JP2513187B2 - Active suspension controller - Google Patents

Active suspension controller

Info

Publication number
JP2513187B2
JP2513187B2 JP61187335A JP18733586A JP2513187B2 JP 2513187 B2 JP2513187 B2 JP 2513187B2 JP 61187335 A JP61187335 A JP 61187335A JP 18733586 A JP18733586 A JP 18733586A JP 2513187 B2 JP2513187 B2 JP 2513187B2
Authority
JP
Japan
Prior art keywords
vehicle
wheel
load
longitudinal acceleration
acceleration
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP61187335A
Other languages
Japanese (ja)
Other versions
JPS6343807A (en
Inventor
善作 村上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP61187335A priority Critical patent/JP2513187B2/en
Priority to US07/017,747 priority patent/US4761022A/en
Priority to DE8787103118T priority patent/DE3761247D1/en
Priority to EP87103118A priority patent/EP0236947B1/en
Publication of JPS6343807A publication Critical patent/JPS6343807A/en
Application granted granted Critical
Publication of JP2513187B2 publication Critical patent/JP2513187B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
    • G05D1/08Control of attitude, i.e. control of roll, pitch, or yaw
    • G05D1/0891Control of attitude, i.e. control of roll, pitch, or yaw specially adapted for land vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60GVEHICLE SUSPENSION ARRANGEMENTS
    • B60G17/00Resilient suspensions having means for adjusting the spring or vibration-damper characteristics, for regulating the distance between a supporting surface and a sprung part of vehicle or for locking suspension during use to meet varying vehicular or surface conditions, e.g. due to speed or load
    • B60G17/015Resilient suspensions having means for adjusting the spring or vibration-damper characteristics, for regulating the distance between a supporting surface and a sprung part of vehicle or for locking suspension during use to meet varying vehicular or surface conditions, e.g. due to speed or load the regulating means comprising electric or electronic elements
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60GVEHICLE SUSPENSION ARRANGEMENTS
    • B60G2202/00Indexing codes relating to the type of spring, damper or actuator
    • B60G2202/40Type of actuator
    • B60G2202/41Fluid actuator
    • B60G2202/413Hydraulic actuator
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60GVEHICLE SUSPENSION ARRANGEMENTS
    • B60G2202/00Indexing codes relating to the type of spring, damper or actuator
    • B60G2202/40Type of actuator
    • B60G2202/41Fluid actuator
    • B60G2202/414Fluid actuator using electrohydraulic valves
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60GVEHICLE SUSPENSION ARRANGEMENTS
    • B60G2400/00Indexing codes relating to detected, measured or calculated conditions or factors
    • B60G2400/10Acceleration; Deceleration
    • B60G2400/104Acceleration; Deceleration lateral or transversal with regard to vehicle
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60GVEHICLE SUSPENSION ARRANGEMENTS
    • B60G2400/00Indexing codes relating to detected, measured or calculated conditions or factors
    • B60G2400/10Acceleration; Deceleration
    • B60G2400/106Acceleration; Deceleration longitudinal with regard to vehicle, e.g. braking
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60GVEHICLE SUSPENSION ARRANGEMENTS
    • B60G2400/00Indexing codes relating to detected, measured or calculated conditions or factors
    • B60G2400/20Speed
    • B60G2400/204Vehicle speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60GVEHICLE SUSPENSION ARRANGEMENTS
    • B60G2400/00Indexing codes relating to detected, measured or calculated conditions or factors
    • B60G2400/40Steering conditions
    • B60G2400/41Steering angle
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60GVEHICLE SUSPENSION ARRANGEMENTS
    • B60G2400/00Indexing codes relating to detected, measured or calculated conditions or factors
    • B60G2400/60Load
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60GVEHICLE SUSPENSION ARRANGEMENTS
    • B60G2401/00Indexing codes relating to the type of sensors based on the principle of their operation
    • B60G2401/14Photo or light sensitive means, e.g. Infrared
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60GVEHICLE SUSPENSION ARRANGEMENTS
    • B60G2600/00Indexing codes relating to particular elements, systems or processes used on suspension systems or suspension control systems
    • B60G2600/02Retarders, delaying means, dead zones, threshold values, cut-off frequency, timer interruption
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60GVEHICLE SUSPENSION ARRANGEMENTS
    • B60G2600/00Indexing codes relating to particular elements, systems or processes used on suspension systems or suspension control systems
    • B60G2600/18Automatic control means
    • B60G2600/182Active control means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60GVEHICLE SUSPENSION ARRANGEMENTS
    • B60G2800/00Indexing codes relating to the type of movement or to the condition of the vehicle and to the end result to be achieved by the control action
    • B60G2800/01Attitude or posture control
    • B60G2800/012Rolling condition

Landscapes

  • Engineering & Computer Science (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Automation & Control Theory (AREA)
  • Mechanical Engineering (AREA)
  • Vehicle Body Suspensions (AREA)

Description

【発明の詳細な説明】 発明の目的 [産業上の利用分野] 本発明は、車両の旋回走行中の制動による安定性低下
の防止に有効なアクティブサスペンション制御装置に関
する。
The present invention relates to an active suspension control device that is effective in preventing a decrease in stability due to braking during turning of a vehicle.

[従来の技術] 従来より、例えば自動車等に搭載されるサスペンショ
ン装置として、車両の各車輪と車体との間にアクチュエ
ータを設け、各アクチュエータの変位量および荷重に基
づいて各アクチュエータの所望の変位量を算出して該ア
クチュエータを制御することにより乗り心地および姿勢
制御を独立に達成する、所謂アクティブサスペンション
装置が知られている。
[Prior Art] Conventionally, as a suspension device mounted on, for example, an automobile, an actuator is provided between each wheel of a vehicle and a vehicle body, and a desired displacement amount of each actuator is determined based on a displacement amount and a load of each actuator. There is known a so-called active suspension device that independently achieves ride comfort and attitude control by calculating the above and controlling the actuator.

上記のようなアクティブサスペンション装置として、
例えば「車両用サスペンションシステム」(公表特許公
報昭60-500662号)等が提案されている。すなわち、変
位量が調整可能なホイールサスペンション装置と、サス
ペンション装置の負荷に応じて予め定められた変位を与
えるための電気信号を該装置へフィードバック入力する
ための手段と、を含み、外部から加わる力にかかわら
ず、車両のあらゆる動作面において車両を十分に安定に
保つものである。したがって、例えば車両旋回時には、
車幅方向の加速度によりロールトルクを算出し、各車輪
と車体との間に配設された油圧アクチュエータにより各
車輪と車体との間に作用する荷重を増減させ左右輪間で
荷重を移動させて、車体の姿勢を制御し、乗り心地を向
上させていた。
As the above active suspension device,
For example, a "vehicle suspension system" (published patent publication Sho 60-500662) and the like have been proposed. That is, a force applied from the outside includes a wheel suspension device whose displacement amount is adjustable, and means for feedback-inputting an electric signal for giving a predetermined displacement according to the load of the suspension device to the device. Despite this, it keeps the vehicle sufficiently stable in all aspects of its operation. Therefore, for example, when turning the vehicle,
The roll torque is calculated from the acceleration in the vehicle width direction, and the load acting between each wheel and the vehicle body is increased or decreased by the hydraulic actuator installed between each wheel and the vehicle body to move the load between the left and right wheels. , The attitude of the car body was controlled to improve the riding comfort.

[発明が解決しようとする問題点] ところで、一般に走行中の車両に制動力を作用させる
と、慣性による荷重の前輪側への移動により前輪荷重分
担率が増加し、一方、後輪軸荷重分担率は低下するので
後輪はロック状態に移行し易くなる。さらに、旋回走行
中に制動力が作用したときは、荷重が内輪から外輪に移
動するので、特に内後輪に加わる加重は顕るしく減少
し、該内後輪はロック状態に陥り易くなる。このよう
に、旋回走行中の内後輪がロック状態に移行すると、前
輪のコーナリングパワーに対して後輪のコーナリングパ
ワーは減少する。したがって、操舵特性はオーバステア
側に変化し、車両の安定性が低下するという問題点があ
った。
[Problems to be Solved by the Invention] Generally, when a braking force is applied to a running vehicle, the front wheel load sharing ratio increases due to the movement of the load due to inertia to the front wheel side, while the rear wheel axle load sharing ratio increases. Is lowered, the rear wheels are likely to shift to the locked state. Further, when a braking force is applied during turning, the load moves from the inner wheel to the outer wheel, so that the load applied to the inner and rear wheels is significantly reduced, and the inner and rear wheels are easily locked. In this way, when the inner rear wheels during turning travel shift to the locked state, the cornering power of the rear wheels decreases with respect to the cornering power of the front wheels. Therefore, there is a problem in that the steering characteristic changes to the oversteer side, and the stability of the vehicle decreases.

上述のような旋回走行中の内後輪のロック状態への移
行を防止するために、例えば、前後輪制動力配分の前輪
側比率を高める技術、あるいは、旋回走行中の左右輪間
移動荷重の前輪配分比を高める技術等も考えられた。し
かし、例えばプロポーショナルバルブの使用により、前
後輪制動力配分の前輪側比率を高く設定すると、所謂ブ
レーキの利きが弱まり、総合的制動性能の低下を招くの
で、上記前輪側比率には上限値が存在し、あまり高く設
定できないという問題もあった。また、例えば、旋回走
行中に左右輪間移動荷重の前輪配分比を常時高めると、
操舵特性のアンダステア側への移行を生じて、旋回走行
中における車両の機動性の確保が困難になるという問題
点もあった。
In order to prevent the inner rear wheels from shifting to the locked state during turning as described above, for example, a technique for increasing the front wheel side ratio of the front and rear wheel braking force distribution, or A technology to increase the front wheel distribution ratio was also considered. However, if the front wheel side ratio of the front and rear wheel braking force distribution is set high by using, for example, a proportional valve, the so-called brake effectiveness is weakened and the overall braking performance is deteriorated.Therefore, there is an upper limit value for the front wheel side ratio. However, there was also the problem that it could not be set too high. Further, for example, if the front wheel distribution ratio of the moving load between the left and right wheels is constantly increased during turning,
There is also a problem in that it is difficult to secure the mobility of the vehicle during turning because the steering characteristic is shifted to the understeer side.

本発明は、制動性能の低下や車両の機動性の悪化を招
くことなく、旋回走行中の制動力作用時にも充分な安定
性を維持できるアクティブサスペンション制御装置の提
供を目的とする。
It is an object of the present invention to provide an active suspension control device capable of maintaining sufficient stability even when a braking force is applied during turning without causing deterioration of braking performance and deterioration of vehicle mobility.

発明の構成 [問題点を解決するための手段] 上記問題を解決するためになされた本発明は、第1図
に例示するように、 車両の各車輪と車体との間に各々配設されたアクチュ
エータM1と、 上記車両の前後方向加速度を検出する前後方向加速度
検出手段M2と、 上記車両の旋回時、上記前後方向加速度検出手段M2の
検出した前後方向加速度の値に応じた配分比となるよう
に、上記車両の左右輪間移動荷重の前後輪配分比を制御
する指令を上記アクチュエータM1に出力する制御手段M3
と、 を備えたことを特徴とするアクティブサスペンション
制御装置を要旨とするものである。
Configuration of the Invention [Means for Solving the Problems] The present invention, which has been made to solve the above problems, is provided between each wheel of the vehicle and the vehicle body, as illustrated in FIG. The actuator M1, the longitudinal acceleration detecting means M2 for detecting the longitudinal acceleration of the vehicle, and the distribution ratio according to the value of the longitudinal acceleration detected by the longitudinal acceleration detecting means M2 when the vehicle turns. The control means M3 for outputting a command for controlling the front-rear wheel distribution ratio of the moving load between the left and right wheels of the vehicle to the actuator M1.
The gist of the active suspension control device is characterized by including

アクチュエータM1とは、例えば各車輪と車体との間に
作用する荷重を変更するものである。例えば、ピストン
とシリンダとからなる油圧アクチュエータ、油圧源およ
び該油圧源と上記油圧アクチュエータとを連通もしくは
遮断するサーボバルブから構成することができる。この
場合は、上記油圧アクチュエータのピストン変位量の変
化に伴い上記荷重を変更することができる。
The actuator M1 is, for example, for changing the load acting between each wheel and the vehicle body. For example, it can be configured by a hydraulic actuator including a piston and a cylinder, a hydraulic source, and a servo valve that connects or disconnects the hydraulic source and the hydraulic actuator. In this case, the load can be changed according to the change in the piston displacement amount of the hydraulic actuator.

前後方向加速度検出手段M2とは、車両の前後方向加速
度を検出するものである。例えば、加速度センサにより
実現できる。加速度センサとしては、例えば歪ゲージを
利用したものでもよく、サーボ加速度計であってもよ
い。
The longitudinal acceleration detecting means M2 is for detecting the longitudinal acceleration of the vehicle. For example, it can be realized by an acceleration sensor. As the acceleration sensor, for example, a strain gauge or a servo accelerometer may be used.

制御手段M3とは、車両の前後方向加速度の値に応じた
配分比となるように、車両の左右輪間移動荷重の前後輪
配分比を制御する指令を出力するものである。例えば、
車両を減速させる前後方向加速度が検出されたときは、
左右輪間移動荷重の前輪配分比を大きくする指令を出力
するよう構成できる。また例えば、前輪駆動車において
は、車両を加速させる前後方向加速度が検出されたとき
は、左右輪間移動荷重の後輪配分比を大きくする指令を
出力するものでもよい。
The control means M3 outputs a command for controlling the front-rear wheel distribution ratio of the moving load between the left and right wheels of the vehicle so that the distribution ratio is in accordance with the value of the longitudinal acceleration of the vehicle. For example,
When the longitudinal acceleration that slows down the vehicle is detected,
It can be configured to output a command to increase the front wheel distribution ratio of the moving load between the left and right wheels. Further, for example, in a front wheel drive vehicle, when a longitudinal acceleration that accelerates the vehicle is detected, a command to increase the rear wheel distribution ratio between the left and right wheel movement loads may be output.

上記制御手段M3は、例えばディスクリートな論理回路
として実現できる。また例えば、周知のCPUを始めとし
てROM,RAMおよびその他の周辺回路素子と共に論理演算
回路として構成され、予め定められた処理手順に従って
上記制御手段M3を実現するものであってもよい。
The control means M3 can be realized, for example, as a discrete logic circuit. Further, for example, a well-known CPU, ROM, RAM, and other peripheral circuit elements may be configured as a logical operation circuit, and the control means M3 may be realized according to a predetermined processing procedure.

[作用] 本発明のアクティブサスペンション制御装置は、第1
図に例示するように、車両の旋回時、前後方向加速度検
出手段M2の検出した前後方向加速度の値に応じた配分比
となるように、制御手段M3が、車両の左右輪間移動荷重
の前後輪配分比を制御する指令をアクチュエータM1に出
力するよう働く。
[Operation] The active suspension control device of the present invention is the first
As illustrated in the figure, when the vehicle turns, the control means M3 controls the front-rear movement load between the left and right wheels of the vehicle so that the distribution ratio is in accordance with the value of the front-rear acceleration detected by the front-rear acceleration detection means M2. Acts to output a command for controlling the wheel distribution ratio to the actuator M1.

すなわち、車両旋回時に、前後方向加速度が変化した
ときは、該変化に応じて内前輪から外前輪への移動荷重
と内後輪から外後輪への移動荷重との割合を変更して、
特定の車輪の荷重配分が著るしく低下するのを防止する
のである。
That is, when the longitudinal acceleration changes when the vehicle turns, the ratio of the moving load from the inner front wheel to the outer front wheel and the moving load from the inner rear wheel to the outer rear wheel is changed according to the change,
It prevents the load distribution of a particular wheel from being significantly reduced.

従って本発明のアクティブサスペンション制御装置
は、旋回走行中に、例えば制動力が作用した場合に、特
定車輪の荷重配分低下により該車輪がロック状態に移行
するのを防止し、安定した車両姿勢を確保するよう働
く。しかも、このときの前後輪配分比は、前後方向加速
度の値に応じた配分比となるように制御されるので、制
動力の大小も考慮されたものとなる。以上のように本発
明の各構成要素が作用することにより、本発明の技術的
課題が解決される。
Therefore, the active suspension control device of the present invention prevents a wheel from shifting to a locked state due to a reduction in load distribution of a specific wheel during turning, for example, when a braking force acts, and secures a stable vehicle posture. Work to do. Moreover, since the front / rear wheel distribution ratio at this time is controlled so as to be a distribution ratio according to the value of the longitudinal acceleration, the magnitude of the braking force is also taken into consideration. As described above, the technical problems of the present invention are solved by the operation of each component of the present invention.

[実施例] 次に、本発明の好適な一実施例を図面に基づいて詳細
に説明する。本発明一実施例であるアクティブサスペン
ション制御装置を備えた車両のシステム構成を第2図に
示す。
Next, a preferred embodiment of the present invention will be described in detail with reference to the drawings. FIG. 2 shows the system configuration of a vehicle equipped with an active suspension control device according to an embodiment of the present invention.

同図において、車両1は車体2と左・右前輪3,4との
間にサスペンション5,6を有し、車体2と左・右後輪7,8
との間にサスペンション9,10を備える。各サスペンショ
ン5,6,9,10には、その変位量に比例したアナログ信号を
出力する変位量変換器11,12,13,14、各車輪3,4,7,8と車
体2との間に作用する荷重を計測するロードセルからな
る荷重センサ15,16,17,18、各サスペンションアームに
配設されてバネ下加速度を検出するバネ下加速度センサ
19,20,21,22、および各サスペンション5,6,9,10の変位
量を調整するサーボバルブ23,24,25,26が各々配設され
ている。
In the figure, a vehicle 1 has suspensions 5 and 6 between a vehicle body 2 and left and right front wheels 3 and 4, and a vehicle body 2 and left and right rear wheels 7 and 8 are provided.
Suspensions 9 and 10 are provided between and. Each suspension 5,6,9,10 has a displacement amount converter 11,12,13,14 which outputs an analog signal proportional to the displacement amount thereof, between each wheel 3,4,7,8 and the vehicle body 2. Load sensor 15,16,17,18 consisting of a load cell that measures the load acting on the body, unsprung acceleration sensor installed on each suspension arm to detect unsprung acceleration
Servo valves 23, 24, 25, 26 for adjusting the displacement amounts of 19, 20, 21, 22 and the suspensions 5, 6, 9, 10 are respectively arranged.

また、車両1の車速を検出する車速センサ27、操舵角
を検出する操舵角センサ28、車両1の重心付近に配設さ
れて前後方向の加速度を検出する前後方向加速度センサ
29、車幅方向の加速度を検出する車幅方向加速度センサ
30も備えられている。
A vehicle speed sensor 27 for detecting the vehicle speed of the vehicle 1; a steering angle sensor 28 for detecting the steering angle; and a longitudinal acceleration sensor disposed near the center of gravity of the vehicle 1 for detecting longitudinal acceleration.
29. Vehicle width direction acceleration sensor that detects vehicle width direction acceleration
There are also 30.

上記各センサの検出信号は電子制御装置(以下単にEC
Uとよぶ)40に入力され、該ECU40は各サーボバルブ23,2
4,25,26を駆動して各サスペンション5,6,9,10を制御す
る。
The detection signals of the above sensors are electronic control devices (hereinafter simply referred to as EC
(Called U) 40, and the ECU 40 controls each servo valve 23, 2
Drives 4,25,26 to control each suspension 5,6,9,10.

各サスペンション5,6,9,10の構成は全て同一のため、
左前輪サスペンション5を例として第3図に基づいて説
明する。左前輪サスペンション5は、その一端が車体2
に回動自在に取り付けられたサスペンションアーム51の
他端で左前輪3を支持している。その上端が車体2に回
動自在に取り付けられた支持部材52の下端と上記サスペ
ンションアーム51との間に、コイルスプリング53および
該コイルスプリング53の内部に収納された油圧アクチュ
エータ54が並設されている。該油圧アクチュエータ54
は、シリンダ55と、該シリンダ55内部を上室56および下
室57に分離するピストン58とから構成され、該ピストン
58から下方に延びるロッド59の下端は上記サスペンショ
ンアーム51に回動自在に取り付けられている。
Since the configurations of each suspension 5, 6, 9, 10 are all the same,
The left front wheel suspension 5 will be described as an example with reference to FIG. The front left wheel suspension 5 has a vehicle body 2 at one end thereof.
The left front wheel 3 is supported by the other end of the suspension arm 51 rotatably attached to. A coil spring 53 and a hydraulic actuator 54 housed inside the coil spring 53 are arranged in parallel between the lower end of a support member 52 whose upper end is rotatably attached to the vehicle body 2 and the suspension arm 51. There is. The hydraulic actuator 54
Is composed of a cylinder 55 and a piston 58 for separating the inside of the cylinder 55 into an upper chamber 56 and a lower chamber 57.
The lower end of a rod 59 extending downward from 58 is rotatably attached to the suspension arm 51.

上記油圧アクチュエータ54に加わる負荷、すなわち車
体2と左前輪3との間に作用する荷重は、上記支持部材
52内部に配設されたロードセルからなる左前輪荷重セン
サ15により計測される。また、ピストン58の変位量は、
その一端が上記サスペンションアーム51に、他端が支持
部材52に取り付けられた左前輪変位量変換器11により測
定される。さらに、バネ下加速度は、サスペンションア
ーム51の左前輪3を支持している端部近傍に配設された
左前輪バネ下加速度センサ19により検出される。
The load applied to the hydraulic actuator 54, that is, the load acting between the vehicle body 2 and the left front wheel 3, is the above-mentioned support member.
It is measured by the left front wheel load sensor 15 which is composed of a load cell arranged inside. The displacement of the piston 58 is
One end thereof is measured by the suspension arm 51, and the other end thereof is measured by the left front wheel displacement amount converter 11 attached to the support member 52. Further, the unsprung acceleration is detected by a left front wheel unsprung acceleration sensor 19 provided near the end of the suspension arm 51 supporting the left front wheel 3.

上記油圧アクチュエータ54の上室56と下室57とは、各
々導管60,61により電磁式の左前輪サーボバルブ23に接
続されている。左前輪サーボバルブ23は、リザーバ62と
ポンプ63とからなる油圧回路を構成している。ポンプ63
で昇圧された高圧の作動油は常時左前輪サーボバルブ23
に供給され、該左前輪サーボバルブ23はその内部の可変
オリフィスに上記作動油を通過させた後、該作動油をリ
ザーバ62に戻す。左前輪サーボバルブ23は、上記可変オ
リフィスにより作動油の流量を調整することにより、油
圧アクチュエータ54の上室56と下室57との内部圧力の圧
力差を任意の値に制御できる。したがって、ECU40が左
前輪サーボバルブ23を駆動制御すると、上記圧力差によ
り油圧アクチュエータ54のピストン58が変位し、車体2
と左前輪3との間に作用する荷重が調整される。
The upper chamber 56 and the lower chamber 57 of the hydraulic actuator 54 are connected to the electromagnetic front left wheel servo valve 23 by conduits 60 and 61, respectively. The front left wheel servo valve 23 constitutes a hydraulic circuit including a reservoir 62 and a pump 63. Pump 63
The high pressure hydraulic oil boosted by is always left front wheel servo valve 23
The left front wheel servo valve 23 returns the hydraulic oil to the reservoir 62 after passing the hydraulic oil through the variable orifice therein. The front left wheel servo valve 23 can control the pressure difference of the internal pressure between the upper chamber 56 and the lower chamber 57 of the hydraulic actuator 54 to an arbitrary value by adjusting the flow rate of the hydraulic oil by the variable orifice. Therefore, when the ECU 40 drives and controls the left front wheel servo valve 23, the piston 58 of the hydraulic actuator 54 is displaced by the pressure difference, and the vehicle body 2
The load acting between the vehicle and the left front wheel 3 is adjusted.

次に、上述したECU40の構成を第4図に基づいて説明
する。ECU40は、CPU40a,ROM40b,RAM40c等を中心に論理
演算回路として構成され、コモンバス40dを介して入出
力ポート40e,40fに接続されて外部との入出力を行な
う。
Next, the configuration of the ECU 40 described above will be described based on FIG. The ECU 40 is configured as a logical operation circuit centering on the CPU 40a, ROM 40b, RAM 40c, etc., and is connected to the input / output ports 40e, 40f via the common bus 40d to perform input / output with the outside.

ECU40は、既述した各センサの検出信号のバッファあ
るいはフィルタを備えた信号調整回路40g、各検出信号
を選択的に入力するマルチプレクサ40h、アナログ信号
をディジタル信号に変換するA/D変換器40iを備え、これ
らの検出信号は入出力ポート40eを介してCPU40aに入力
される。
The ECU 40 includes a signal adjustment circuit 40g having a buffer or filter for the detection signal of each sensor described above, a multiplexer 40h that selectively inputs each detection signal, and an A / D converter 40i that converts an analog signal into a digital signal. These detection signals are input to the CPU 40a via the input / output port 40e.

またECU40は、各サーボバルブ23,24,25,26の駆動回路
40j,40k,40m,40nおよびディジタル信号をアナログ信号
に変換するD/A変換器40pを備え、CPU40aは入出力ポート
40fを介して上記各駆動回路40j,40k,40m,40nに制御信号
を出力する。
Also, the ECU 40 is a drive circuit for each servo valve 23, 24, 25, 26.
Equipped with 40j, 40k, 40m, 40n and D / A converter 40p that converts digital signals to analog signals, CPU 40a is an input / output port
A control signal is output to each of the drive circuits 40j, 40k, 40m, 40n via 40f.

次に、本実施例の制御に用いる諸量の関係を第5図に
基づいて説明する。
Next, the relationship between various amounts used for the control of this embodiment will be described with reference to FIG.

既述した各センサにより検出される諸量は以下の各量
である。すなわち、各車輪3,4,7,8に対して配設された
サスペンションの変位量X1,X2,X3,X4、荷重f1,f2,f3,f4
が各々変位量変換器11,12,13,14、荷重センサ15,16,17,
18により検出される。また、車両の重心Gに作用する前
後方向加速度Xcg、車幅方向加速度Ycgが前後方向加速度
センサ29、車幅方向加速度センサ30により検出される。
さらに車両の車速Vと操舵角θとが車速センサ27と操舵
角センサ28とにより検出される。
The quantities detected by the above-mentioned sensors are the following quantities. That is, the displacements X1, X2, X3, X4 and the loads f1, f2, f3, f4 of the suspensions arranged for the wheels 3, 4, 7, 8 respectively.
Are displacement transducers 11, 12, 13, 14 and load sensors 15, 16, 17,
Detected by 18. Further, the longitudinal acceleration Xcg and the vehicle lateral acceleration Ycg acting on the center of gravity G of the vehicle are detected by the longitudinal acceleration sensor 29 and the vehicle lateral acceleration sensor 30.
Further, the vehicle speed V and the steering angle θ of the vehicle are detected by the vehicle speed sensor 27 and the steering angle sensor 28.

これらの諸量に基づき、各車輪3,4,7,8に対応して配
設されたサスペンションの運動状態を車両の重心Gにお
ける3種類の運動状態に変換する。すなわち、重心Gの
矢印Hで示す上下振動であるヒーブ(Heave)、重心G
を通る車幅方向軸回りの矢印Pで示す前後振動であるピ
ッチ(Pitch)、重心Gを徹前後方向軸回りの矢印Rで
示す前後方向軸回りの回転であるロール(Roll)の3種
類の運動状態である。
Based on these various quantities, the motion states of the suspensions corresponding to the wheels 3, 4, 7, 8 are converted into three types of motion states at the center of gravity G of the vehicle. That is, the heave, which is the vertical vibration indicated by the arrow H of the center of gravity G, the center of gravity G
There are three types of pitches, namely, pitch (Pitch) which is the longitudinal vibration indicated by the arrow P around the vehicle width direction axis passing through the center of gravity, and roll (Roll) which is the rotation about the longitudinal axis indicated by the arrow R around the center of gravity G. You are in a state of motion.

次に、上記3種類の運動状態から、各運動状態に対応
した重心Gにおける目標値からの偏差を算出する。すな
わち、予め定められたヒーブ目標車高Hreqからのヒーブ
車高偏差Hd、ピッチ目標角度Preqからのピッチ角度偏差
Pd、ロール目標角度Rreqからのロール角度偏差Rdの3種
類である。さらに、上記重心Gの3種類の偏差を各車輪
3,4,7,8に対応して設けられた各サスペンションの目標
変位量Xd1,Xd2,Xd3,Xd4に変換する。ECU40は、各サスペ
ンションの変位量が上記目標変位量となるように各サー
ボバルブを制御するのである。なお、車両のホイールベ
ースはL、車両の重心Gと前輪軸との距離はXf、前輪ト
レッドはTf、後輪トレッドはTrである。
Next, the deviation from the target value at the center of gravity G corresponding to each exercise state is calculated from the above three types of exercise states. That is, the heave vehicle height deviation Hd from the predetermined heave target vehicle height Hreq, and the pitch angle deviation from the pitch target angle Preq
Pd and roll angle deviation Rd from roll target angle Rreq. Furthermore, the three types of deviations of the center of gravity G are calculated for each wheel.
The target displacement amounts Xd1, Xd2, Xd3, Xd4 of the respective suspensions provided corresponding to 3, 4, 7, 8 are converted. The ECU 40 controls each servo valve so that the displacement amount of each suspension becomes the target displacement amount. The wheel base of the vehicle is L, the distance between the center of gravity G of the vehicle and the front wheel shaft is Xf, the front wheel tread is Tf, and the rear wheel tread is Tr.

ところで、旋回時の車幅方向加速度Ycgに伴い発生す
る左右輪間移動荷重の前後輪配分比は、ロール剛性配分
RCとして次式(1)のように算出できる。
By the way, the front-rear wheel distribution ratio of the moving load between the left and right wheels generated with the vehicle width direction acceleration Ycg during turning is the roll rigidity distribution.
RC can be calculated as in the following equation (1).

RC=[(Δf1−Δf2)/ {(Δf1−Δf2)+(Δf3−Δf4)}] ×100 …(1) 但し、Δf1…左前輪荷重変化量 Δf2…右前輪荷重変化量 Δf3…左後輪荷重変化量 Δf4…右後輪荷重変化量 ここで、振動の定常状態のみを考え、減衰項を無視す
ると、各車輪の変位Xと荷重変化量Δfとは次式(2)
のような関係がある。
RC = [(Δf1−Δf2) / {(Δf1−Δf2) + (Δf3−Δf4)}] × 100… (1) However, Δf1… left front wheel load change Δf2… right front wheel load change Δf3… left rear wheel Load change Δf4 ... Right rear wheel load change Here, considering only the steady state of vibration and ignoring the damping term, the displacement X of each wheel and the load change Δf are given by the following equation (2).
There is such a relationship.

X=Δf/k …(2) 但し、K…ばね定数 従って、左右輪間移動荷重の前後輪配分比に相当する
上記ロール剛性配分RCを決定する荷重変化量Δfを変化
させる方法は以下の2種類がある。すなわち、 (1) 変位Xを一定としてばね定数Kを変化させる。
X = Δf / k (2) However, K ... Spring constant Therefore, the method of changing the load change amount Δf that determines the roll rigidity distribution RC corresponding to the front-rear wheel distribution ratio of the moving load between the left and right wheels is as follows. There are types. That is, (1) The spring constant K is changed while keeping the displacement X constant.

(2) ばね定数Kを一定として変位Xを変化させる。(2) The displacement X is changed while keeping the spring constant K constant.

本実施例では、上記(2)の方法を採用し、各車輪の
目標変位量Xd1,Xd2,Xd3,Xd4を算出し、これを実現する
ように各サスペンション5,6,9,10の各サーボバルブ23,2
4,25,26を駆動する。このようにして、旋回時における
左右輪間移動荷重の前後輪配分比を所望の値に変更する
制御を行なう。
In this embodiment, the method (2) is adopted to calculate the target displacement amounts Xd1, Xd2, Xd3, Xd4 of the respective wheels, and the servos of the respective suspensions 5, 6, 9, 10 are realized to realize this. Valve 23,2
Drives 4,25,26. In this way, control is performed to change the front-rear wheel distribution ratio of the left-right wheel moving load during turning to a desired value.

次に、上記ECU40の実行するサスペンション制御処理
を第6図のフローチャートに基づいて説明する。本サス
ペンション制御処理は、ECU40起動後、所定時間毎に繰
り返して実行される。まずステップ100では、車両諸元
を読み込む処理が行なわれる。すなわち、車両のホイー
ルベースL,車両の重心Gと前輪軸との距離Xf、前輪トレ
ッドTf,後輪トレッドTrがROM40bから読み込まれる。続
くステップ110では、予め定められたヒーブ目標車高Hre
q、ピッチ目標角度Preq、ロール目標角度Rreqを読み込
む処理が行なわれる。次にステップ120に進み、既述し
た各センサの検出信号をA/D変換した値を読み込む処理
が行なわれる。すなわち、変位量X1,X2,X3,X4、前後方
向加速度Xcg、車幅方向加速度Ycgの各値が読み込まれ
る。続くステップ130では、既述したように、今回検出
された各サスペンションの変位量X1,X2,X3,X4に基づい
て、重心におけるヒーブ車高H,ピッチ角度P、ロール角
度Rを次式(3)〜(5)のように算出する処理が行な
われる。
Next, the suspension control process executed by the ECU 40 will be described with reference to the flowchart of FIG. This suspension control process is repeatedly executed at predetermined time intervals after the ECU 40 is activated. First, at step 100, a process of reading vehicle specifications is performed. That is, the wheel base L of the vehicle, the distance Xf between the center of gravity G of the vehicle and the front wheel shaft, the front wheel tread Tf, and the rear wheel tread Tr are read from the ROM 40b. In the following step 110, a predetermined heave target vehicle height Hre is set.
Processing for reading q, the pitch target angle Preq, and the roll target angle Rreq is performed. Next, the processing proceeds to step 120, and the processing of reading the detection signal of each sensor described above by A / D conversion is performed. That is, the displacement amounts X1, X2, X3, and X4, the longitudinal acceleration Xcg, and the vehicle widthwise acceleration Ycg are read. In the following step 130, as described above, the heave vehicle height H, the pitch angle P, and the roll angle R at the center of gravity are calculated by the following equation (3) based on the displacement amounts X1, X2, X3, X4 of the suspensions detected this time. ) To (5) are calculated.

H=X1+X2+X3+X4 …(3) P={(X1+X2)−(X3+X4)}×AP1 …(4) R=(X1−X2)×AR1 +(X3−X4)×AR2 …(5) 但し、AP1=1/L AR1=(Xf/L)×(1/Tf) AR2={(L−Xf)/L}×(1/Tr) 次にステップ140に進み、上記ステップ110で読み込ん
だヒーブ目標車高Hreq、ピッチ目標角度Preq、ロール目
標角度Rreqと上記ステップ130で算出したヒーブ車高H,
ピッチ角度P、ロール角度Rとからヒーブ車高偏差Hd,
ピッチ角度偏差Pd、ロール角度偏差Rdを次式(6)〜
(8)のように算出する処理が行なわれる。
H = X1 + X2 + X3 + X4 (3) P = {(X1 + X2)-(X3 + X4)} * AP1 ... (4) R = (X1-X2) * AR1 + (X3-X4) * AR2 ... (5) However, AP1 = 1 / L AR1 = (Xf / L) × (1 / Tf) AR2 = {(L−Xf) / L} × (1 / Tr) Next, the process proceeds to step 140, and the heave target vehicle height Hreq read in step 110 above. , Pitch target angle Preq, roll target angle Rreq and heave vehicle height H calculated in step 130 above,
Heave vehicle height deviation Hd from pitch angle P and roll angle R,
Pitch angle deviation Pd and roll angle deviation Rd
Calculation processing is performed as in (8).

Hd=Hreq−H …(6) Pd=Preq−P …(7) Rd=Rreq−R …(8) 続くステップ150では、上記ステップ140で算出した重
心位置における各偏差Hd,Pd,Rdから各車輪3,4,7,8に対
応して配設されたサスペンション5,6,9,10の各目標変位
量Xd1,Xd2,Xd3,Xd4を次式(9)〜(12)に示すように
算出する処理が行なわれる。
Hd = Hreq-H (6) Pd = Preq-P (7) Rd = Rreq-R (8) In the subsequent step 150, the deviations Hd, Pd, and Rd at the center of gravity calculated in step 140 are calculated. The target displacement amounts Xd1, Xd2, Xd3, Xd4 of the suspensions 5, 6, 9, 10 arranged corresponding to the wheels 3, 4, 7, 8 are expressed by the following equations (9) to (12). A calculation process is performed.

Xd1= (1/4)×{(Hd+AP2×Pd)+ (AR3×Rd+K×Xcg×Ycg)} …(9) Xd2= (1/4)×{(Hd+AP2×Pd)− (AR3×Rd+K×Xcg×Ycg)} …(10) Xd3= (1/4){(Hd−AP2×Pd)+ (AR3×Rd−K×Xcg×Ycg)} …(11) Xd4= (1/4)×{(Hd−AP2×Pd)− (AR3×Rd−K×Xcg×Ycg)} …(12) 但し、AP2=L=(1/AR1) AR3=(L×Tf)/Xf=(1/AR1) K…車両諸元に基づいて定まる定数 なお、前後方向加速度Xcgは減速時を正、車幅方向加
速度Ycgは右旋回時を正とする。
Xd1 = (1/4) x {(Hd + AP2 x Pd) + (AR3 x Rd + K x Xcg x Ycg)} (9) Xd2 = (1/4) x {(Hd + AP2 x Pd)-(AR3 x Rd + K x Xcg × (Ycg)}… (10) Xd3 = (1/4) {(Hd−AP2 × Pd) + (AR3 × Rd−K × Xcg × Ycg)}… (11) Xd4 = (1/4) × {( Hd−AP2 × Pd) − (AR3 × Rd−K × Xcg × Ycg)} (12) where AP2 = L = (1 / AR1) AR3 = (L × Tf) / Xf = (1 / AR1) K … Constant determined based on vehicle specifications The longitudinal acceleration Xcg is positive when decelerating and the vehicle width direction acceleration Ycg is positive when turning right.

次にステップ160に進み、上記ステップ150で算出した
各目標変位量Xd1,Xd2,Xd3,Xd4に応じた駆動信号を各サ
スペンション5,6,9,10の各サーボバルブ23,24,25,26に
出力した後、上記ステップ120に戻る。以後、本サスペ
ンション制御処理は、上記ステップ120〜160を繰り返し
て実行する。
Next, in step 160, the drive signals corresponding to the target displacement amounts Xd1, Xd2, Xd3, and Xd4 calculated in step 150 are supplied to the servo valves 23, 24, 25, 26 of the suspensions 5, 6, 9, 10, respectively. , And then returns to step 120 above. After that, the suspension control process is executed by repeating the above steps 120 to 160.

次に、上記制御の様子の一例を第7図のタイミングチ
ャートに従って説明する。時刻T1において、車両1は右
旋回を開始し、車幅方向加速度Ycgが生じる(右旋回を
正とする。)。すると、内輪となる右前輪および右後輪
から外輪となる左前輪および左後輪に荷重が移動する。
したがって、同図に示すように、左前輪サスペンション
荷重f1および左後輪サスペンション荷重f3が増加し、一
方、右前輪サスペンション荷重f2および右後輪サスペン
ション荷重f4が減少する。やがて、時刻T2において、車
両1に制動力が作用し、前後方向加速度Xcgを生じる
(減速時を正とする。)このため、前輪側の荷重が増加
し、一方、後輪側の荷重は減少する。この場合、前後方
向加速度Xcgの影響を考慮して制御しないと、同図に破
線で示すように、内後輪となる右後輪サスペンション荷
重f4が著るしく減少し、該右後輪はロック状態に移行し
易くなる。しかし、本実施例では、前後方向加速度Xcg
(減速時)が生じると、左右(内外)輪間移動荷重の前
輪配分比を増加するよう制御する。すなわち、上記式
(9)〜(12)に示すように、K×Xcg×Ycgの項を加算
または減算することにより、右前輪から左前輪への移動
荷重を増加させ、一方、右後輪から左後輪への移動荷重
を減少させるのである。したがって、各サスペンション
荷重f1〜f4は同図に実線で示すように制御され、内後輪
となる右後輪サスペンション荷重f4の減少が抑制され、
ロック状態への移行を防止できる。なお、左旋回の場合
は同様に内後輪となる左後輪サスペンション荷重f3の減
少を抑制する制御が行なわれる。
Next, an example of the above control will be described with reference to the timing chart of FIG. At time T1, the vehicle 1 starts to make a right turn, and a vehicle width direction acceleration Ycg is generated (the right turn is positive). Then, the load moves from the right front wheel and the right rear wheel, which are the inner wheels, to the left front wheel and the left rear wheel, which are the outer wheels.
Therefore, as shown in the figure, the left front wheel suspension load f1 and the left rear wheel suspension load f3 increase, while the right front wheel suspension load f2 and the right rear wheel suspension load f4 decrease. Eventually, at time T2, the braking force acts on the vehicle 1 and the longitudinal acceleration Xcg is generated (the deceleration is positive). Therefore, the load on the front wheel side increases, while the load on the rear wheel side decreases. To do. In this case, unless control is performed in consideration of the influence of the longitudinal acceleration Xcg, the right rear wheel suspension load f4, which is the inner rear wheel, is significantly reduced as shown by the broken line in the figure, and the right rear wheel is locked. It becomes easy to shift to the state. However, in this embodiment, the longitudinal acceleration Xcg
When (during deceleration) occurs, control is performed to increase the front wheel distribution ratio of the left-right (inside / outside) wheel moving load. That is, as shown in the above equations (9) to (12), the moving load from the right front wheel to the left front wheel is increased by adding or subtracting the term of K × Xcg × Ycg, while from the right rear wheel. The moving load on the left rear wheel is reduced. Therefore, each suspension load f1 to f4 is controlled as shown by the solid line in the figure, and the decrease of the right rear wheel suspension load f4 which is the inner rear wheel is suppressed,
The transition to the locked state can be prevented. In the case of turning left, similarly, control is performed to suppress the reduction of the left rear wheel suspension load f3, which is the inner rear wheel.

なお本実施例において、サスペンション5,6,9,10およ
びサーボバルブ23,24,25,26がアクチュエータM1に、前
後方向加速度センサ29が前後方向加速度検出手段M2に該
当する。また、ECU40および該ECU40の実行する処理(ス
テップ140,150,160)が制御手段M3として機能する。
In this embodiment, the suspensions 5, 6, 9, 10 and the servo valves 23, 24, 25, 26 correspond to the actuator M1, and the longitudinal acceleration sensor 29 corresponds to the longitudinal acceleration detecting means M2. Further, the ECU 40 and the processing (steps 140, 150, 160) executed by the ECU 40 function as the control means M3.

以上説明したように本実施例は、車両の重心における
3種類の運動状態であるヒーブ、ピッチ,ロールの目標
値からの偏差Hd,Pd,Rdを算出し、該算出値を各サスペン
ション5,6,9,10の目標変位置Xd1,Xd2,Xd3,Xd4に変換
し、該目標変位量に応じて各サスペンション5,6,9,10を
制御するに際し、前後方向加速度Xcgを使用して、旋回
時における上記目標変位量Xd1,Xd2,Xd3,Xd4を算出する
よう構成されている。このため、車両の旋回走行中に制
動力が作用すると、左右(内外)輪間移動荷重の前輪配
分比を増加させるので、内後輪の荷重の減少を抑制する
ことにより該内後輪のロック状態への移行を防止し、旋
回制動時における車両の安定性を確保できる。
As described above, in this embodiment, the deviations Hd, Pd, and Rd from the target values of the three types of motion states at the center of gravity of the vehicle, that is, heave, pitch, and roll, are calculated, and the calculated values are calculated for the suspensions 5, 6 respectively. , 9,10 target variable positions Xd1, Xd2, Xd3, Xd4 are converted, and when controlling each suspension 5,6,9,10 according to the target displacement amount, the longitudinal acceleration Xcg is used to turn. The target displacement amounts Xd1, Xd2, Xd3, Xd4 at the time are calculated. Therefore, when a braking force is applied during turning of the vehicle, the front wheel distribution ratio of the left-right (inside / outside) wheel moving load is increased. Therefore, the reduction of the load of the inner rear wheel is suppressed to lock the inner rear wheel. It is possible to prevent the transition to the state and ensure the stability of the vehicle during turning braking.

また、前後方向加速度Xcgおよび車幅方向加速度Ycgを
生じたときに限り左右輪間移動荷重の前後輪配分比を制
御するので、通常走行時における制動性能の低下や定速
旋回走行中における車両の機動性の低下といった問題を
生じることなく、車両の安定性を向上できる。
Further, the front-rear wheel distribution ratio of the moving load between the left and right wheels is controlled only when the front-rear direction acceleration Xcg and the vehicle width-direction acceleration Ycg are generated. The stability of the vehicle can be improved without causing a problem such as a reduction in mobility.

さらに、例えば前輪駆動車においては、旋回走行中の
加速時には、左右(内外)輪間移動荷重の後輪配分比が
増加するため、左右前輪の荷重差は少なくなるので、旋
回走行中の内前輪の加速スリップを防止でき、充分な加
速性能を発揮できる。
Further, for example, in a front-wheel drive vehicle, during acceleration during turning, the rear wheel distribution ratio of the moving load between the left and right (inside and outside) wheels increases, so the load difference between the left and right front wheels decreases, so that the inside front wheels during turning. The acceleration slip of can be prevented and sufficient acceleration performance can be exhibited.

なお、例えば、後輪駆動車においては、既述した式
(9)〜(12)の前後方向加速度Xcqとして、その絶対
値を使用するよう構成すると、旋回走行中の加速時も減
速時と同様に左右(内外)輪間移動荷重の前輪配分比が
増加するため、左右後輪の荷重差は減少するので、旋回
走行中の内後輪の加速スリップを防止でき、安定した旋
回加速走行を実現できる。
It should be noted that, for example, in a rear-wheel drive vehicle, if the absolute value is used as the longitudinal acceleration Xcq in the above-described equations (9) to (12), the acceleration during turning is the same as during deceleration. Since the front wheel distribution ratio of the moving load between the left and right (inside and outside) wheels is increased, the load difference between the left and right rear wheels is reduced, so it is possible to prevent acceleration slip of the inner and rear wheels during turning and realize stable turning acceleration running. it can.

以上本発明の実施例について説明したが、本発明はこ
のような実施例に何等限定されるものではなく、本発明
の要旨を逸脱しない範囲内において種々なる態様で実施
し得ることは勿論である。
Although the embodiments of the present invention have been described above, the present invention is not limited to such embodiments, and it goes without saying that the present invention can be implemented in various modes without departing from the scope of the present invention. .

発明の効果 以上詳記したように本発明のアクティブサスペンショ
ン制御装置は、前後方向加速度検出手段の検出した前後
方向加速度の値に応じた配分比となるように、制御手段
が、車両の左右輪間移動荷重の前後輪配分比を制御する
指令をアクチュエータに出力するよう構成されている。
このため、車両の旋回走行中に制動力が作用した場合
に、特定車輪の荷重配分の減少による該車輪のロック状
態への移行を防止し、車両の安定性を向上できるという
優れた効果を奏する。
As described in detail above, in the active suspension control device of the present invention, the control means sets the distribution ratio according to the value of the front-rear acceleration detected by the front-rear acceleration detection means to between the left and right wheels of the vehicle. The actuator is configured to output a command for controlling the front / rear wheel distribution ratio of the moving load.
Therefore, when a braking force is applied during turning of the vehicle, it is possible to prevent the wheel from shifting to the locked state due to the reduction of the load distribution of the specific wheel, and it is possible to improve the stability of the vehicle. .

また、前後方向加速度の値に応じた配分比となるよう
に制御するので、軽い制動を加えた時に必要以上に強い
アンダーステア特性となってしまうことがなく、強い制
動を加えた時にも適切なタイヤ接地力を確保できる。加
えて、前後方向加速度しが変化した場合には、その変化
後の前後方向加速度の値に対応した配分比となるよう
に、車両旋回走行中の左右輪間移動荷重の前後輪配分比
を制御するので、通常走行時における総合的な制動性能
の低下や定速旋回走行中における車両の機動性の低下を
招くことなく、上記両特性を好適に維持すると共に車両
の旋回走行中の制動時における安定性も確保できる。
In addition, since the distribution ratio is controlled according to the value of the longitudinal acceleration, the understeer characteristic does not become stronger than necessary when light braking is applied, and an appropriate tire is used even when strong braking is applied. The grounding force can be secured. In addition, when the longitudinal acceleration changes, the front / rear wheel distribution ratio of the moving load between the left and right wheels during turning of the vehicle is controlled so that the distribution ratio corresponds to the changed longitudinal acceleration value. Therefore, both characteristics are preferably maintained and braking is performed during turning of the vehicle without causing deterioration of overall braking performance during normal traveling and deterioration of mobility of the vehicle during constant-speed turning traveling. Stability can also be secured.

なお、例えば制御手段を、車両を減速させる前後方向
加速度が検出されたときは、左右輪間移動荷重の前輪配
分比を大きくする指令を出力するよう構成してもよい。
このように構成した場合は、旋回走行中の制動時におけ
る内後輪のロック状態への移行を防止できるので、操舵
特性のオーバステア側への変化を防止して車両の安定性
を向上できる。
Note that, for example, the control unit may be configured to output a command to increase the front wheel distribution ratio of the moving load between the left and right wheels when the longitudinal acceleration that decelerates the vehicle is detected.
With this configuration, it is possible to prevent the inner rear wheels from shifting to the locked state during braking during turning, so that it is possible to prevent the steering characteristic from changing to the oversteer side and improve the vehicle stability.

【図面の簡単な説明】[Brief description of drawings]

第1図は本発明の内容を概念的に例示した基本的構成
図、第2図は本発明一実施例のシステム構成図、第3図
は同じくそのサスペンションの構造を示す説明図、第4
図は同じくその電子制御装置の構成を説明するためのブ
ロック図、第5図は同じくその車体の運動状態を示す説
明図、第6図は同じくその制御を示すフローチャート、
第7図は同じくその制御を示すタイミングチャートであ
る。 M1……アクチュエータ M2……前後方向加速度検出手段 M3……制御手段 5,6,9,10……サスペンション 23,24,25,26……サーボバルブ 29……前後方向加速度センサ 40……電子制御装置(ECU) 40a……CPU
FIG. 1 is a basic configuration diagram conceptually illustrating the content of the present invention, FIG. 2 is a system configuration diagram of an embodiment of the present invention, and FIG. 3 is an explanatory diagram showing a suspension structure thereof, and FIG.
FIG. 5 is a block diagram for explaining the configuration of the electronic control unit, FIG. 5 is an explanatory diagram for showing the motion state of the vehicle body, and FIG. 6 is a flow chart for showing the control.
FIG. 7 is a timing chart showing the same control. M1 …… Actuator M2 …… Front-back acceleration detection means M3 …… Control means 5,6,9,10 …… Suspension 23,24,25,26 …… Servo valve 29 …… Front-back acceleration sensor 40 …… Electronic control Unit (ECU) 40a ... CPU

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】車両の各車輪と車体との間に各々配設され
たアクチュエータと、 上記車両の前後方向加速度を検出する前後方向加速度検
出手段と、 上記車両の旋回時、上記前後方向加速度検出手段の検出
した前後方向加速度の値に応じた配分比となるように、
上記車両の左右輪間移動荷重の前後方向配分比を制御す
る指令を上記アクチュエータに出力する制御手段と、 を備えたことを特徴とするアクティブサスペンション制
御装置。
1. An actuator provided between each wheel of a vehicle and a vehicle body, a longitudinal acceleration detecting means for detecting a longitudinal acceleration of the vehicle, and a longitudinal acceleration detection when the vehicle turns. In order to have a distribution ratio according to the value of the longitudinal acceleration detected by the means,
An active suspension control device comprising: a control unit that outputs a command for controlling a front-rear distribution ratio of a moving load between left and right wheels of the vehicle to the actuator.
【請求項2】上記制御手段が、 上記車両を減速させる前後方向加速度が検出されたとき
は、左右輪間移動荷重の前輪配分比を大きくする指令を
上記アクチュエータに出力する特許請求の範囲第1項に
記載のアクティブサスペンション制御装置。
2. The control means for outputting to the actuator a command to increase a front wheel distribution ratio of a moving load between left and right wheels when a longitudinal acceleration for decelerating the vehicle is detected. The active suspension control device according to the paragraph.
JP61187335A 1986-03-08 1986-08-08 Active suspension controller Expired - Lifetime JP2513187B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP61187335A JP2513187B2 (en) 1986-08-08 1986-08-08 Active suspension controller
US07/017,747 US4761022A (en) 1986-03-08 1987-02-24 Suspension controller for improved turning
DE8787103118T DE3761247D1 (en) 1986-03-08 1987-03-05 CONTROL OF A WHEEL SUSPENSION TO IMPROVE CURVE BEHAVIOR.
EP87103118A EP0236947B1 (en) 1986-03-08 1987-03-05 Suspension controller for improved turning

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61187335A JP2513187B2 (en) 1986-08-08 1986-08-08 Active suspension controller

Publications (2)

Publication Number Publication Date
JPS6343807A JPS6343807A (en) 1988-02-24
JP2513187B2 true JP2513187B2 (en) 1996-07-03

Family

ID=16204196

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61187335A Expired - Lifetime JP2513187B2 (en) 1986-03-08 1986-08-08 Active suspension controller

Country Status (1)

Country Link
JP (1) JP2513187B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04208615A (en) * 1990-11-30 1992-07-30 Isuzu Motors Ltd Car body posture controller
JP2725519B2 (en) * 1991-10-01 1998-03-11 三菱電機株式会社 Terminal block
JPH08276719A (en) * 1995-04-07 1996-10-22 Matsushita Electric Ind Co Ltd Sun light sensor of air conditioner for vehicle

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6064014A (en) * 1983-09-20 1985-04-12 Nissan Motor Co Ltd Posture control device of car
JPS6136409U (en) * 1984-08-07 1986-03-06 日産自動車株式会社 Automotive roll stiffness control device

Also Published As

Publication number Publication date
JPS6343807A (en) 1988-02-24

Similar Documents

Publication Publication Date Title
US4761022A (en) Suspension controller for improved turning
CN1325298C (en) Method and device for controlling vehicle
US7027902B2 (en) Enhanced system for yaw stability control system to include roll stability control function
CN100441437C (en) Vehicle stability control system
JPH0563325B2 (en)
JPH04505737A (en) Vehicle steering system
CN104553666A (en) Suspension system
JPH011613A (en) Active suspension for vehicles
JPH0585133A (en) Suspension device for vehicle
JPH085294B2 (en) Active suspension controller
US6053509A (en) Tire contact load control system
JP2513187B2 (en) Active suspension controller
JP2913748B2 (en) Comprehensive control device for braking / driving force and wheel load distribution
JPH10100634A (en) Vehicle stability control device
JPS61181713A (en) Vehicle active suspension
JPH1086622A (en) Vehicle stability controlling device
JP3814057B2 (en) Ground load control device
JPH05185820A (en) Active suspension system for vehicle
JPH0665522B2 (en) Active suspension for vehicles
JP2936640B2 (en) Comprehensive control system for auxiliary steering angle and wheel load distribution
JPH0563323B2 (en)
JP3862357B2 (en) Ground load control device
WO2000046054A1 (en) Vehicle suspension system
JPH02182529A (en) Suspension control device
JPS6341225A (en) Active suspension controller