JP2514499B2 - Rail clearance measurement method and rail length measurement method - Google Patents

Rail clearance measurement method and rail length measurement method

Info

Publication number
JP2514499B2
JP2514499B2 JP26098791A JP26098791A JP2514499B2 JP 2514499 B2 JP2514499 B2 JP 2514499B2 JP 26098791 A JP26098791 A JP 26098791A JP 26098791 A JP26098791 A JP 26098791A JP 2514499 B2 JP2514499 B2 JP 2514499B2
Authority
JP
Japan
Prior art keywords
rail
sensor
light
doppler
laser
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP26098791A
Other languages
Japanese (ja)
Other versions
JPH0571929A (en
Inventor
憲幸 篠田
幸策 塩野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
AKUTO DENSHI KK
NAGOYA TETSUDO KK
Original Assignee
AKUTO DENSHI KK
NAGOYA TETSUDO KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by AKUTO DENSHI KK, NAGOYA TETSUDO KK filed Critical AKUTO DENSHI KK
Priority to JP26098791A priority Critical patent/JP2514499B2/en
Publication of JPH0571929A publication Critical patent/JPH0571929A/en
Application granted granted Critical
Publication of JP2514499B2 publication Critical patent/JP2514499B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Length Measuring Devices By Optical Means (AREA)

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は鉄道用に敷設された隣接
するレールの終端部と始端部との間の遊間の幅及びレー
ルの長さを測定する方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for measuring a width of a rail between a terminal end and a starting end of adjacent rails laid for a railway and a length of the rail.

【0002】[0002]

【従来の技術】敷設されている鉄道用のレールは温度の
上昇、下降に伴って延びたり縮んだりする。このレール
の伸縮を吸収するため隣接するレールの終端部と始端部
間の継目には隙間(遊間)が設けられている。この遊間
が小さすぎるとレールの僅かな延びによって遊間がなく
なり、いわゆる盲遊間となる。この状態で更にレ−ルの
温度が上昇するとレールはそれ以上延びることができな
いため、レールの内部に大きな軸圧が生じ、レールが座
屈する原因となる。また逆に、遊間が大き過ぎるとレー
ル上を走行する車両が遊間を通過する際に大きな衝撃が
生じて乗り心地が悪くなるばかりでなく、軌道に継目落
ちが生じて継目の軌道破壊が促進される。この状態でレ
ールの温度が低下すると遊間はさらに大きくなり、遊間
が開口限度に達した以後は継目板ボルトにレールの収縮
による力がかかり、継目板ボルトが破断することにな
る。
2. Description of the Related Art Railroad rails that are laid extend and contract as the temperature rises and falls. In order to absorb the expansion and contraction of the rails, a gap (free space) is provided at the seam between the end and start ends of the adjacent rails. If this clearance is too small, it will be a so-called blind clearance due to a slight extension of the rail. In this state, if the rail temperature further rises, the rail cannot further extend, so that a large axial pressure is generated inside the rail, which causes the rail to buckle. On the contrary, if the clearance is too large, not only will the vehicle traveling on the rail experience a large impact when passing through the clearance, which will result in poor riding comfort, but also the track will drop and the track will be destroyed at the seam. It When the temperature of the rail decreases in this state, the play space further increases, and after the play space reaches the opening limit, the seam plate bolt is subjected to a force due to the contraction of the rail and the seam plate bolt breaks.

【0003】以上の問題やレール張り出し事故等を防止
するため、遊間は適正な間隔にしておく必要があり、そ
のため従来より遊間管理が行なわれている。この遊間管
理は春、秋2回行なわれており、その都度、遊間測定、
遊間の判定、不良箇所の遊間整正という一連の作業を通
じて常に良好な状態に遊間を保つようにしている。
In order to prevent the above-mentioned problems and rail overhang accidents, it is necessary to keep the play space at an appropriate interval, and therefore play space management has been conventionally performed. This play space management is performed twice in spring and autumn, and each time, the play space measurement,
Through the series of work of determining the play distance and adjusting the play distance of the defective portion, the play distance is always kept in a good condition.

【0004】具体的なレールの遊間測定方法として従来
は下記に示す方法を用いていた。 .土木係員が定規を持ってレールに添って歩き、遊間
の位置に来るとその遊間に定規を当てて測定する方法。 .レールを走行する軌道自動車にカメラを据え付け、
そのカメラにより遊間を静止画として収録し、コンピュ
ータで画像処理して測定する方法。 .レールの幅方向両外側にレールを挟んで対向設置さ
れた光電スイッチと、ロータリーエンコーダとの組合わ
せにより測定する方法。
Conventionally, the following method has been used as a specific rail clearance measuring method. . A method in which a civil engineer walks along a rail with a ruler and hits a ruler in the play when it reaches the play space. . Install the camera on the rail car running on the rail,
A method of recording the still space as a still image with the camera and performing image processing on the computer for measurement. . A method that uses a combination of a rotary encoder and a photoelectric switch that is installed on both sides of the rail in the width direction so that they face each other across the rail.

【0005】前記のレールの遊間測定方法には次のよう
な問題があった。 A.前記の遊間測定方法では1日に2人で10km弱
しか測定できず、非常に作業性が悪かった。 B.前記の遊間測定方法は前記の遊間測定方法より
は作業能率が向上するが、それでも測定速度が30〜4
0km/h程度であるため作業能率が充分でない。それ
以上スピードを早くすると画像が追随できず、測定不能
になる。また、レール継目部分の映像が鮮明に撮像され
るように外部自然光の遮蔽や特殊照明、フラッュライト
やシャッタカメラを用いた高速移動体撮像法であるた
め、それらの設備が複雑になり、取扱いが面倒で、コス
ト高になる等の問題もある。
The above-described method for measuring the clearance between rails has the following problems. A. According to the above-mentioned distance measurement method, only two people could measure less than 10 km per day, and the workability was very poor. B. Although the above-mentioned distance measuring method is more efficient than the above-mentioned distance measuring method, the measuring speed is still 30 to 4
The work efficiency is not sufficient because it is about 0 km / h. If the speed is further increased, the image cannot follow and measurement becomes impossible. In addition, because it is a high-speed moving object imaging method that uses external natural light shielding, special lighting, a floodlight, and a shutter camera so that the image of the rail joint part can be clearly captured, those equipments are complicated and the handling is troublesome. However, there are problems such as high cost.

【0006】C.前記の遊間測定方法はロータリーエ
ンコーダが接触方式であるため次のような問題があっ
た。 1.状況によって接触が不安定になるので、測定データ
がばらつき易い。 2.振動、スリップ等により測定誤差が生じ易い。 3.ロータリーエンコーダの回転軸が摩耗すると、接触
状態が変化するので測定誤差が生じ易い。 4.以上の理由により、測定パルスピッチを細かくして
も時速5km/hの検測速度が限度である。 5.識別センサが透光式であるため、それらを車両定規
外に取付ける必要があり、このため営業用列車には搭載
できない。
C. The play distance measuring method has the following problems because the rotary encoder is a contact type. 1. Since the contact becomes unstable depending on the situation, the measured data tends to vary. 2. Measurement errors are likely to occur due to vibration and slip. 3. When the rotary shaft of the rotary encoder wears, the contact state changes, so that a measurement error is likely to occur. 4. For the above reasons, the measurement speed of 5 km / h is the limit even if the measurement pulse pitch is made fine. 5. Since the identification sensors are translucent, it is necessary to mount them outside the vehicle ruler, and therefore they cannot be installed in commercial trains.

【0007】そこで本件発明者は次のようなレールの遊
間及びレール長測定方法を開発し、出願した(特許願平
2−71151)。このうちレールの遊間測定方法は図
12、13に示すように、レール1の上面2にレーザ・
ドップラ・センサ3からドップラ用レーザ光aを照射し
て、同上面2からの散乱光bを同センサ3により受光し
て同センサ3からドップラ信号A{図14c}を出力
し、一方、同上面2にその上方から遊間識別センサ4よ
り遊間識別用レーザ光dを照射し、その反射光eに基づ
いて隣接するレール1の終端部1aと始端部1b間の遊
間5の幅に応じたパルス幅の遊間識別信号B1 、B2
・・{図14b}を出力し、各遊間識別信号B1 、B2
・・・のパルス幅内における前記ドップラ信号Aのパル
スpの数と同パルス間隔lに基づいて遊間5の長さを算
出するようにしたものである。
Therefore, the present inventor has developed and applied for the following method for measuring the clearance between rails and the rail length (Japanese Patent Application No. 2-71151). Of these, the method of measuring the clearance between the rails is as shown in FIGS.
The Doppler laser light a is emitted from the Doppler sensor 3, the scattered light b from the upper surface 2 is received by the same sensor 3, and the Doppler signal A {FIG. 14c} is output from the same sensor 3. 2 is irradiated with laser light d for gap discrimination from above by a gap discrimination sensor 4, and a pulse width corresponding to the width of the gap 5 between the end portion 1a and the start end portion 1b of the adjacent rails 1 based on the reflected light e. Play distance identification signals B 1 , B 2
.. {FIG. 14b} is output and the play distance identification signals B 1 and B 2 are output.
The length of the play gap 5 is calculated based on the number of pulses p of the Doppler signal A and the same pulse interval 1 within the pulse width of.

【0008】また、前記のレール長測定方法は図14
(a)に示す1本のレール1の始端部1bと終端部1a
に対応する2つの遊間識別信号B1 、B2 ・・・間にお
ける、前記ドップラ信号Aのパルスpの数に基づいて、
レール1の長さを計測するようにしたものである。
The above-mentioned rail length measuring method is shown in FIG.
A starting end portion 1b and a terminating end portion 1a of one rail 1 shown in (a).
Based on the number of pulses p of the Doppler signal A between the two play discrimination signals B 1 , B 2 ... Corresponding to
The length of the rail 1 is measured.

【0009】[0009]

【発明が解決しようとする課題】.前記方法では図1
2,13に示すようにレール1に垂直に遊間識別用レー
ザ光dが照射されているため、面取り部1c(図13)
からの反射光eは斜め方向に散乱して、レール1の真上
に設けてある受光器4aに受光されない。この結果、面
取り部1cが遊間5として計測されてしまい、レール1
の長さと遊間5のいずれも測定誤差となる。 .レール1の遊間5には必要に応じて図15、図16
(a)に示すように軌道回路41を構成するための絶縁
継目40が配置される。軌道回路41は軌道の一定区間
を絶縁継目40により区切って隣接区間42と電気的に
絶縁し、その絶縁された2本のレール1の一端に電源装
置43、車軸の短絡によって過大な電流が流れるのを防
ぐ限流装置44が接続され、他端に信号を制御する軌道
継電器45が接続された電気回路である。 この絶縁継目40が遊間5に設置されていると、図16
(c)に示す遊間識別信号B1 、B2 ・・・のパルス幅
は、絶縁継目40とその両端のレール1の端部1a,1
bとの間で5aと5bの2つに分割され、同図(c)の
ドップラ信号Aのパルスpの数と同パルス間隔に基づい
て遊間5が同図(d)のように測定され、レール長が同
図(e)のように測定される。この結果、同図(e)に
示すように絶縁継目40の部分hが極度に短いレールと
して計測され、絶縁継目40の両側が同図(d)に示す
ように二つの遊間5a、5bとして別々に計測され、レ
ール長及び遊間の測定誤差となる。
[Problems to be solved by the invention]. In the above method, FIG.
As shown in Nos. 2 and 13, the chamfered portion 1c (FIG. 13) is obtained because the idle discrimination laser beam d is vertically applied to the rail 1.
The reflected light e from is scattered in an oblique direction and is not received by the light receiver 4a provided right above the rail 1. As a result, the chamfered portion 1c is measured as the clearance 5, and the rail 1
Both the length and the gap 5 are measurement errors. . As shown in FIGS. 15 and 16 in the clearance 5 of the rail 1, if necessary.
As shown in (a), the insulating joint 40 for forming the track circuit 41 is arranged. The track circuit 41 divides a certain section of the track by an insulating joint 40 to electrically insulate it from an adjacent section 42, and an excessive current flows to one end of the two insulated rails 1 due to a short circuit between the power supply device 43 and the axle. Is an electric circuit to which a current limiting device 44 is connected, and an orbital relay 45 for controlling a signal is connected to the other end. When this insulating seam 40 is installed in the play space 5, FIG.
The pulse widths of the idle discrimination signals B 1 , B 2, ... Shown in (c) are the insulating joint 40 and the ends 1 a, 1 of the rail 1 at both ends thereof.
It is divided into two, 5a and 5b, between b, and the play gap 5 is measured as shown in (d) of the figure based on the number of pulses p and the same pulse interval of the Doppler signal A in (c) of the figure. The rail length is measured as shown in FIG. As a result, the portion h of the insulation seam 40 is measured as an extremely short rail as shown in FIG. 7E, and both sides of the insulation seam 40 are separated as two clearances 5a and 5b as shown in FIG. The measurement error will be the rail length and the measurement error.

【0010】本発明の目的はレーザ・ドップラ・センサ
及び遊間識別センサを用いて、レールの遊間及びレール
長を非接触で正確に測定でき、しかも、営業用列車の走
行スピ−ド(110km/h前後)で高速測定が可能
で、その上、レールの始端部、終端部の上面の面取り部
分をもレール長として測定できる、レールの遊間及びレ
ール長測定方法を提供することにある。
The object of the present invention is to accurately measure the rail clearance and the rail length in a non-contact manner by using the laser Doppler sensor and the clearance discrimination sensor, and the traveling speed of the commercial train (110 km / h). (EN) A high-speed measurement is possible in front and rear), and moreover, a rail clearance and a rail length measuring method capable of measuring the chamfered portions of the top and bottom of the rail as the rail length.

【0011】[0011]

【課題を解決するための手段】本発明のレールの遊間測
定方法はレーザ・ドップラ・センサの原理を応用したも
のである。即ち、レーザ・ドップラ・センサにおいては
図11に示すように、レーザ光源30からレーザ光aを
ビームスプリッタ34で2分して交差角φで走行する被
測定物31に照射すると、同被測定物31からの散乱光
bはミラー32、集光レンズ33等の光学系を介して光
電変換器APD35でヘテロダイン検波される。このと
き光電変換器APD35から得られるドップラ信号の周
波数fDは次式で示される。 fD =(2V/λ)sin(φ/2)cos(Δθ) V:被測定物の表面速度 λ:レーザ波長 φ:ビ−ム交差角 Δθ:ビ−ム法線と被測定物の直角からのずれ角 前記式のようにドップラ周波数fD は走行する被測定物
31の表面速度Vに比例した周波数となる。このため、
ある時間におけるドップラ周波数fD の波数(パルスp
の数)を積算すれば、その時間における被測定物の長さ
を求めることができる。ちなみに、前記パルス間隔lは
ビ−ム交差角φとレーザの波長λとにより定まる。
The rail clearance measurement method of the present invention applies the principle of a laser Doppler sensor. That is, in the laser Doppler sensor, as shown in FIG. 11, when the laser light a is radiated from the laser light source 30 into the beam splitter 34 and radiated to the DUT 31 traveling at the crossing angle φ, the same DUT is measured. The scattered light b from 31 is heterodyne detected by the photoelectric converter APD 35 via an optical system such as a mirror 32 and a condenser lens 33. At this time, the frequency f D of the Doppler signal obtained from the photoelectric converter APD35 is expressed by the following equation. f D = (2V / λ) sin (φ / 2) cos (Δθ) V: Surface velocity of the measured object λ: Laser wavelength φ: Beam crossing angle Δθ: Right angle of beam normal to the measured object Deviation angle from the Doppler frequency f D becomes a frequency proportional to the surface velocity V of the running object 31 to be measured as in the above equation. For this reason,
Wavenumber of Doppler frequency f D (pulse p
If the number of is calculated, the length of the measured object at that time can be obtained. Incidentally, the pulse interval 1 is determined by the beam crossing angle φ and the laser wavelength λ.

【0012】そこで、本発明のうち請求項1のレールの
遊間測定方法は、図1、図2(a)に示すようにレール
1の上面2及び面取り面1cにレーザ・ドップラ・セン
サ3からドップラ用レーザ光aを照射し、同上面2及び
面取り面1cからの散乱光bを同センサ3により受光し
て同センサ3からドップラ信号A{図14(c)}を出
力し、一方、同上面2及び面取り面1cにその真上から
遊間識別センサ4より遊間識別用レーザ光dを照射し、
同上面2及び面取り面1cからの反射光eをレール1の
前後方向に設けた2つの受光器4aのうち少なくとも一
方の受光器4aで受光し、同受光器4aから隣接するレ
ール1の終端部1aと始端部1b間の遊間5の幅に応じ
たパルス幅の遊間識別信号B1 、B2 ・・・{図14
(b)}を出力し、各遊間識別信号B1 、B2 ・・・の
パルス幅内における前記ドップラ信号Aのパルスpの数
と同パルス間隔lに基づいて遊間5の長さを算出するよ
うにしたものである。
Therefore, in the method of measuring the clearance between the rails according to claim 1 of the present invention, as shown in FIGS. 1 and 2A, the laser Doppler sensor 3 to the Doppler sensor 3 are mounted on the upper surface 2 and the chamfered surface 1c of the rail 1. Laser light a for irradiation, the scattered light b from the upper surface 2 and the chamfered surface 1c is received by the same sensor 3, and a Doppler signal A {FIG. 14 (c)} is output from the same sensor 3. 2 and the chamfered surface 1c are radiated with a laser beam d for gap discrimination from the gap discrimination sensor 4 from directly above,
The reflected light e from the upper surface 2 and the chamfered surface 1c is received by at least one of the two light receivers 4a provided in the front-back direction of the rail 1, and the end portion of the adjacent rail 1 from the light receiver 4a. The clearance discrimination signals B 1 , B 2 having pulse widths corresponding to the width of the clearance 5 between 1a and the start end portion 1b ... {FIG.
(B)} is output, and the length of the play gap 5 is calculated based on the number of pulses p of the Doppler signal A and the same pulse interval l within the pulse width of the play identification signals B 1 , B 2, ... It was done like this.

【0013】本発明のうち請求項2のレールの遊間測定
方法は、図2(b)に示すようにレール1の上面2及び
面取り面1cにレーザ・ドップラ・センサ3からドップ
ラ用レーザ光aを照射し、同上面2及び面取り面1cか
らの散乱光bを同センサ3により受光して同センサ3か
らドップラ信号A{図14(c)}を出力し、同上面2
及び面取り面1cに遊間識別センサ4からの遊間識別用
レーザ光dを、レール1の前後方向2方向から斜めに集
光するように照射し、同上面2及び面取り面1cからの
反射光eを前記2方向からの遊間識別用レーザ光dの間
に設けた受光器4aで受光し、同受光器4aから隣接す
るレール1の終端部1aと始端部1b間の遊間5の幅に
応じたパルス幅の遊間識別信号B1 、B2 ・・{図14
(b)}を出力し、各遊間識別信号B1 、B2 ・・・の
パルス幅内における前記ドップラ信号Aのパルスpの数
と同パルス間隔lに基づいて遊間5の長さを算出するよ
うにしたものである。
According to a second aspect of the present invention, in the method for measuring the clearance between rails, as shown in FIG. 2 (b), the laser Doppler sensor 3 applies a laser beam a for Doppler to the upper surface 2 and the chamfered surface 1c of the rail 1. The sensor 3 receives the scattered light b from the upper surface 2 and the chamfered surface 1c and outputs the Doppler signal A {FIG. 14 (c)} from the sensor 3, and the upper surface 2
Further, the chamfered surface 1c is irradiated with the gap identification laser light d from the gap identification sensor 4 so as to be obliquely condensed from the two front-rear directions of the rail 1, and the reflected light e from the top surface 2 and the chamfered surface 1c is irradiated. A pulse corresponding to the width of the gap 5 between the end portion 1a and the start end portion 1b of the rail 1 adjacent to the rail 1 is received by the photodetector 4a provided between the gap identification laser beams d from the two directions. Width clearance detection signals B 1 , B 2 ...
(B)} is output, and the length of the play gap 5 is calculated based on the number of pulses p of the Doppler signal A and the same pulse interval l within the pulse width of the play identification signals B 1 , B 2, ... It was done like this.

【0014】本発明のうち請求項3のレールの遊間測定
方法は、レール1の上面2及び面取り面1cにレーザ・
ドップラ・センサ3(図17)からドップラ用レーザ光
aを、レール1の前後方向2方向から斜めに集光して照
射し、同上面2及び面取り面1cからの散乱光bを同セ
ンサ3の前記2方向からの遊間識別用レーザ光dの間に
設けた受光器35により受光して、同センサ3から隣接
するレール1の終端部1aと始端部1b間の遊間5の幅
に応じたパルス幅の遊間識別信号B1 、B2 ・・・{図
14(b)}を出力すると共に、受光された散乱光bの
一部を分岐し且つそれから直流分を除去して交流分を取
り出してその交流分をドップラ信号A{図14(c)}
として出力し、各遊間識別信号B1 、B2 ・・・のパル
ス幅内における前記ドップラ信号Aのパルスpの数と同
パルス間隔lに基づいて遊間5の長さを算出するように
したものである。
According to a third aspect of the present invention, there is provided a method for measuring a clearance between rails, wherein a laser beam is applied to the upper surface 2 of the rail 1 and the chamfered surface 1c.
The Doppler laser light a from the Doppler sensor 3 (FIG. 17) is obliquely collected and emitted from the front-back direction 2 of the rail 1, and scattered light b from the upper surface 2 and the chamfered surface 1c of the sensor 3 is irradiated. A pulse corresponding to the width of the play gap 5 between the end portion 1a and the start end portion 1b of the rail 1 adjacent to the sensor 3 is received by the light receiver 35 provided between the play distance identifying laser beams d from the two directions. The width discrimination signals B 1 , B 2 ... {Fig. 14 (b)} are output, and a part of the received scattered light b is branched and the direct current component is removed therefrom to extract the alternating current component. The AC component is the Doppler signal A {Fig. 14 (c)}.
And the length of the play gap 5 is calculated based on the number of pulses p of the Doppler signal A and the same pulse interval l within the pulse width of each play discrimination signal B 1 , B 2, ... Is.

【0015】本発明のうち請求項4のレールの遊間測定
方法は、請求項1又は請求項2又は請求項3のレールの
遊間測定方法において、図16(a)に示すように遊間
5に絶縁継目40が設けられている場合に、同絶縁継目
40とその両側のレール1の終端部1aと始端部1bと
の間の2つの遊間5a、5bを加算して遊間5とするも
のである。
According to a fourth aspect of the present invention, there is provided a method for measuring a rail clearance, which is the same as the rail spacing measuring method according to the first, second or third aspect, as shown in FIG. When the seam 40 is provided, two free spaces 5a and 5b between the insulating seam 40 and the end portion 1a and the start end portion 1b of the rail 1 on both sides thereof are added to form the free space 5.

【0016】本発明のうち請求項5のレール長測定方法
は、図2(a)に示すようにレール1の上面2及び面取
り面1cにレーザ・ドップラ・センサ3からドップラ用
レーザ光aを照射し、同上面2及び面取り面1cからの
散乱光bを同センサ3により受光して同センサ3からド
ップラ信号A{図14(c)}を出力し、一方、同上面
2及び面取り面1cにその真上から遊間識別センサ4よ
り遊間識別用レーザ光dを照射し、同上面2及び面取り
面1cからの反射光eをレール1の前後方向に設けた2
つの受光器4aのうち少なくとも一方の受光器4aで受
光し、同受光器4aから隣接するレール1の終端部1a
と始端部1b間の遊間5の幅に応じたパルス幅の遊間識
別信号B1 、B2 ・・・{図14(b)}を出力し、そ
れらの遊間識別信号B1 、B2 ・・・のうち1本のレー
ル1の始端部1bと終端部1aに対応する2つの遊間識
別信号B1 、B2 間における前記ドップラ信号Aのパル
スpの数に基づいてレール1の長さを計測するようにし
たものである。
In the rail length measuring method according to claim 5 of the present invention, as shown in FIG. 2A, the laser Doppler sensor 3 irradiates the upper surface 2 and the chamfered surface 1c of the rail 1 with the laser light a for Doppler. Then, the scattered light b from the upper surface 2 and the chamfered surface 1c is received by the same sensor 3 and a Doppler signal A {FIG. 14 (c)} is output from the same sensor 3, while the same upper surface 2 and the chamfered surface 1c are output. Laser light d for distance discrimination is radiated from directly above the distance discrimination sensor 4, and reflected light e from the upper surface 2 and the chamfered surface 1c is provided in the front-back direction of the rail 1.
At least one of the two light receivers 4a receives light, and the end portion 1a of the rail 1 adjacent to the light receiver 4a is received.
And Joint Gap identification signal having a pulse width corresponding to the width of the Joint Gap 5 between the starting end 1b B 1, B 2 outputs ... {FIG. 14 (b)}, their Joint Gap identification signals B 1, B 2 ·· Measuring the length of the rail 1 based on the number of pulses p of the Doppler signal A between the two play discrimination signals B 1 and B 2 corresponding to the start end portion 1b and the end portion 1a of one rail 1 It is something that is done.

【0017】本発明のうち請求項6のレール長測定方法
は、図2(b)に示すようにレール1の上面2及び面取
り面1cにレーザ・ドップラ・センサ3からドップラ用
レーザ光aを照射し、同上面2及び面取り面1cからの
散乱光bを同センサ3により受光して同センサ3からド
ップラ信号A{図14(c)}を出力し、一方、同上面
2及び面取り面1cに遊間識別センサ4からの遊間識別
用レーザ光dをレール1の前後方向2方向から斜めに集
光して照射し、同上面2及び面取り面1cからの反射光
eを前記2方向からの遊間識別用レーザ光dの間に設け
た受光器4aで受光し、同受光器4aから隣接するレー
ル1の終端部1aと始端部1b間の遊間5の幅に応じた
パルス幅の遊間識別信号B1 、B2・・・・{図14
(b)}を出力し、それら遊間識別信号B1 、B2 ・・
・のうち1本のレール1の始端部1bと終端部1aに対
応する2つの遊間識別信号B1 、B2 間における前記ド
ップラ信号Aのパルスpの数に基づいて、レール1の長
さを計測するようにしたものである。
In the rail length measuring method according to claim 6 of the present invention, the upper surface 2 and the chamfered surface 1c of the rail 1 are irradiated with the laser beam a for Doppler from the laser Doppler sensor 3 as shown in FIG. 2 (b). Then, the scattered light b from the upper surface 2 and the chamfered surface 1c is received by the same sensor 3 and a Doppler signal A {FIG. 14 (c)} is output from the same sensor 3, while the same upper surface 2 and the chamfered surface 1c are output. Laser light d for gap identification from the gap identification sensor 4 is obliquely collected and emitted from two directions in the front-rear direction of the rail 1, and reflected light e from the upper surface 2 and the chamfered surface 1c is identified from the two directions. A light receiving device 4a provided between the laser beams for use d receives light, and a free space discriminating signal B 1 having a pulse width corresponding to the width of the free space 5 between the end portion 1a and the start end portion 1b of the adjacent rail 1 from the light receiving device 4a. , B 2 ...
(B)} is output, and the play discrimination signals B 1 , B 2 ...
The length of the rail 1 is determined based on the number of pulses p of the Doppler signal A between the two play discrimination signals B 1 and B 2 corresponding to the start end portion 1b and the end portion 1a of one rail 1 among the rails 1. It is designed to be measured.

【0018】本発明のうち請求項7のレール長測定方法
は、レール1の上面2及び面取り面1cにレーザ・ドッ
プラ・センサ3(図17)からドップラ用レーザ光aを
レール1の前後方向の2方向から斜めに集光して照射
し、同上面2及び面取り面1cからの散乱光bを同セン
サ3の前記2方向からの遊間識別用レーザ光dの間に設
けた受光器35により受光して、同センサ3から隣接す
るレール1の終端部1aと始端部1b間の遊間5の幅に
応じたパルス幅の遊間識別信号B1 、B2 ・・・{図1
4(b)}を出力すると共に、受光された散乱光bの一
部を分岐し且つそれから直流分を除去して交流分を取り
出してその交流分をドップラ信号A{図14(c)}と
して出力し、前記遊間識別信号B1 、B2 ・・・のうち
1本のレール1の始端部1bと終端部1aに対応する2
つの遊間識別信号B1 、B2 間における前記ドップラ信
号Aのパルスpの数に基づいて、レール1の長さを計測
するようにしたものである。
In the rail length measuring method according to claim 7 of the present invention, the laser Doppler laser light a from the laser Doppler sensor 3 (FIG. 17) on the upper surface 2 and the chamfered surface 1c of the rail 1 is measured in the front-back direction of the rail 1. The light is obliquely collected and emitted from two directions, and the scattered light b from the upper surface 2 and the chamfered surface 1c is received by the light receiver 35 provided between the idle discrimination laser light d from the two directions of the sensor 3. Then, the play distance identification signals B 1 , B 2 ... {FIG. 1 having a pulse width corresponding to the width of the play distance 5 between the end portion 1 a and the start end portion 1 b of the rail 1 adjacent to the sensor 3
4 (b)} is output, a part of the received scattered light b is branched, and the direct current component is removed therefrom to extract the alternating current component, and the alternating current component is taken as the Doppler signal A {FIG. 14 (c)}. 2 corresponding to the start end portion 1b and the end portion 1a of one rail 1 among the idle discrimination signals B 1 , B 2 ...
The length of the rail 1 is measured on the basis of the number of pulses p of the Doppler signal A between the free play discrimination signals B 1 and B 2 .

【0019】本発明のうち請求項8のレールの遊間測定
方法は、請求項1、2、3の遊間識別用レーザ光dに、
図3に示すようにレール1の幅方向に広がりをもたせた
ものである。
In the rail clearance measuring method according to claim 8 of the present invention, the clearance identifying laser light d according to claim 1, 2, or 3 is used.
As shown in FIG. 3, the rail 1 is expanded in the width direction.

【0020】本発明のうち請求項9のレール長測定方法
は、請求項5、6、7の遊間識別用レーザ光dに、図3
に示すようにレール1の幅方向に広がりをもたせたもの
である。
A rail length measuring method according to a ninth aspect of the present invention is the same as the method for measuring the length of the idle play identifying laser beam d according to the fifth, sixth and seventh aspects.
As shown in, the rail 1 is expanded in the width direction.

【0021】[0021]

【作用】本発明のうち請求項1のレールの遊間測定方法
では、図1に示すようにレール1の上面2及び面取り面
1cからの散乱光bに基づいて得られたドップラ信号A
{図14(c)}と、同上面2及び面取り面1cからの
反射光eに基づいて得られた遊間5の幅に応じたパルス
幅Lの遊間識別信号B1 、B2 ・・・・{図14
(b)}とを組合わせて遊間5の長さを算出するので、
レール1に非接触で遊間を測定することができる。しか
も、図2(a)に示すように遊間識別センサ4からレー
ル1の終端部1bの面取り部1cの斜面に照射された遊
間識別用レーザ光dは、同斜面で斜め右方向に反射する
が、この反射光eは同方向に設けた一方の受光器4aで
受光される。同様に、レール1の先端部1aの面取り部
1cの斜面に照射された同レーザ光dは前記の場合と逆
方向に反射するが、同反射光eはその方向に設けてある
他方の受光器4aで受光される。このため、面取り部1
cからの反射光がレール1の平な上面2で反射された場
合と同様に確実に受光され、面取り部1cが遊間5とし
て計測されることがなく、計測誤差が生じない。
In the method for measuring the clearance between the rails according to the first aspect of the present invention, as shown in FIG. 1, the Doppler signal A obtained based on the scattered light b from the upper surface 2 and the chamfered surface 1c of the rail 1 is used.
{FIG. 14 (c)} and the play distance identification signals B 1 , B 2, ... With a pulse width L corresponding to the width of the play distance 5 obtained based on the reflected light e from the upper surface 2 and the chamfered surface 1c. {Fig. 14
(B)} is combined to calculate the length of the play space 5,
The clearance can be measured without contacting the rail 1. Moreover, as shown in FIG. 2A, the play distance identification laser light d emitted from the play distance identification sensor 4 to the slope of the chamfered portion 1c of the terminal end 1b of the rail 1 is reflected obliquely rightward on the slope. The reflected light e is received by the one light receiver 4a provided in the same direction. Similarly, the same laser light d radiated on the slope of the chamfered portion 1c of the tip 1a of the rail 1 is reflected in the opposite direction to the above case, but the same reflected light e is provided in the other light receiver. The light is received by 4a. Therefore, the chamfer 1
Similarly to the case where the reflected light from c is reflected by the flat upper surface 2 of the rail 1, the chamfered portion 1c is not measured as the clearance 5, and the measurement error does not occur.

【0022】遊間識別用レーザ光dがレール1の面取り
部1c以外の平な上面2に照射されたときは、その反射
光eは真上に反射されるが、同反射光eにはある程度の
広がりがあるため、その反射光eの一部は両方の受光器
4aで受光される。また、図8に示すように遊間識別用
レーザ光dが遊間5にある継目板6で反射されたとき
は、その反射光eは前記レール1の平な上面2に照射さ
れたときと同様に真上に反射されるが、このときの反射
光レベルは上面2からの反射光レベルよりも小さいた
め、そのレベル差から両者(レールと遊間)を区別する
ことができる。この結果、前記遊間識別センサ4により
レール1の終端部1a、始端部1bに形成された面取り
部1cを含むレール1の長さと遊間5の幅を正確に識別
して計測することができる。
When the play distance identifying laser light d is applied to the flat upper surface 2 of the rail 1 other than the chamfered portion 1c, the reflected light e is reflected right above, but the reflected light e has a certain degree. Because of the spread, a part of the reflected light e is received by both light receivers 4a. Further, as shown in FIG. 8, when the gap identification laser light d is reflected by the joint plate 6 in the gap 5, the reflected light e is the same as when the flat upper surface 2 of the rail 1 is irradiated. Although it is reflected right above, the reflected light level at this time is smaller than the reflected light level from the upper surface 2, so it is possible to distinguish both (rail and play space) from the level difference. As a result, it is possible to accurately identify and measure the length of the rail 1 including the chamfered portion 1c formed at the terminal end 1a and the starting end 1b of the rail 1 and the width of the clearance 5 by the clearance discrimination sensor 4.

【0023】本発明のうち請求項2のレールの遊間測定
方法では、図2(b)に示すように遊間識別センサ4か
らレール1の終端部1bの面取り部1cの斜面に斜めに
照射された遊間識別用レーザ光dは、面取り部1cから
真上方向に反射し、その反射光は受光器4aで受光され
るため、面取り部1cからの反射光がレール1の平な上
面2で反射された場合と同様に確実に受光され、面取り
部1cをレール1の一部として計測でき、計測誤差が生
じない。この他の作用は請求項1の場合と全く同様であ
る。
In the rail clearance measuring method according to the second aspect of the present invention, as shown in FIG. 2B, the clearance discriminating sensor 4 obliquely irradiates the inclined surface of the chamfered portion 1c of the terminal end 1b of the rail 1. The play-distance-identifying laser light d is reflected right above the chamfered portion 1c, and the reflected light is received by the light receiver 4a. Therefore, the reflected light from the chamfered portion 1c is reflected on the flat upper surface 2 of the rail 1. As in the case of the above, the light is reliably received, the chamfered portion 1c can be measured as a part of the rail 1, and a measurement error does not occur. The other operation is exactly the same as that of the first aspect.

【0024】本発明のうち請求項3のレールの遊間測定
方法では、請求項2における遊間識別センサ4を使用せ
ず、レーザ・ドップラ・センサ3として遊間識別センサ
4を兼ねたレーザ・ドップラ・センサ3(図17)を使
用し、レール1の上面2及び面取り面1cから散乱され
る散乱光bを遊間識別信号B1 、B2 ・・・として使用
すると共に、同散乱光bの一部の直流分を除去して交流
分を取り出してその交流分をドップラ信号Aとして出力
することができるので、遊間識別センサ4が不要とな
り、その分だけ遊間測定装置の構成が簡潔になり、コス
トも安価になる。
According to the third aspect of the present invention, in the method for measuring the distance between the rails, the distance detecting sensor 4 according to the second aspect is not used, and the laser Doppler sensor which also serves as the distance detecting sensor 4 as the laser Doppler sensor 3. 3 (FIG. 17), the scattered light b scattered from the upper surface 2 of the rail 1 and the chamfered surface 1c is used as the clearance discrimination signals B 1 , B 2 ... And a part of the scattered light b is used. Since the direct current component can be removed and the alternating current component can be taken out and the alternating current component can be output as the Doppler signal A, the free play discrimination sensor 4 is unnecessary, and the configuration of the free play measurement device is correspondingly simplified and the cost is also low. become.

【0025】本発明のうち請求項4のレールの遊間測定
方法では、図16(a)に示すように遊間5に絶縁継目
40が設けられている場合、同図(d)に示すように、
2つの遊間5a、5bが得られるが、本発明ではこの2
つの遊間5a、5bを加算して遊間5とするので、遊間
5を正確に測定することができる。
In the rail clearance measuring method according to a fourth aspect of the present invention, when an insulating joint 40 is provided in the clearance 5 as shown in FIG. 16A, as shown in FIG.
Two play spaces 5a and 5b can be obtained, but in the present invention, this 2
Since the play distances 5a and 5b are added to form the play distance 5, the play distance 5 can be accurately measured.

【0026】本発明のうち請求項5のレール長測定方法
では、遊間識別センサ4からレール1の終端部1bの面
取り部1cの斜面に真上から照射された遊間識別用レー
ザ光dが、面取り部1cから斜めに反射してその反射光
がレール1の前後方向に設けた2つの受光器4aのうち
少なくとも一方の受光器4aで受光されるので、面取り
部1cからの反射光がレール1の平な上面2で反射され
た場合と同様に確実に受光され、面取り部1cをレール
1の一部として計測でき、正確なレール長測定ができ
る。
In the rail length measuring method according to a fifth aspect of the present invention, the clearance-identifying laser light d radiated from directly above the clearance-identifying sensor 4 onto the slope of the chamfered portion 1c of the terminal end 1b of the rail 1 is chamfered. Since the reflected light is obliquely reflected from the portion 1c and is received by at least one of the two light receivers 4a provided in the front and rear direction of the rail 1, the reflected light from the chamfered portion 1c is reflected by the rail 1. As in the case of being reflected by the flat upper surface 2, the light is reliably received, the chamfered portion 1c can be measured as a part of the rail 1, and accurate rail length measurement can be performed.

【0027】本発明のうち請求項6のレール長測定方法
では、遊間識別センサ4からレール1の終端部1bの面
取り部1cの斜面に斜めに照射された遊間識別用レーザ
光dが、面取り部1cから真上方向に反射してその反射
光が受光器4aで受光されるため、面取り部1cからの
反射光がレール1の平な上面2で反射された場合と同様
に確実に受光され、面取り部1cをレール1の一部とし
て計測でき、正確なレール長測定ができる。
In the rail length measuring method according to a sixth aspect of the present invention, the play distance identifying laser light d obliquely irradiated from the play distance identifying sensor 4 to the slope of the chamfered portion 1c of the terminal end 1b of the rail 1 is chamfered. Since the reflected light is reflected directly upward from 1c and is received by the light receiver 4a, the reflected light from the chamfered portion 1c is reliably received as in the case of being reflected by the flat upper surface 2 of the rail 1, The chamfered portion 1c can be measured as a part of the rail 1, and the rail length can be accurately measured.

【0028】本発明のうち請求項7のレール長測定方法
では、請求項6における遊間識別センサ4を使用せず、
レーザ・ドップラ・センサ3として遊間識別センサ4を
兼ねたレーザ・ドップラ・センサ3(図17)を使用
し、レール1の上面2及び面取り面1cから散乱される
散乱光bを遊間識別信号B1 、B2 ・・・として使用す
ると共に、同散乱光bの一部の直流分を除去して交流分
を取り出してその交流分をドップラ信号Aとして出力す
るので遊間識別センサ4が不要となり、その分だけレー
ル長測定装置の構成が簡潔になり、コストも安価にな
る。
In the rail length measuring method according to the seventh aspect of the present invention, the idle discrimination sensor 4 according to the sixth aspect is not used,
A laser Doppler sensor 3 (FIG. 17) that also serves as the play distance discrimination sensor 4 is used as the laser Doppler sensor 3, and scattered light b scattered from the upper surface 2 of the rail 1 and the chamfered surface 1c is used as the play distance discrimination signal B 1 , B 2, ..., while removing a direct current component of the scattered light b and extracting an alternating current component and outputting the alternating current component as a Doppler signal A, the idle discrimination sensor 4 becomes unnecessary, and The structure of the rail length measuring device is simplified by that much, and the cost is also reduced.

【0029】本発明のうち請求項8の遊間測定方法、請
求項9のレール長測定方法では、遊間識別用レーザ光d
にレール1の幅方向への広がりをもたせたので、レール
1の上面2及び面取り面1cから反射される反射光eも
レール1の幅方向へ広がる。このため、レール1が図9
のようにカ−ブし、それに伴って図10のように傾斜し
ているために、レール1の上面2に照射される遊間識別
用レーザ光dとその反射光eとの角度Θ(図10)が大
きくなっても(例えば5.6度以上)、同上面2及び面
取り面1cからの反射光eが遊間識別センサ4の受光器
4aに確実に受光される。また、遊間識別用レーザ光d
が細く絞られている場合よりも、レール1の上面2にお
ける細かい傷や凸凹等による影響も受けない。
In the present invention, the gap measuring method according to claim 8 and the rail length measuring method according to claim 9 are such that the gap identifying laser beam d is used.
Since the rail 1 is spread in the width direction, the reflected light e reflected from the upper surface 2 and the chamfered surface 1c of the rail 1 also spreads in the width direction of the rail 1. Therefore, the rail 1 is shown in FIG.
As shown in FIG. 10, the angle Θ between the idle discrimination laser light d irradiated on the upper surface 2 of the rail 1 and its reflected light e (FIG. 10). ) Becomes large (for example, 5.6 degrees or more), the reflected light e from the upper surface 2 and the chamfered surface 1c is surely received by the light receiver 4a of the play distance identification sensor 4. In addition, the laser light d for identifying the gap
Is not affected by fine scratches or irregularities on the upper surface 2 of the rail 1 as compared with the case where the rail is narrowed.

【0030】[0030]

【実施例1】本発明のレールの遊間及びレ−ル長測定方
法の一実施例を示す図1、図2において、1はレール、
2は同レール1の上面、1aはレール1の終端部、1b
はレール1の始端部、5はレール1の継目に設けられて
いる遊間である。6はレール1の終端部1aと始端部1
bとを連結するレール継目板である。このレール継目板
6は図7〜図9に示すようにレール1の幅方向両側面に
当てがわれて同側面に固定されている。
[Embodiment 1] In FIGS. 1 and 2 showing an embodiment of the method for measuring the clearance between rails and the rail length of the present invention, 1 is a rail,
2 is the upper surface of the rail 1 and 1a is the end portion of the rail 1 and 1b.
Is a starting end portion of the rail 1, and 5 is a clearance provided at a joint of the rail 1. Reference numeral 6 denotes a terminal end 1a and a starting end 1 of the rail 1.
It is a rail joint plate which connects with b. As shown in FIGS. 7 to 9, the rail joint plate 6 is applied to both widthwise side surfaces of the rail 1 and fixed to the same side surface.

【0031】図1の3はレーザ・ドップラ・センサであ
り、これはレール1の上面2及び面取り部1cにドップ
ラ−用レーザ光aを照射して、同上面2及び面取り部1
cからの散乱光bに基づいて図14(c)のドップラ信
号Aを出力するものである。
Reference numeral 3 in FIG. 1 denotes a laser Doppler sensor, which irradiates the upper surface 2 of the rail 1 and the chamfered portion 1c with a laser beam a for Doppler, and the upper surface 2 and the chamfered portion 1 thereof.
The Doppler signal A in FIG. 14C is output based on the scattered light b from c.

【0032】図1、図2(a)の4は遊間識別センサで
あり、これはレール1の上面2及び面取り部1cにその
真上から遊間識別用レーザ光dを照射する半導体レーザ
4hとその光学系4iを有し、また、その反射光eを受
光する2つの受光器4aをレール1の長手方向で且つ前
記レーザ光dの外側2箇所に設置し、更に2つの受光器
4aの信号を加算する加算器4jを設けて、この同加算
器4jからの出力(遊間識別センサ4の出力)により遊
間5を検出すると共に、その遊間5の幅に対応したパル
ス幅の遊間識別信号B1 、B2 ・・・{図14(b)}
を出力するようにしてある。
Reference numeral 4 in FIGS. 1 and 2 (a) denotes a play distance identification sensor, which is a semiconductor laser 4h for irradiating the top surface 2 of the rail 1 and the chamfered portion 1c with the play identification laser light d from directly above it. Two light receivers 4a having an optical system 4i and receiving the reflected light e are installed in the longitudinal direction of the rail 1 and at two positions outside the laser light d, and signals of the two light receivers 4a are further provided. An adder 4j for addition is provided, and the play gap 5 is detected by the output from the adder 4j (the output of the play gap identification sensor 4), and the play gap identification signal B 1 having a pulse width corresponding to the width of the play gap 5 is provided. B 2 ... {Fig. 14 (b)}
Is output.

【0033】この遊間識別信号B1 、B2 ・・{図14
(b)}は各レ−ル1の始端部1bの位置で立ち下が
り、終端部1aの位置で立ち上がるようにしてある。こ
の立ち上り、立ち下りは遊間識別センサ4を搭載した列
車の走行スピ−ドや、必要な分解能等に高速応答(例え
ば2μsec)できるようにするため、急峻であること
が望ましい。そのためにはレール1の上面2及び面取り
部1cに照射される遊間識別用レーザ光dのビ−ム径を
絞る必要がある。しかし、同ビ−ム径を絞り過ぎるとレ
ール1の上面2及び面取り部1cの凸凹とか、細かい傷
等により乱反射して遊間5からの反射光eとの識別が難
しくなるので絞り過ぎないようにする。
The play distance identification signals B 1 , B 2 ...
(B)} is designed to fall at the position of the start end 1b of each rail 1 and rise at the position of the end 1a. It is desirable that the rising and falling are steep in order to enable high-speed response (for example, 2 μsec) to the traveling speed of the train equipped with the play distance discrimination sensor 4 and the required resolution. For that purpose, it is necessary to reduce the beam diameter of the play-distance identifying laser light d with which the upper surface 2 of the rail 1 and the chamfered portion 1c are irradiated. However, if the beam diameter is too narrow, it will be difficult to distinguish it from the reflected light e from the play space 5 due to irregular reflection of the upper surface 2 of the rail 1 and the chamfered portion 1c, small scratches, etc. To do.

【0034】また、前記ビ−ム径を絞り過ぎるとレール
1の上面2及び面取り部1cからの反射光eの面積が狭
くなるため、レール1が図11のように傾斜してレール
1の上面2及び面取り部1cに照射される遊間識別用レ
ーザ光dの照射角度Θ(図10)が例えば5.6度(曲
線部で最大カウント105mmの状態)以上に大きくな
ると、同上面2及び面取り部1cからの反射光eが遊間
識別センサ4から外れて同センサ4に受光されないこと
がある。そこで本発明では遊間識別用レーザ光dのビ−
ム径を図3のようにレール1の幅方向に横長にして、前
記傾き照射角度Θが5.6度以上になっても、レール1
からの反射光eが遊間識別センサ4に確実に受光され
て、遊間5がある箇所では遊間識別信号B1 、B2 ・・
・{図14(b)}が確実に出力されるようにしてあ
る。
If the beam diameter is reduced too much, the area of the reflected light e from the upper surface 2 of the rail 1 and the chamfered portion 1c becomes narrow, so that the rail 1 is inclined as shown in FIG. 2 and the chamfered portion 1c, when the irradiation angle Θ (FIG. 10) of the gap identification laser light d becomes larger than, for example, 5.6 degrees (the maximum count of 105 mm in the curved portion), the upper surface 2 and the chamfered portion The reflected light e from 1c may deviate from the play distance discrimination sensor 4 and not be received by the sensor 4. Therefore, in the present invention, the beam of the laser light d for identifying the play is
As shown in FIG. 3, the rail 1 is laterally elongated in the width direction, and even if the tilt irradiation angle Θ becomes 5.6 degrees or more, the rail 1
The reflected light e from is reliably received by the play gap identification sensor 4, and at the place where the play gap 5 is present, the play gap identification signals B 1 , B 2, ...
・ {Fig. 14 (b)} is surely output.

【0035】図1の8は処理器であり、これは遊間識別
センサ4からの出力信号を波形整形する波形整形回路8
a、図3の遊間識別信号B1 、B2 ・・・{図14
(b)}のパルス幅L内における、前記ドップラ信号A
{図14(c)}のパルスpの数を積算して、遊間5の
長さを演算処理する積算カウンタ8bとで構成されてい
る。また、前記積算カウンタ8bは図3に示す一本のレ
ール1の先端部1aと後端部1bの夫々に対応する2つ
の遊間識別信号B1 、B2 間における、前記ドップラ信
号Aのパルスpの数を積算してレール1の長さも算出す
るものである。ちなみに、遊間5の長さは一般的には数
mm〜数十mmであるが、場合によっては零の場合もあ
る。このため、遊間5の長さだけを測定したのでは遊間
5の長さがゼロと計測された場合に、本当に遊間5の長
さが計測されたのか、遊間5ではなくレール1が計測さ
れたのかを判別することができず、遊間5を見落すこと
がある。そこで本発明では遊間5の長さの他にレール1
の長さをも合わせて測定することにより遊間5の位置を
正確に検出できるようにしてある。
Reference numeral 8 in FIG. 1 denotes a processor, which is a waveform shaping circuit 8 for shaping the output signal from the play distance discrimination sensor 4.
a, play distance identification signals B 1 , B 2 ... {Fig. 14
(B)} within the pulse width L of the Doppler signal A
It is configured with an integration counter 8b that integrates the number of pulses p in {FIG. 14 (c)} and calculates the length of the play gap 5. Further, the integration counter 8b is provided with the pulse p of the Doppler signal A between the two free play discrimination signals B 1 and B 2 corresponding to the front end 1a and the rear end 1b of the rail 1 shown in FIG. The length of the rail 1 is also calculated by integrating the number of By the way, the length of the play space 5 is generally several mm to several tens of mm, but it may be zero in some cases. Therefore, if only the length of the play space 5 is measured, and if the length of the play space 5 is measured as zero, the length of the play space 5 is really measured, or the rail 1 is measured instead of the play space 5. It may not be possible to discriminate whether or not it is possible to overlook the play space 5. Therefore, in the present invention, in addition to the length of the play space 5, the rail 1
The position of the play gap 5 can be accurately detected by also measuring the length.

【0036】レール1の長さを測定する方法は各種考え
られるが、例えば図5、図6に示す方法でもよい。図5
に示す測定方法は、同図に示す遊間識別信号B1 、B2
・・・を制御回路11において反転させて制御信号C
1 、C2 ・・・とし、同制御信号C1 、C2・・・とド
ップラ信号A{図16(c)}とをゲ−ト12に入れ、
カウンタ13により制御信号C1 、C2 間(前後2つの
遊間識別信号B1 、B2 間)におけるドップラ信号Aの
パルスpの数をカウントして、レール長を算出するよう
にしたものである。この場合、図4に示すように遊間識
別信号B1 、B2 ・・・とドップラ信号Aの切れ目A
1 、A2 ・・・の位置がずれている。このため図5の測
定方法では前後2つの遊間識別信号B1 とB2の間にド
ップラ信号Aの切れ目A1が、B2 とB3 の間に切れ目
2 が入る(A3 以下も同じ)。この結果、積算された
レール長はドップラ信号Aの途切れている分だけ誤差と
なり、正確なレール長測定ができない。しかし、この誤
差はレール長に比べて微少であるため実用上は無視する
ことができる。また、図5の測定装置では各制御信号C
1 、C2 ・・・のパルス幅におけるドップラ信号Aのパ
ルスpの数をカウンタ14により積算して遊間5の長さ
を測定することができる。
Although various methods of measuring the length of the rail 1 can be considered, for example, the method shown in FIGS. 5 and 6 may be used. Figure 5
Measuring method shown in the Joint Gap identification signals B 1, B 2 shown in FIG.
Are inverted in the control circuit 11 to generate a control signal C
1 , C 2 ... And the same control signals C 1 , C 2 ... And the Doppler signal A {FIG. 16 (c)} are put in the gate 12,
The counter 13 counts the number of pulses p of the Doppler signal A between the control signals C 1 and C 2 (between the two front and rear play discrimination signals B 1 and B 2 ) to calculate the rail length. . In this case, as shown in FIG. 4, the play interval identification signals B 1 , B 2, ... And the break A of the Doppler signal A
The positions of 1 , A 2 ... Therefore, in the measurement method of FIG. 5, a break A 1 of the Doppler signal A is inserted between the two front and rear play discrimination signals B 1 and B 2 , and a break A 2 is inserted between B 2 and B 3 (same for A 3 and below. ). As a result, the integrated rail length becomes an error due to the discontinuity of the Doppler signal A, and accurate rail length measurement cannot be performed. However, this error is so small compared to the rail length that it can be practically ignored. Further, in the measuring device of FIG. 5, each control signal C
The length of the play gap 5 can be measured by integrating the number of pulses p of the Doppler signal A in the pulse widths of 1 , C 2, ...

【0037】レール長の測定誤差が生じないようにする
には例えば図6(a)の測定装置により測定すればよ
い。その測定装置によりレール長を測定するには、遊間
識別信号B1 、B2 ・・・(図4)の立ち下がりにより
ホ−ルド回路15(ホ−ルド開始後ある時間で元に戻
る)を駆動してドップラ信号A(図4)をホ−ルドし、
そのドップラ信号Aの切れ目A1 、A2 ・・・を補正し
てパルスpを連続させる。この補正されたドップラ信号
をゲ−ト回路16に入れる。一方、前記遊間識別信号B
1 、B2 ・・・を図6(a)の制御回路17により反転
させて制御信号C1、C2 ・・・とし、この制御信号C1
、C2・・・を前記ゲ−ト回路16に入れて、同制御信
号C1 、C2 ・・・のうち前後2つの制御信号間におけ
るドップラ信号Aのパルスpの数を、図6(a)のカウ
ンタ18により積算してレール1の長さを算出する。こ
のようにすればドップラ信号Aの途切れA1 、A2 ・・
・が測定誤差とならないので、レール1の長さを正確に
測定することができる。なお、図6(a)の測定装置で
は前後2つの制御信号C1 、C2・・・をケ−ト回路1
9に入力し、各制御信号C1 、C2 ・・・のパルス幅内
におけるドップラ信号Aのパルスpの数をカウンタ20
により積算して遊間5の長さを測定することができる。
In order to prevent the rail length measurement error from occurring, for example, the measurement may be performed by the measuring device shown in FIG. In order to measure the rail length by the measuring device, the hold circuit 15 (which returns to the original at a certain time after the start of the hold) is caused by the fall of the play discrimination signals B 1 , B 2 ... (Fig. 4). Drive to hold the Doppler signal A (Fig. 4),
The breaks A 1 , A 2, ... Of the Doppler signal A are corrected to make the pulse p continuous. The corrected Doppler signal is input to the gate circuit 16. On the other hand, the play discrimination signal B
1, B 2 ··· is inverted by the control circuit 17 shown in FIG. 6 (a) and as the control signal C 1, C 2 ···, the control signal C 1
, C 2 ... Into the gate circuit 16, the number of pulses p of the Doppler signal A between two control signals before and after the control signals C 1 , C 2 ... The length of the rail 1 is calculated by integrating with the counter 18 of a). By doing this, the Doppler signal A is interrupted A 1 , A 2, ...
Since · does not cause a measurement error, the length of the rail 1 can be accurately measured. In the measuring device of FIG. 6 (a), the front and rear two control signals C 1 , C 2 ...
9 and inputs the number of pulses p of the Doppler signal A within the pulse width of each control signal C 1 , C 2 ...
The length of the play space 5 can be measured by integrating with.

【0038】また、図6(a)の測定装置では制御回路
17からカウンタ18、20にメモリ信号m1 、m2
{図6(b)(c)}を入力してカウント数を記憶さ
せ、カウントが終了したら両カウンタ18、20にリセ
ット信号r1 、r2 を入力して同カウンタ18、20を
リセットして、次のカウントに備えるようにしてある。
前記カウンタ20に入力されるメモリ信号m1 は図6
(b)のように、制御信号C1 、C2 ・・・の立ち下が
りより僅かに遅れ、前記リセット信号r1 は前記メモリ
信号m1 より更に僅かに遅れて出力されている。前記カ
ウンタ18に入力されるメモリ信号m2 は図6(c)の
ように、夫々の制御信号C1 、C2 ・・・の立ち上りよ
り僅かに遅れ、前記リセット信号r2 は前記メモリ信号
2 より更に僅かに遅れ且つ夫々の制御信号C1 、C2
・・・の立ち下がりよりは手前で出力されている。以上
の各装置をレール1の上を走行する営業用列車、或は遊
間測定用列車等の走行体9(図1)に搭載して測定す
る。
In the measuring device of FIG. 6A, the memory signals m 1 and m 2 are transferred from the control circuit 17 to the counters 18 and 20.
Input {FIG. 6 (b) (c)} to store the count number, and when the count is completed, input reset signals r 1 and r 2 to both counters 18 and 20 to reset the counters 18 and 20. , To prepare for the next count.
The memory signal m 1 input to the counter 20 is shown in FIG.
As shown in (b), the reset signal r 1 is output slightly later than the falling edges of the control signals C 1 , C 2, ... And the reset signal r 1 is output slightly later than the memory signal m 1 . The memory signal m 2 input to the counter 18 is slightly delayed from the rising edges of the respective control signals C 1 , C 2, ... As shown in FIG. 6C, and the reset signal r 2 is the memory signal m 2. 2 and the control signals C 1 and C 2 respectively.
It is output before the falling edge of ... Each of the above-mentioned devices is mounted on a traveling body 9 (FIG. 1) such as a commercial train running on the rail 1 or a train for measuring free space for measurement.

【0039】[0039]

【実施例2】本発明のレールの遊間及びレール長測定方
法の他の実施例は、前記遊間及びレール長測定方法にお
いて、前記遊間識別センサ4{(図2(a)}の代わり
に図2(b)に示す遊間識別センサ4を用いるものであ
る。この遊間識別センサ4は遊間識別レーザ光dを発生
する半導体レーザ4h、光学系4i、前記遊間識別用レ
ーザ光dを2分するビームスプリッタ34、2分した同
レーザ光dをレール1の上面2及び面取り部1cに2方
向から斜めに集光して照射するミラー32を設け、上面
2及び面取り部1cからの反射光eを受ける受光器4a
を2方向からのレーザ光dの間に設け、更に、同受光器
4aから出力される遊間識別信号B1 、B2 ・・・{図
14(b)}を増幅するアンプ4kを設けたものであ
る。
[Embodiment 2] Another embodiment of the method for measuring the clearance between rails and the rail length according to the present invention is the method for measuring the clearance between rails and the rail length as shown in FIG. 2 in place of the clearance discrimination sensor 4 {(FIG. 2 (a)}. (B) is used for the clearance discrimination sensor 4. This clearance discrimination sensor 4 is a semiconductor laser 4h for generating the clearance discrimination laser light d, an optical system 4i, and a beam splitter for dividing the clearance discrimination laser light d into two. 34, a mirror 32 for obliquely collecting and irradiating the laser beam d divided into two on the upper surface 2 and the chamfered portion 1c of the rail 1 is provided, and receives the reflected light e from the upper surface 2 and the chamfered portion 1c. Vessel 4a
Between the laser beams d from two directions, and further an amplifier 4k for amplifying the idle discrimination signals B 1 , B 2 ... {FIG. 14 (b)} output from the photodetector 4a. Is.

【0040】[0040]

【実施例3】本発明のレールの遊間及びレール長測定方
法の更に他の実施例は、前記遊間測定方法及びレール長
測定方法において、{(図2(b)}に示す遊間識別セ
ンサ4を使用せず、その代わりにレーザ・ドップラ・セ
ンサ3として図17に示す遊間識別センサ兼用のレーザ
・ドップラ・センサ3を使用するものである。このレー
ザ・ドップラ・センサ3はレール1の上面2及び面取り
面1cへのドップラ用レーザ光aの照射方法及び同上面
2及び面取り面1cからの散乱光の受光方法は、図11
のレーザ・ドップラ・センサ3、図2(b)の遊間識別
センサ4と同じく、レーザ光源30からのドップラ用レ
ーザ光aをビームスプリッタ34で2分し、その2分さ
れたドップラ用レーザ光aをレール1の前後方向の2方
向から斜めに集光して照射し、同上面2及び面取り面1
cからの散乱光bを同センサ3の前記2方向からの遊間
識別用レーザ光aの間に設けた受光器(光電変換器)3
5により受光するようにしたものである。
[Embodiment 3] Yet another embodiment of the method for measuring the clearance between rails and the rail length according to the present invention is the method for measuring the clearance between rails and the rail length, in which the clearance discrimination sensor 4 shown in {(FIG. 2 (b)} is used. 17 is used instead of the laser Doppler sensor 3. The laser Doppler sensor 3 is also used as the idle discrimination sensor shown in FIG. A method for irradiating the chamfered surface 1c with the laser light a for Doppler and a method for receiving scattered light from the upper surface 2 and the chamfered surface 1c are shown in FIG.
Like the laser Doppler sensor 3 of FIG. 2 and the play discrimination sensor 4 of FIG. 2B, the Doppler laser light a from the laser light source 30 is divided into two by the beam splitter 34, and the divided Doppler laser light a is divided. Is obliquely condensed from two front and rear directions of the rail 1 and irradiated, and the upper surface 2 and the chamfered surface 1 are
A light receiver (photoelectric converter) 3 in which scattered light b from c is provided between the idle discrimination laser light a from the two directions of the same sensor 3
5, the light is received.

【0041】そして図17のレーザ・ドップラ・センサ
3では受光器(光電変換器)35からの出力の一部をそ
のまま遊間出力とし、また、同出力の一部を分岐してコ
ンデサC(図17)により同出力の直流分を除去して交
流分を取り出し、その交流分を例えばPLL等を用いた
ホールド回路50によりホールドして、パルスが連続し
たドップラ信号A{図16(c)}として出力するよう
にしてある。ちなみに、レール1の遊間5では散乱光b
が極めて少なくなるか著しい場合は全く無くなるため、
これに伴って受光器4aからの出力信号のレベルが極度
に低下するか全く無くなってしまい、レ−ル1の遊間5
でのドップラ信号Aが図4のように途切れてしまう。そ
こで図17ではホールド回路50により途切れる前のパ
ルスをホールドしてドップラ信号Aの途切れをカバーし
て連続するドップラ信号にしてある。
In the laser Doppler sensor 3 shown in FIG. 17, a part of the output from the photodetector (photoelectric converter) 35 is directly used as the idle output, and a part of the output is branched so that the capacitor C (FIG. 17) is provided. ) Removes the direct current component of the same output to take out the alternating current component, and holds the alternating current component by a hold circuit 50 using, for example, a PLL or the like, and outputs it as a continuous pulse Doppler signal A {FIG. 16 (c)}. I am doing it. By the way, in the space 5 of the rail 1, scattered light b
Is extremely low or is not present at all,
Along with this, the level of the output signal from the light receiver 4a is extremely lowered or completely disappeared, and the clearance 5 of the rail 1 is eliminated.
The Doppler signal A at 4 is interrupted as shown in FIG. Therefore, in FIG. 17, the hold circuit 50 holds the pulse before being interrupted to cover the interruption of the Doppler signal A and make it a continuous Doppler signal.

【0042】[0042]

【発明の効果】本発明のレールの遊間及びレ−ル長測定
方法は次のような効果がある。 .レール1の終端部1a及び始端部1bの面取り部1
cを確実にレール長として計測できるので、遊間5及び
レール長の計測精度が向上する。 .レール1の遊間5及びレ−ル長を非接触で測定でき
るので、接触方式の場合の各種問題が全て解消される .非接触方式であるため高速測定可能であり、従って
営業用列車の走行スピード(110km/h前後)で高
速測定可能となる。このため、それらの測定のための走
行体をわざわざ用意する必要もない。 .遊間識別用レーザ光dをレ−ルの幅方向に広げてレ
ール1への照射面積を広くしてあるので、レ−ル1の上
面2及び面取り部1cの凸凹や表面の細かい傷等による
乱反射が少なく、それらと遊間5との識別が確実にな
る。また、電車の振動等により、レーザ・ドップラ・セ
ンサ3、遊間識別センサ4の角度ずれが生じたり、曲線
区間のカーブなどでレ−ル1が傾斜していても安定した
出力が得られる。 .遊間長だけでなくレ−ル長をも非接触で測定するこ
とができるので、遊間長が零のときは零であることを確
実に検出することができ、遊間長が零であっても遊間を
見落とすことがない。 .ドップラ用レ−ザ光と遊間識別用レ−ザ光とをレ−
ルの上面及び面取り部1cに真上、或は斜め上方から照
射するものであるため、レーザ・ドップラ・センサ3、
遊間識別センサ4を列車に搭載する場合にそれらが列車
の横に突出することがなく、営業用列車の車両限界内に
搭載することができる。 .左右のレール1の遊間5を同時に測定する場合に、
遊間識別センサ4は2個必要であるが、レ−ザ・ドップ
ラ・センサ3は1個で良いため経済的であり、コンパク
トであるため列車への取付けスペ−スが少なくてすむ。 .図17に示す遊間識別センサ兼用のレ−ザ・ドップ
ラ・センサ3を使用すれば、遊間識別センサ4が不要に
なってコンパクト化できるので列車への取付けが容易に
なり、また、経済的でもある。
The method for measuring the clearance between rails and the rail length according to the present invention has the following effects. . The chamfered portion 1 of the terminal end 1a and the starting end 1b of the rail 1
Since c can be reliably measured as the rail length, the measurement accuracy of the play gap 5 and the rail length is improved. . Since the clearance 5 and the rail length of the rail 1 can be measured in a non-contact manner, all the problems in the contact method can be solved. Since it is a non-contact method, high-speed measurement is possible, and therefore high-speed measurement is possible at the traveling speed of a commercial train (around 110 km / h). Therefore, it is not necessary to prepare a traveling body for those measurements. . Since the play area identification laser beam d is expanded in the width direction of the rail to widen the irradiation area on the rail 1, irregular reflection due to unevenness of the upper surface 2 of the rail 1 and the chamfered portion 1c, fine scratches on the surface, and the like. Therefore, it is possible to reliably identify them and the play space 5. Further, stable output can be obtained even if the laser Doppler sensor 3 and the play distance identification sensor 4 are misaligned due to train vibration or the rail 1 is inclined due to a curve in a curved section. . Not only the play length but also the rail length can be measured in a non-contact manner, so that when the play length is zero, it can be reliably detected that it is zero, and even when the play length is zero, the play length is zero. Never overlook. . Laser light for Doppler and laser light for play identification
The laser Doppler sensor 3, because it irradiates the upper surface and the chamfered portion 1c from directly above or obliquely from above.
When the play distance identification sensors 4 are mounted on a train, they do not project to the side of the train and can be mounted within the vehicle limit of a commercial train. . When measuring the clearance 5 of the left and right rails 1 at the same time,
Although two free play discrimination sensors 4 are required, only one laser Doppler sensor 3 is required, which is economical, and because it is compact, it can be installed in a small train. . If the laser Doppler sensor 3 also used as the play distance identification sensor shown in FIG. 17 is used, the play distance identification sensor 4 is not required and can be made compact, so that it can be easily installed on a train and is economical. .

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明のレールの遊間及びレール長測定方法の
説明図。
FIG. 1 is an explanatory diagram of a rail clearance measurement method and a rail length measurement method of the present invention.

【図2】同図(a)は同測定方法で使用する遊間識別セ
ンサの一実施例を示す説明図、同図(b)は同測定方法
で使用する遊間識別センサの他例を示す説明図。
FIG. 2A is an explanatory view showing an embodiment of a play distance discrimination sensor used in the measurement method, and FIG. 2B is an explanatory view showing another embodiment of the play distance discrimination sensor used in the measurement method. .

【図3】同測定方法における遊間識別用レ−ザ光の広が
りを示す説明図。
FIG. 3 is an explanatory view showing a spread of laser light for play discrimination in the same measuring method.

【図4】同測定方法における遊間識別信号とドップラ信
号の説明図。
FIG. 4 is an explanatory diagram of a play distance identification signal and a Doppler signal in the same measuring method.

【図5】本発明のレールの遊間測定方法における処理器
の一例を示す説明図。
FIG. 5 is an explanatory view showing an example of a processor in the rail clearance measuring method of the present invention.

【図6】同図(a)は本発明のレールの遊間測定方法に
おける処理器の他の例を示す説明図、同図(b)、
(c)は同処理器におけるメモリ信号とリセット信号の
説明図。
6 (a) is an explanatory view showing another example of the processor in the rail clearance measuring method of the present invention, FIG. 6 (b),
(C) is explanatory drawing of a memory signal and a reset signal in the same processor.

【図7】レールと継目板との関係を示す平面図。FIG. 7 is a plan view showing a relationship between rails and a joint plate.

【図8】レールと継目板との関係を示す断面図。FIG. 8 is a cross-sectional view showing the relationship between the rail and the joint plate.

【図9】カーブしているレールと継目板との関係を示す
平面図。
FIG. 9 is a plan view showing the relationship between a curved rail and a joint plate.

【図10】カーブしているレ−ルと遊間識別用レ−ザ光
及びその反射光の説明図。
FIG. 10 is an explanatory view of a curved rail, a play distance identifying laser light, and reflected light thereof.

【図11】レ−ザドップラセンサの原理説明図。FIG. 11 is an explanatory view of the principle of the laser Doppler sensor.

【図12】本件発明者が先に開発したレールの遊間及び
レール長測定方法の説明図。
FIG. 12 is an explanatory diagram of a rail clearance and rail length measuring method previously developed by the present inventor.

【図13】図13の測定方法の詳細説明図。13 is a detailed explanatory diagram of the measuring method of FIG.

【図14】同図(a)は同測定方法における遊間部分の
説明図、同図(b)は遊間識別センサの出力波形の説明
図、同図(c)はレーザ・ドップラーセンサの出力波形
の説明図。
FIG. 14 (a) is an explanatory diagram of an idle portion in the same measuring method, FIG. 14 (b) is an explanatory diagram of an output waveform of an idle discrimination sensor, and FIG. 14 (c) is an output waveform of a laser Doppler sensor. Explanatory drawing.

【図15】線路における軌道回路の説明図。FIG. 15 is an explanatory diagram of a track circuit on a track.

【図16】同図(a)は遊間に絶縁継目がある場合の説
明図、(b)〜(e)は遊間に絶縁継目がある場合のレ
ールの遊間及びレール長測定方法の波形説明図。
FIG. 16 (a) is an explanatory diagram in the case where there is an insulating seam between the free spaces, and (b) to (e) are waveform explanatory diagrams of a rail free space and a rail length measuring method in the case where there is an insulating seam in the free space.

【図17】本発明における遊間識別センサ兼用のレーザ
・ドップラーセンサの一例を示す説明図。
FIG. 17 is an explanatory diagram showing an example of a laser Doppler sensor that also serves as a play distance sensor according to the present invention.

【符号の説明】[Explanation of symbols]

1 レ−ル 1a 終端部 1b 始端部 1c 面取り部 2 レールの上面 3 レ−ザ・ドップラ・センサ 4 遊間識別センサ 5 遊間 6 レ−ル継目板 40 絶縁継目 A ドップラ信号 B1 、B2 ・・・ 遊間識別信号 a ドップラ用レ−ザ光 b 散乱光 d 遊間識別用レ−ザ光 e レールの上面からの反射光 l パルス間隔 p パルス1 Le - Le 1a termination 1b beginning 1c chamfer second rail of the upper surface 3 Les - The Doppler sensor 4 Joint Gap identification sensor 5 Joint Gap 6 Les - Le splice plate 40 insulating joints A Doppler signals B 1, B 2 · ·・ Landscape identification signal a Laser light for Doppler b Scattered light d Laser light for gap identification e Reflected light from the top of the rail l Pulse interval p pulse

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 平3−225208(JP,A) 特開 昭64−404(JP,A) 特開 平2−163686(JP,A) 特開 平2−96603(JP,A) 特開 平2−85704(JP,A) 特開 平3−165207(JP,A) 特開 平2−140682(JP,A) ─────────────────────────────────────────────────── ─── Continuation of the front page (56) Reference JP-A-3-225208 (JP, A) JP-A 64-404 (JP, A) JP-A 2-163686 (JP, A) JP-A 2- 96603 (JP, A) JP 2-85704 (JP, A) JP 3-165207 (JP, A) JP 2-140682 (JP, A)

Claims (9)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 レール1の上面2及び面取り面1cにレ
ーザ・ドップラ・センサ3からドップラ用レーザ光aを
照射し、同上面2及び面取り面1cからの散乱光bを同
センサ3により受光して同センサ3からドップラ信号A
を出力し、一方、同上面2及び面取り面1cにその真上
から遊間識別センサ4より遊間識別用レーザ光dを照射
し、同上面2及び面取り面1cからの反射光eをレール
1の前後方向に設けた2つの受光器4aのうち少なくと
も一方の受光器4aで受光し、同受光器4aから隣接す
るレール1の終端部1aと始端部1b間の遊間5の幅に
応じたパルス幅の遊間識別信号B1 、B2 ・・・を出力
し、各遊間識別信号B1、B2 ・・・のパルス幅内にお
ける前記ドップラ信号Aのパルスpの数と同パルス間隔
lに基づいて遊間5の長さを算出するようにしたことを
特徴とするレールの遊間測定方法。
1. The upper surface 2 and the chamfered surface 1c of the rail 1 are irradiated with a laser beam a for Doppler from a laser Doppler sensor 3, and the scattered light b from the upper surface 2 and the chamfered surface 1c is received by the sensor 3. Doppler signal A from the same sensor 3
On the other hand, the upper surface 2 and the chamfered surface 1c are irradiated with the laser light d for the clearance discrimination from the clearance discrimination sensor 4 from directly above the upper surface 2 and the chamfered surface 1c, and the reflected light e from the same upper surface 2 and the chamfered surface 1c is moved forward and backward of the rail 1. At least one of the two light receivers 4a provided in the direction receives light, and a pulse width corresponding to the width of the gap 5 between the end portion 1a and the start end portion 1b of the adjacent rail 1 is received from the light receiver 4a. outputs Joint gap identification signals B 1, B 2 ···, each Joint gap identification signals B 1, B 2 wherein in ... the pulse width based on the number and the pulse interval l of pulses p of the Doppler signal a Joint gap 5. A rail clearance measuring method characterized in that the length of 5 is calculated.
【請求項2】 レール1の上面2及び面取り面1cにレ
ーザ・ドップラ・センサ3からドップラ用レーザ光aを
照射し、同上面2及び面取り面1cからの散乱光bを同
センサ3により受光して同センサ3からドップラ信号A
を出力し、同上面2及び面取り面1cに遊間識別センサ
4からの遊間識別用レーザ光dをレール1の前後方向2
方向から斜めに集光して照射し、同上面2及び面取り面
1cからの反射光eを前記2方向からの遊間識別用レー
ザ光dの間に設けた受光器4aで受光し、同受光器4a
から隣接するレール1の終端部1aと始端部1b間の遊
間5の幅に応じたパルス幅の遊間識別信号B1 、B2
・・を出力し、各遊間識別信号B1 、B2 ・・・のパル
ス幅内における前記ドップラ信号Aのパルスpの数と同
パルス間隔lに基づいて遊間5の長さを算出するように
したことを特徴とするレールの遊間測定方法。
2. The upper surface 2 and the chamfered surface 1c of the rail 1 are irradiated with a laser beam a for Doppler from a laser Doppler sensor 3 and the sensor 3 receives scattered light b from the upper surface 2 and the chamfered surface 1c. Doppler signal A from the same sensor 3
Is output to the upper surface 2 and the chamfered surface 1c, and the play distance identification laser light d from the play distance identification sensor 4 is applied in the front-back direction 2 of the rail 1.
The light is converged obliquely from the direction and irradiated, and the reflected light e from the upper surface 2 and the chamfered surface 1c is received by the photodetector 4a provided between the idle discrimination laser beams d from the two directions. 4a
Between the end portions 1a and the start end portions 1b of the rails 1 adjacent to each other, the play distance identification signals B 1 and B 2 having pulse widths corresponding to the width of the play distance 5
.. is output, and the length of the play gap 5 is calculated based on the number of pulses p of the Doppler signal A and the same pulse interval l within the pulse width of the play identification signals B 1 , B 2 ... A method for measuring the clearance between rails, which is characterized in that
【請求項3】 レール1の上面2及び面取り面1cにレ
ーザ・ドップラ・センサ3からドップラ用レーザ光a
を、レール1の前後方向2方向から斜めに集光して照射
し、同上面2及び面取り面1cからの散乱光bを同セン
サ3の前記2方向からの遊間識別用レーザ光dの間に設
けた受光器35により受光して、同センサ3から隣接す
るレール1の終端部1aと始端部1b間の遊間5の幅に
応じたパルス幅の遊間識別信号B1 、B2 ・・・を出力
すると共に、受光された前記散乱光bの一部を分岐し且
つそれから直流分を除去して交流分を取り出してその交
流分をドップラ信号Aとして出力し、各遊間識別信号B
1、B2 ・・・のパルス幅内における前記ドップラ信号
Aのパルスpの数と同パルス間隔lに基づいて遊間5の
長さを算出するようにしたことを特徴とするレールの遊
間測定方法。
3. A laser beam a for Doppler from a laser Doppler sensor 3 to an upper surface 2 and a chamfered surface 1c of a rail 1.
Is obliquely condensed and irradiated from two directions in the front-rear direction of the rail 1, and scattered light b from the upper surface 2 and the chamfered surface 1c is provided between the laser light d for idle discrimination from the two directions of the sensor 3. Light is received by the light receiver 35 provided, and free-space discrimination signals B 1 , B 2 ... With a pulse width corresponding to the width of the free space 5 between the terminal end 1 a and the starting end 1 b of the adjacent rail 1 from the sensor 3 are received. At the same time as outputting, a part of the received scattered light b is branched and a direct current component is removed therefrom, an alternating current component is taken out, and the alternating current component is output as a Doppler signal A.
The length of the clearance 5 is calculated based on the number of pulses p of the Doppler signal A and the same pulse interval 1 within the pulse width of 1 , B 2 ... .
【請求項4】 請求項1又は請求項2又は請求項3のレ
ールの遊間測定方法において、遊間5に絶縁継目40が
設けられている場合は、同絶縁継目40とその両側のレ
ール1の終端部1aと始端部1bとの間の2つの遊間5
a、5bを加算して遊間5とすることを特徴とするレー
ルの遊間測定方法。
4. The rail clearance measuring method according to claim 1, 2 or 3, when an insulation joint 40 is provided in the clearance 5, the insulation joint 40 and the ends of the rails 1 on both sides thereof. Two clearances 5 between the portion 1a and the starting end portion 1b
A method for measuring a clearance between rails, wherein a clearance 5 is added to a and 5b.
【請求項5】 レール1の上面2及び面取り面1cにレ
ーザ・ドップラ・センサ3からドップラ用レーザ光aを
照射し、同上面2及び面取り面1cからの散乱光bを同
センサ3により受光して同センサ3からドップラ信号A
を出力し、一方、同上面2及び面取り面1cにその真上
から遊間識別センサ4より遊間識別用レーザ光dを照射
し、同上面2及び面取り面1cからの反射光eをレール
1の前後方向に設けた2つの受光器4aのうち少なくと
も一方の受光器4aで受光し、同受光器4aから隣接す
るレール1の終端部1aと始端部1b間の遊間5の幅に
応じたパルス幅の遊間識別信号B1 、B2 ・・・を出力
し、それら遊間識別信号B1 、B2 ・・・のうち1本の
レール1の始端部1bと終端部1aに対応する2つの遊
間識別信号B1 、B2 間における前記ドップラ信号Aの
パルスpの数に基づいて、レール1の長さを計測するよ
うにしたことを特徴とするレール長測定方法。
5. The upper surface 2 and the chamfered surface 1c of the rail 1 are irradiated with a laser beam a for Doppler from a laser Doppler sensor 3, and the scattered light b from the upper surface 2 and the chamfered surface 1c is received by the sensor 3. Doppler signal A from the same sensor 3
On the other hand, the upper surface 2 and the chamfered surface 1c are irradiated with the laser light d for the clearance discrimination from the clearance discrimination sensor 4 from directly above the upper surface 2 and the chamfered surface 1c, and the reflected light e from the same upper surface 2 and the chamfered surface 1c is moved forward and backward of the rail 1. At least one of the two light receivers 4a provided in the direction receives light, and a pulse width corresponding to the width of the gap 5 between the end portion 1a and the start end portion 1b of the adjacent rail 1 is received from the light receiver 4a. outputs Joint Gap identification signals B 1, B 2, ..., they Joint Gap identification signals B 1, B 2 2 two Joint Gap identification signal corresponding to one of the beginning 1b and the end portion 1a of the rail 1 out of ... The rail length measuring method is characterized in that the length of the rail 1 is measured based on the number of pulses p of the Doppler signal A between B 1 and B 2 .
【請求項6】 レール1の上面2及び面取り面1cにレ
ーザ・ドップラ・センサ3からドップラ用レーザ光aを
照射し、同上面2からの散乱光bを同センサ3により受
光して同センサ3からドップラ信号Aを出力し、一方、
同上面2及び面取り面1cに遊間識別センサ4からの遊
間識別用レーザ光dをレール1の前後方向2方向から斜
めに集光して照射し、同上面2及び面取り面1cからの
反射光eを前記2方向からの遊間識別用レーザ光dの間
に設けた受光器4aで受光し、同受光器4aから隣接す
るレール1の終端部1aと始端部1b間の遊間5の幅に
応じたパルス幅の遊間識別信号B1 、B2 ・・・を出力
し、それら遊間識別信号B1 、B2 ・・・のうち1本の
レール1の始端部1bと終端部1aに対応する2つの遊
間識別信号B1 、B2 間における前記ドップラ信号Aの
パルスpの数に基づいて、レール1の長さを計測するよ
うにしたことを特徴とするレール長測定方法。
6. The upper surface 2 and the chamfered surface 1c of the rail 1 are irradiated with a laser beam a for Doppler from a laser Doppler sensor 3 and the scattered light b from the upper surface 2 is received by the same sensor 3 to receive the same. Output Doppler signal A from
Laser light d for gap identification from the gap identification sensor 4 is obliquely collected and emitted from the front-back direction 2 of the rail 1 onto the upper surface 2 and the chamfered surface 1c, and reflected light e from the upper surface 2 and the chamfered surface 1c. Is received by the light receiving device 4a provided between the free space identifying laser beams d from the two directions, and the width of the free running space 5 between the end portion 1a and the start end portion 1b of the rail 1 adjacent to the light receiving device 4a is determined. Joint Gap identification signal B 1 of the pulse width, B 2 outputs., Joint Gap identification signals B 1, B 2 ... 1 present two corresponding to the starting end 1b and the end portion 1a of the rail 1 of them The rail length measuring method is characterized in that the length of the rail 1 is measured based on the number of pulses p of the Doppler signal A between the idle discrimination signals B 1 and B 2 .
【請求項7】 レール1の上面2及び面取り面1cにレ
ーザ・ドップラ・センサ3からドップラ用レーザ光a
を、レール1の前後方向2方向から斜めに集光して照射
し、同上面2及び面取り面1cからの散乱光bを同セン
サ3の前記2方向からの遊間識別用レーザ光dの間に設
けた受光器35により受光して、同センサ3から隣接す
るレール1の終端部1aと始端部1b間の遊間5の幅に
応じたパルス幅の遊間識別信号B1 、B2 ・・・を出力
すると共に、受光された散乱光bの一部を分岐し且つそ
れから直流分を除去して交流分を取り出してその交流分
をドップラ信号Aとして出力し、前記遊間識別信号B
1 、B2 ・・・のうち1本のレール1の始端部1bと終
端部1aに対応する2つの遊間識別信号B1 、B2 間に
おける前記ドップラ信号Aのパルスpの数に基づいて、
レール1の長さを計測するようにしたことを特徴とする
レール長測定方法。
7. The laser Doppler laser light a from the laser Doppler sensor 3 on the upper surface 2 and the chamfered surface 1c of the rail 1.
Is obliquely condensed and irradiated from two directions in the front-rear direction of the rail 1, and scattered light b from the upper surface 2 and the chamfered surface 1c is provided between the laser light d for idle discrimination from the two directions of the sensor 3. Light is received by the light receiver 35 provided, and free-space discrimination signals B 1 , B 2 ... With a pulse width corresponding to the width of the free space 5 between the terminal end 1 a and the starting end 1 b of the adjacent rail 1 from the sensor 3 are received. At the same time as outputting, a part of the received scattered light b is branched and a direct current component is removed therefrom to extract an alternating current component, and the alternating current component is output as a Doppler signal A, and the idle discrimination signal B
Based on the number of pulses p of the Doppler signal A between the two free play discrimination signals B 1 and B 2 corresponding to the start end portion 1b and the end portion 1a of one rail 1 among 1 , 1 , B 2, ...
A rail length measuring method characterized in that the length of the rail 1 is measured.
【請求項8】 前記遊間識別用レーザ光dに、レール1
の幅方向に広がりをもたせたことを特徴とする請求項1
又は請求項2又は請求項3のレールの遊間測定方法。
8. The rail 1 is added to the play-distance identifying laser beam d.
2. A width is provided in the width direction of the
Alternatively, the play distance measuring method of the rail according to claim 2 or claim 3.
【請求項9】 前記遊間識別用レーザ光dに、レール1
の幅方向に広がりをもたせたことを特徴とする請求項5
又は請求項6又は請求項7のレール長測定方法。
9. The rail 1 is added to the play distance identifying laser beam d.
6. A width is provided in the width direction of the
Alternatively, the rail length measuring method according to claim 6 or 7.
JP26098791A 1991-09-12 1991-09-12 Rail clearance measurement method and rail length measurement method Expired - Lifetime JP2514499B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP26098791A JP2514499B2 (en) 1991-09-12 1991-09-12 Rail clearance measurement method and rail length measurement method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP26098791A JP2514499B2 (en) 1991-09-12 1991-09-12 Rail clearance measurement method and rail length measurement method

Publications (2)

Publication Number Publication Date
JPH0571929A JPH0571929A (en) 1993-03-23
JP2514499B2 true JP2514499B2 (en) 1996-07-10

Family

ID=17355498

Family Applications (1)

Application Number Title Priority Date Filing Date
JP26098791A Expired - Lifetime JP2514499B2 (en) 1991-09-12 1991-09-12 Rail clearance measurement method and rail length measurement method

Country Status (1)

Country Link
JP (1) JP2514499B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7194949B2 (en) 2004-11-04 2007-03-27 Howa Machinery, Ltd. Magnet type rodless cylinder
US7644648B2 (en) 2004-11-02 2010-01-12 Howa Machinery, Ltd. Magnet type rodless cylinder
US7669515B2 (en) 2005-03-15 2010-03-02 Howa Machinery, Ltd. Magnet type rodless cylinder

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6071264B2 (en) * 2012-06-25 2017-02-01 アクト電子株式会社 Railway vehicle speed measuring method and measuring apparatus therefor
JP7341767B2 (en) * 2019-07-23 2023-09-11 株式会社日立製作所 Train control system and train control method

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7644648B2 (en) 2004-11-02 2010-01-12 Howa Machinery, Ltd. Magnet type rodless cylinder
US7194949B2 (en) 2004-11-04 2007-03-27 Howa Machinery, Ltd. Magnet type rodless cylinder
US7669515B2 (en) 2005-03-15 2010-03-02 Howa Machinery, Ltd. Magnet type rodless cylinder

Also Published As

Publication number Publication date
JPH0571929A (en) 1993-03-23

Similar Documents

Publication Publication Date Title
US6556945B1 (en) Measurement of grooves and long waves on rails with a longitudinal streak of light
US9340219B2 (en) Wayside measurement of railcar wheel to rail geometry
JP4886999B2 (en) Bolt looseness determination method and bolt looseness detection device
US5368260A (en) Wayside monitoring of the angle-of-attack of railway vehicle wheelsets
NL2016637B1 (en) Rail profile monitoring, e.g. geometry of the frogs.
KR102513815B1 (en) Method and device for detecting abnormalities in train tracks based on automation
JP2514499B2 (en) Rail clearance measurement method and rail length measurement method
JP5422322B2 (en) Rail detection method and rail displacement measurement device in rail displacement measurement
WO2024098985A1 (en) Joint gap measurement method, joint gap measurement control apparatus, and measurement vehicle
JP3629568B2 (en) Overhead wire inspection method and overhead wire inspection apparatus
EP1048545A1 (en) Rail vehicle speed measurement method and installation therefor
JPH10105868A (en) Vehicle measuring device/method
CN110962887B (en) Train control system and method and train
JPH07113532B2 (en) Rail clearance and rail length measuring method and their measuring devices
JPH07332938A (en) Method for measuring opening of rail joint of rail and method for measuring length of rail
CN210625573U (en) Three-dimensional high accuracy measurement system of train bottom surface
JP3397911B2 (en) Rail play measuring device
JP3967942B2 (en) Rail fluctuation amount measuring method, rail fluctuation amount and rail gap measuring method, and measuring device used for the measurement
JP3390849B2 (en) Rail joint detection device
JPH11248692A (en) Ultrasonic probe rail following device
EP0727039B1 (en) Wayside monitoring of the angle-of-attack of railway vehicle wheelsets
CN211765583U (en) High-precision measurement system for three-dimensional surface of train wheel set
JPH08146020A (en) Apparatus for measuring moving speed/moving amount of moving body
JPH0350068A (en) Track inspecting device
JP3282370B2 (en) Speedometer, speed detection method and displacement information detection device

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080430

Year of fee payment: 12

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 13

Free format text: PAYMENT UNTIL: 20090430

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 13

Free format text: PAYMENT UNTIL: 20090430

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100430

Year of fee payment: 14

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 14

Free format text: PAYMENT UNTIL: 20100430

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110430

Year of fee payment: 15

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 16

Free format text: PAYMENT UNTIL: 20120430

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120430

Year of fee payment: 16