JP2513624Y2 - Zinc-bromine secondary battery - Google Patents

Zinc-bromine secondary battery

Info

Publication number
JP2513624Y2
JP2513624Y2 JP1990051645U JP5164590U JP2513624Y2 JP 2513624 Y2 JP2513624 Y2 JP 2513624Y2 JP 1990051645 U JP1990051645 U JP 1990051645U JP 5164590 U JP5164590 U JP 5164590U JP 2513624 Y2 JP2513624 Y2 JP 2513624Y2
Authority
JP
Japan
Prior art keywords
chamber
positive electrode
storage tank
electrolytic solution
negative electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP1990051645U
Other languages
Japanese (ja)
Other versions
JPH0410959U (en
Inventor
武 上原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Meidensha Corp
Original Assignee
Meidensha Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Meidensha Corp filed Critical Meidensha Corp
Priority to JP1990051645U priority Critical patent/JP2513624Y2/en
Publication of JPH0410959U publication Critical patent/JPH0410959U/ja
Application granted granted Critical
Publication of JP2513624Y2 publication Critical patent/JP2513624Y2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Hybrid Cells (AREA)

Description

【考案の詳細な説明】 A.産業上の利用分野 この考案は、電池反応室を有する電池本体と電解液貯
蔵槽とを接続する配管系と、その切換弁とを通じて電解
液をその流路を変更可能に循環させる亜鉛−臭素二次電
池に関する。
[Detailed Description of the Invention] A. Industrial Application Field of the Invention The present invention relates to a piping system for connecting a battery main body having a battery reaction chamber to an electrolytic solution storage tank, and a switching valve for flowing the electrolytic solution through the flow path. The present invention relates to a zinc-bromine secondary battery that can be circulated in a changeable manner.

B.考案の概要 本考案は、電池本体と電解液貯蔵槽とを切換弁を有す
る電解液循環通路で接続した亜鉛−臭素二次電池におい
て、 正極電解液循環通路中に設けた切換弁を、少なくとも5
つの通流孔を有するシリンダーとその内部を一体に移動
する少なくとも4つの弁体で構成することにより、 これら弁体を移動操作することにより、電解液を正極
室の上部から下部、又は下部から上部に循環経路を変更
するようにしたものである。
B. Outline of the Invention The present invention relates to a zinc-bromine secondary battery in which a battery body and an electrolytic solution storage tank are connected by an electrolytic solution circulation passage having a switching valve. At least 5
By constructing a cylinder having one flow hole and at least four valve bodies that move integrally inside the cylinder, the valve body can be operated to move the electrolyte solution from the upper part to the lower part of the positive electrode chamber, or from the lower part to the upper part. It is designed to change the circulation route.

C.従来の技術 近時、電池電力貯蔵システムの開発が促進されてお
り、その一環として積層二次電池である亜鉛−臭素電池
が開発されている。
C. Conventional Technology Recently, the development of a battery power storage system has been promoted, and a zinc-bromine battery, which is a laminated secondary battery, has been developed as a part of it.

この亜鉛−臭素電池は、第3図乃至第6図に例示する
如く、正極および負極を有する電池反応室から成る電池
本体1と、電解液貯蔵槽2a,2bと、電池本体1内部及び
電解液貯蔵槽2a,2bとの間に電解液を循環させる配管系
とで構成したものである。
As shown in FIGS. 3 to 6, this zinc-bromine battery includes a battery main body 1 composed of a battery reaction chamber having a positive electrode and a negative electrode, electrolytic solution storage tanks 2a and 2b, an internal battery main body 1 and an electrolytic solution. It is configured with a piping system for circulating an electrolytic solution between the storage tanks 2a and 2b.

この電池本体1の電池反応室は、一対の正極電極板3
と、負極電極板4との間の空間をセパレータ5で仕切っ
て、正極室6と負極室7とを構成したものである。な
お、このような電池反応室を有する電池本体1は、電極
をバイポーラ型とし、単セルを複数、電気的に直列に積
層した積層体(いわゆるスタック)として構成されるこ
とが多い。
The battery reaction chamber of the battery body 1 includes a pair of positive electrode plates 3
The space between the negative electrode plate 4 and the negative electrode plate 4 is partitioned by a separator 5 to form a positive electrode chamber 6 and a negative electrode chamber 7. In many cases, the battery main body 1 having such a battery reaction chamber is formed as a laminated body (so-called stack) in which electrodes are bipolar type and a plurality of single cells are electrically stacked in series.

電池本体1の負極室7と負極電解液貯蔵槽2bとの間を
ポンプ10を有する送液管8と、排液管9とより成る負極
電解液循環通路を形成し、このポンプ10を駆動して電解
液を負極室7の下から上に流れるよう循環するようにす
る。また、正極室6と、上下送排液管12,13間には、四
方バルブ11を配設するとともに、四方バルブ11と正極電
解液貯蔵槽2aとの間には、ポンプ16を有する送出管14と
排出管15とを配管し、正極電解液循環通路を構成する。
Between the negative electrode chamber 7 of the battery main body 1 and the negative electrode electrolytic solution storage tank 2b, a negative electrode electrolytic solution circulation passage including a liquid sending pipe 8 having a pump 10 and a drain pipe 9 is formed, and the pump 10 is driven. The electrolytic solution is circulated so as to flow from the bottom to the top of the negative electrode chamber 7. Further, a four-way valve 11 is arranged between the positive electrode chamber 6 and the upper and lower liquid supply / drain pipes 12 and 13, and a delivery pipe having a pump 16 between the four-way valve 11 and the positive electrode electrolyte storage tank 2a. The positive electrode electrolyte circulation passage is formed by connecting 14 and the discharge pipe 15.

そして、通常運転時には、四方バルブ11を第3図に実
線で示す位置に切換えて、正極電解液貯蔵槽2a内の電解
液を、ポンプ16を駆動し充電時には送出管14b,14を、ま
た放電時には、送出管14a,14を通じて、四方バルブ11を
介し、上送排液管12を通し、正極室6の上部から下部に
流し、さらに、下送排液管13を通し、四方バルブ11を介
し、排出管15を通して正極電解液貯蔵槽2aに戻すよう循
環する。
During normal operation, the four-way valve 11 is switched to the position shown by the solid line in FIG. 3 so that the electrolyte in the positive electrode electrolyte storage tank 2a is driven by the pump 16 and the delivery pipes 14b, 14 are discharged during charging. At times, through the delivery pipes 14a, 14, through the four-way valve 11, through the upper liquid sending and draining pipe 12, flow from the upper part to the lower part of the positive electrode chamber 6, through the lower liquid sending and draining pipe 13, and through the four-way valve 11. , Through the discharge pipe 15 to circulate back to the positive electrode electrolyte storage tank 2a.

このように正極室6の上から下に電解液を流すのは、
次の理由による。すなわち、電解液中に含まれている臭
素錯化合物の比重が重いため、電解液を下方から上方に
流すと、この臭素錯化合物が正極電解液室6の上部まで
十分に行き渡らず、十分な電池反応を生じなくなるため
である。
In this way, flowing the electrolytic solution from the top to the bottom of the positive electrode chamber 6 is
For the following reasons. That is, since the specific gravity of the bromine complex compound contained in the electrolytic solution is heavy, when the electrolytic solution is caused to flow from the lower side to the upper side, the bromine complex compound does not sufficiently reach the upper portion of the positive electrode electrolytic solution chamber 6, resulting in a sufficient battery capacity. This is because no reaction occurs.

また、電池の始動時には、正極室6内の空気を抜くた
め、その下部から液を入れて内部に充満せしめるように
する。
Further, at the time of starting the battery, the air in the positive electrode chamber 6 is evacuated, so that the liquid is introduced from the lower portion to fill the inside.

すなわち、正極電解液貯蔵槽2a内の電解液を、ポンプ
16を駆動して送出管14を通じて四方バルブ11に向けて送
り出す。
That is, the electrolytic solution in the positive electrode electrolytic solution storage tank 2a is pumped.
16 is driven to send out toward the four-way valve 11 through the sending pipe 14.

このとき四方バルブ11は、第3図に破線で示す位置に
切換えておき、電解液を下送排液管13に送出せしめ、こ
れによって電解液を正極室6の下方から上方に向けて流
入させる。
At this time, the four-way valve 11 is switched to the position shown by the broken line in FIG. 3 so that the electrolytic solution is sent to the lower liquid sending and discharging pipe 13, whereby the electrolytic solution is made to flow upward from below the positive electrode chamber 6. .

そして、この正極室6内の空気を追い出すように満た
された電解液は、上送排液管12から、四方バルブ11を介
して排出管15を通し、正極電解液貯蔵槽2aに送られるよ
う循環する。
Then, the electrolyte solution filled so as to expel the air in the positive electrode chamber 6 is sent from the upper sending and discharging liquid pipe 12 through the discharge pipe 15 through the four-way valve 11 to the positive electrode electrolytic solution storage tank 2a. Circulate.

上述のようにして始動時に正極室内の空気抜きを完了
した後に、四方バルブ11を実線で示す位置に切換え、前
述した通常運転状態に移行するものである。
After the air removal from the positive electrode chamber is completed at the time of starting as described above, the four-way valve 11 is switched to the position shown by the solid line to shift to the normal operation state described above.

また、前述の如く、正極電解液の流路を変更するため
に用いた四方バルブ11は、第4図乃至第6図に例示する
ような構造となっている。
Further, as described above, the four-way valve 11 used to change the flow path of the positive electrode electrolyte has the structure illustrated in FIGS. 4 to 6.

すなわち、4つの配管流路を交差させた円形の弁室本
体17内に板状の弁体であるロータ18を回動可能に配置
し、このロータ18と一体の回動主軸19をカップリング20
を介して電動モータのアクチェータ21に接続し、このア
クチェータ21を駆動して回動主軸19を介し、ロータ18の
弁位置切換え動作を実行させるものである。
That is, a rotor 18, which is a plate-shaped valve body, is rotatably arranged in a circular valve chamber main body 17 that intersects four pipe flow paths, and a rotary main shaft 19 integrated with the rotor 18 is coupled to a coupling 20.
It is connected to an actuator 21 of an electric motor via the drive motor, and drives the actuator 21 to execute the valve position switching operation of the rotor 18 via the rotating main shaft 19.

また、この四方バルブ11からの電解液漏れを防止する
ため、第6図の如く回転主軸19の一部に環状溝を形成
し、これに耐薬品性及び摩擦を考慮して、フッ素ゴムの
Oリング22を装着し弁室本体17のハウジング内壁との間
をシールしている。
Further, in order to prevent electrolyte leakage from the four-way valve 11, an annular groove is formed in a part of the rotary main shaft 19 as shown in FIG. 6, and in consideration of chemical resistance and friction, fluorine O A ring 22 is attached to seal a space between the valve chamber body 17 and the inner wall of the housing.

D.考案が解決しようとする課題 上述のような従来の電解液循環形亜鉛−臭素電池で
は、その始動時と、通常運転時とで、電池本体の正極室
への電解液の流路を変更するための、四方バルブが必要
であるが、この四方バルブを長期に亘って使用すると、
そのシール用のOリングが摩耗して、電解液が漏れ出し
て周囲を濡し、漏電による地落を起したり、周囲の機器
を腐食させる等の問題を生ずることがあった。
D. Problems to be Solved by the Invention In the conventional electrolytic solution circulating zinc-bromine battery as described above, the flow path of the electrolytic solution to the positive electrode chamber of the battery main body is changed at the time of starting and normal operation. To do this, a four-way valve is required, but if this four-way valve is used for a long time,
The sealing O-ring may be worn, causing the electrolyte to leak out and wet the surrounding area, causing problems such as ground drop due to electric leakage and corrosion of surrounding equipment.

本考案は上述の点に鑑み、電解液漏れを生じないよう
にした、亜鉛−臭素電池の配管流路切換え用の切換弁装
置を備えた亜鉛−臭素二次電池を新たに提供することを
目的とする。
In view of the above points, the present invention aims to provide a zinc-bromine secondary battery, which is equipped with a switching valve device for switching the piping flow path of a zinc-bromine battery, which does not cause electrolyte leakage. And

E.課題を解決するための手段 本考案の亜鉛−臭素二次電池では、電池本体の負極室
と負極電解液貯蔵槽とを、負極電解液循環通路で接続
し、正極室と、正極電解液貯蔵槽とを、切換弁を有する
正極電解液循環通路で接続した亜鉛−臭素二次電池にお
いて、切換弁をシリンダーとこのシリンダー内を一体に
移動する少なくとも4つの弁体とで形成し、このシリン
ダーには所定の間隔をもって軸線方向に第1,第2,第3,第
4および第5の通流孔を順次配設し、その第2と第4の
通流孔を正極電解液貯蔵槽に連結し、第1と第5の通流
孔を正極室の上部(又は下部)に、また第3の通流孔は
正極室の下部(又は上部)に連通するとともに、4つの
弁体は第1室,第2室および第3室を区画形成し、切換
操作手段により移動可能となし、第1の操作で第1室は
第1と第2の通流孔を連通し、第2室は第3と第4の通
流孔を連通し、第3室は第5の通流孔と連通するように
なし、且つ第2の操作で第1室は第1の通流孔と、第2
室は第2と第3の通流孔と、また第3室は第4と第5の
通流孔とを連通するようにしたことを特徴とする。
E. Means for Solving the Problems In the zinc-bromine secondary battery of the present invention, the negative electrode chamber of the battery main body and the negative electrode electrolytic solution storage tank are connected by the negative electrode electrolytic solution circulation passage, and the positive electrode chamber and the positive electrode electrolytic solution are connected. In a zinc-bromine secondary battery in which a storage tank is connected through a positive electrode electrolyte circulation passage having a switching valve, the switching valve is formed by a cylinder and at least four valve bodies that move integrally in the cylinder. , A first, a second, a third, a fourth and a fifth through hole are sequentially arranged at a predetermined interval in the axial direction, and the second and the fourth through holes are provided in the positive electrolyte storage tank. The first and fifth communication holes are connected to the upper part (or the lower part) of the positive electrode chamber, the third communication hole is connected to the lower part (or the upper part) of the positive electrode chamber, and the four valve bodies are connected to each other. The first chamber, the second chamber, and the third chamber are partitioned and formed so that they can be moved by the switching operation means. Communicates the first and second communication holes, the second chamber communicates the third and fourth communication holes, the third chamber communicates with the fifth communication hole, and By the operation of 2, the first chamber becomes
The chamber is characterized in that the second and third communication holes are communicated with each other, and the third chamber is communicated with the fourth and fifth communication holes.

F.作用 上述のように構成することにより、切換操作手段を操
作することにより切換弁本体内の一連の弁体を移動操作
して、正極室に循環する電解液の流れを、上から下、又
は下から上へと切換えるという作用をなす。
F. Action With the above-mentioned configuration, the series of valve bodies in the switching valve body are moved by operating the switching operation means, and the flow of the electrolytic solution circulating in the positive electrode chamber is changed from top to bottom. Or, it works to switch from the bottom to the top.

G.実施例 以下、本考案の亜鉛−臭素二次電池の切換弁装置の一
実施例を第1図及び第2図によって説明する。
G. Example Hereinafter, an example of the switching valve device for a zinc-bromine secondary battery of the present invention will be described with reference to FIGS. 1 and 2.

なお、この第1図及び第2図において、前述した第3
図乃室第6図に対応する部分には同一符合を附すことと
なし、その詳細な説明を省略する。
In addition, in FIG. 1 and FIG.
The parts corresponding to those in FIG. 6 are not designated by the same reference numerals, and detailed description thereof will be omitted.

第1図は本実施例電池の通常運転時の状態を示す概略
説明線図で、1は電池本体、2aは正極電解液貯蔵槽、2b
は負極電解液貯蔵槽である。
FIG. 1 is a schematic explanatory diagram showing the state of the battery of this embodiment during normal operation, where 1 is the battery main body, 2a is the positive electrode electrolyte storage tank, and 2b.
Is a negative electrode electrolyte storage tank.

この電池本体1の内部には、一対の正極電極板3と負
極電極板4との間をセパレータ5で仕切って、正極電極
板3とセパレータ5とで囲まれた正極室6を構成すると
ともに、負極電極板4とセパレータ5とで囲まれた負極
室7を構成する。
Inside the battery body 1, a pair of positive electrode plate 3 and negative electrode plate 4 is partitioned by a separator 5 to form a positive electrode chamber 6 surrounded by the positive electrode plate 3 and the separator 5. A negative electrode chamber 7 surrounded by the negative electrode plate 4 and the separator 5 is formed.

負極室7と、負極電解液貯蔵槽2bとの間をポンプ10を
具備する送液管8と、排液管9とで接続し、負極電解液
循環通路を構成する。そして、このポンプ10を駆動し
て、電解液を、負極室7の下から上に流れるよう循環す
る。正極室6と正極電解液貯蔵槽2aとの間には、切換弁
本体23を有する正極電解液循環通路を設置する。
The negative electrode chamber 7 and the negative electrode electrolyte storage tank 2b are connected to each other by a liquid supply pipe 8 having a pump 10 and a drain pipe 9 to form a negative electrode electrolyte circulation passage. Then, the pump 10 is driven to circulate the electrolytic solution so as to flow from the bottom to the top of the negative electrode chamber 7. A cathode electrolyte circulation passage having a switching valve body 23 is installed between the cathode chamber 6 and the cathode electrolyte storage tank 2a.

切換弁本体23は、シリンダー24とこのシリンダー24内
を一体に移動する少なくとも4つの弁体31,32,33,34と
で構成する。このシリンダー24には、所定の間隔をもっ
て軸線方向に第1,第2,第3,第4,および第5の通流孔44,4
5,46,47,48を順次配設する。
The switching valve body 23 is composed of a cylinder 24 and at least four valve bodies 31, 32, 33, 34 that move integrally in the cylinder 24. The cylinder 24 has first, second, third, fourth, and fifth through holes 44, 4 in the axial direction at a predetermined interval.
5,46,47,48 are arranged sequentially.

4つの弁体31,32,33,34は1本の棒体35に設置され、
その弁体31,32の間に第1室49を、また、弁体32,33の間
に第2室50を、さらに弁体33,34の間に第3室51をそれ
ぞれ区画形成する。
The four valve bodies 31, 32, 33, 34 are installed on one rod 35,
A first chamber 49 is defined between the valve elements 31 and 32, a second chamber 50 is defined between the valve elements 32 and 33, and a third chamber 51 is defined between the valve elements 33 and 34.

第1通流孔44は、正極電解液室6の上部に連通する送
液管26と接続する。
The first flow hole 44 is connected to the liquid delivery pipe 26 that communicates with the upper portion of the positive electrode electrolyte chamber 6.

第3通流孔46は、正極室6の下部に連通する送液管25
と接続する。
The third flow hole 46 is provided in the lower portion of the positive electrode chamber 6 to connect the liquid delivery pipe 25.
Connect with.

第5通流孔48は、送液管26から分岐する送液管27に接
続する。
The fifth flow hole 48 is connected to the liquid delivery pipe 27 branched from the liquid delivery pipe 26.

第2通流孔45は、正極電解液貯蔵槽2aの上部に連通す
る排出管28に接続する。
The second flow hole 45 is connected to the discharge pipe 28 that communicates with the upper portion of the positive electrode electrolyte storage tank 2a.

第4通流孔47は、正極電解液貯蔵槽2aの中間部に連通
するポンプ16を有する送出管29に接続する。これととも
に、送出管29から分岐し、正極電解液貯蔵槽2aの下部に
接続する臭素錯化物送出混合用の送出管30を配管する。
このようにして正極電解液循環通路を構成する。
The fourth flow hole 47 is connected to a delivery pipe 29 having a pump 16 which communicates with an intermediate portion of the positive electrode electrolyte storage tank 2a. Along with this, a delivery pipe 30 for bromine complex compound delivery mixing, which branches from the delivery pipe 29 and is connected to the lower portion of the positive electrode electrolyte storage tank 2a, is provided.
In this way, the positive electrode electrolyte circulation passage is formed.

切換弁本体23は、切換操作手段により、これら4つの
弁体31,32,33,34を移動可能とする。切換操作手段の第
1の操作で第1室49は第1と第2の通流孔44,45を連通
し、第2室50は第3と第4の通流孔46,47を連通し、第
3室51は第5の通流孔48と連通するようになす。かつ第
2の操作で第1室49は第1の通流孔44と、第2室50は第
2と第3の通流孔45,46と、また第3室51は第4と第5
の通流孔47,48とを連通するように構成する。
The switching valve main body 23 makes these four valve bodies 31, 32, 33, 34 movable by switching operation means. By the first operation of the switching operation means, the first chamber 49 communicates the first and second communication holes 44 and 45, and the second chamber 50 communicates the third and fourth communication holes 46 and 47. , The third chamber 51 communicates with the fifth flow hole 48. In the second operation, the first chamber 49 is the first through hole 44, the second chamber 50 is the second and third through holes 45, 46, and the third chamber 51 is the fourth and fifth.
The communication holes 47 and 48 are connected to each other.

切換弁本体23は、その第3通流孔46を正極電解液室6
の下部に連通する送液管25と接続する。
The switching valve body 23 has the third through-hole 46 formed in the positive electrode electrolyte chamber 6
It is connected to the liquid sending pipe 25 communicating with the lower part of.

このように配管した切換弁本体23のシリンダー24は、
これに接続する配管25,26,27,28,29と同径、又はそれ以
上の径をもつシリンダーとして構成する。
The cylinder 24 of the switching valve body 23 piped in this way is
It is configured as a cylinder having a diameter equal to or larger than that of the pipes 25, 26, 27, 28, 29 connected thereto.

切換弁本体23には、切換操作手段を装着する。すなわ
ち、シリンダー24の上下端部には、それぞれ切換操作手
段としての作動用送液管36,37の一端部を接続する。
A switching operation means is attached to the switching valve body 23. That is, the upper and lower ends of the cylinder 24 are connected to one end of the liquid feed pipes 36, 37 for operation as switching operation means.

さらに、各作動用送液管36,37の他端部は2股に分岐
し、それぞれ制御弁38,39,40,41を介して供給管42と復
液管43との一端に接続する。
Further, the other ends of the liquid feed pipes 36, 37 for operation are bifurcated and connected to one ends of the supply pipe 42 and the liquid condensing pipe 43 via control valves 38, 39, 40, 41, respectively.

この各供給管42の他端は、それぞれ送出管29における
ポンプ16の加圧液排出側近傍に接続して、加圧液を取り
込めるようにする。
The other end of each supply pipe 42 is connected to the delivery pipe 29 in the vicinity of the pressurized liquid discharge side of the pump 16 so that the pressurized liquid can be taken in.

各復液管43の他端はそれぞれ排出管28に接続して構成
する。
The other end of each liquid condensing pipe 43 is connected to the discharge pipe 28.

次に、上述のように構成した本例装置の作動を説明す
る。
Next, the operation of the apparatus of the present embodiment configured as described above will be described.

まず、亜鉛−臭素電池を始動させるには、電池本体1
内の空になっている正,負極室6,7内に空気が残らない
ように電解液を満たさねばならない。
First, to start the zinc-bromine battery, the battery body 1
The electrolyte must be filled so that no air remains in the empty positive and negative electrode chambers 6 and 7.

このため、負極室7側では、ポンプ10を駆動して、負
極電解液貯蔵槽2b内の電解液を負極室7の下から上に循
環させ、空気を完全に排気するものである。
Therefore, on the negative electrode chamber 7 side, the pump 10 is driven to circulate the electrolytic solution in the negative electrode electrolytic solution storage tank 2b from below to above the negative electrode chamber 7 to completely exhaust the air.

また、正極室6側では、第1の操作として制御弁38を
閉じ、かつ制御弁39を開いて、ポンプ16から送られる加
圧液を、切換弁本体23のシリンダー24上部と、弁体31と
で作られた部室内に送給し、4つの弁体31,32,33,34を
第2図に示す如く下方の始動対応位置に移動する。な
お、このとき、制御弁40を閉じ、制御弁41を開くことに
よって、弁体34とシリンダー24の下部内との間の空間内
にある電解液を、弁体34の動きに伴って排出管28内に戻
すものである。
On the positive electrode chamber 6 side, the control valve 38 is closed and the control valve 39 is opened as the first operation, so that the pressurized liquid sent from the pump 16 is supplied to the upper portion of the cylinder 24 of the switching valve body 23 and the valve body 31. Then, the four valve bodies 31, 32, 33, 34 are moved to the lower start corresponding position as shown in FIG. At this time, by closing the control valve 40 and opening the control valve 41, the electrolytic solution in the space between the valve body 34 and the lower portion of the cylinder 24 is discharged along with the movement of the valve body 34. It is something to put back in 28.

この状態では、正極電解液貯蔵槽2a内の電解液は、送
出管29,30を通り、ポンプ16で加圧され、切換弁本体23
のシリンダー24における第4通流孔47から第2室50を通
り、第3通流孔46から送液管25を通って正極電解液室6
の下から上に向けて流される。
In this state, the electrolytic solution in the positive electrode electrolytic solution storage tank 2a passes through the delivery pipes 29, 30 and is pressurized by the pump 16, and the switching valve main body 23
In the cylinder 24 of the positive electrode electrolyte chamber 6 through the fourth flow hole 47, the second chamber 50 and the third flow hole 46, the liquid supply pipe 25.
It is shed from the bottom to the top.

さらにこれより送液管26を通り、第1通流孔44から第
1室49を通り、排出管28を通って正極電解液貯蔵槽2a内
に戻すよう循環させるものである。
Further, the liquid is circulated through the liquid supply pipe 26, the first flow hole 44, the first chamber 49, the discharge pipe 28 and the positive electrolyte storage tank 2a.

次に、第2図に示す始動状態から通常運転状態に移行
する第2の操作は以下のようにする。
Next, the second operation for shifting from the starting state shown in FIG. 2 to the normal operating state is as follows.

すなわち、制御弁38を開き、制御弁39を閉じる。これ
とともに、制御弁40を開き、制御弁41を閉じる。する
と、ポンプ16で加圧された電解液が供給管42と、作動用
送液管36とを通り、シリンダー24の下部と弁体34との間
の空間内に供給され、4つの弁体31,32,33,34を第1図
に示す如く上方の通常運転対応位置に移動する。なお、
このとき、シリンダー24内上部と弁体31との間の電解液
は、作動用送液管36と、復液管43とを通り、排出管28内
に戻される。
That is, the control valve 38 is opened and the control valve 39 is closed. At the same time, the control valve 40 is opened and the control valve 41 is closed. Then, the electrolytic solution pressurized by the pump 16 is supplied into the space between the lower portion of the cylinder 24 and the valve body 34 through the supply pipe 42 and the liquid delivery pipe 36 for operation, and the four valve bodies 31 are provided. , 32, 33, 34 are moved to the upper position corresponding to the normal operation as shown in FIG. In addition,
At this time, the electrolytic solution between the upper part of the cylinder 24 and the valve body 31 is returned to the discharge pipe 28 through the operation liquid sending pipe 36 and the liquid condensing pipe 43.

この状態では、正極電解液貯蔵槽2a内の電解液は送出
管29,30を通り、ポンプ16で加圧され、第4通流孔47か
ら第3室51を通り、第5通流孔48から送液管27を介して
送液管26を通り、正極室6内を上から下に向けて流れ
る。この後電解液は、送液管25を通り、第3通流孔46か
ら第2室50を通り、第2通流孔45を通って正極電解液貯
蔵槽2aに戻るというように循環する。
In this state, the electrolytic solution in the positive electrode electrolytic solution storage tank 2a passes through the delivery pipes 29, 30 and is pressurized by the pump 16, passes through the fourth through hole 47, the third chamber 51, and the fifth through hole 48. Flows from the top to the bottom in the positive electrode chamber 6 through the liquid feed pipe 27 and the liquid feed pipe 26. After this, the electrolytic solution circulates through the liquid supply pipe 25, the third flow hole 46, the second chamber 50, the second flow hole 45, and the positive electrolyte storage tank 2a.

このように、正極電解液が正極電解液室6内を上から
下に流れることによって、比重の大きい臭素錯化物が、
その下部に滞ることなく万遍なく室内に分布し、良好な
反応を期待できるものである。
In this way, the positive electrode electrolyte flows in the positive electrode electrolyte chamber 6 from the top to the bottom, so that the bromine complex compound having a large specific gravity is generated.
It is evenly distributed in the room underneath it, and a good response can be expected.

H.考案の効果 以上詳述したように本考案の亜鉛−臭素二次電池は、
正極電解液循環通路に設けた切換弁本体のシリンダー内
の弁体を、切換操作手段によって移動操作することによ
り、正極室に循環する電解液の上下方向の流れを切換え
るようにしたものである。
H. Effect of the Invention As described in detail above, the zinc-bromine secondary battery of the invention is
The valve body in the cylinder of the switching valve body provided in the positive electrode electrolyte circulation passage is moved and operated by the switching operation means to switch the vertical flow of the electrolytic solution circulating in the positive electrode chamber.

このように構成することにより、切換弁本体には、従
来の如く弁の回動するロータの軸受部がないので、この
軸受部の摩耗等による漏液がなく、電池全体としてのシ
ール箇所は配管の接続部分だけになるため、電解液漏れ
を防止する上での信頼性を向上し、電解液漏れに起因す
る漏電による地落、周囲の機器の腐食等を十分に防止で
き、安全性を向上できるという効果がある。
With this configuration, since the switching valve body does not have the rotor bearing portion for rotating the valve as in the conventional case, there is no liquid leakage due to wear of the bearing portion, and the sealed portion of the battery as a whole is piped. Since it is only the connection part, the reliability in preventing electrolyte leakage is improved, and it is possible to sufficiently prevent ground loss due to leakage of electrolyte caused by electrolyte leakage, corrosion of surrounding equipment, etc. and improve safety. The effect is that you can do it.

【図面の簡単な説明】[Brief description of drawings]

第1図は本考案の亜鉛−臭素二次電池の一実施例を示す
通常運転時での全体概略構成説明図、第2図はその始動
時での全体概略構成説明図、第3図は従来の亜鉛−臭素
電池を例示する全体概略構成説明図、第4図はその四方
バルブ装置部分の断面側面図、第5図はその四方バルブ
装置部分の断面正面図、第6図はそのシール部分の拡大
断面図である。 1……電池本体、2a……正極電解液貯蔵槽、2b……負極
電解液貯蔵槽、6……正極室、7……負極室、23……切
換弁本体、24……シリンダー、25……送液管、26……送
液管、27……送液管、28……排出管、29……送出管、30
……送出管。31,32,33,34……弁体、35……棒体、36,37
……作動用送液管、38,39,40,41……制御弁、42……供
給管、43……復液管、44……第1通流孔、45……第2通
流孔、46……第3通流孔、47……第4通流孔、48……第
5通流孔、49……第1室、50……第2室、51……第3
室。
FIG. 1 is an explanatory view of the overall schematic configuration of a zinc-bromine secondary battery according to an embodiment of the present invention at the time of normal operation, FIG. 2 is an overall schematic configuration illustration at the time of its start, and FIG. FIG. 4 is a cross-sectional side view of the four-way valve device portion, FIG. 5 is a cross-sectional front view of the four-way valve device portion, and FIG. 6 is a seal portion thereof. It is an expanded sectional view. 1 ... Battery main body, 2a ... Positive electrode electrolyte storage tank, 2b ... Negative electrolyte storage tank, 6 ... Positive electrode chamber, 7 ... Negative electrode chamber, 23 ... Switching valve body, 24 ... Cylinder, 25 ... … Liquid feed pipe, 26 …… Liquid feed pipe, 27 …… Liquid feed pipe, 28 …… Discharge pipe, 29 …… Delivery pipe, 30
...... Sending tube. 31,32,33,34 …… Valve body, 35 …… Steel body, 36,37
...... Operating liquid feed pipe, 38,39,40,41 ...... Control valve, 42 ...... Supply pipe, 43 ...... Condensation pipe, 44 ...... First through hole, 45 ...... Second through hole , 46 ... third through hole, 47 ... fourth through hole, 48 ... fifth through hole, 49 ... first chamber, 50 ... second chamber, 51 ... third
Room.

Claims (1)

(57)【実用新案登録請求の範囲】(57) [Scope of utility model registration request] 【請求項1】電池反応室の内部をセパレータで区画して
正極室と負極室を設け、該負極室の上部と下部とをポン
プを介して負極電解液貯蔵槽と連通した負極電解液循環
通路を有し、且つ正極室側には、その上部と下部とを切
換弁、およびポンプを介して正極電解液貯蔵槽と連通す
るとともに切換弁の切換により正極貯蔵槽の電解液を正
極室の上部から下部へ、または下部から上部へ流通させ
る正極電解液循環通路を備えた亜鉛−臭素二次電池にお
いて、 前記切換弁をシリンダーと該シリンダー内を一体に移動
する少なくとも4つの弁体とで形成し、このシリンダー
には所定の間隔をもって軸線方向に第1,第2,第3,第4お
よび第5の通流孔を順次配設し、その第2と第4の通流
孔を前記正極電解液貯蔵槽に連結し、第1と第5の通流
孔を前記正極室の上部(又は下部)に、また第3の通流
孔は正極室の下部(又は上部)に連通するとともに、前
記4つの弁体は第1室,第2室および第3室を区画形成
し、切換操作手段により移動可能となし、第1の操作で
第1室は前記第1と第2の通流孔を連通し、第2室は第
3と第4の通流孔を連通し、第3室は第5の通流孔と連
通するようになし、且つ第2の操作で第1室は第1の通
流孔と、第2室は第2と第3の通流孔と、また第3室は
第4と第5の通流孔とを連通するようにしたことを特徴
とする亜鉛−臭素二次電池。
1. A negative electrode electrolyte circulation passage in which the inside of a battery reaction chamber is partitioned by a separator to provide a positive electrode chamber and a negative electrode chamber, and the upper and lower parts of the negative electrode chamber communicate with a negative electrode electrolyte storage tank via a pump. And the upper and lower parts of the positive electrode chamber are connected to the positive electrode electrolyte storage tank via a switching valve and a pump, and by switching the switching valve, the electrolytic solution in the positive electrode storage tank is moved to the upper part of the positive electrode chamber. In a zinc-bromine secondary battery having a positive electrode electrolyte circulation passage for flowing from the bottom to the bottom or from the bottom to the top, the switching valve is formed by a cylinder and at least four valve bodies that move integrally in the cylinder. First, second, third, fourth and fifth through holes are sequentially arranged in this cylinder at predetermined intervals in the axial direction, and the second and fourth through holes are formed in the positive electrode electrolyzer. The first and fifth flow holes are connected to a liquid storage tank and the positive electrode is connected to the positive electrode. The upper part (or the lower part) of the chamber and the third flow hole communicate with the lower part (or the upper part) of the positive electrode chamber, and the four valve bodies define the first chamber, the second chamber and the third chamber. The first chamber communicates the first and second flow holes and the second chamber communicates the third and fourth flow holes by the first operation. , The third chamber is made to communicate with the fifth communication hole, and the first chamber has the first communication hole and the second chamber has the second and third communication holes in the second operation. The zinc-bromine secondary battery is characterized in that the third chamber communicates with the fourth and fifth flow holes.
JP1990051645U 1990-05-17 1990-05-17 Zinc-bromine secondary battery Expired - Lifetime JP2513624Y2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1990051645U JP2513624Y2 (en) 1990-05-17 1990-05-17 Zinc-bromine secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1990051645U JP2513624Y2 (en) 1990-05-17 1990-05-17 Zinc-bromine secondary battery

Publications (2)

Publication Number Publication Date
JPH0410959U JPH0410959U (en) 1992-01-29
JP2513624Y2 true JP2513624Y2 (en) 1996-10-09

Family

ID=31571265

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1990051645U Expired - Lifetime JP2513624Y2 (en) 1990-05-17 1990-05-17 Zinc-bromine secondary battery

Country Status (1)

Country Link
JP (1) JP2513624Y2 (en)

Also Published As

Publication number Publication date
JPH0410959U (en) 1992-01-29

Similar Documents

Publication Publication Date Title
JP5719851B2 (en) Circulating electrolyte storage system
US4490443A (en) Battery having electrolyte supply reservoir and activation tank disposed in a battery housing
US9297386B2 (en) Cooling systems for submersible pumps
MX2013000696A (en) Fuel cell system and operating method thereof.
CN109713350A (en) The vanadium cell system of included electrolytic cell and the rebalancing method of vanadium cell liquid
CN106207240A (en) Flow battery current interrupters and use the flow battery of this current interrupters
CN108232269B (en) Electrolyte circulation system of vanadium battery
US10665882B2 (en) Redox flow battery
US20200328446A1 (en) Subsea uninterruptible power supply
JP2513624Y2 (en) Zinc-bromine secondary battery
JPS61269866A (en) Redox flow cell
KR102023914B1 (en) Module type redox flow battery
JPH07502370A (en) How to perform suitable electrochemical transformations with rechargeable batteries
US20070224465A1 (en) Water controller system having stable structure for direct methanol fuel cell
JP6629911B2 (en) Redox flow battery
CN221701669U (en) Electro-deposition liquid circulation system
KR102007776B1 (en) Redox flow battery
JP2003123808A (en) Redox flow cell
JP2513622Y2 (en) Electrolyte circulation type metal halogen battery
JP2021106142A (en) Fuel battery system
CN220786863U (en) Oil storage tank for intelligent transportation of grain and oil
CN114944505B (en) Device for packaging flow battery
CN109848202A (en) A kind of tower processing equipment of Polluted Soil and waste residue
KR102147948B1 (en) Redox flow battery
CN117845284A (en) Electro-deposition liquid circulation system

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term