JP2513487B2 - Novel phthalocyanine compound - Google Patents
Novel phthalocyanine compoundInfo
- Publication number
- JP2513487B2 JP2513487B2 JP62210337A JP21033787A JP2513487B2 JP 2513487 B2 JP2513487 B2 JP 2513487B2 JP 62210337 A JP62210337 A JP 62210337A JP 21033787 A JP21033787 A JP 21033787A JP 2513487 B2 JP2513487 B2 JP 2513487B2
- Authority
- JP
- Japan
- Prior art keywords
- cupc
- coor
- prenyl
- coo
- phthalocyanine
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Classifications
-
- G—PHYSICS
- G03—PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
- G03G—ELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
- G03G5/00—Recording members for original recording by exposure, e.g. to light, to heat, to electrons; Manufacture thereof; Selection of materials therefor
- G03G5/02—Charge-receiving layers
- G03G5/04—Photoconductive layers; Charge-generation layers or charge-transporting layers; Additives therefor; Binders therefor
- G03G5/06—Photoconductive layers; Charge-generation layers or charge-transporting layers; Additives therefor; Binders therefor characterised by the photoconductive material being organic
- G03G5/0664—Dyes
- G03G5/0696—Phthalocyanines
-
- G—PHYSICS
- G11—INFORMATION STORAGE
- G11B—INFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
- G11B7/00—Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
- G11B7/24—Record carriers characterised by shape, structure or physical properties, or by the selection of the material
- G11B7/241—Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material
- G11B7/242—Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of recording layers
- G11B7/244—Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of recording layers comprising organic materials only
- G11B7/246—Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of recording layers comprising organic materials only containing dyes
- G11B7/248—Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of recording layers comprising organic materials only containing dyes porphines; azaporphines, e.g. phthalocyanines
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Nitrogen Condensed Heterocyclic Rings (AREA)
- Photoreceptors In Electrophotography (AREA)
Description
【発明の詳細な説明】 〈産業上の利用分野〉 本発明は、新規なフタロシアニン化合物、特に溶媒可
溶性のフタロシアニン化合物に関する。DETAILED DESCRIPTION OF THE INVENTION <Field of Industrial Application> The present invention relates to a novel phthalocyanine compound, particularly a solvent-soluble phthalocyanine compound.
〈従来の技術〉 フタロシアニン化合物は、光、熱、等に対して安定で
あり、堅牢性に優れている。また、強い色調をもつこと
から各種染料或は顔料として広く用いられている。一
方、大きなπ電子共役が存在するため、導電、光導電、
光電変換、触媒、光ディスクなどの素材として注目さ
れ、広く研究が行われている。特に、電子写真感光体或
はレーザープリンター用感光体として使用されており、
その重要さが年々増加している。また、電子材料として
は、優れた光導電性および半導体性を有しており、工業
的に非常に価値の高い素材である。<Prior Art> Phthalocyanine compounds are stable to light, heat, etc., and have excellent robustness. Further, since it has a strong color tone, it is widely used as various dyes or pigments. On the other hand, since there is a large π-electron conjugation, conductivity, photoconductivity,
It has attracted attention as a material for photoelectric conversion, catalysts, optical disks, etc., and has been widely studied. In particular, it is used as an electrophotographic photoreceptor or a photoreceptor for laser printers.
Its importance is increasing year by year. In addition, as an electronic material, it has excellent photoconductivity and semiconductivity, and is an extremely valuable material industrially.
また、溶媒可溶性であれば、スピンコートなどの簡便
な手法で、基盤上に膜を形成でき、光ディスク用色素に
用いることもでき、工業的に非常に価値の高い素材であ
る。Further, if it is soluble in a solvent, a film can be formed on a substrate by a simple method such as spin coating and can also be used as a dye for an optical disk, which is an industrially very valuable material.
更に、フタロシアニン化合物のLB膜によるガスセンサ
ーの構成(Hank Wohltjen,William R.Barger,Arthur W.
Snow,N,Lynn Jarvis,IEEE Transaction on Electron De
vices,vol.ED-32,P1170-1174(1985)など)など溶媒可
溶性のフタロシアニン化合物をもちいたLB膜の研究も多
く、センサーをはじめとする各種デバイス用素材として
非常に価値が高い。Furthermore, the composition of the gas sensor by the LB film of the phthalocyanine compound (Hank Wohltjen, William R. Barger, Arthur W.
Snow, N, Lynn Jarvis, IEEE Transaction on Electron De
vices, vol.ED-32, P1170-1174 (1985) etc.) There are many studies on LB films using solvent-soluble phthalocyanine compounds, and they are extremely valuable as materials for various devices such as sensors.
〈発明が解決しようとする問題点〉 フタロシアニン化合物は、ほとんど不溶性、不溶融性
であり、応用を検討するとき、これらの欠点に突き当た
ることが多い。すなわち、フタロシアニン化合物を精製
しようとすると、濃硫酸を用いるいわゆるアシッドペー
スティングを用いるか、昇華精製を用いざるをえない。
これらの方法では、フタロシアニン化合物は分解するこ
とが多く、半導体用途には不向きの精製法であり、高純
度品を取得することが困難である。また、薄膜化しよう
とすると、真空蒸着や樹脂分散による薄膜法に頼らざる
をえない。<Problems to be Solved by the Invention> Phthalocyanine compounds are almost insoluble and infusible, and these drawbacks are often encountered when studying applications. That is, to purify a phthalocyanine compound, so-called acid pasting using concentrated sulfuric acid must be used or sublimation purification must be used.
In these methods, the phthalocyanine compound is often decomposed, which is a purification method unsuitable for semiconductor applications, and it is difficult to obtain a high-purity product. In addition, in order to reduce the thickness, it is necessary to rely on a thin film method such as vacuum deposition or resin dispersion.
このように、従来技術においては、高純度品の取得が
困難であったり、薄膜化が制限されるなどの問題点があ
った。As described above, the conventional techniques have problems that it is difficult to obtain a high-purity product and that thinning is limited.
一方、電子材料としてフタロシアニンをみると従来技
術には、純度が低い、薄膜化の手段が限定されるなどの
問題点があった。On the other hand, looking at phthalocyanine as an electronic material, the conventional techniques have problems such as low purity and limited means for forming a thin film.
本発明が解決しようとする問題点は、溶媒可溶性の新
規なフタロシアニン化合物を提供することにある。The problem to be solved by the present invention is to provide a novel solvent-soluble phthalocyanine compound.
〈問題点を解決するための手段〉 本発明は、上記問題点を解決するために、 一般式 MPc−(COOR)m (1) (式中、Mは水素原子またはハロゲン化若しくは酸化さ
れていてもよい金属原子を表わし、Rはプレニル基若し
くはポリプレニル基を表わす。mは1から8の整数を表
わし、Pcはフタロシアニン環を表わす。) で表わされるフタロシアニン化合物を提供する。<Means for Solving Problems> In order to solve the above problems, the present invention provides a compound represented by the general formula MPc- (COOR) m (1) (wherein, M is a hydrogen atom or halogenated or oxidized). Represents a metal atom, R represents a prenyl group or a polyprenyl group, m represents an integer of 1 to 8, and Pc represents a phthalocyanine ring.).
上記式(1)において、Mは水素原子またはハロゲン
化若しくは酸化されていてもよい金属原子を表わし、金
属原子はいずれであっても差し支えなく、例えば、Cu,F
e,Ni,V,Pb,Si,Ge,Ti,Sn,Al,Ru,Zn,Mg,VO,TiO,AlCl等が
挙げられる。In the above formula (1), M represents a hydrogen atom or a metal atom which may be halogenated or oxidized, and the metal atom may be any, for example, Cu, F
Examples thereof include e, Ni, V, Pb, Si, Ge, Ti, Sn, Al, Ru, Zn, Mg, VO, TiO and AlCl.
この場合、フタロシアニン環の上下には、更に1ない
し2の他の配位子が配位してもよい。In this case, 1 or 2 other ligands may be further coordinated above and below the phthalocyanine ring.
−(COOR)mは、フタロシアニンのベンゼン環にエステ
ル基が置換していることを表わし、1ベンゼン環に置換
しているエステル基は、2以下であり、フタロシアニン
環全体に置換している数は、8以下である。-(COOR) m represents that the benzene ring of phthalocyanine is substituted with an ester group, and the number of ester groups substituted on one benzene ring is 2 or less, and the number of substituents on the entire phthalocyanine ring is , 8 or less.
また、−(COOR)mが、結合するベンゼン環の位置は、
通常4−または5−(−4′,−4″、−4,−
5′,−5″,または−5)であり、通常は、これら
異性体の混合物として得られる。Further, the position of the benzene ring to which-(COOR) m is bonded is
Usually 4- or 5-(-4 ',-4 ", -4,-
5 ', -5 ", or -5), usually obtained as a mixture of these isomers.
Rはプレニル基若しくはポリプレニル基を表わし、イ
ソプレン単位5ケ以下が好ましく、例示するならば、プ
レニル基、ゲラニル基、ネリル基、t−ネロリドール
基、cis−ネロリドール基等が挙げられる。R represents a prenyl group or a polyprenyl group, and isoprene units of 5 or less are preferable, and examples thereof include a prenyl group, a geranyl group, a neryl group, a t-nerolidol group, and a cis-nerolidol group.
Pcは、下記式(2)で表わされるフタロシアニン環で
ある。Pc is a phthalocyanine ring represented by the following formula (2).
以下に本発明のフタロシアニン化合物の具体例を挙げ
るが、本発明が以下に示す具体例に限定されるものでな
い。 Specific examples of the phthalocyanine compound of the present invention are shown below, but the present invention is not limited to the specific examples shown below.
例えば、 4−プレノキシカルボニル銅フタロシアニン 4,4′−ジ(プレノキシカルボニル)銅フタロシアニン 4,5′−ジ(プレノキシカルボニル)銅フタロシアニン 5,4′−ジ(プレノキシカルボニル)銅フタロシアニン 4,4′,4″−トリ(プレノキシカルボニル)銅フタロシ
アニン 4,5′,5″−トリ(プレノキシカルボニル)銅フタロシ
アニン 4,4′,4″,4−テトラ(プレノキシカルボニル)銅フ
タロシアニン 4,5,4′,5′,4″,5″,4,5−オクタ(プレノキシカ
ルボニル)銅フタロシアニン などであり、銅は上述の他のハロゲン化若しくは酸化さ
れていてもよい金属原子に置き換えても差し支えない。For example, 4-prenoxycarbonyl copper phthalocyanine 4,4′-di (prenoxycarbonyl) copper phthalocyanine 4,5′-di (prenoxycarbonyl) copper phthalocyanine 5,4′-di (prenoxycarbonyl) Copper Phthalocyanine 4,4 ', 4 "-Tri (Prenoxycarbonyl) Copper Phthalocyanine 4,5', 5" -Tri (Plenoxycarbonyl) Copper Phthalocyanine 4,4 ', 4 ", 4-Tetra (Pleno) Xycarbonyl) copper phthalocyanine 4,5,4 ′, 5 ′, 4 ″, 5 ″, 4,5-octa (prenoxycarbonyl) copper phthalocyanine, etc., in which copper is not halogenated or oxidized as described above. It may be replaced with a metal atom which may be present.
尚、本明細書において、このような化合物を例えば、
CuPc−(COO−Prenyl)8、CuPc−(COO−Geranyl)4等
と略記する場合がある。In addition, in the present specification, such a compound is, for example,
It may be abbreviated as CuPc- (COO-Prenyl) 8 or CuPc- (COO-Geranyl) 4 .
このようなフタロシアニン化合物は、以下のようにし
て合成される。Such a phthalocyanine compound is synthesized as follows.
すなわち、無水トリメリット酸或は無水ピロメリット
酸または両者の所定量混合物と無水フタル酸と金属塩化
物と尿素とを混合し、ニトロベンゼン中でモリブデン酸
アンモニウムを触媒として反応させる。That is, trimellitic anhydride or pyromellitic anhydride or a predetermined amount mixture of both, phthalic anhydride, metal chloride and urea are mixed and reacted in nitrobenzene using ammonium molybdate as a catalyst.
この場合、無水トリメリット酸と無水フタル酸或は無
水トリメリット酸と無水ピロメリット酸と無水フタル酸
あるいは無水ピロメリット酸と無水フタル酸の混合比は
目的化合物の置換基の数によって決定する。In this case, the mixing ratio of trimellitic anhydride and phthalic anhydride or trimellitic anhydride and pyromellitic anhydride and phthalic anhydride or pyromellitic anhydride and phthalic anhydride is determined by the number of substituents of the target compound.
ついで、この生成物をろ別してとり、メタノールで充
分洗浄し、乾燥することによってMPc−(CONH2)m(ここ
に、M、Pc及びmは式(1)におけるM、Pc及びmと同
じ意味を持つ)が得られる。Then, take the product was filtered off, thoroughly washed with methanol, followed by drying MPC-(CONH 2) m (here, M, Pc and m are as defined M, and Pc and m in Formula (1) Is obtained).
得られたMPc−(CONH2)mを、水酸化カリウムにて、例
えば、100℃程度の温度で加水分解を行ない、沈澱をろ
別し、水洗することによって、水溶液とし、水溶液を酸
性にすることによってMPc−(COOH)mが固体で得られる。
更に水酸化カリウムで精製することで高純度のMPc−(CO
OH)mを得ることが出来る。The obtained MPc- (CONH 2 ) m is hydrolyzed with potassium hydroxide, for example, at a temperature of about 100 ° C., the precipitate is filtered off and washed with water to give an aqueous solution, and the aqueous solution is made acidic. This gives MPc- (COOH) m as a solid.
By further purifying with potassium hydroxide, high purity MPc- (CO
OH) m can be obtained.
次に、これと、チオニルクロリド(SOCl2)を反応さ
せて酸塩化物とし、プレノール若しくはポリプレニルア
ルコール(ROH)と反応させることによって目的物、MPc
−(COOR)mが得られる。このMPc−(COOR)mを例えばベン
ゼン−n−ヘキサンから再結晶させることによって高純
度のMPc−(COOR)mが得られる。Next, this is reacted with thionyl chloride (SOCl 2 ) to form an acid chloride, which is then reacted with prenol or polyprenyl alcohol (ROH) to obtain the target compound, MPc.
− (COOR) m is obtained. By recrystallizing this MPc- (COOR) m from, for example, benzene-n-hexane, high-purity MPc- (COOR) m can be obtained.
また、MPc−(COOR)mを例えば、クロロホルムに溶解
し、シリカゲルカラムクロマトグラフィー等にてクロロ
ホルム−エタノール等を展開溶媒として展開し、青色の
液体をとりエバポレーションし、乾燥することによって
高純度のMPc−(COOR)mが得られる。In addition, MPc- (COOR) m is dissolved in chloroform, for example, and developed with silica gel column chromatography or the like using chloroform-ethanol or the like as a developing solvent, and a blue liquid is evaporated to obtain a highly purified product by drying. MPc− (COOR) m is obtained.
このようにして得られたMPc−(COOR)mは前記のごと
く、各異性体の混合物であり、エステル基の数のいかん
にかかわらず、その赤外吸収スペクトルには、ν(C=
0)1720cm-1,ν(C−0)1275cm-1,ν(CH)2950cm
-1の吸収が存在する。The MPc- (COOR) m thus obtained is a mixture of isomers as described above, and its infrared absorption spectrum shows ν (C =
0) 1720 cm -1 , ν (C-0) 1275 cm -1 , ν (CH) 2950 cm
There is an absorption of -1 .
更に、これらの化合物のLB膜を形成する場合は、以下
の方法などで行なうことが出来る。Further, the LB film of these compounds can be formed by the following method.
例えば、LAUDA社のFILM BALANCEに二回蒸留水を入
れ、20℃に保持する。MPc−(COOR)mを例えば、ベンゼン
に溶解し、0.1ミリモル/1の濃度に調整する。この溶液
を、水面に滴下し、表面圧が20ダイン/cmとなるようバ
リアーを調節した後、イソプロパノールで良く清浄化し
た顕微鏡用スライドグラスを徐々に(1mm/min)水中に
浸せきし、フタロシアニン層(1層)を被覆する。この
とき、バリアーは、自動的に表面圧を維持するように動
くよう調整されている。For example, double distilled water is added to FILM BALANCE manufactured by LAUDA and kept at 20 ° C. MPc- (COOR) m is dissolved in, for example, benzene and adjusted to a concentration of 0.1 mmol / 1. After dropping this solution on the surface of the water and adjusting the barrier so that the surface pressure becomes 20 dynes / cm, dip a microscope slide glass well cleaned with isopropanol gradually (1 mm / min) in water to form the phthalocyanine layer. (1 layer) is coated. At this time, the barrier is automatically adjusted to maintain the surface pressure.
次いで、スライドグラスを同様に引き上げる。この操
作を繰り返すことで、複数の被膜を形成することが出来
る。Then, the slide glass is pulled up in the same manner. By repeating this operation, a plurality of coatings can be formed.
〈実施例〉 以下、本発明を、具体的実施例により更に詳細に説明
するが、これら実施例により、本発明が限定されるもの
ではない。<Examples> Hereinafter, the present invention will be described in more detail with reference to specific examples, but the present invention is not limited to these examples.
実施例1 CuPc−(CONH2)4の合成 200mlの四口フラスコに無水トリメリット酸10.0g、尿
素30.0g、塩化銅(I)3.0g、モリブデン酸アンモニウ
ム1.0gおよびニトロベンゼン150mlを仕込み、窒素雰囲
気下、強くかきまぜながら、160℃で3.5時間反応させ
た。反応物は、固い黒色で、フラスコ壁に固着してい
た。Example 1 Synthesis of CuPc- (CONH 2 ) 4 A 200 ml four-necked flask was charged with 10.0 g of trimellitic anhydride, 30.0 g of urea, 3.0 g of copper (I) chloride, 1.0 g of ammonium molybdate and 150 ml of nitrobenzene, and a nitrogen atmosphere. The mixture was allowed to react at 160 ° C. for 3.5 hours with strong stirring. The reaction was a solid black color and adhered to the flask wall.
ニトロベンゼンをデカンテーションして除去し、固体
をメタノールで、次いで水で充分洗浄した。残存した固
体を乾燥して黒緑色固体を21.37g得た。The nitrobenzene was decanted off and the solid washed well with methanol then water. The remaining solid was dried to obtain 21.37 g of a black-green solid.
CuPc−(COOH)4の合成 CuPc−(CONH2)421.37gおよび50%水酸化カリウム水溶
液200gを200mlの四口フラスコに仕込み、かき混ぜなが
ら、100℃で20時間加熱した。反応終了後、一夜放置
し、上澄みをデカンテーションした後、ろ過を行ない、
CuPc−(COOK)4を得た。水1を用いてこれを溶解し、
不溶物をろ過したのち塩酸水溶液を用いてpH3とした。
析出した青色沈澱をろ別した後、1%水酸化カリウム水
溶液1に溶解し、ろ過した後、塩酸水溶液でpH3と
し、析出した青色沈澱をろ別した。この操作を3回繰り
返し、CuPc−(COOH)4の精製を行った。減圧下、100℃で
24時間乾燥し、CuPc−(COOH)4を7.12g得た。Synthesis of CuPc- (COOH) 4 21.37 g of CuPc- (CONH 2 ) 4 and 200 g of 50% aqueous potassium hydroxide solution were charged in a 200 ml four-necked flask and heated at 100 ° C. for 20 hours while stirring. After the reaction was completed, the mixture was left overnight, the supernatant was decanted, and then filtered.
CuPc- (COOK) 4 was obtained. Dissolve it with water 1,
The insoluble matter was filtered off and then adjusted to pH 3 with an aqueous hydrochloric acid solution.
The precipitated blue precipitate was filtered off, dissolved in 1% aqueous potassium hydroxide solution 1, filtered, and adjusted to pH 3 with an aqueous hydrochloric acid solution, and the precipitated blue precipitate was filtered off. This operation was repeated 3 times to purify CuPc- (COOH) 4 . At 100 ° C under reduced pressure
After drying for 24 hours, 7.12 g of CuPc- (COOH) 4 was obtained.
CuPc−(COO-Prenyl)4の合成 四口フラスコに、CuPc−(COOH)40.75g、チオニルクロ
リド10mlおよびピリジン3滴を仕込み、窒素雰囲気中、
還流温度で、8時間反応した。次いで、減圧下に、過剰
のチオニルクロリドを完全に留去した。フラスコ残渣
に、滴下ロートからプレノール0.86g、ピリジン0.32gお
よびベンゼン10mlの混合溶液を加え、窒素雰囲気中、還
流温度で20時間反応した。Synthesis of CuPc- (COO-Prenyl) 4 A four-necked flask was charged with 0.75 g of CuPc- (COOH) 4 , 10 ml of thionyl chloride and 3 drops of pyridine, and in a nitrogen atmosphere,
The reaction was carried out at reflux temperature for 8 hours. Then, the excess thionyl chloride was completely distilled off under reduced pressure. A mixed solution of 0.86 g of prenol, 0.32 g of pyridine and 10 ml of benzene was added to the flask residue from a dropping funnel, and the mixture was reacted in a nitrogen atmosphere at reflux temperature for 20 hours.
反応液にベンゼン100mlを加えた後、不溶物をろ過
し、ろ液を1%水酸化カリウム水溶液100ml、次いで水1
00mlで3回洗浄し、無水硫酸ナトリウムで乾燥した。After adding 100 ml of benzene to the reaction mixture, the insoluble matter was filtered off, and the filtrate was mixed with 100 ml of a 1% aqueous potassium hydroxide solution and then with water (1 ml).
It was washed 3 times with 00 ml and dried over anhydrous sodium sulfate.
減圧下に、ベンゼンを留去して青色固体を0.35g得
た。この固体を熱ベンゼン6.0gに溶かし、n−ヘキサン
6.0gを加え、熱時ろ過した。ろ液を一夜、冷蔵庫に放置
した後、析出した固体をろ過乾燥し、青色結晶CuPc−(C
OO-Prenyl)40.15gを得た。Benzene was distilled off under reduced pressure to obtain 0.35 g of a blue solid. This solid was dissolved in 6.0 g of hot benzene, and n-hexane was added.
6.0 g was added, and the mixture was filtered while hot. The filtrate was left overnight in the refrigerator, the precipitated solid was filtered and dried, and blue crystal CuPc- (C
OO-Prenyl) 4 0.15 g was obtained.
再結晶で得た結晶をシリカゲルカラムクロマトグラフ
ィー(展開溶媒;クロロホルム:エタノール=100:2)
を用いて精製した。The crystals obtained by recrystallization are subjected to silica gel column chromatography (developing solvent; chloroform: ethanol = 100: 2).
It was purified using.
収率:10.6% IR:1720cm-1{COORのν} 元素分析 C H N Cu% 分析値 65.4 4.9 10.8 6.1 計算値 65.7 4.7 10.9 6.2 実施例2 CuPc−(CONH2)3の合成 500mlの四口フラスコに無水トリメリット酸14.4g、無
水フタル酸3.7g、尿素60.0g、塩化銅(I)3.0g、モリ
ブデン酸アンモニウム2.0gおよびニトロベンゼン300gを
仕込み、窒素雰囲気下、強くかきまぜながら、150℃で
3時間次いで170℃で5時間反応させた。反応物は、固
い黒色で、フラスコ壁に固着していた。ニトロベンゼン
をデカンテーションして除去し、固体をメタノールで、
次いで水で充分洗浄した。残存した固体を乾燥して黒緑
色固体を得た。Yield: 10.6% IR: 1720 cm -1 {ν of COOR} Elemental analysis C H N Cu% Analytical value 65.4 4.9 10.8 6.1 Calculated value 65.7 4.7 10.9 6.2 Example 2 Synthesis of CuPc- (CONH 2 ) 3 500 ml four-necked A flask was charged with 14.4 g of trimellitic anhydride, 3.7 g of phthalic anhydride, 60.0 g of urea, 3.0 g of copper (I) chloride, 2.0 g of ammonium molybdate and 300 g of nitrobenzene, and the mixture was stirred at 150 ° C. under a nitrogen atmosphere at 3 ° C. for 3 days. Then, the reaction was carried out at 170 ° C. for 5 hours. The reaction was a solid black color and adhered to the flask wall. The nitrobenzene was decanted off and the solid was removed with methanol,
Then, it was thoroughly washed with water. The remaining solid was dried to obtain a black green solid.
CuPc−(COOH)3の合成 CuPc−(CONH2)3全量および50%水酸化カリウム水溶液
300gを500mlの四口フラスコに仕込み、かき混ぜなが
ら、100℃で14時間加熱した。反応後、一夜放置し、上
澄みをデカンテーションした後、ろ過を行い、CuPc−(C
OOK)3を得た。水1を用いてこれを溶解し、不溶物を
ろ過したのち塩酸水溶液を用いてpH3とした。析出した
青色沈澱をろ別した後、1%水酸化カリウム水溶液1
に溶解し、ろ過した後、塩酸水溶液でpH3とし、析出し
た青色沈澱をろ別した。この操作を3回繰り返し、CuPc
−(COOH)3の精製を行った。減圧下、100℃で24時間乾燥
し、CuPc−(COOH)3を3.87g得た。Synthesis of CuPc- (COOH) 3 CuPc- (CONH 2 ) 3 Total amount and 50% potassium hydroxide aqueous solution
300 g was charged into a 500 ml four-necked flask and heated at 100 ° C. for 14 hours while stirring. After the reaction, the mixture was left to stand overnight, the supernatant was decanted, and then filtered, and CuPc- (C
OOK) 3 got. This was dissolved with water 1, the insoluble material was filtered off, and the pH was adjusted to 3 with aqueous hydrochloric acid. After filtering off the blue precipitate that had formed, 1% aqueous potassium hydroxide solution 1
After being dissolved in water and filtered, the pH was adjusted to 3 with an aqueous hydrochloric acid solution, and the precipitated blue precipitate was filtered off. This operation is repeated 3 times, and CuPc
-(COOH) 3 was purified. It dried under reduced pressure at 100 degreeC for 24 hours, and obtained 3.87g of CuPc- (COOH) 3 .
CuPc−(COO-Prenyl)3の合成 四口フラスコに、CuPc−(COOH)33.80g、チオニルクロ
リド25gおよびピリジン3滴を仕込み、窒素雰囲気中、
還流温度で20時間反応した。次いで、減圧下に、過剰の
チオニルクロリドを完全に留去した。フラスコ残渣に、
滴下ロートからプレノール4.00g、ピリジン1.89gおよび
ベンゼン20gの混合溶液を加え、窒素雰囲気中、還流温
度で22時間反応した。Synthesis of CuPc- (COO-Prenyl) 3 A 4-necked flask was charged with 3.80 g of CuPc- (COOH) 3 , 25 g of thionyl chloride and 3 drops of pyridine, in a nitrogen atmosphere,
The reaction was carried out at the reflux temperature for 20 hours. Then, the excess thionyl chloride was completely distilled off under reduced pressure. In the flask residue,
A mixed solution of 4.00 g of prenol, 1.89 g of pyridine and 20 g of benzene was added from the dropping funnel, and the mixture was reacted at a reflux temperature in a nitrogen atmosphere for 22 hours.
反応液にベンゼン100mlを加えた後、不溶物をろ過
し、ろ液を1%水酸化カリウム水溶液100ml、次いで水1
00mlで3回洗浄し、無水硫酸ナトリウムで乾燥した。減
圧下に、ベンゼンを留去して青色固体を1.27g得た。こ
の固体を熱ベンゼン20.0gに溶かし、n−ヘキサン20.0g
を加え、熱時ろ過した。ろ液を一夜、冷蔵庫に放置した
後、析出した固体をろ過乾燥し、青色結晶CuPc−(COO-P
renyl)3を0.88g得た。After adding 100 ml of benzene to the reaction mixture, the insoluble matter was filtered off, and the filtrate was mixed with 100 ml of a 1% aqueous potassium hydroxide solution and then with water (1 ml).
It was washed 3 times with 00 ml and dried over anhydrous sodium sulfate. Benzene was distilled off under reduced pressure to obtain 1.27 g of a blue solid. Dissolve this solid in 20.0 g of hot benzene and add 20.0 g of n-hexane.
Was added and filtered while hot. The filtrate was left overnight in the refrigerator, the precipitated solid was filtered and dried, and blue crystals CuPc- (COO-P
0.88 g of renyl) 3 was obtained.
再結晶で得た結晶をシリカゲルカラムクロマトグラフ
ィー(展開溶媒;クロロホルム:エタノール:酢酸エチ
ル=100:2:1)を用いて精製した。The crystals obtained by recrystallization were purified by silica gel column chromatography (developing solvent; chloroform: ethanol: ethyl acetate = 100: 2: 1).
IR:1720cm−1{COORのν} 元素分析 C H N Cu% 分析値 64.9 4.6 12.1 6.91 計算値 65.8 4.4 12.3 6.96 実施例3 実施例1において、塩化銅(I)のかわりに塩化コバ
ルト(II)を用いて、他は同様に行って、CoPc−(COO-P
renyl)4 0.51gを得た。IR: 1720 cm-1 {ν of COOR} Elemental analysis C H N Cu% Analytical value 64.9 4.6 12.1 6.91 Calculated value 65.8 4.4 12.3 6.96 Example 3 In Example 1, cobalt chloride (II) was used instead of copper chloride (I). And other steps are performed in the same manner, and CoPc− (COO-P
renyl) 4 0.51 g was obtained.
IR:1720cm−1{COORのν} 元素分析 C H N Co% 分析値 65.2 4.9 12.2 5.68 計算値 65.9 4.7 12.6 5.78 実施例4 実施例2において、無水トリメリット酸9.6g、無水フ
タル酸7.4gを用い、他は同様に行って、CuPc−(COO-Pre
nyl)2を1.25g得た。IR: 1720 cm-1 {ν of COOR} Elemental analysis C H N Co% Analytical value 65.2 4.9 12.2 5.68 Calculated value 65.9 4.7 12.6 5.78 Example 4 In Example 2, trimellitic anhydride 9.6 g and phthalic anhydride 7.4 g were added. Use the same procedure as above for CuPc- (COO-Pre
1.25 g of nyl) 2 was obtained.
IR:1720cm-1{COORのν} 元素分析 C H N Cu% 分析値 65.1 4.2 13.6 7.82 計算値 66.0 4.0 14.0 7.94 実施例5 CuPc−(CONH2)1の合成 500mlの四口フラスコに無水トリメリット酸4.8g、無
水フタル酸11.1g、尿素60.0g、塩化銅(I)6.0g、モリ
ブデン酸アンモニウム2.0gおよびニトロベンゼン300gを
仕込み、窒素雰囲気下、強くかきまぜながら、150℃で
3時間次いで180℃で3時間反応させた。反応物は、青
みの強い固体であった。IR: 1720 cm -1 {ν of COOR} Elemental analysis C H N Cu% Analytical value 65.1 4.2 13.6 7.82 Calculated value 66.0 4.0 14.0 7.94 Example 5 Synthesis of CuPc- (CONH 2 ) 1 Anhydrous Trimerit in a 500 ml four-necked flask Acid 4.8g, phthalic anhydride 11.1g, urea 60.0g, copper (I) chloride 6.0g, ammonium molybdate 2.0g and nitrobenzene 300g were charged, and under strong stirring under nitrogen atmosphere at 150 ° C for 3 hours and then at 180 ° C. The reaction was carried out for 3 hours. The reaction product was a bluish solid.
ニトロベンゼンをデカンテーションして除去し、固体
をメタノールで、次いで水で充分洗浄した。残存した固
体を乾燥して青色固体を得た。The nitrobenzene was decanted off and the solid washed well with methanol then water. The remaining solid was dried to give a blue solid.
CuPc−(COOH)1の合成 CuPc−(CONH2)1全量および50%水酸化カリウム水溶液
300gを500ml四口フラスコに仕込み、かき混ぜながら、1
00℃で16時間加熱した。反応後、一夜放置し、上澄みを
デカンテーションした後、ろ過を行い、CuPc−(COOK)1
を得た。この固体は、水に難溶性であったので、塩酸水
溶液を用いてpH3とし青色固体をろ別した後、充分に水
洗した。減圧下、100℃で24時間乾燥し、CuPc−(COOH)1
を9.16g得た。Synthesis of CuPc- (COOH) 1 CuPc- (CONH 2 ) 1 Total amount and 50% potassium hydroxide aqueous solution
Charge 300g into a 500ml four-necked flask and stir 1 while
Heated at 00 ° C. for 16 hours. After the reaction, the mixture was left to stand overnight, the supernatant was decanted, and then filtered, and CuPc- (COOK) 1
I got Since this solid was poorly soluble in water, it was adjusted to pH 3 with an aqueous hydrochloric acid solution, the blue solid was filtered off, and then thoroughly washed with water. Under reduced pressure, dried at 100 ℃ for 24 hours, CuPc- (COOH) 1
Was obtained 9.16 g.
CuPc−(COO-Prenyl)1の合成 四口フラスコに、CuPc−(COOH)1 8.00g、チオニルク
ロリド50gおよびピリジン3滴を仕込み、窒素雰囲気
中、還流温度で25時間反応した。次いで、減圧下に、過
剰のチオニルクロリドを完全に留去した。フラスコ残渣
に、滴下ロートからプレノール4.00g、ピリジン1.89gお
よびベンゼン20gの混合溶液を加え、窒素雰囲気中、還
流温度で22時間反応した。CuPc- to (COO-Prenyl) 1 Synthesis four-necked flask, were charged CuPc- (COOH) 1 8.00g, thionyl chloride 50g and pyridine 3 drops, in a nitrogen atmosphere, and 25 hours at reflux temperature. Then, the excess thionyl chloride was completely distilled off under reduced pressure. A mixed solution of 4.00 g of prenol, 1.89 g of pyridine and 20 g of benzene was added to the flask residue from a dropping funnel, and the mixture was reacted in a nitrogen atmosphere at reflux temperature for 22 hours.
反応液にメタノール100mlを加え、室温下、1時間か
き混ぜた後、沈澱をろ別した。この固体を充分メタノー
ルで洗浄した後、100℃で真空乾燥し、次いで、ソック
スレー抽出器を用いてベンゼンで48時間抽出した。100 ml of methanol was added to the reaction solution, and the mixture was stirred at room temperature for 1 hour, and then the precipitate was separated by filtration. The solid was thoroughly washed with methanol, dried under vacuum at 100 ° C., and then extracted with benzene for 48 hours using a Soxhlet extractor.
減圧下に、ベンゼンを留去して青色固体を0.81gを得
た。この固体をシリカゲルカラムクロマトグラフィー
(展開溶媒;クロロホルム:エタノール:酢酸エチル=
100:2:1)を用いて精製し、CuPc−(COO-Prenyl)1を0.61
g得た。Benzene was distilled off under reduced pressure to obtain 0.81 g of a blue solid. This solid was subjected to silica gel column chromatography (developing solvent; chloroform: ethanol: ethyl acetate =
100: 2: 1) and CuPc- (COO-Prenyl) 1 at 0.61
g got.
IR:1720cm-1{COORのν} 元素分析 C H N Cu% 分析値 65.1 3.0 15.5 8.97 計算値 66.3 3.5 16.3 9.23 実施例6 実施例1と同様にしてCuPc−(COOH)4を得た。IR: 1720 cm -1 {ν of COOR} Elemental analysis C H N Cu% Analytical value 65.1 3.0 15.5 8.97 Calculated value 66.3 3.5 16.3 9.23 Example 6 CuPc- (COOH) 4 was obtained in the same manner as in Example 1.
四口フラスコに、CuPc−(COOH)4 1.86g、チオニルク
ロリド10mlおよびジメチルフォルムアミド0.5gを仕込み
窒素雰囲気で還流温度で10時間反応した。次いで、減圧
下に、過剰のチオニルクロリドを完全に留去した。フラ
スコ残渣に、滴下ロートからゲラニオール1.68g、ピリ
ジン0.86gおよびベンゼン10mlの混合溶液を加え、窒素
雰囲気で還流温度で17時間反応した。A 4-necked flask was charged with 1.86 g of CuPc- (COOH) 4 , 10 ml of thionyl chloride and 0.5 g of dimethylformamide, and reacted in a nitrogen atmosphere at reflux temperature for 10 hours. Then, the excess thionyl chloride was completely distilled off under reduced pressure. A mixed solution of 1.68 g of geraniol, 0.86 g of pyridine and 10 ml of benzene was added to the flask residue from a dropping funnel, and the mixture was reacted in a nitrogen atmosphere at reflux temperature for 17 hours.
反応液にベンゼン100mlを加えた後、不溶物をろ過
し、ろ液を1%水酸化カリウム水溶液100ml次いで水100
mlで3回洗浄し、無水硫酸ナトリウムで乾燥した。減圧
下に、ベンゼンを留去して青色結晶CuPc−(COO-Gerany
l)4を1.82g得た。After adding 100 ml of benzene to the reaction mixture, the insoluble matter was filtered off, and the filtrate was mixed with 100 ml of a 1% aqueous potassium hydroxide solution and then 100 ml of water.
The extract was washed 3 times with ml and dried over anhydrous sodium sulfate. Benzene was distilled off under reduced pressure to obtain blue crystals CuPc- (COO-Gerany
l) 1.82 g of 4 was obtained.
この結晶をシリカゲルカラムクロマトグラフィー(展
開溶媒;クロロホルム:エタノール:酢酸エチル=100:
2:1を用いて精製を行ない精製物1.49gを得た。This crystal was subjected to silica gel column chromatography (developing solvent; chloroform: ethanol: ethyl acetate = 100:
Purification was performed using 2: 1 to obtain 1.49 g of a purified product.
IR:1720cm-1{COORのν} 元素分析 C H N Cu% 分析値 69.8 6.34 8.60 4.79 計算値 70.4 6.22 8.64 4.90 実施例7,8 実施例1において、塩化銅(I)のかわりに塩化鉄
(II)3.84gまたは、塩化ニッケル(II)3.89gを用い
て、他は同様に行なって、FePc−(COO-Prenyl)4を0.62
g、またはNiPc−(COO-Prenyl)4を0.58g得た。IR: 1720 cm -1 {ν of COOR} Elemental analysis C H N Cu% Analytical value 69.8 6.34 8.60 4.79 Calculated value 70.4 6.22 8.64 4.90 Examples 7 and 8 In Example 1, instead of copper chloride (I), iron chloride ( II) 3.84 g or nickel (II) chloride 3.89 g, but otherwise the same procedure is performed to obtain FePc- (COO-Prenyl) 4 with 0.62 g.
0.58 g of NiPc- (COO-Prenyl) 4 was obtained.
FePc−(COO-Prenyl)4 IR:1720cm-1{COORのν} 元素分析 C H N Fe% 分析値 65.2 4.92 10.4 5.33 計算値 66.1 4.76 11.0 5.49 NiPc−(COO-Prenyl)4 IR:1720cm-1{COORのν} 元素分析 C H N Ni% 分析値 65.4 4.87 10.4 5.56 計算値 66.0 4.74 11.0 5.76 実施例9 実施例2において、無水ピロメリット酸5.45g、無水
フタル酸11.1gを用い、他は同様に行って、CuPc−(COO-
Prenyl)2を0.76g得た。FePc- (COO-Prenyl) 4 IR: 1720cm -1 {ν of COOR} Elemental analysis CHN Fe% Analytical value 65.2 4.92 10.4 5.33 Calculated value 66.1 4.76 11.0 5.49 NiPc- (COO-Prenyl) 4 IR: 1720cm -1 {Ν of COOR} Elemental analysis C H N Ni% Analytical value 65.4 4.87 10.4 5.56 Calculated value 66.0 4.74 11.0 5.76 Example 9 In Example 2, pyromellitic anhydride 5.45 g and phthalic anhydride 11.1 g were used, but otherwise the same. Go to CuPc− (COO-
0.76 g of Prenyl) 2 was obtained.
IR:1720cm-1{COORのν} 元素分析 C H N Cu% 分析値 64.8 4.3 13.4 7.77 計算値 66.0 4.0 14.0 7.94 実施例10,11,12 実施例1において、塩化銅(I)のかわりに塩化亜鉛
(II)3.85gまたは、塩化マグネシウム(II)3.76gまた
は、塩化アルミニウム(III)を用いて、他は同様に行
なって、ZnPc−(COO-Prenyl)4を0.55g、またはMgPc−(C
OO-Prenyl)4を0.28g、またはAlPcCl−(COO-Prenyl)4を
0.18g得た。IR: 1720 cm -1 {ν of COOR} Elemental analysis C H N Cu% Analytical value 64.8 4.3 13.4 7.77 Calculated value 66.0 4.0 14.0 7.94 Examples 10, 11, 12 In Example 1, instead of copper chloride (I) chloride Zinc (II) 3.85 g or magnesium (II) chloride 3.76 g or aluminum (III) chloride was used in the same manner as above, and 0.55 g of ZnPc- (COO-Prenyl) 4 or MgPc- (C
0.28 g of OO-Prenyl) 4 or AlPcCl- (COO-Prenyl) 4
0.18 g was obtained.
ZnPc−(COO-Prenyl)4 IR:1720cm-1{COORのν} 元素分析 C H N Zn% 分析値 65.2 4.82 10.4 6.21 計算値 65.5 4.71 10.9 6.37 MgPc−(COO-Prenyl)4 IR:1720cm-1{COORのν} 元素分析 C H N Mg% 分析値 67.4 4.97 10.9 2.33 計算値 68.3 4.91 11.4 2.47 AlPcCl−(COO-Prenyl)4 IR:1720cm-1{COORのν} 元素分析 C H N Al% 分析値 64.4 4.86 10.4 2.42 計算値 65.7 4.73 10.9 2.64 実施例13 実施例1において、無水トリメリット酸のかわりに無
水ピロメリット酸10.9gを使用する以外は実施例1と同
様に行なって、CuPc−(COOH)8を5.25g得た。ZnPc- (COO-Prenyl) 4 IR: 1720cm -1 {ν of COOR} Elemental analysis CHN Zn% Analytical value 65.2 4.82 10.4 6.21 Calculated value 65.5 4.71 10.9 6.37 MgPc- (COO-Prenyl) 4 IR: 1720cm -1 {Ν of COOR} Elemental analysis CHN Mg% Analytical value 67.4 4.97 10.9 2.33 Calculated value 68.3 4.91 11.4 2.47 AlPcCl- (COO-Prenyl) 4 IR: 1720cm -1 {COORν} Elemental analysis CHN Al% analysis Value 64.4 4.86 10.4 2.42 Calculated value 65.7 4.73 10.9 2.64 Example 13 The same procedure as in Example 1 was repeated except that 10.9 g of pyromellitic anhydride was used instead of trimellitic anhydride in Example 1, and CuPc- (COOH ) 8 5.25 g was obtained.
100mlのフラスコにCuPc−(COOH)8 1.0gを、P−トル
エンスルフォン酸0.1gおよびメシチレン50mlを仕込み、
96時間、150〜160℃の温度に保持した。溶媒を減圧下に
除去し、残った固体をn−ヘキサン:テトラヒドロフラ
ン=1:1の展開溶媒を用いて、シリカゲルカラムクロマ
トグラフィーで精製し、CuPc−(COO-Prenyl)8を0.52g得
た。A 100 ml flask was charged with 1.0 g of CuPc- (COOH) 8 , 0.1 g of P-toluenesulfonic acid and 50 ml of mesitylene,
The temperature was maintained at 150-160 ° C for 96 hours. The solvent was removed under reduced pressure, and the remaining solid was purified by silica gel column chromatography using a developing solvent of n-hexane: tetrahydrofuran = 1: 1 to obtain 0.52 g of CuPc- (COO-Prenyl) 8 .
IR:1720cm-1{COORのν} 元素分析 C H N Cu% 分析値 64.4 5.66 7.52 4.18 計算値 65.2 5.47 7.61 4.31 参考例1 実施例1で得たCuPc−(COO-Prenyl)4を1ミリモル/1
のベンゼン溶液に調整した。IR: 1720 cm -1 {ν of COOR} Elemental analysis C H N Cu% Analytical value 64.4 5.66 7.52 4.18 Calculated value 65.2 5.47 7.61 4.31 Reference example 1 CuPc- (COO-Prenyl) 4 obtained in Example 1 was 1 mmol / 1
Benzene solution.
LAUDA社のFILM BALANCEに2回蒸留水をいれ、20℃に
保持した。上記溶液を水面上に滴下し、表面圧が20ダイ
ン/cmとなるようにバリアーを調節した後、イソプロパ
ノールで良く清浄化した顕微鏡用スライドグラスを徐々
に(1mm/min)水中に浸せきした。このとき、バリアー
は、自動的に表面圧を維持するように動くよう調整され
ている。FILM BALANCE made by LAUDA was charged with distilled water twice and kept at 20 ° C. The above solution was dropped on the water surface, the barrier was adjusted so that the surface pressure was 20 dynes / cm, and a microscope slide glass well cleaned with isopropanol was gradually immersed (1 mm / min) in water. At this time, the barrier is automatically adjusted to maintain the surface pressure.
次いで、スライドグラスを同様に引き上げる。この操
作を繰り返すことで、複数の被膜を形成することが出来
た。Then, the slide glass is pulled up in the same manner. By repeating this operation, a plurality of coatings could be formed.
また、同様に、水平付着法によっても、被膜を形成す
ることが出来た。Similarly, a film could be formed by the horizontal deposition method.
〈発明の効果〉 上記のごとく、本発明の溶媒可溶性のフタロシアニン
化合物は、フタロシアニン環に−(COOR)mが結合してお
り、置換基のないフタロシアニン化合物に比して、非常
に溶解性が向上する。すなわち、ベンゼン、クロロホル
ム、トルエン、テトラヒドロフラン、ジオキサン、ジメ
チルホルムアミド、アセトン、メチルエチルケトン、な
どに極めて良好に溶解し、また、ポリマー、例えば、塩
化ビニール、塩化ビニール−酢酸ビニール共重合体、ポ
リエステル樹脂、エポキシ樹脂、などとの相溶性も非常
に高い。<Effects of the Invention> As described above, the solvent-soluble phthalocyanine compound of the present invention,-(COOR) m is bonded to the phthalocyanine ring, compared to a phthalocyanine compound without a substituent, the solubility is significantly improved. To do. That is, it dissolves very well in benzene, chloroform, toluene, tetrahydrofuran, dioxane, dimethylformamide, acetone, methyl ethyl ketone, etc., and it also contains polymers such as vinyl chloride, vinyl chloride-vinyl acetate copolymer, polyester resin, epoxy resin. It has a very high compatibility with, and so on.
従って、溶媒に溶解して再結晶や液体クロマトグラフ
ィーにより精製することが能率的に実施でき、本発明化
合物は精製が容易であり、高純度品を簡便に得ることが
出来る。更に、LB手法による薄膜化、スピンコートによ
る薄膜化等が容易となり、工業上の価値は高い。Therefore, the compound of the present invention can be efficiently dissolved in a solvent and purified by recrystallization or liquid chromatography. The compound of the present invention can be easily purified, and a highly pure product can be easily obtained. Furthermore, thinning by the LB method, thinning by spin coating, etc. become easy, and the industrial value is high.
Claims (1)
れていてもよい金属原子を表わし、Rはプレニル基若し
くはポリプレニル基を表わす。mは1から8の整数を表
わし、Pcはフタロシアニンを表わす。) で表わされるフタロシアニン化合物。1. A general formula MPc- (COOR) m (wherein M represents a hydrogen atom or an optionally halogenated or oxidized metal atom, R represents a prenyl group or a polyprenyl group, and m represents 1 to 1). Represents an integer of 8 and Pc represents a phthalocyanine).
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP62210337A JP2513487B2 (en) | 1987-08-26 | 1987-08-26 | Novel phthalocyanine compound |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP62210337A JP2513487B2 (en) | 1987-08-26 | 1987-08-26 | Novel phthalocyanine compound |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS6456678A JPS6456678A (en) | 1989-03-03 |
JP2513487B2 true JP2513487B2 (en) | 1996-07-03 |
Family
ID=16587741
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP62210337A Expired - Lifetime JP2513487B2 (en) | 1987-08-26 | 1987-08-26 | Novel phthalocyanine compound |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2513487B2 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20160033213A1 (en) * | 2014-07-31 | 2016-02-04 | Empire Technology Development Llc | Conductive thermal compositions, uses thereof, and methods for their preparation |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH04369573A (en) * | 1991-06-19 | 1992-12-22 | Oki Electric Ind Co Ltd | Color ink ribbon and color printer |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6094981A (en) * | 1983-10-31 | 1985-05-28 | Tdk Corp | Metal phthalocyanine dicarboxylic acid and its alkyl ester |
JPH0643428B2 (en) * | 1985-08-31 | 1994-06-08 | ティーディーケイ株式会社 | Method for producing phthalocyanine compound |
-
1987
- 1987-08-26 JP JP62210337A patent/JP2513487B2/en not_active Expired - Lifetime
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20160033213A1 (en) * | 2014-07-31 | 2016-02-04 | Empire Technology Development Llc | Conductive thermal compositions, uses thereof, and methods for their preparation |
US9917032B2 (en) * | 2014-07-31 | 2018-03-13 | Empire Technology Development Llc | Conductive thermal compositions, uses thereof, and methods for their preparation |
Also Published As
Publication number | Publication date |
---|---|
JPS6456678A (en) | 1989-03-03 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JPS6069657A (en) | Multilayer type photo sensor | |
JP3860616B2 (en) | Phthalocyanine compounds | |
Nasini et al. | Stereochemistry of cercosporin | |
JP2513487B2 (en) | Novel phthalocyanine compound | |
JPS59500716A (en) | Process for producing substituted polycyclo-alkylidene polycyclo-alkanes and corresponding epidioxy compounds; and said substituted polycyclo-alkylidene polycyclo-alkanes and corresponding epidioxy compounds | |
JPH06172361A (en) | Phthalocyanine compound | |
JP2522334B2 (en) | Novel squarylium compound and method for producing the same | |
EP0284369A2 (en) | 5- or 6-alkoxycarbonyl-2,3-dicyanonaphthalenes and process for production thereof | |
JPH07107029B2 (en) | Novel squarylium compound and method for producing the same | |
JP2507941B2 (en) | Novel squarylium compound and method for producing the same | |
JPH047350B2 (en) | ||
JPS61152769A (en) | Phthalocyanine compound | |
JP3345642B2 (en) | Novel compound of phthalocyanine derivative, method for producing the same, and self-assembled film | |
JP2976057B2 (en) | Octakis (alkoxyphenyl) phthalocyanine compounds and their transition metal complexes | |
JPS61152685A (en) | Phthalocyanine | |
US5100971A (en) | Preparation of carbazole-substituted polyacrylates or polymethacrylates, the products thus prepared and their use | |
JPS60184083A (en) | Phthalocyanine compound | |
JP2001011070A (en) | Production of chalcogenopyrylium compound | |
JP3384087B2 (en) | Photochromic optical recording material | |
JPH0435515B2 (en) | ||
JPH0327549B2 (en) | ||
JPH02215742A (en) | Diphenyldiacetylene derivative having solid-phase polymerizability | |
JPH02145564A (en) | Production of propionic acid derivative | |
SU910618A1 (en) | Macrocyclic chelates /1,10,11,20-tetrahydro-1,11-/dialkyl(diphenyl-3,13-dimethyldibenzo-1,2-c-1',2'-j)-diphyrazolo-3,4-f:3',4'-m/-1,2,5,8,9-12-hexaazocyclotetradecinato (2)-n ,n ,n ,n ,/-transitional metal as photoconductor material and method for preparing the same | |
JPH10182651A (en) | Pyridophenoxazine-metal chelate compound |