器18に到達する最大光量(IO =KOPT
I) Jn :第一種ベッセル関数 X:2AsinπfP τ ΔΦ:光ファイバコイルにおける左右両光間の位相差 ωP :変調波の角周波数(ωP =2πfP ) τ:光ファイバコイルを伝搬する光の伝搬時間 で表される。続いて受光器18の出力は同期検波回路1
9に入力され、そこで位相変調周波数ωP と同じ成分、
即ち(1)式における一次成分がクロック回路24から
の参照信号Sr を受けて取り出される。この時の同期検
波回路19の直流成分出力VO は次式で表される。
2. Description of the Related Art A conventional FOG will be described with reference to FIG.
The light I from the light source 11 passes through the optical coupler 12, the polarizer 13, and the optical coupler 14 and is input to both ends of the optical fiber coil 17. Left and right light (CW) propagating through the optical fiber coil 17
The light and CCW light) are phase-modulated by the phase modulator 15 arranged at one end of the coil 17 of the optical fiber. The two lights subjected to the phase modulation are combined by the optical coupler 14 and interfere with each other, and again pass through the polarizer 13 and the optical coupler 12 to the light receiver 1
It branches to 8. The output V P of the light receiver 18 at this time is a signal wave (modulation wave) that modulates the phase of light, P (t) = Asi
Let nω P t be V P = (I / 2) · K OPT · K PD {1 + cos ΔΦ (Σε n · (−1) n · J 2n (X) · cos 2P t ′) −sin ΔΦ (2Σ (−1 ) N · J 2n + 1 (X) · cos (2n + 1) ω P t ′)} (1) where Σ is from n = 0 to ∞, and t ′ = t−τ / 2 ε n = 1; n = 0 2; n ≧ 1 K OPT : The light I emitted from the light source 11 is the optical fiber coil 1
Optical loss from 7 to the light receiver 18 K PD : Constant determined by photoelectric conversion coefficient and amplifier gain I: Light emitted from the light source 11 I O : Maximum light amount reaching the light receiver 18 (I O = K OPT
I) J n : Bessel function of the first kind X: 2Asin πf P τ ΔΦ: Phase difference between the left and right lights in the optical fiber coil ω P : Angular frequency of the modulated wave (ω P = 2πf P ) τ: Propagation in the optical fiber coil It is represented by the propagation time of the light that travels. Then, the output of the light receiver 18 is the synchronous detection circuit 1
9 into which the same component as the phase modulation frequency ω P ,
That is, the first-order component in the equation (1) receives the reference signal S r from the clock circuit 24 and is extracted. The DC component output V O of the synchronous detection circuit 19 at this time is expressed by the following equation.

【0003】 VO =I・KOPT ・KPD・J1 (x)・KA1・sinΔΦ =K1 ・sinΔΦ (2) K1 ,KA1:利得 ここで両光間の位相差ΔΦは、 ΔΦ=ΔΦs +ΔΦf (3) で表される。ΔΦs は、光ファイバコイルに回転角速度
Ωを印加したときに生じるサニャック(sagnac)
位相差を示し、次式で表される。
V O = I · K OPT · K PD · J 1 (x) · K A1 · sin ΔΦ = K 1 · sin ΔΦ (2) K 1 , K A1 : Gain Here, the phase difference ΔΦ between the two lights is ΔΦ = ΔΦ s + ΔΦ f (3) ΔΦ s is the Sagnac that occurs when the rotational angular velocity Ω is applied to the optical fiber coil.
It shows the phase difference and is expressed by the following equation.

【0004】 ΔΦs =(4πRL/Cλ)・Ω (4) ここで、C:高速、λ:真空中における光の波長、R:
光ファイバコイルの半径、L:光ファイバコイルの長さ
である。一方位相差ΔΦf は、光ファイバコイル17の
一端に配置したフィードバック位相差発生器16によっ
て位相を一定の割合で偏移させることで発生させた位相
差である。実際には、フィードバック位相差発生器16
に鋸歯状波信号Rを印加し、光の位相を偏移させてい
る。フィードバック位相差発生器16に鋸歯状波信号R
を印加するとCCW光は図5Aに実線で示すように生
じ、一方CW光は破線で示したように光ファイバコイル
を伝搬する光の伝搬時間τだけ遅れて同様の位相シフト
を受ける。その結果、両光間の位相差は図5Bに示した
ように生じる。ここで鋸歯状波の位相シフトの最大偏移
ΦR が2πk(k:整数)となるよう与えると、両光間
の位相差ΔΦf は鋸歯状波信号Rの周波数をfR とする
と、 ΔΦf =(2πna L/C)・k・fR (5) となる。na は光ファイバの屈折率である。ここでΔΦ
f がサニャック効果によって生じる位相差ΔΦs と極性
が反対で大きさが等しいか又は2mπの差となるように
同期検波回路19の出力を積分器20を通して鋸歯状波
発生回路21に与えると、積分器20の入力即ち同期検
波回路19の出力、即ち(2)式が零に収束し、クロー
ズドループが達成できる。
ΔΦ s = (4πRL / Cλ) · Ω (4) where C: high speed, λ: wavelength of light in vacuum, R:
Radius of optical fiber coil, L: length of optical fiber coil. On the other hand, the phase difference ΔΦ f is a phase difference generated by shifting the phase at a constant rate by the feedback phase difference generator 16 arranged at one end of the optical fiber coil 17. In practice, the feedback phase difference generator 16
The sawtooth wave signal R is applied to to shift the phase of light. The sawtooth wave signal R is fed to the feedback phase difference generator 16.
Is applied, CCW light is generated as shown by the solid line in FIG. 5A, while CW light is delayed by the propagation time τ of the light propagating through the optical fiber coil as shown by the broken line, and undergoes the same phase shift. As a result, the phase difference between the two lights occurs as shown in FIG. 5B. Here sawtooth wave phase shift up shift [Phi R is 2πk of: Given that the (k integer), the phase difference .DELTA..PHI f between both light to the frequency of the sawtooth wave signal R and f R, .DELTA..PHI f = (2πn a L / C) · k · f R (5) n a is the refractive index of the optical fiber. Where ΔΦ
When the output of the synchronous detection circuit 19 is applied to the sawtooth wave generation circuit 21 through the integrator 20 so that f has a polarity opposite to the phase difference ΔΦ s generated by the Sagnac effect and has the same magnitude or a difference of 2 mπ, the integration is performed. The input of the device 20, that is, the output of the synchronous detection circuit 19, that is, the expression (2) converges to zero, and a closed loop can be achieved.

【0005】その結果、クローズドループの動作ポイン
トはΔΦ=0±2mπの位置となる。mの値は整数で、
通常m=0の位置で動作させる。従って(2)式のsi
nΔΦ=0となり、ΔΦs =−ΔΦf となる。この関係
式に(4)、(5)式を代入すると次の関係式が成り立
つ。 fR =−(2R/na λk)・Ω (6) これにより鋸歯状波信号の周波数fR を計測すれば、2
R/(na λk)は比例定数であるから、入力角速度Ω
を知ることが出来る。尚kは、通常“1”が採用され
る。したがって(6)式は、 fR =−(2R/na λ)・Ω (7) となる。
As a result, the operating point of the closed loop is the position of ΔΦ = 0 ± 2mπ. The value of m is an integer,
Normally, it is operated at the position of m = 0. Therefore, si in equation (2)
nΔΦ = 0, and ΔΦ s = −ΔΦ f . Substituting the expressions (4) and (5) into this relational expression, the following relational expression holds. f R = - by measuring the frequency f R of (2R / n a λk) · Ω (6) Thus sawtooth signal, 2
Since R / (n a λk) is a proportional constant, the input angular velocity Ω
You can know Note that k is usually "1". Therefore equation (6), f R = - a (2R / n a λ) · Ω (7).

【0006】図4において、鋸歯状波発生回路21では
RGをその利得とすれば積分器20出力Vd に比例した
繰返し周波数fR =RRGd をもつ鋸歯状波信号Rが発
生され、フィードバック位相差発生器16に供給される
と共に、同じ周波数の矩形波のROG出力信号Rout
出力端子22に供給される。また積分器20出力Vd
必要に応じ出力端子23に供給される。なお、積分器2
0と鋸歯状波発生回路21とでフィードバック回路27
が構成される。
In FIG. 4, the sawtooth wave generation circuit 21 generates a sawtooth wave signal R having a repetition frequency f R = R RG V d proportional to the output V d of the integrator 20 when R RG is its gain. The ROG output signal R out having a rectangular wave of the same frequency is supplied to the output terminal 22 while being supplied to the feedback phase difference generator 16. The output V d of the integrator 20 is also supplied to the output terminal 23 as needed. In addition, the integrator 2
0 and the sawtooth wave generation circuit 21 provide a feedback circuit 27.
Is configured.

【0007】クロック回路24から位相変調周波数fP
と同じ周波数の矩形波信号が参照信号Sr として同期検
波回路19に供給される。また、クロック回路24から
位相変調周波数fP の矩形波が位相変調駆動回路25に
供給され、正弦波信号に変換され、レベル調整されて駆
動信号SP として位相変調器15に供給される。
From the clock circuit 24, the phase modulation frequency f P
A rectangular wave signal having the same frequency as is supplied to the synchronous detection circuit 19 as a reference signal S r . Further, the rectangular wave of the phase modulation frequency f P is supplied from the clock circuit 24 to the phase modulation drive circuit 25, converted into a sine wave signal, and the level thereof is adjusted and supplied to the phase modulator 15 as the drive signal S P.

【0008】[0008]

【発明が解決しようとする課題】以上述べたようにFO
Gの各部の機能が正常に作動していると積分器20出力
d のレベルやFOG出力Rout の周波数fR を計測す
れば(6)又は(7)式によって入力された回転角速度
Ωを知ることが出来る。ところが従来技術の場合、FO
Gのどこかが故障して出力Vd 、Rout が出なくなった
り、またRout の周波数が異常のままになったり、また
出力Vd のレベルが異常に低下したり増加したりするよ
うなことがあっても、FOG出力だけからは、FOG自
身が正常なのか異常なのか判断できず、FOGを使用し
ているシステムを危険に陥れる可能性があった。本発明
は、診断指令によってFOGが正常か異常かを判断でき
るようにすることを目的としている。
As described above, the FO
When the function of each part of G is operating normally, if the level of the output V d of the integrator 20 and the frequency f R of the FOG output R out are measured, the rotational angular velocity Ω input by the equation (6) or (7) can be calculated. I can know. However, in the case of the conventional technology, FO
Somewhere in G fails and outputs V d and R out are not output, the frequency of R out remains abnormal, and the level of output V d drops or increases abnormally. Even then, the FOG output alone cannot determine whether the FOG itself is normal or abnormal, and the system using the FOG may be put in danger. An object of the present invention is to make it possible to judge whether the FOG is normal or abnormal by a diagnostic command.

【0009】[0009]

【課題を解決するための手段】この発明では、クローズ
ドループ方式のFOGにおいて、診断指令によって前記
同期検波手段の参照信号を位相が180°ずれた参照信
号に切り替えて、クローズドループの安定点を前記右回
り光と左回り光の位相差が180°またはその奇数倍の
位置にずらし、その時のFOGの出力を診断信号として
診断回路に送出し、その周波数(バイアス周波数)が規
定値以内かどうか判断する事により、FOGが正常か異
常かを判断する。
According to the present invention, in a closed-loop FOG, a reference signal of the synchronous detection means is switched to a reference signal having a phase shift of 180 ° in accordance with a diagnostic command, and the stable point of the closed loop is changed to the above-mentioned. The phase difference between right-handed light and left-handed light is shifted to 180 ° or a position that is an odd multiple of 180 °, and the output of the FOG at that time is sent to the diagnostic circuit as a diagnostic signal to determine whether the frequency (bias frequency) is within the specified value. By doing so, it is determined whether the FOG is normal or abnormal.

【0010】また診断指令によって前記同期検波手段の
参照信号の周波数の次数を切り替えて、前記位相変調周
波数の偶数倍の成分を同期検波し、クローズドループの
安定点を前記右回り光と左回り光の位相差が90°また
はその奇数倍の位置にずらし、その時のFOGの出力を
診断出力として診断回路に送出し、その周波数(バイア
ス周波数)が規定以内かどうか判断する事により、FO
Gが正常か異常かを判断する。
The order of the frequency of the reference signal of the synchronous detection means is switched according to a diagnostic command to synchronously detect the component of an even multiple of the phase modulation frequency, and the stable point of the closed loop is detected by the clockwise light and the counterclockwise light. The phase difference of 90 ° or an odd multiple thereof, the output of the FOG at that time is sent to the diagnostic circuit as a diagnostic output, and it is determined whether the frequency (bias frequency) is within the specified range.
Determine whether G is normal or abnormal.

【0011】[0011]

【実施例】次に本発明の一実施例を図1を参照し説明す
る。同図には図4と対応する部分に同じ符号を付し、重
複説明を省略する。スイッチ28がa側に接続された状
態では、位相変調周波数fp と同じ周波数の信号が同期
検波回路19の参照信号S r として印加される。その結
果、干渉光に含まれている1次成分が同期検波され、積
分器20に印加される。その時の同期検波回路19の出
力は(2)式で示され、FOG出力Rout の周波数fR
は(6)式に示した正規の値である。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Next, an embodiment of the present invention will be described with reference to FIG.
You. In this figure, the parts corresponding to those in FIG.
A duplicate description is omitted. Switch 28 is connected to side a
In the state, the phase modulation frequency fpSignal of the same frequency as is synchronized
Reference signal S of the detection circuit 19 rIs applied as. That conclusion
As a result, the first-order component contained in the interference light is synchronously detected and the product
It is applied to the divider 20. The output of the synchronous detection circuit 19 at that time
The force is expressed by equation (2), and the FOG output RoutFrequency fR
Is a regular value shown in the equation (6).

【0012】一方診断指令によりスイッチ28をb側に
接続すると、参照信号Sr1は、インバータ29によって
位相が180°ずらされて同期検波回路19に印加され
る。その結果、同期検波回路19から(2)式で示した
出力と逆極性の出力が送出され、クローズドループの動
作ポイントがΔΦ=mπまたは−mπの位置となる。m
は、1,3,5・・・・の整数で、ここではm=1の位
置で動作させる。つまりΔΦ=πとなり、その結果、Δ
Φf =π−ΔΦs となる。ここで入力角速度Ωが印加さ
れていない状態ではΔΦs =0であるので、その時の鋸
歯状波信号Rの周波数fR は(5)式より次式で表され
る。入力角速度Ωが印加されていない時のfR をバイア
ス周波数と言い、fb で表す。
On the other hand, when the switch 28 is connected to the side b by the diagnostic command, the reference signal S r1 is applied to the synchronous detection circuit 19 with the phase shifted by 180 ° by the inverter 29. As a result, the synchronous detection circuit 19 outputs an output having a polarity opposite to that of the output expressed by the equation (2), and the operating point of the closed loop becomes the position of ΔΦ = mπ or −mπ. m
Is an integer of 1, 3, 5, ..., And here, it is operated at the position of m = 1. That is, ΔΦ = π, and as a result, Δ
Φ f = π−ΔΦ s . Since ΔΦ s = 0 in a state where the input angular velocity Ω is not applied, the frequency f R of the sawtooth wave signal R at that time is expressed by the following equation from the equation (5). F R when the input angular velocity Ω is not applied is called a bias frequency and is represented by f b .

【0013】 fb =C/2na L (8) (8)式で、Cが光速、na が光ファイバの屈折率、L
が光ファイバの長さであり、いずれも温度係数の小さい
要素であるため、このfb はFOGの動作状態が正常で
あればほゞ一定であるので、精度の良い診断信号として
使用できる。そこで図1では出力Rout を診断回路30
に入力して、バイアス周波数fb が許容範囲にあるか否
かを監視し、外れた場合には警報信号ALMを外部に送
出する。なお、分周器33は、クロック回路24より入
力される2次の参照信号Sr2の周波数2fp を1/2に
分周して、1次の参照信号Sr1を作っている。
F b = C / 2n a L (8) In the equation (8), C is the speed of light, n a is the refractive index of the optical fiber, and L is
Is the length of the optical fiber, and both are elements with a small temperature coefficient. Therefore, f b is almost constant when the operating state of the FOG is normal, and can be used as an accurate diagnostic signal. Therefore, in FIG. 1, the output R out is set to the diagnostic circuit 30.
Is input to monitor whether or not the bias frequency f b is within the allowable range, and when it is out of the range, the alarm signal ALM is sent to the outside. The frequency divider 33 divides the frequency 2f p of the secondary reference signal S r2 input from the clock circuit 24 into ½ to generate a primary reference signal S r1 .

【0014】図2においてスイッチ28がa側に接続さ
れた状態では、位相変調周波数fPと同じ周波数の信号
r1が同期検波回路19の参照信号Sr として印加され
る。その結果、干渉光に含まれている1次成分が同期検
波され、積分器20に印加される。その時の同期検波回
路19の出力は(2)式で示され、FOG出力ROUT
周波数fR は(6)式に示した正規の値である。
In FIG. 2, when the switch 28 is connected to the side a, the signal S r1 having the same frequency as the phase modulation frequency f P is applied as the reference signal S r of the synchronous detection circuit 19. As a result, the primary component included in the interference light is synchronously detected and applied to the integrator 20. The output of the synchronous detection circuit 19 at that time is shown by the equation (2), and the frequency f R of the FOG output R OUT is a normal value shown by the equation (6).

【0015】一方、診断指令によりスイッチ28をb側
に接続すると、参照信号Sr として周波数2fp の2次
の参照信号Sr2が同期検波回路19に印加される。その
結果、同期検波回路19の出力Vp′は、次式で表され
る。 Vo ′=K2 ・cos(ΔΦ) (9) この出力は、積分器20、鋸歯状波発生器21から成る
フィードバック回路27に供給される。
On the other hand, when the switch 28 is connected to the side b by the diagnostic command, the secondary reference signal S r2 having the frequency 2f p is applied to the synchronous detection circuit 19 as the reference signal S r . As a result, the output Vp 'of the synchronous detection circuit 19 is expressed by the following equation. V o ′ = K 2 · cos (ΔΦ) (9) This output is supplied to the feedback circuit 27 including the integrator 20 and the sawtooth wave generator 21.

【0016】その結果、系はクローズドループの負帰還
動作によって動作ポイントがΔΦ=mπ/2または−m
π/2の位置となる。mは、1,2,3・・・の整数
で、ここではm=1の位置で動作させる。つまりΔΦ=
π/2となり、その結果、ΔΦ f =π/2−ΔΦs とな
る。ここで入力角速度Ωが印加されていない状態では、
ΔΦs =0であるので、その時のバイアス周波数fb
(5)式より次式で表される。
As a result, the system is closed loop negative feedback.
The operation point is ΔΦ = mπ / 2 or −m depending on the operation.
The position is π / 2. m is an integer of 1, 2, 3 ...
Then, in this case, it is operated at the position of m = 1. That is, ΔΦ =
π / 2, resulting in ΔΦ f= Π / 2-ΔΦsTona
You. Here, when the input angular velocity Ω is not applied,
ΔΦs= 0, the bias frequency f at that time isbIs
It is expressed by the following equation from the equation (5).

【0017】 fb =C/4na L (10) 即ち、入力角速度Ω=0の状態で(10)式で示したバ
イアス周波数fb が発生する。このfb は(10)式か
らも明らかなように温度係数の小さい要素で構成されて
いるため、FOGの動作が正常であればほゞ一定である
ことから、精度の良い診断信号として使用できる。
F b = C / 4n a L (10) That is, the bias frequency f b shown in the equation (10) is generated in the state where the input angular velocity Ω = 0. Since this f b is composed of elements having a small temperature coefficient as is clear from the equation (10), it can be used as a highly accurate diagnostic signal because it is almost constant if the FOG operation is normal. .

【0018】図3は第1診断指令CTL1 によってスイ
ッチ28がb側に接続され、FOG出力端子22には、
(10)式で示した周波数fb の出力ROUT が送出さ
れ、第2診断指令信号CTL2 によってスイッチ34が
b側に接続され、その結果系は、クローズドループの負
帰還動作から、動作ポイントが直前の位相差からπ(ラ
ジアン)ずれた位置に安定する。この時のFOGの出力
OUT は、ΔΦs =0の条件で、直前のFOG出力R
OUT と絶対値が等しく極性が反対の信号が得られ、これ
ら両信号によってより確実で精度の良い診断信号が得ら
れる。以上は、(8),(10)式とも鋸歯状発生回路
21の出力を診断信号として使用したが、鋸歯状波発生
回路21の利得をKRG(Pulse/Volts)、鋸
歯状波発生回路21の入力電圧をVd とすると、Vd
b /KRGと表すことが出来、Vd を診断信号として使
用することが出来る。また診断信号ROUT ,Vdよりフ
ィードバック信号Rの周波数fb が規定値以内であるか
どうかを判断する診断回路30は、外部の例えばFOG
を使用する親装置に設けてもよい。
In FIG. 3, the switch 28 is connected to the side b by the first diagnosis command CTL 1 , and the FOG output terminal 22 is
The output R OUT of the frequency f b shown in the equation (10) is sent out, the switch 34 is connected to the b side by the second diagnostic command signal CTL 2 , and as a result, the system is operated from the closed loop negative feedback operation to the operating point. Stabilizes at a position shifted by π (radian) from the previous phase difference. The output R OUT of the FOG at this time is the previous FOG output R under the condition of ΔΦ s = 0.
A signal whose absolute value is equal to OUT and whose polarity is opposite to that of OUT is obtained, and a more reliable and accurate diagnostic signal is obtained by these signals. In the above, the output of the sawtooth generation circuit 21 is used as a diagnostic signal in both equations (8) and (10), but the gain of the sawtooth wave generation circuit 21 is set to K RG (Pulse / Volts), the sawtooth wave generation circuit 21. Let V d be the input voltage of V d =
It can be expressed as f b / K RG and V d can be used as a diagnostic signal. Further, the diagnostic circuit 30 for judging whether or not the frequency f b of the feedback signal R is within a specified value from the diagnostic signals R OUT , V d is, for example, an external FOG.
May be provided in the parent device using.

【0019】なお、診断回路30によるバイアス周波数
b のチェックは、例えばこの光干渉角速度計を搭載し
た航空機の出発前のチェック時に行われる。
The check of the bias frequency f b by the diagnostic circuit 30 is carried out before the departure of an aircraft equipped with this optical interference angular velocity meter, for example.

【0020】[0020]

【発明の効果】以上説明したように本発明は、FOGに
診断機能を付加することにより、FOGが故障等によっ
て性能機能が損なわれたときに、自ら故障を判断したり
また診断のための信号を外部の診断回路に送出すること
によりFOGを使用した装置を危険な状態から回避する
ことが出来る。
As described above, according to the present invention, by adding a diagnostic function to the FOG, when the performance function is impaired due to a failure or the like of the FOG, it is possible to judge the failure by itself or to provide a signal for diagnosis. Is sent to an external diagnostic circuit, the device using the FOG can be avoided from a dangerous state.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の請求項1の実施例を示すブロック図。FIG. 1 is a block diagram showing an embodiment of claim 1 of the present invention.

【図2】本発明の請求項2の実施例を示すブロック図。FIG. 2 is a block diagram showing an embodiment of claim 2 of the present invention.

【図3】本発明の請求項3の実施例の要部を示すブロッ
ク図。
FIG. 3 is a block diagram showing an essential part of an embodiment of claim 3 of the present invention.

【図4】従来の光干渉角速度計のブロック図。FIG. 4 is a block diagram of a conventional optical interference angular velocity meter.

【図5】図4のフィードバック位相差発生器16で生ず
るCCW光とCW光とのフィードバック位相Φf 及びフ
ィードバック位相差ΔΦf の波形図。
5 is a waveform diagram of a feedback phase Φ f and a feedback phase difference ΔΦ f between CCW light and CW light generated in the feedback phase difference generator 16 of FIG.

Claims (3)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 少なくとも一周する光学路と、 その光学路に対して右回り光及び左回り光を通す分岐手
段と、 その光学路を伝搬してきた右回り光及び左回り光を干渉
させる干渉手段と、 前記分岐手段と前記光学路の一端との間に配置されて前
記右回り光及び左回り光に位相変調を与える位相変調手
段と、 前記分岐手段と前記光学路の他端との間に配置されて前
記右回り光及び左回り光に位相差を発生させるフィード
バック位相差発生手段と、 前記干渉手段により得られた干渉光の光強度を電気信号
として検出する受光器と、 その受光器からの出力の内、前記位相変調手段の変調周
波数またはその奇数倍の成分を同期検波する同期検波手
段と、 前記同期検波手段の出力によりフィードバック信号を発
生し前記フィードバック位相差発生手段に供給するフィ
ードバック信号発生手段とから成るクローズドループ方
式の光干渉角速度計において、 診断指令によって、前記同期検波手段に供給する参照信
号の位相を180°ずらして、クローズドループの安定
点を前記右回り光と左回り光の位相差が180°または
その奇数倍の位置にずらし、その時の前記フィードバッ
ク信号発生手段より得られる光干渉角速度計の出力を診
断信号として診断回路に送出して、前記フィードバック
信号の周波数を監視するようにしたことを特徴とする光
干渉角速度計。
1. An optical path that makes at least one round, branching means for passing clockwise light and counterclockwise light with respect to the optical path, and interference means for interfering the clockwise light and counterclockwise light propagating through the optical path. A phase modulation means arranged between the branching means and one end of the optical path to apply phase modulation to the clockwise light and the counterclockwise light; and between the branching means and the other end of the optical path. Feedback phase difference generating means arranged to generate a phase difference between the clockwise light and the counterclockwise light, a light receiver for detecting the light intensity of the interference light obtained by the interference means as an electric signal, and from the light receiver Of the output of the phase modulating means, or a synchronous detecting means for synchronously detecting a component of an odd multiple thereof, and a feedback phase difference generating means for generating a feedback signal by the output of the synchronous detecting means. In a closed loop type optical interference gyro consisting of a feedback signal generating means for supplying, a phase of a reference signal supplied to the synchronous detecting means is shifted by 180 ° by a diagnostic command, and a stable point of the closed loop is controlled by the clockwise light. The phase difference between the counterclockwise light and the counterclockwise light is shifted to a position of 180 ° or an odd multiple thereof, and the output of the optical interference angular velocity meter obtained from the feedback signal generating means at that time is sent to the diagnostic circuit as a diagnostic signal to obtain the feedback signal. An optical interference angular velocity meter characterized in that the frequency is monitored.
【請求項2】 少なくとも一周する光学路と、 その光学路に対して右回り光及び左回り光を通す分岐手
段と、 その光学路を伝搬してきた右回り光及び左回り光を干渉
させる干渉手段と、 前記分岐手段と前記光学路の一端との間に配置されて右
回り光及び左回り光に位相変調を与える位相変調手段
と、 前記分岐手段と前記光学路の他端との間に配置されて右
回り光及び左回り光に位相差を発生させるフィードバッ
ク位相差発生手段と、 前記干渉手段により得られた干渉光の光強度を電気信号
として検出する受光器と、 その受光器からの出力の内、前記位相変調手段の変調周
波数またはその奇数倍の成分を同期検波する同期検波手
段と、 前記同期検波手段の出力によりフィードバック信号を発
生し前記フィードバック位相差発生手段に供給するフィ
ードバック信号発生手段とから成るクローズドループ方
式の光干渉角速度計において、 診断指令によって前記同期検波手段に供給する参照信号
の周波数の次数を切り替えて、前記位相変調周波数の偶
数倍の成分を同期検波し、クローズドループの安定点を
前記右回り光と左回り光の位相差が90°またはその奇
数倍の位置にずらし、その時の前記フィードバック信号
発生手段より得られる光干渉角速度計の出力を診断信号
として診断回路に送出して、前記フィードバック信号の
周波数を監視するようにしたことを特徴とする光干渉角
速度計。
2. An optical path that makes at least one round, branching means for passing clockwise light and counterclockwise light with respect to the optical path, and interference means for interfering the clockwise light and counterclockwise light propagating through the optical path. And a phase modulation unit arranged between the branching unit and one end of the optical path to apply phase modulation to the clockwise light and the counterclockwise light, and arranged between the branching unit and the other end of the optical path. Feedback phase difference generating means for generating a phase difference between the clockwise light and the counterclockwise light, a light receiver for detecting the light intensity of the interference light obtained by the interference means as an electric signal, and an output from the light receiver Among these, a synchronous detection means for synchronously detecting the modulation frequency of the phase modulation means or a component of an odd multiple thereof, and a feedback signal generated by the output of the synchronous detection means and supplied to the feedback phase difference generation means. In a closed loop type optical interference gyro consisting of feedback signal generating means, the order of the frequency of the reference signal supplied to the synchronous detecting means is switched by a diagnostic command to synchronously detect an even multiple of the phase modulation frequency. , The stable point of the closed loop is shifted to a position where the phase difference between the clockwise light and the counterclockwise light is 90 ° or an odd multiple thereof, and the output of the optical interference angular velocity meter obtained by the feedback signal generating means at that time is used as a diagnostic signal. An optical interference angular velocity meter characterized by being sent to a diagnostic circuit to monitor the frequency of the feedback signal.
【請求項3】 少なくとも一周する光学路と、 その光学路に対して右回り光及び左回り光を通す分岐手
段と、 その光学路を伝搬してきた右回り光及び左回り光を干渉
させる干渉手段と、 前記分岐手段と前記光学路の一端との間に配置されて右
回り光及び左回り光に位相変調を与える位相変調手段
と、 前記分岐手段と前記光学路の他端との間に配置されて右
回り光及び左回り光に位相差を発生させるフィードバッ
ク位相差発生手段と、 前記干渉手段により得られた干渉光の光強度を電気信号
として検出する受光器と、 その受光器からの出力の内、前記位相変調手段の変調周
波数またはその奇数倍の成分を同期検波する同期検波手
段と、 前記同期検波手段の出力によりフィードバック信号を発
生し前記フィードバック位相差発生手段に供給するフィ
ードバック信号発生手段とから成るクローズドループ方
式の光干渉角速度計において、 第1の診断指令によって前記同期検波手段に供給する参
照信号の周波数の次数を切り替えて前記位相変調周波数
の偶数倍の成分を同期検波し、クローズドループの安定
点を前記右回り光と左回り光の位相差が90°またはそ
の奇数倍の位置にずらし、その時の光干渉角速度計の出
力を診断回路に送出し、かつ第2の診断指令によって前
記周波数の次数を切り替えられた参照信号と位相が18
0°ずれた参照信号に更に切り替えて前記位相変調周波
数の偶数倍の成分を同期検波し、クローズドループの安
定点を前記右回り光と左回り光の位相差が前記位相差よ
り更に180°ずれた位置とし、その時の前記フィード
バック信号発生手段より得られる光干渉角速度計の出力
を診断回路に送出して、前記フィードバック信号の周波
数を監視するようにしたことを特徴とする光干渉角速度
計。
3. An optical path that makes at least one round, branching means for passing clockwise light and counterclockwise light to the optical path, and interference means for interfering the clockwise light and counterclockwise light propagating through the optical path. And a phase modulation unit arranged between the branching unit and one end of the optical path to apply phase modulation to the clockwise light and the counterclockwise light, and arranged between the branching unit and the other end of the optical path. Feedback phase difference generating means for generating a phase difference between the clockwise light and the counterclockwise light, a light receiver for detecting the light intensity of the interference light obtained by the interference means as an electric signal, and an output from the light receiver Among these, a synchronous detection means for synchronously detecting the modulation frequency of the phase modulation means or a component of an odd multiple thereof, and a feedback signal generated by the output of the synchronous detection means and supplied to the feedback phase difference generation means. In a closed loop type optical interference gyro including a feedback signal generating means, the order of the frequency of a reference signal supplied to the synchronous detecting means is switched by a first diagnostic command to synchronize an even multiple component of the phase modulation frequency. The detection is performed, the stable point of the closed loop is shifted to the position where the phase difference between the clockwise light and the counterclockwise light is 90 ° or an odd multiple thereof, and the output of the optical interference angular velocity meter at that time is sent to the diagnostic circuit, and the second The reference signal and the phase of which the order of the frequency is switched by the diagnostic command of
The phase difference between the clockwise light and the counterclockwise light is further shifted by 180 ° from the stable point of the closed loop by further detecting the component of the even multiple of the phase modulation frequency by synchronously detecting the reference signal shifted by 0 °. The position of the optical interference angular velocity meter is set to a different position, and the output of the optical interference angular velocity meter obtained from the feedback signal generating means at that time is sent to a diagnostic circuit to monitor the frequency of the feedback signal.
JP12345192A 1992-04-30 1992-05-15 Optical interference gyro Expired - Fee Related JP2514529B2 (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP12345192A JP2514529B2 (en) 1992-05-15 1992-05-15 Optical interference gyro
US08/051,995 US5386290A (en) 1992-04-30 1993-04-26 Optical interferometric angular rate meter with a self-diagnostic capability
EP96100077A EP0725261B1 (en) 1992-04-30 1993-04-30 Optical interferometric angular rate meter with a self-diagnostic capability
DE69322797T DE69322797T2 (en) 1992-04-30 1993-04-30 Optical interferometric rotation speed sensor with self-diagnosis function
EP93107088A EP0568105B1 (en) 1992-04-30 1993-04-30 Optical interferometric angular rate meter with a self diagnostic capability
DE69305778T DE69305778T2 (en) 1992-04-30 1993-04-30 Optical interferometric rotation speed sensor with self-diagnosis function

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12345192A JP2514529B2 (en) 1992-05-15 1992-05-15 Optical interference gyro

Publications (2)

Publication Number Publication Date
JPH05322588A JPH05322588A (en) 1993-12-07
JP2514529B2 true JP2514529B2 (en) 1996-07-10

Family

ID=14860938

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12345192A Expired - Fee Related JP2514529B2 (en) 1992-04-30 1992-05-15 Optical interference gyro

Country Status (1)

Country Link
JP (1) JP2514529B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
PL1820034T3 (en) * 2004-11-18 2010-03-31 Powersense As Compensation of simple fiberoptic faraday effect sensors
JP4847512B2 (en) * 2008-12-18 2011-12-28 日本航空電子工業株式会社 Closed loop optical interference angular velocity meter

Also Published As

Publication number Publication date
JPH05322588A (en) 1993-12-07

Similar Documents

Publication Publication Date Title
EP0730725A1 (en) Reduction of optical noise
JPH0680405B2 (en) Light fiber gyro
US6166816A (en) Combination fiber optic current/voltage sensor
JPH09505148A (en) Reduction of Kerr effect error in resonator fiber optic gyroscope
EP0462580B1 (en) Fiber optic gyro with self-diagnostic function
US5386290A (en) Optical interferometric angular rate meter with a self-diagnostic capability
JPH04503111A (en) Optical fiber gyroscope multiple modulator phase difference control device
JP2514529B2 (en) Optical interference gyro
JPH05508221A (en) Interferometer signal analysis with modulation switching
JP2819434B2 (en) Signal phase difference control device combined with optical fiber gyroscope
JPH04232418A (en) Phase-shift controlling loop for fixed frequency
US4863273A (en) D.C. component controlled fiber optic gyroscope
US4585347A (en) Rotation rate measuring instrument
JPS6356924B2 (en)
JP2514528B2 (en) Optical interference gyro with self-diagnosis function
JPS63138208A (en) Optical fiber gyro by phase modulation system
JPH0350964B2 (en)
JPH05272981A (en) Optical gyro
JP2649310B2 (en) Optical interference gyro with self-diagnosis function
EP0412468B1 (en) Synthetic serrodyne controller for fiber optic gyroscope
JP3271019B2 (en) Fiber optic gyro
JP2006177893A (en) Optical interference angular velocimeter
JPH10132578A (en) Optical fiber gyroscope
JPS6329211A (en) Optical fiber rotary sensor
JPS61235719A (en) Fiber interferometer

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 19960130

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080430

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090430

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090430

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100430

Year of fee payment: 14

LAPS Cancellation because of no payment of annual fees