JP2514274B2 - Method for manufacturing hydrogen storage alloy material - Google Patents

Method for manufacturing hydrogen storage alloy material

Info

Publication number
JP2514274B2
JP2514274B2 JP2408737A JP40873790A JP2514274B2 JP 2514274 B2 JP2514274 B2 JP 2514274B2 JP 2408737 A JP2408737 A JP 2408737A JP 40873790 A JP40873790 A JP 40873790A JP 2514274 B2 JP2514274 B2 JP 2514274B2
Authority
JP
Japan
Prior art keywords
hydrogen storage
storage alloy
hydrogen
powder
sheet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2408737A
Other languages
Japanese (ja)
Other versions
JPH04232202A (en
Inventor
哲正 梅本
哲也 米田
武仁 見立
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sharp Corp
Original Assignee
Sharp Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sharp Corp filed Critical Sharp Corp
Priority to JP2408737A priority Critical patent/JP2514274B2/en
Publication of JPH04232202A publication Critical patent/JPH04232202A/en
Application granted granted Critical
Publication of JP2514274B2 publication Critical patent/JP2514274B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/32Hydrogen storage

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、水素を可逆的に吸蔵−
放出する水素吸蔵合金を用いる水素吸蔵合金材料の製造
方法に関する。
The present invention relates to the reversible storage of hydrogen.
The present invention relates to a method for producing a hydrogen storage alloy material using a released hydrogen storage alloy.

【0002】[0002]

【従来の技術】水素吸蔵合金は、水素の貯蔵、水素の吸
収・放出に伴う発熱・吸熱を利用した蓄熱、アルカリ二
次電池用負極等、様々な用途を有している。しかしなが
ら、水素の吸蔵・放出の繰り返しに伴う微粉化、アルカ
リ二次電池の負極として用いた場合のアルカリ溶液中で
の酸化による合金破壊、表面の汚染による水素の吸収・
放出能力の低下等、実用化に際しての問題があった。
2. Description of the Related Art Hydrogen storage alloys have various uses such as storage of hydrogen, heat storage utilizing heat generation / absorption associated with absorption / desorption of hydrogen, and negative electrodes for alkaline secondary batteries. However, atomization due to repeated storage and release of hydrogen, alloy destruction due to oxidation in an alkaline solution when used as the negative electrode of an alkaline secondary battery, absorption of hydrogen due to surface contamination,
There was a problem in practical use, such as a decrease in release capacity.

【0003】そこで、上記問題を解決するために、水素
吸蔵合金に炭素を被覆することが考えられ、その方法と
して、ショ糖高粘度溶液に漬けた後乾留して黒鉛化する
方法(特開昭61−185863)、膨張黒鉛と非晶質
カーボンの混合物ペーストを塗布する方法(特開昭63
−195960)、水素吸蔵合金粉末の表面に低温熱分
解による気相堆積法で炭素体を堆積させる方法(特開昭
平1−96301)等が提案されている。
Therefore, in order to solve the above problems, it is considered to coat the hydrogen storage alloy with carbon. As a method therefor, it is soaked in a high-viscosity sucrose solution and then subjected to carbonization for graphitization (Japanese Patent Laid-Open Publication No. Sho. 61-185863), a method of applying a mixture paste of expanded graphite and amorphous carbon (Japanese Patent Laid-Open No. Sho 63-63).
195960), a method of depositing a carbon body on the surface of a hydrogen storage alloy powder by a vapor phase deposition method by low temperature thermal decomposition (Japanese Patent Laid-Open No. 96301/1989).

【0004】[0004]

【発明が解決しようとする課題】上記水素吸蔵合金に炭
素を被覆する方法の中でも低温熱分解による気相堆積法
を用いる方法は、熱伝導、電気伝導が良好で微粉化が起
こり難く、雰囲気からの被毒による特性劣化を起こさな
い水素吸蔵合金粉末材料が得られる点で優れている。
Among the methods for coating the above hydrogen storage alloy with carbon, the method using the vapor phase deposition method by low temperature pyrolysis is good in heat conduction and electric conduction, is hard to be pulverized, and is It is excellent in that a hydrogen storage alloy powder material that does not cause the characteristic deterioration due to the poisoning of is obtained.

【0005】しかしながら、気相堆積法を用いて表面が
炭素体に覆われた水素吸蔵合金粉末材料を製造するに
は、水素吸蔵合金粉末1つ1つに炭素体が被覆されるよ
うにしなければならず、粉体の取り扱いが難しいために
製造が難しい。また、使用できる水素吸蔵合金は、Ti
Ni系。VNi系、ZrNi系等の1000℃程度の温
度でも気化、融解、溶解または凝集を起こさない組成の
ものに限られる。
However, in order to manufacture a hydrogen storage alloy powder material whose surface is covered with a carbon body by using the vapor deposition method, it is necessary to coat each hydrogen storage alloy powder with the carbon body. In addition, it is difficult to manufacture the powder because it is difficult to handle. The hydrogen storage alloy that can be used is Ti
Ni type. It is limited to a composition such as a VNi-based or ZrNi-based composition that does not vaporize, melt, dissolve or aggregate even at a temperature of about 1000 ° C.

【0006】そこで本発明は、炭素体に覆われた水素吸
蔵合金粉末材料を簡単に製造でき、より広範な組成の水
素吸蔵合金に対応できる水素吸蔵合金材料の製造方法を
提供することを目的とする。
Therefore, an object of the present invention is to provide a method for producing a hydrogen storage alloy material capable of easily producing a hydrogen storage alloy powder material covered with a carbon body and corresponding to a hydrogen storage alloy having a wider composition. To do.

【0007】[0007]

【課題を解決するための手段】本発明の製造方法は、水
素吸蔵合金粉末と高分子結着剤とを混合してペーストと
し、該混合物のペーストを支持体を用いてシート状体に
加工し、該シート状体を炭化水素類のガスが供給される
反応容器内に配置し、該反応容器内を1500℃以下に
加熱して、水素吸蔵合金粉末粒子間の高分子結着剤を炭
化すると共に粉末粒子のまわりに炭素被覆してなること
を特徴とする。シート状体への加工は、例えば金属ネッ
トや金属箔、石英板、セラミック板等を支持体とし、こ
の上にペーストを塗布し、高分子結着剤を重合硬化させ
て行う。
The manufacturing method of the present invention comprises mixing a hydrogen-absorbing alloy powder and a polymer binder into a paste, and processing the paste of the mixture into a sheet-like body using a support. The sheet-like material is placed in a reaction vessel to which a gas of hydrocarbons is supplied, and the inside of the reaction vessel is heated to 1500 ° C. or lower to carbonize the polymer binder between the hydrogen storage alloy powder particles.
It characterized Rukoto such by carbon coating around the powder particles as well as of. The processing into a sheet-like body is carried out, for example, by using a metal net, a metal foil, a quartz plate, a ceramic plate or the like as a support, applying a paste on the support, and polymerizing and curing the polymer binder.

【0008】水素吸蔵合金としては、例えばアルカリ二
次電池負極とするには、電池の動作温度域で適当な平衡
解離圧を有する、LaNi5、MmNi5あるいはその合
金に他の元素(Al、Co、Mn等)を添加した希土類
系合金、TiNi、TiNi2、Ti2Ni、TiMn等
のチタン系合金、ZrNi2等のジルコニウム系合金、
V−Ni系合金を用いることができる。
As a hydrogen storage alloy, for example, in order to make a negative electrode of an alkaline secondary battery, LaNi 5 , MmNi 5 or other alloys (Al, Co) having an appropriate equilibrium dissociation pressure in the operating temperature range of the battery are used. , Mn, etc.), rare earth alloys, titanium alloys such as TiNi, TiNi 2 , Ti 2 Ni, TiMn, zirconium alloys such as ZrNi 2 ,
A V-Ni type alloy can be used.

【0009】高分子結着剤としては、例えばポリエチレ
ン、ポリプロピレン等の粉末とディスパージョン液、ま
たはこれらを含んだシリコーン系高分子等を用いること
ができる。
As the polymer binder, for example, powder of polyethylene, polypropylene or the like and a dispersion liquid, or a silicone-based polymer containing these may be used.

【0010】炭化水素類としては、脂肪族炭化水素、芳
香族炭化水素、脂環式炭化水素及びそれらの誘導体が用
いられ、例えばベンゼン、トルエン、キシレン、ナフタ
レン、アントラセン、ヘキサメチルベンゼン、1,2−
ジブロモエチレン、2−ブチン、プロパン、アセチレ
ン、ビフェニル、ジフェニルアセチレン、シクロヘキサ
ン等が挙げられる。
As the hydrocarbons, aliphatic hydrocarbons, aromatic hydrocarbons, alicyclic hydrocarbons and their derivatives are used, for example, benzene, toluene, xylene, naphthalene, anthracene, hexamethylbenzene, 1,2. −
Dibromoethylene, 2-butyne, propane, acetylene, biphenyl, diphenylacetylene, cyclohexane and the like can be mentioned.

【0011】加熱温度は主として水素吸蔵合金の耐熱性
から、1500℃以下に設定されるが、炭化水素類の熱
分解により水素吸蔵合金の表面に堆積される熱分解炭素
の特性上、炭化水素類の熱分解温度は弱冠材料により変
わるがおおむね1000℃程度またはそれ以下とするの
が良く、このときその濃度は数ミリモルパーセントとす
るのが良い。そして、熱分解炭素の堆積量は数μm以下
とするのが良い。尚、プロパン等の気体炭化水素類は気
流として反応管内に導入できるが、ベンゼン等の液体炭
化水素を気化する方法としては、アルゴンガスをキャリ
アガスとするバブラ法が通常であるが、水素吸蔵合金及
び出発原料となる有機材料によっては水素とアルゴンの
混合ガス又は水素ガスをキャリアガスとするバブラ法、
或は蒸発法、昇華法によって行うことができる。
The heating temperature is set to 1500 ° C. or lower mainly due to the heat resistance of the hydrogen storage alloy. However, due to the characteristics of the pyrolytic carbon deposited on the surface of the hydrogen storage alloy due to the thermal decomposition of the hydrocarbons, the hydrocarbons are The thermal decomposition temperature varies depending on the weak crown material, but it is preferably about 1000 ° C. or lower, and the concentration at this time is preferably a few millimole percent. The amount of pyrolytic carbon deposited is preferably several μm or less. It should be noted that gaseous hydrocarbons such as propane can be introduced into the reaction tube as an air flow, but as a method for vaporizing liquid hydrocarbons such as benzene, a bubbler method using argon gas as a carrier gas is usually used, but a hydrogen storage alloy is used. And a bubbler method in which a mixed gas of hydrogen and argon or hydrogen gas is used as a carrier gas depending on an organic material as a starting material,
Alternatively, it can be carried out by an evaporation method or a sublimation method.

【0012】[0012]

【作用】本発明によれば、まずペーストとすることによ
って、水素吸蔵合金粉末の1つ1つのまわりを高分子結
着剤が覆うと共に次工程のシート状化を容易とする。次
に、シート状体とすることによって次工程の熱分解炭素
の水素吸蔵合金粉末上への被覆率を高めると共に取り扱
いを容易とする。この際、支持体はシート状体の形成を
容易にする。
According to the present invention, by forming the paste first, each of the hydrogen-absorbing alloy powders is covered with the polymer binder and the sheet-like process in the next step is facilitated. Next, by forming a sheet-like body, the coverage rate of the pyrolytic carbon on the hydrogen storage alloy powder in the next step is increased and the handling is facilitated. At this time, the support facilitates the formation of the sheet-shaped body.

【0013】そして、炭化水素類のガスが供給される反
応容器内にシート状体を配置して加熱すると、高分子結
着剤が炭化すると共に炭化水素類のガスが熱分解されて
水素吸蔵合金粉末上に熱分解炭素が堆積する。この際、
水素吸蔵合金粉末は互いに高分子結着剤に介在されてい
るので、粉末同志の凝集、融着が防がれる。このため、
例えばLaNi5系のような希土類系水素吸蔵合金粉末
を用いて1000℃近く まで昇温しても、粉末粒子間
の高分子結着剤が炭化すると共に粉末粒子のまわりに炭
素被覆されて、融着を起こすことなく熱分解炭素が被覆
される。
When the sheet-like body is placed in a reaction vessel to which a hydrocarbon gas is supplied and heated, the polymer binder is carbonized and the hydrocarbon gas is thermally decomposed to cause hydrogen storage alloy. Pyrolytic carbon is deposited on the powder. On this occasion,
Since the hydrogen-absorbing alloy powders are interposed between the polymer binders, aggregation and fusion of the powders are prevented. For this reason,
For example, even if a rare earth-based hydrogen storage alloy powder such as LaNi 5 system is used and the temperature is raised to nearly 1000 ° C., the polymer binder between the powder particles is carbonized and carbon is coated around the powder particles to melt the powder. The pyrolytic carbon is coated without causing adhesion.

【0014】[0014]

【実施例】以下実施例により本発明を説明する。水素吸
蔵合金としてMmNi35Co07Al08合金粉末
(粒径44μm以下)10重量部、高分子結着剤として
1液型RTVシリコーンポリマー(信越シリコーン社製
KE45T)2重量部を混合混練し、合剤ペーストとす
る。この場合、通常水素吸蔵合金10重量部に体して高
分子結着剤は1〜4重量部が適量である。これを支持体
であるニッケル金網(50メッシュ)上に10cm2
たり 0.8g塗布する。この塗布量は通常10cm2
たり0.5〜3g程度までが 適量である。これを乾燥
し、ポリマーを硬化させて水素吸蔵合金シートを得る。
この水素吸蔵合金シートにプロパンを原料として、供給
速度2.5モル/時間、熱分解温度1000℃として炭
素を堆積させた。本実施例では支持体に網を用いたの
で、炭素の堆積時にシート両面から均一に堆積が行われ
るので、水素吸蔵合金粉末全体に板状の支持体を用いる
場合に比べてより均一に炭素体を被覆できる。
The present invention will be described with reference to the following examples. MmNi 3 as a hydrogen storage alloy. 5 Co 0 . 7 Al 0 . 8 parts by weight of alloy powder (particle size: 44 μm or less) and 2 parts by weight of one-component RTV silicone polymer (KE45T manufactured by Shin-Etsu Silicone Co., Ltd.) as a polymer binder are mixed and kneaded to form a mixture paste. In this case, 1 to 4 parts by weight of the polymer binder is suitable for 10 parts by weight of the hydrogen storage alloy. 0.8 g of this is applied per 10 cm 2 on a nickel wire mesh (50 mesh) as a support. A suitable amount of this coating is usually about 0.5 to 3 g per 10 cm 2 . This is dried and the polymer is cured to obtain a hydrogen storage alloy sheet.
Carbon was deposited on this hydrogen storage alloy sheet using propane as a raw material at a supply rate of 2.5 mol / hour and a thermal decomposition temperature of 1000 ° C. In this example, since the net was used as the support, the carbon was deposited uniformly from both sides of the sheet, so that the carbon material was more uniformly deposited than when the plate-shaped support was used for the entire hydrogen storage alloy powder. Can be coated.

【0015】図1は水素吸蔵合金材料の形成過程を説明
する図である。同図中(a)は熱処理前の水素吸蔵合金
シートの断面構造を示す。1は水素吸蔵合金粉末、2は
シリコーンポリマー、3はニッケル金網である。これを
1000℃まで昇温すると、シリコーンポリマー2中の
有機物は一部気化等してなくなり、一部は炭化する。そ
してシリコーンポリマー2の占める体積が小さくなって
水素吸蔵合金粉末1の周りに空間が生じ、これとともに
気相からの熱分解炭素膜4が水素吸蔵合金粉末1を覆い
始める。(同図(b))。この際、シリコーンポリマー
2の炭化物の一部も水素吸蔵合金粉末1の表面を覆う。
やがて、同図(c)に示すように、シリコーンポリマー
2はその有機物が完全に炭化してSiO2核5を残し、
このSiO2核5のまわりに熱分解炭素4が形成され、
さらにその中にシリコーンポリマー2の炭化物を含む粒
子となる。そして、水素吸蔵合金粉末1は互いに融着を
起こすことなく、その表面を熱分解炭素4に覆われた粒
子状の水素吸蔵合金材料となる。こうして、2種類の粒
子が混合した混合体粉末が得られる。
FIG. 1 is a diagram for explaining a process of forming a hydrogen storage alloy material. In the figure, (a) shows the cross-sectional structure of the hydrogen storage alloy sheet before heat treatment. Reference numeral 1 is a hydrogen storage alloy powder, 2 is a silicone polymer, and 3 is a nickel wire mesh. When the temperature is raised to 1000 ° C., the organic substances in the silicone polymer 2 are partially vaporized and disappear, and a part is carbonized. Then, the volume occupied by the silicone polymer 2 becomes smaller and a space is created around the hydrogen storage alloy powder 1, and at the same time, the pyrolytic carbon film 4 from the vapor phase starts to cover the hydrogen storage alloy powder 1. ((B) of the same figure). At this time, a part of the carbide of the silicone polymer 2 also covers the surface of the hydrogen storage alloy powder 1.
Eventually, as shown in FIG. 2C, the organic substance of the silicone polymer 2 is completely carbonized to leave SiO 2 nuclei 5,
Pyrolytic carbon 4 is formed around the SiO 2 nucleus 5,
Further, it becomes particles containing the carbide of the silicone polymer 2 therein. Then, the hydrogen storage alloy powder 1 becomes a particulate hydrogen storage alloy material whose surface is covered with the pyrolytic carbon 4 without causing mutual fusion. In this way, a mixture powder in which two types of particles are mixed is obtained.

【0016】尚、本実施例ではシートとその周囲を均一
に1000℃となるように加熱したが、例えばシートの
加熱温度とその周囲のプロパンガスの加熱温度を変える
というように、熱処理温度に位置的分布を持たせても良
い。
In the present embodiment, the sheet and its surroundings were heated so as to be uniformly 1000 ° C., but the heat treatment temperature is set such that the heating temperature of the sheet and the heating temperature of the propane gas around it are changed. It may have a static distribution.

【0017】このようにして製造された混合体粉末に対
してポリエチレン粉末5重量パーセントを混合し、これ
を100メッシュのニッケル金網集電体と共に120
℃、400kgf/cm2でホットプレスしφ13mm
のペレット電極を得た。これを、25℃、7.2MKO
H電解液中で、Ni正極を対極として0.2Cで250
mAhg-1充電しHg/HgO参照電極に対して0.2
Cでー0.5Vまで放電させるサイクル試験を行った。
容量−サイクル曲線を図2中曲線(A)に示す。比較の
ために炭素被覆しないMmNi35Co07Al08
末(粒径44μm以 下)を電極製作方法は実施例と同
じにして製作、測定した電極の容量−サイクル曲線を図
2中曲線(B)に示す。この結果より、本実施例で製造
された水素吸蔵合金材料は、サイクル寿命に優れたアル
カリ二次電池負極材料となることがわかった。
5% by weight of polyethylene powder was mixed with the powder mixture thus prepared, and this was mixed with 120 mesh of 100 mesh nickel wire net current collector.
Φ13mm after hot pressing at 400 ℃ and 400kgf / cm 2.
The pellet electrode of was obtained. This is 25 ℃, 7.2MKO
250 at 0.2C with Ni positive electrode as counter electrode in H electrolyte
mAhg -1 Charge to 0.2 for Hg / HgO reference electrode
A cycle test was performed in which C was discharged to −0.5 V.
The capacity-cycle curve is shown by the curve (A) in FIG. For comparison, MmNi 3 without carbon coating. 5 Co 0 . 7 Al 0 . The capacity-cycle curve of the 8 powders (particle size: 44 μm or smaller) manufactured and measured by the same electrode manufacturing method as in the example is shown by the curve (B) in FIG. From these results, it was found that the hydrogen storage alloy material produced in this example was an alkaline secondary battery negative electrode material having excellent cycle life.

【0018】[0018]

【発明の効果】本発明によれば、微粉化が起こりにく
く、熱及び電気伝導性に優れ、雰囲気からの被毒による
特性劣化を起こさない水素吸蔵合金材料が得られる。
According to the present invention, it is possible to obtain a hydrogen storage alloy material which is less likely to be pulverized, has excellent heat and electric conductivity, and does not undergo characteristic deterioration due to poisoning from the atmosphere.

【0019】そして、熱分解炭素の被覆に際して粉末で
はなくシート状体を扱うので取り扱いが容易で、製造が
簡単になる。
When the pyrolytic carbon is coated, not the powder but the sheet-like body is handled, so that the handling is easy and the production is simple.

【0020】さらに、実施例に示したようにLaNi5
系のような希土類系水素吸蔵合金に対しても本発明の製
造方法を用いることが可能となり、従来に比べてより広
範な水素吸蔵合金に対して熱分解炭素を被覆できるの
で、水素吸蔵合金の用途の拡大と水素吸蔵合金利用技術
の向上を図れる。
Further, as shown in the embodiment, LaNi 5
It is possible to use the production method of the present invention even for rare earth-based hydrogen storage alloys such as the system, because it is possible to coat the pyrolytic carbon to a wider range of hydrogen storage alloys than in the past, It is possible to expand the applications and improve the technology for utilizing hydrogen storage alloys.

【0021】また、本発明の製造方法により得られる水
素吸蔵合金材料をアルカリ二次電池負極に用いれば、従
来の水素吸蔵合金電極に比べて電極劣化が少なくサイク
ル特性に優れた水素吸蔵合金電極を作製できる。
Further, when the hydrogen storage alloy material obtained by the manufacturing method of the present invention is used for the negative electrode of an alkaline secondary battery, a hydrogen storage alloy electrode having less electrode deterioration and excellent cycle characteristics as compared with the conventional hydrogen storage alloy electrode can be obtained. Can be made.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明実施例の水素吸蔵合金材料の形成過程を
説明する図である。
FIG. 1 is a diagram illustrating a process of forming a hydrogen storage alloy material according to an embodiment of the present invention.

【図2】水素吸蔵合金電極の容量−サイクル曲線を示す
図である。
FIG. 2 is a diagram showing a capacity-cycle curve of a hydrogen storage alloy electrode.

【符号の説明】[Explanation of symbols]

1 水素吸蔵合金粉末 2 シリコーンポリマー 4 熱分解炭素膜 1 Hydrogen Storage Alloy Powder 2 Silicone Polymer 4 Pyrolysis Carbon Film

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】水素吸蔵合金粉末と高分子結着剤とを混合
してペーストとし、該混合物のペーストを支持体を用い
てシート状体に加工し、該シート状体を炭化水素類のガ
スが供給される反応容器内に配置し、該反応容器内を1
500℃以下に加熱して、水素吸蔵合金粉末粒子間の高
分子結着剤を炭化すると共に粉末粒子のまわりに炭素被
覆してなることを特徴とする水素吸蔵合金材料の製造方
法。
1. A mixture of hydrogen-absorbing alloy powder and a polymeric binder to form a paste, the paste of the mixture is processed into a sheet-like body using a support, and the sheet-like body is treated with a hydrocarbon gas. Is placed in a reaction vessel to which
When heated to below 500 ° C , the hydrogen storage alloy powder particle
Carbonizing the molecular binder and carbon coating around the powder particles.
Method for producing a hydrogen storage alloy material characterized Rukoto such overturned.
JP2408737A 1990-12-28 1990-12-28 Method for manufacturing hydrogen storage alloy material Expired - Fee Related JP2514274B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2408737A JP2514274B2 (en) 1990-12-28 1990-12-28 Method for manufacturing hydrogen storage alloy material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2408737A JP2514274B2 (en) 1990-12-28 1990-12-28 Method for manufacturing hydrogen storage alloy material

Publications (2)

Publication Number Publication Date
JPH04232202A JPH04232202A (en) 1992-08-20
JP2514274B2 true JP2514274B2 (en) 1996-07-10

Family

ID=18518155

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2408737A Expired - Fee Related JP2514274B2 (en) 1990-12-28 1990-12-28 Method for manufacturing hydrogen storage alloy material

Country Status (1)

Country Link
JP (1) JP2514274B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1509399A (en) * 2001-02-26 2004-06-30 IP ó���ձ���ʽ���� Device for thermoelectric transduction and air-condition and refrigeration using hydrogen occluding alloy unit
WO2002068882A1 (en) * 2001-02-26 2002-09-06 Ip Trading Japan Co., Ltd. Device for thermoelectric transduction, air condition and refrigeration, using hydrogen occluding alloy unit
JP2004205197A (en) * 2002-06-12 2004-07-22 Ip Trading Japan Co Ltd Hydrogen storage alloy, hydrogen storage alloy unit, and heat pump and hydrogen compressor using hydrogen storage alloy
CN115340065B (en) * 2022-08-25 2023-11-03 上海交通大学 Pyrolysis controllable hydrogen release material and preparation and application thereof

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2612006B2 (en) * 1987-10-08 1997-05-21 シャープ株式会社 Method for producing hydrogen storage alloy material for battery electrode
JPH01119501A (en) * 1987-11-02 1989-05-11 Daido Steel Co Ltd Hydrogen storage body

Also Published As

Publication number Publication date
JPH04232202A (en) 1992-08-20

Similar Documents

Publication Publication Date Title
JP3444786B2 (en) Lithium secondary battery
Park et al. Synthesis process of CoSeO3 microspheres for unordinary Li‐ion storage performances and mechanism of their conversion reaction with Li ions
TWI455395B (en) Method for making anode material and lithium ion battery
US20010016283A1 (en) Carbonaceous material for hydrogen storage, production method thereof, and electrochemical device and fuel cell using the same
KR20130042560A (en) Cathode unit for an alkali metal/sulfur battery
US4835075A (en) Secondary battery using nonaqueous electrolytes
JP2004299986A (en) Carbon nanotube, and its production method
JP4157791B2 (en) Method for producing carbon nanofiber
CA2384359A1 (en) Carbonaceous material for hydrogen storage and method for preparing the same, and cell and fuel cell
CN100369809C (en) Carbon wool ball material and its preparation method and uses
JP2514274B2 (en) Method for manufacturing hydrogen storage alloy material
WO2022205904A1 (en) Composite negative electrode material and preparation method therefor, and lithium ion battery
Sun et al. High-quality epitaxial N doped graphene on SiC with tunable interfacial interactions via electron/ion bridges for stable lithium-ion storage
CA1069171A (en) Electrode comprising a nickel based catalyst for electrochemical generators
KR102001454B1 (en) The preparation method of multi-layer core-shell nano particles comprising porous carbon shell and core-shell nano particles thereby
US4900588A (en) Method for the production of a carbon electrode
EP1288352B1 (en) Vapor grown carbon fiber and electrode material for battery
JP3600640B2 (en) Heat treatment method of vapor grown carbon fiber
JPH10312794A (en) Negative electrode of lithium ion secondary battery and manufacture thereof
JP2612006B2 (en) Method for producing hydrogen storage alloy material for battery electrode
JPH10312793A (en) Lithium ion secondary battery positive electrode and its manufacture
JPS63213258A (en) Electrode
JP2656003B2 (en) Non-aqueous secondary battery
JP2707171B2 (en) Method for producing carbon for battery active material
RU2133527C1 (en) Pyrolized carbon containing material for anode of lithium storage cell and method of its manufacture

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees