JP2512131B2 - Electronic beam exposure method - Google Patents

Electronic beam exposure method

Info

Publication number
JP2512131B2
JP2512131B2 JP1040863A JP4086389A JP2512131B2 JP 2512131 B2 JP2512131 B2 JP 2512131B2 JP 1040863 A JP1040863 A JP 1040863A JP 4086389 A JP4086389 A JP 4086389A JP 2512131 B2 JP2512131 B2 JP 2512131B2
Authority
JP
Japan
Prior art keywords
irradiation
pattern
resist
electron beam
irradiated
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP1040863A
Other languages
Japanese (ja)
Other versions
JPH02220426A (en
Inventor
章夫 三坂
憲司 川北
憲司 腹藤
洋光 濱口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP1040863A priority Critical patent/JP2512131B2/en
Publication of JPH02220426A publication Critical patent/JPH02220426A/en
Application granted granted Critical
Publication of JP2512131B2 publication Critical patent/JP2512131B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Electron Beam Exposure (AREA)

Description

【発明の詳細な説明】 産業上の利用分野 本発明は電子ビーム露光方法に関する。TECHNICAL FIELD The present invention relates to an electron beam exposure method.

従来の技術 電子ビーム露光法を行う場合、レジスト中において、
照射された電子は散乱する。そのため、露光領域は照射
領域より広くなり、描画図形が電子の散乱長より小さく
なるか、または複数の描画図形が電子の散乱長より近く
なると散乱の影響が顕著になり、目的とする寸法のパタ
ーンが得られなくなる。このことは従来近接効果として
知られている。一般に電子ビーム露光法を用いて、微細
パターンを形成するためには電子の散乱強度分布及びパ
ターンの形状とあるパターンの周囲に存在する別のパタ
ーンとの距離を考慮した近接効果補正を行った露光法が
必要になる。
Conventional technology When performing electron beam exposure, in the resist,
The irradiated electrons are scattered. Therefore, the exposure area becomes wider than the irradiation area, and when the drawn figure becomes smaller than the electron scattering length, or when multiple drawn figures become closer than the electron scattering length, the influence of scattering becomes remarkable, and the pattern of the desired size is obtained. Will not be obtained. This is conventionally known as the proximity effect. Generally, in order to form a fine pattern using an electron beam exposure method, exposure is performed with proximity effect correction taking into consideration the scattering intensity distribution of electrons and the shape of the pattern and the distance between another pattern existing around a certain pattern. Law is needed.

一般に電子の散乱強度分布は照射するビームの中心の
座標をX1とし座標での散乱強度をE(r)とすると次式
の様な二重ガウス分布で表わされる。
Generally, the scattering intensity distribution of electrons is expressed by a double Gaussian distribution as shown below, where X 1 is the coordinate of the center of the beam to be irradiated and E (r) is the scattering intensity at the coordinate.

ここで、αはレジスト中で生ずる前方散乱の広がりを表
わし、βは基板からの反射によって生ずる後方散乱の広
がりを表わし、ηはその後方散乱の反射係数を表わす。
実際に領域S1で表わされるパターンを照射量QEで露光し
たときに、座標rでの吸収量Q(r)は Q(r)=S1QE・E(r−X1)d2X1 (2) で表わされる。次にこのパターンに照射量QE1を露光し
たときに、現像後、座標rでのレジストが初めて除去さ
れたとすると、レジストの溶解吸収量QCは QCS1QE1・E(r−X1)d2X1 (3) で表わされる。近接効果の補正を行う場合目的のパター
ンを形成するために、(2)式における吸収量Q(r)
が目的のパターンの存在する領域では溶解吸収量QCより
大きく、目的のパターンが存在しない領域では溶解吸収
量QCより小さい照射領域S1と照射量QE1を求めて、この
照射領域S1と照射量QE1で露光すれば近接効果を補正し
たことになる。以上はポジ形レジストを用いた場合の説
明であるが、ネガ形レジストに関しては、上記のところ
でレジストが除去されると考えた部分をレジストが残留
すると考えれば全く同様の方法で近接効果を補正でき
る。
Here, α represents the spread of forward scattering generated in the resist, β represents the spread of backscattering caused by reflection from the substrate, and η represents the reflection coefficient of the backscattering.
When the pattern represented by the area S 1 is actually exposed with the irradiation amount Q E , the absorption amount Q (r) at the coordinate r is Q (r) = S 1 Q E · E (r−X 1 ) d 2 X It is represented by 1 (2). Next, when the resist at coordinate r is removed for the first time after development when the exposure dose Q E1 is exposed to this pattern, the dissolution absorption amount Q C of the resist is Q C = S1 Q E1 · E (r−X 1 ) d 2 X 1 (3) In the case of correcting the proximity effect, in order to form a target pattern, the absorption amount Q (r) in the equation (2)
There greater than the dissolution absorption Q C is a region existing in the desired pattern, in regions where there is no pattern of interest seeking dissolved absorption Q C is smaller than the irradiation area S 1 and the irradiation amount Q E1, this irradiation area S 1 And exposure with a dose Q E1 corrects the proximity effect. The above is a description of the case where a positive resist is used, but for a negative resist, the proximity effect can be corrected by a completely similar method if the resist remains in a portion where the resist is considered to be removed in the above. .

一般に近接効果補正を行うには、目的のパターンの輪
郭線上に多数の評価点を設定し、すべての評価点上で
(3)式が成り立つように方程式を立て、その方程式の
解として前記条件を満す照射領域と照射量を求める。こ
のとき、(3)式において用いられる電子ビームの散乱
強度分布の前方散乱の広がりα、後方散乱の広がりβ、
反射係数ηレジストの溶解吸収量QCはプロセスに依存し
たパラメータとなる。しかしこれらのパラメータはレジ
ストの材料、レジストの膜厚、レジストの現像条件、基
板の材質、電子ビームの加速電圧等に依存し、これらの
条件の1つでも異なれば、その条件に応じて求め直す必
要がある。ここで、先のパラメータのうちレジストの溶
解吸収量QCは電子の散乱長より非常に広いパラメータを
照射したときはじめて、レジストの膜厚がゼロになった
ときの照射量と定義できるため容易に求めることが出来
る。よって、前記パラメータのうちα、β、ηを容易に
求められる方法が必要とされる。また、(3)式の方程
式において一般にαが0.1〜0.3μm程度であることが知
られていて、α=0と近似しても補正効果が得られるた
め、α、β、ηを同時に求めなくてもβ、ηのみを求め
てもよい。従来、前記のパラメータα、β、ηを求める
ために以下の方法が行なわれてきた。
Generally, in order to perform proximity effect correction, a large number of evaluation points are set on the contour line of a target pattern, an equation is set up so that equation (3) is satisfied on all the evaluation points, and the above condition is set as a solution of the equation. Determine the irradiation area to be satisfied and the irradiation amount. At this time, the forward scattering spread α and the backward scattering spread β of the electron beam scattering intensity distribution used in the equation (3),
Reflection coefficient η The dissolved absorption Q C of the resist is a process-dependent parameter. However, these parameters depend on the resist material, the resist film thickness, the resist development condition, the substrate material, the electron beam acceleration voltage, etc., and if any one of these conditions is different, it is recalculated according to the condition. There is a need. Here, of the above parameters, the dissolution absorption amount Q C of the resist can be easily defined because it can be defined as the irradiation amount when the film thickness of the resist becomes zero for the first time when a parameter that is much wider than the electron scattering length is irradiated. You can ask. Therefore, a method for easily obtaining α, β, η among the parameters is required. Further, in the equation (3), it is generally known that α is about 0.1 to 0.3 μm, and even if it is approximated to α = 0, the correction effect can be obtained. Therefore, α, β, and η need not be obtained at the same time. Alternatively, only β and η may be obtained. Conventionally, the following method has been performed to obtain the parameters α, β, η.

(従来例1) 使用される露光装置で露光できる最も小さな照射パタ
ーンをn個、互いに電子の散乱の影響が及ばない距離に
離して照射量Q1<Q2<Q3<…<Qnで露光する。現像後、
それぞれの照射量Q1,Q2,Q3,…,Qnに対してレジスト
が除去された円形部分の半径r1,r2,r3,…,rnを測長
する。次に照射量QE対レジストの除去寸法rをプロット
して第10図に見られる散乱強度分布曲線を得る。そして
この散乱強度分布曲線が(3)式に示す条件を満足して
いるとして、最小二乗法を用いて電子の散乱強度分布式
のパラメータα、β、ηを求める。上記の方法で照射パ
ターンとしては原理的にどの様な形状や大きさであって
もよいが、一般的に露光できる最小寸法の照射パターン
が用いられるのは以下の理由による。ひとつには、一般
にαが0.1〜0.3μmで、βが2〜4μmであることが知
られており、前方散乱の影響による部分を正確に測長す
るためには0.1μm以下の長さを正確に測長する必要が
あるためである。もう1つには、最後に観測データから
パラメータα、β、ηを求めるために最小二乗法を用い
るが、(3)式をそのまま用いると非線型連立方程式を
解かねばならなく、解析方法としては非常に困難であ
る。そのため、照射パターンが非常に小さいという条件
によって(3)式の積分を無視して方程式を簡単化する
ために露光できる最小寸法の照射パターンが用いられ
る。
(Conventional example 1) n smallest irradiation patterns that can be exposed by the exposure apparatus used are separated by a distance that is not affected by electron scattering, and the irradiation amount is Q 1 <Q 2 <Q 3 <... <Q n . Expose. After development,
Each dose Q 1, Q 2, Q 3 , ..., the radius of the circular portion where the resist is removed with respect to Q n r 1, r 2, r 3, ..., to measuring the r n. Next, the dose Q E is plotted against the resist removal dimension r to obtain the scattering intensity distribution curve shown in FIG. Then, assuming that the scattering intensity distribution curve satisfies the condition shown in the equation (3), the parameters α, β, η of the electron scattering intensity distribution equation are obtained by using the least square method. In the above method, the irradiation pattern may have any shape and size in principle, but the irradiation pattern having the minimum dimension that can be exposed is generally used for the following reason. For one, it is generally known that α is 0.1 to 0.3 μm and β is 2 to 4 μm. In order to accurately measure the portion due to the influence of forward scattering, a length of 0.1 μm or less is required. This is because it is necessary to measure the length. Second, the least-squares method is used to finally obtain the parameters α, β, and η from the observed data. However, if equation (3) is used as it is, then a system of nonlinear equations must be solved. Is very difficult. Therefore, under the condition that the irradiation pattern is very small, the irradiation pattern having the minimum dimension that can be exposed is used in order to simplify the equation by ignoring the integral of the expression (3).

(従来例2) 測長を行なわないで(3)式の条件を満す曲線を得る
ことが出来る。第11図のように全く同じ2本の線パター
ンからなる照射パターンL1,L2を距離dを離して同じ照
射量で露光したとき、2本の線パターンの間の中点Oで
の吸収量を距離dの関数として表わされる。このとき中
点Oで溶解吸収量が実現されると現像後のレジスト形状
は、2本の線の間のレジストが除去されることになる。
よって、2本の線パターンL1,L2間のレジストが初めて
除去されるときの照射量を臨界照射量とすると、いくつ
かの距離d1<d2<d3<…<dnの間隔をもった2本の線パ
ターンL1,L2間のレジストが除去される臨界照射量E1
E2,E3,…,Enを求めることにより、第12図のような
(3)式を満たす特性曲線を得ることができ、この曲線
に対して最小二乗法を用いることにより各パラメータが
求められる。ここでは2本の線パターンL1,L2間のレジ
ストが除去されると考えたが、複数の同一寸法のライン
を一定間隔で並べたときに各線パターン間のレジストが
同時に除去されると考えても全く同じで、この方法によ
ってもっと容易な観測により同一条件の現象を同時に観
測するので統計的に信頼性の高い効果が得られる。本従
来例はジャーナル バツキューム サイエンス テクノ
ロジーJ.Vac.Sci.Technol.Vo119.No4.1286−1290(198
1)に記載されている。以上、ポジ形レジストに対して
説明したが、ネガ形レジストに対してもレジスト除去部
をレジスト残留部とし、溶解吸収量を不溶吸収量と定義
すれば全く同様である。
(Conventional Example 2) A curve satisfying the condition of the expression (3) can be obtained without performing length measurement. As shown in FIG. 11, when irradiation patterns L 1 and L 2 composed of exactly the same two line patterns are exposed with the same irradiation amount at a distance d, the absorption at the midpoint O between the two line patterns. The quantity is expressed as a function of the distance d. At this time, when the amount of dissolution and absorption is realized at the middle point O, the resist shape after development has the resist between the two lines removed.
Therefore, assuming that the dose when the resist between the two line patterns L 1 and L 2 is first removed is a critical dose, some distances d 1 <d 2 <d 3 <... <d n Dose E 1 for removing the resist between the two line patterns L 1 and L 2 having
E 2, E 3, ..., by determining the E n, such as Fig. 12 (3) can be obtained a characteristic curve that satisfies the equation, each parameter by using a least-squares method with respect to this curve Desired. Here, it is considered that the resist between the two line patterns L 1 and L 2 is removed, but it is considered that the resist between the line patterns is simultaneously removed when a plurality of lines having the same size are arranged at regular intervals. However, it is exactly the same, and the phenomenon of the same condition is simultaneously observed by the easier observation by this method, so that the statistically reliable effect can be obtained. This conventional example is the journal Vacuum Science Technology J.Vac.Sci.Technol.Vo119.No4.1286-1290 (198
It is described in 1). Although the positive type resist has been described above, the same applies to the negative type resist if the resist removed portion is defined as the resist residual portion and the dissolved absorption amount is defined as the insoluble absorption amount.

発明が解決しようとする課題 しかし、従来例1に示す方法では、第10図に示す散乱
強度分布の曲線を得るため多数のサブミクロン以下のパ
ターンを正確に測長する必要があるが、この様な微細な
パターンのレジストと基板の境界は明確に見極められな
いため、正確な測長が行なえない。この様に従来の方法
では多大な労力を必要とする上、正確な結果を得られな
いという問題があった。
However, in the method shown in Conventional Example 1, it is necessary to accurately measure a large number of sub-micron patterns or less in order to obtain the scattering intensity distribution curve shown in FIG. Since the boundary between the resist and the substrate with such a fine pattern cannot be clearly identified, accurate length measurement cannot be performed. As described above, the conventional method requires a great deal of labor and has a problem that an accurate result cannot be obtained.

また、従来例2に示す方法では第12図に示す特性曲線
を得るための測長による労力は取り除くことができる
が、線パターン間のレジストが完全に溶解するわけでは
ないため線状のレジストが基板上から分離しているか否
かの判断が容易ではない。また、すべての照射パターン
は、(3)式の積分を無視できない面積をもつため、第
12図に示す特性曲線を満たす(3)式は非常に複雑な式
となり、第12図の曲線から各パラメータα、β、ηを求
めるのに非線形最小二乗法を用いなければならず、数値
計算にかかる労力は膨大となるという問題があった。
Further, the method shown in Conventional Example 2 can eliminate the labor of length measurement for obtaining the characteristic curve shown in FIG. 12, but the resist between the line patterns is not completely dissolved, so that the linear resist is not formed. It is not easy to judge whether or not it is separated from the substrate. In addition, since all irradiation patterns have areas where the integral of equation (3) cannot be ignored,
Equation (3) that satisfies the characteristic curve shown in Fig. 12 is a very complicated equation, and the nonlinear least squares method must be used to obtain each parameter α, β, η from the curve in Fig. 12, and the numerical calculation There was a problem that the labor required for it would be enormous.

本発明は、上述の問題点に鑑みて試されたもので、測
長時間の短縮化が実現でき、さらに観測データから各パ
ラメータを求める複雑な数値計算により労力を取り除く
ことができる電子ビーム露光方法を提供することを目的
とする。
The present invention has been tried in view of the above-mentioned problems, and an electron beam exposure method capable of realizing shortening of measuring time and eliminating labor by complicated numerical calculation for obtaining each parameter from observation data. The purpose is to provide.

課題を解決するための手段 本発明は、非照射部を線状の照射部で囲んだ2次元の
周期パタンを電子ビームの散乱長よりもはるかに大きな
寸法で構成したブロックとし、そのブロックを照射パタ
ンとし、前記照射部の線幅が電子ビーム露光における後
方散乱長の長さよりも小さいものを用いて、非照射部あ
るいは照射部の寸法の異なる複数個の照射パタンをそれ
ぞれ複数個の異なる照射量を用いて露光し、現像後、ポ
ジ型レジストにおいては、非照射部の中心のレジストが
除去される最小照射量を臨界照射量として、前記非照射
部あるいは照射部の寸法の異なる各照射パタンに対して
臨界照射量を求めることにより電子ビームの散乱強度分
布を求める電子ビーム露光方法とする。
Means for Solving the Problems According to the present invention, a two-dimensional periodic pattern in which a non-irradiation part is surrounded by a linear irradiation part is formed as a block having a size much larger than a scattering length of an electron beam, and the block is irradiated. As the pattern, a line width of the irradiation part is smaller than the length of backscattering length in electron beam exposure, and a plurality of irradiation patterns having different sizes of the non-irradiation part or the irradiation part are respectively provided with different irradiation doses. After exposure and development using a positive resist, the minimum irradiation dose at which the resist in the center of the non-irradiated part is removed is set as the critical irradiation amount, and the irradiation pattern with different dimensions of the non-irradiated part or irradiated part is used. On the other hand, an electron beam exposure method in which the distribution of the scattered intensity of the electron beam is obtained by obtaining the critical irradiation amount.

また、非照射部を線状の照射部で囲んだ2次元の周期
パタンを電子ビームの散乱長よりもはるかに大きな寸法
で構成したブロックとし、そのブロックを照射パタンと
し、前記周期パタンにおいてその周期が電子ビーム露光
における後方散乱長の倍の長さよりも小さいものを用い
て、非照射部あるいは照射部の寸法の異なる複数個の照
射パタンをそれぞれ複数個の異なる照射量を用いて露光
し、現像後、ポジ型レジストにおいては、非照射部の中
心のレジストが除去される最小照射量を臨界照射量とし
て、前記非照射部あるいは照射部の寸法の異なる各照射
パタンに対して臨界照射量を求めることにより電子ビー
ムの散乱強度分布を求める電子ビーム露光方法とする。
In addition, a two-dimensional periodic pattern in which the non-irradiated portion is surrounded by linear irradiation portions is formed as a block having a size much larger than the scattering length of the electron beam, and the block is set as the irradiation pattern. Is smaller than twice the backscattering length in electron beam exposure, and a plurality of irradiation patterns with different dimensions of the non-irradiated part or the irradiated part are exposed with different irradiation doses and developed. After that, in the case of the positive type resist, the critical dose is determined for each irradiation pattern having different dimensions of the non-irradiated part or the irradiated part, with the minimum irradiation amount for removing the resist at the center of the non-irradiated part as the critical irradiation amount. This is an electron beam exposure method for obtaining the scattered intensity distribution of the electron beam.

作用 本発明は上述の構成により、比較的大きな領域におけ
るレジストの有無を確認するだけで所定寸法の照射パタ
ーンに対し複数の位置でレジストの溶解吸収量あるいは
不溶吸収量が同時に実現される臨界照射量を求めること
ができるため、測長を用いずに臨界照射量と照射パター
ンの寸法あるいは、レジスト除去寸法との特性曲線を得
ることができる。
Action The present invention has the above-described configuration, and the critical irradiation amount that simultaneously realizes the dissolved absorption amount or the insoluble absorption amount of the resist at a plurality of positions with respect to the irradiation pattern of a predetermined size by only confirming the presence or absence of the resist in a relatively large area. Therefore, the characteristic curve of the critical dose and the size of the irradiation pattern or the resist removal size can be obtained without using length measurement.

さらに本発明は上述の構成により、照射パターンの2
次元周期の長さを電子の後方散乱長より短くすると、レ
ジスト中における電子ビームの後方散乱による吸収量分
布は照射部あるいは非照射部によって変化せず一様とな
り、その吸収量の値は照射量に対して照射部と非照射部
の比だけで決定できる。そのため、電子ビームの全吸収
量から、後方散乱による吸収量を差し引くことにより、
前方散乱のみによる吸収量が評価できるため、各パラメ
ータの値を簡単な解析で求めることが可能となる。
Further, according to the present invention, the irradiation pattern of 2
If the length of the dimensional period is shorter than the electron backscattering length, the absorption distribution due to backscattering of the electron beam in the resist will be uniform regardless of the irradiation part or non-irradiation part, and the value of the absorption amount will be On the other hand, it can be determined only by the ratio of the irradiated portion and the non-irradiated portion. Therefore, by subtracting the amount of backscattered absorption from the total amount of electron beam absorption,
Since the amount of absorption due to only forward scattering can be evaluated, the value of each parameter can be obtained by a simple analysis.

実施例 (実施例1) 第1図は本発明の第1の実施例における網目状の照射
パターンを表わす図である。本発明においては第1図に
示すように照射パターン1として網目状のパターンから
2次元周期パターンを用いる。照射部2は線幅uの網目
パターン領域で、非照射部3は1辺がwの正方形領域で
ある。この網目状のパターンを電子の散乱長より遥かに
大きくさらに光学顕微鏡でも容易に認識できる大きさ、
例えば100μm四方程度の大きさで作成し、これを1ブ
ロックとする。この1ブロックのパターンを露光した場
合、電子の散乱が数ミクロンしか及ばないことより、1
ブロック中に存在する非照射部3の中心における吸収量
はブロックの端から数ミクロン以内に存在する非照射部
3を除いてすべての非照射部3で等しくなる。よって、
照射パターン1に非照射部3の中心での吸収量が溶解吸
収量になるような照射量で露光した場合は、現像後はブ
ロック全体のレジストが同時に除去され、それより低い
照射量で露光した場合は網目の模様が見られる。
Example (Example 1) FIG. 1 is a diagram showing a mesh-like irradiation pattern in a first example of the present invention. In the present invention, a two-dimensional periodic pattern from a mesh pattern is used as the irradiation pattern 1 as shown in FIG. The irradiation portion 2 is a mesh pattern area having a line width u, and the non-irradiation portion 3 is a square area having one side w. This mesh-like pattern is much larger than the electron scattering length, and can be easily recognized with an optical microscope.
For example, it is created with a size of about 100 μm square, and this is regarded as one block. When this one block pattern is exposed, the scattering of electrons reaches only a few microns.
The absorption amount at the center of the non-irradiated part 3 existing in the block is equal in all non-irradiated parts 3 except the non-irradiated part 3 existing within several microns from the end of the block. Therefore,
When the irradiation pattern 1 was exposed at an irradiation amount such that the absorption amount at the center of the non-irradiated portion 3 became a dissolution absorption amount, the resist of the entire block was simultaneously removed after development, and the exposure was performed at a lower irradiation amount. In some cases, a mesh pattern can be seen.

第2図は本発明の第1の実施例における各ブロックの
配置を示す図である。ブロック4は第1図に示す2次元
周期パターンである。各ブロック4の照射部2の線幅を
u1≦u2≦u3≦…≦un、非照射部3の大きさをw1≦w2≦w3
≦…≦wn、と変化させて横方向にn個並べる。これと同
じものを縦方向にm行並べ第2図に示すように配置す
る。また、第2図の配置において一行目下段から順番に
Q1≦Q2≦Q3≦…≦Qmとなる照射量で露光する。第2図に
示す各ブロック4を露光した試料を所定の条件で現像
後、各列のブロック4を一行目から順番に観測して、網
目模様からブロック4全体のレジストが除去されて、大
きな穴があいた形になる臨界照射量QEを各列のuあるい
はwに対して求める。すなわち、照射部2と非照射部3
を有する網目状の照射パターンの非照射部3の中心での
吸収量が溶解吸収量QCに等しくなる照射量が、寸法u及
びwに対する臨界照射量QEとなる。以上の操作により求
められた臨界照射量QEを用いて、非照射部3の中心点に
対して(3)式を立てれば各パラメータが求まる。
FIG. 2 is a diagram showing the arrangement of blocks in the first embodiment of the present invention. Block 4 is the two-dimensional periodic pattern shown in FIG. The line width of the irradiation part 2 of each block 4
u 1 ≤u 2 ≤u 3 ≤ ... ≤u n , the size of the non-irradiated portion 3 is w 1 ≤w 2 ≤w 3
≦ ... ≦ w n , and n pieces are arranged in the horizontal direction. The same components are arranged in m rows in the vertical direction and arranged as shown in FIG. In addition, in the arrangement shown in FIG.
Exposure is performed with a dose of Q 1 ≤Q 2 ≤Q 3 ≤ ... ≤Q m . After developing the sample exposed to each block 4 shown in FIG. 2 under predetermined conditions, the blocks 4 in each column are sequentially observed from the first row, and the resist of the entire block 4 is removed from the mesh pattern to form a large hole. Find the critical dose Q E that gives the desired shape for u or w in each column. That is, the irradiation unit 2 and the non-irradiation unit 3
The irradiation dose at which the amount of absorption at the center of the non-irradiation part 3 of the mesh-shaped irradiation pattern having is equal to the dissolution absorption amount Q C is the critical irradiation amount Q E for the dimensions u and w. Using the critical irradiation dose Q E obtained by the above operation, each parameter can be obtained by setting equation (3) with respect to the center point of the non-irradiated portion 3.

(実施例2) 実施例2においては2次元の周期性を利用して後方散
乱による吸収量分布を照射部、非照射部によらず一様に
でき、(3)式の方程式を簡単にできる。以下、STEP
(1)として後方散乱による吸収量分布が一様となる2
次元周期パターンの周期を求め方を説明する。
(Example 2) In Example 2, the absorption distribution by backscattering can be made uniform irrespective of the irradiation part and the non-irradiation part by utilizing the two-dimensional periodicity, and the equation (3) can be simplified. . Below, STEP
As (1), the absorption amount distribution due to backscatter becomes uniform 2
A method of obtaining the period of the dimensional periodic pattern will be described.

STEP(1) 網目状のパターンからなるブロックを第2図に示す配
置と同じように並べる。横方向には網目状のパターンか
らなる1つのブロック内での照射部の面積と非照射部の
面積の比が等しくなるようにする。すなわち において、ξが1/2となる様にuとwを同時に変化させ
る。この様に各ブロックを横方向に照射面積と非照射面
積の比が一定となるように、wとuを同時に増加させ、
縦方向に照射量を増加させ露光を行なう。第3図は本発
明の第2の実施例における臨界照射量と非照射部との関
係を示す特性曲線図である。それぞれのwに対して臨界
照射量QEを求め1/QE対w/2のプロットを行い第3図に示
すような曲線を得る。また第4図に第1図に示す照射パ
ターン1の線AA′上での吸収量分布をいくつかのu、w
に対して、前方散乱にる吸収量分布と、後方散乱による
吸収量分布を分けて示した。第3図の曲線と第4図の吸
収量分布図は電子の散乱強度分布が二乗ガウス分布であ
ることを特徴を表わしており、wがα<<w+u<<β
の値に対しては臨界照射量QEが変化しなくなる。すなわ
ち、網目上のパターンを照射したとき、非照射部3の大
きさwが第3図に示すwαに対してw≧wαのときは電
子の吸収量分布の前方散乱による寄与が完全に無視する
ことができて、第3図に示すwβに対してw+u≦2Wβ
のとき、電子の吸収量分布の後方散乱による寄与がw+
uに依存せずさらに、照射部2、非照射部3によらず一
様となり照射面積と非照射面積の比のみに依存し、第3
図に示すQβの値は となる。以下、STEP(1)で得られるwα、wβを用い
て非常に簡単な方法で、α、β、ηを求める実施例を以
下述べていく。
STEP (1) Arrange the blocks composed of a mesh pattern in the same arrangement as shown in FIG. In the horizontal direction, the ratio of the area of the irradiated portion to the area of the non-irradiated portion within one block having a mesh pattern is made equal. Ie At, u and w are simultaneously changed so that ξ becomes 1/2. In this way, w and u are simultaneously increased so that the ratio of the irradiation area to the non-irradiation area of each block becomes constant in the lateral direction,
Exposure is performed by increasing the irradiation amount in the vertical direction. FIG. 3 is a characteristic curve diagram showing the relationship between the critical irradiation dose and the non-irradiated portion in the second embodiment of the present invention. The critical dose Q E is obtained for each w and the plot of 1 / Q E vs. w / 2 is performed to obtain a curve as shown in FIG. Further, FIG. 4 shows several absorption distributions u, w on the line AA ′ of the irradiation pattern 1 shown in FIG.
On the other hand, the absorption distribution due to forward scattering and the absorption distribution due to back scattering are shown separately. The curve in FIG. 3 and the absorption distribution diagram in FIG. 4 show that the electron scattering intensity distribution is a square Gaussian distribution, and w is α << w + u << β
The critical dose Q E does not change with respect to the value of. That is, when the size w of the non-irradiated portion 3 is w ≧ wα with respect to wα shown in FIG. 3 when a pattern on the mesh is irradiated, the contribution of the forward scattering of the absorption distribution of electrons is completely ignored. And w + u ≦ 2Wβ with respect to wβ shown in FIG.
, The contribution due to backscattering of the electron absorption distribution is w +
Independent of u, it is uniform regardless of the irradiation portion 2 and the non-irradiation portion 3, and depends only on the ratio of the irradiation area to the non-irradiation area.
The value of Qβ shown in the figure is Becomes An example of obtaining α, β, η by a very simple method using wα, wβ obtained in STEP (1) will be described below.

ηを求める方法(1) STEP(1)で求められた値wα、wβに対してw+u
≦2wβ、wα≦wの条件を用いて、実施例1の各ブロッ
クのwを固定し、uを変化させそれぞれのuに対して臨
界照射量QEを求め、1/QE対ξ=u2+2uw/(u+w)2
プロットすると第5図に示す直線を得る。このとき、こ
の直線を表わす方程式(3)式の右辺は、wα≦w、w
+u≦2wβの条件より前方散乱による吸収量がゼロにな
り、後方散乱による吸収量は照射部と非照射部の面積よ
り決定され となる。よって、(3)式の方程式は となり、第5図の直線の傾きより1/QC・η/η+1が求
められ、よって、QCよりηが求められる。
Method for obtaining η (1) w + u for the values wα and wβ obtained in STEP (1)
Using the conditions of ≦ 2wβ and wα ≦ w, w of each block of the first embodiment is fixed, u is changed, and the critical irradiation dose Q E is obtained for each u. 1 / Q E vs. ξ = u Plotting 2 + 2uw / (u + w) 2 gives the straight line shown in FIG. At this time, the right side of the equation (3) representing this straight line is wα ≦ w, w
The absorption due to forward scattering becomes zero under the condition of + u ≦ 2wβ, and the absorption due to back scattering is determined by the areas of the irradiated and non-irradiated parts. Becomes Therefore, equation (3) is Therefore, 1 / Q C · η / η + 1 can be obtained from the slope of the straight line in FIG. 5, and thus η can be obtained from Q C.

ηを求める方法(2) STEP(1)で求められた値wα、wβに対してw+u
≦2wβ、wα≦wの条件を用いて、実施例1の各ブロッ
クのuを固定しwを変化させ、それぞれのwの値に対し
て、臨界照射量QEを求め、1/QE対ξ=u2+2uw/(u+
w)2をブロットするとその求め方(1)と同様に、第
5図に示す直線を得る。よって、この傾きより、ηが求
められる。
Method for obtaining η (2) w + u for the values wα and wβ obtained in STEP (1)
Using the conditions of ≦ 2wβ and wα ≦ w, u of each block of Example 1 is fixed and w is changed, and the critical dose Q E is determined for each value of w, and 1 / Q E pair ξ = u 2 + 2uw / (u +
When w) 2 is blotted, the straight line shown in FIG. 5 is obtained in the same manner as in the determination method (1). Therefore, η is obtained from this inclination.

αを求める方法 STEP(1)で求められた値wα、wβに対してwα≦
u、u+w≦2wβの条件で実施例1の各ブロックのuを
固定し、wを変化させ、それぞれのwに対して、臨界照
射量QEを求め、1/QE対w/2をプロットすると第6図のよ
うな曲線を得る。このとき、(3)式の方程式の右辺を
(照射量QE)−(非照射部を照射量QEで照射したときの
吸収量)と表わすと、前方散乱による吸収量は、 となる。これは前記の条件において前方散乱による寄与
を考えるとき、各非照射部が孤立パターンと見なせるこ
とによる。また、後方散乱による吸収量は、 によって表わされる。よって、(3)式の方程式は となり、 となる。よって第6図に於けるQEを と変換してW/2対QE′をプロットすると、第7図に示す
直線を得る。この直線の傾きより1/αが求められる。
Method for obtaining α wα ≤ wα and wβ obtained in STEP (1)
Under the condition of u and u + w ≦ 2wβ, u of each block of Example 1 is fixed, w is changed, critical irradiation dose Q E is determined for each w, and 1 / Q E vs. w / 2 is plotted. Then, a curve as shown in FIG. 6 is obtained. At this time, if the right side of the equation (3) is expressed as (irradiation dose Q E ) − (absorption amount when the non-irradiated part is irradiated with the irradiation dose Q E ), the absorption amount due to forward scattering is Becomes This is because each non-irradiated portion can be regarded as an isolated pattern when considering the contribution of forward scattering under the above conditions. The backscattering absorption is Represented by Therefore, equation (3) is Next to Becomes Therefore, the QE in Fig. 6 By plotting and converting W / 2 vs. QE ', the straight line shown in FIG. 7 is obtained. 1 / α is obtained from the slope of this straight line.

βを求める方法(1) STEP(1)で求められた値Wα、Wβに対してWβ<
<u、Wα≦Wの条件で実施例1の各ブロックのuを固
定し、Wを変化させ、それぞれWに対して臨界照射量QE
を求めて、αの求め方を同様に、 QEを と変換しw/2対QE′のブロットをすると、第7図と同様
の直線が得られ、その傾きより1/βが求められる。なぜ
ならば、wα≦Wの条件より、前方散乱による吸収量は
ゼロとなり、wα<<uより、後方散乱に対しても、非
照射部が孤立パターンと見なせることより(3)式の右
辺は となり、よって となるからである。
Method of obtaining β (1) Wβ <with respect to the values Wα and Wβ obtained in STEP (1)
Under the conditions of <u, W α ≦ W, u of each block of Example 1 is fixed, W is changed, and the critical dose QE for each W is changed.
In the same way as for how to obtain α Then, when a blot of w / 2 vs. Q E 'was converted, a straight line similar to that in FIG. 7 is obtained, and 1 / β can be obtained from the slope. This is because the amount of absorption due to forward scattering is zero under the condition of wα ≦ W, and because of wα << u, the back side of the non-irradiated portion can be regarded as an isolated pattern. And thus This is because

βを求める方法(2) STEP(1)で求められた値Wα、Wβに対してu<<
wβ、Wα≦Wの条件で実施例1の各ブロックのuを固
定し、Wを変化させ、それぞれのWに対して臨界照射量
QEを求めて、(w/2)2対lnQEをプロットすると第8図に
示される直線を得る。ここで、Wα≦Wの条件により、
前方散乱による吸収量はゼロとなり、さらにu<<wβ
の条件より(3)式の方程式において後方散乱に対する
積分を無視することができ、 となり よって第8図の直線の傾きより、1/β2が求められる。
よって本実施例においては近接効果補正を行う場合、重
要となるパラメータη及びβを、異なる方法で簡単に評
価出来ることより、異なる2つの方法で求めた、ηとβ
を比較することにより、電子ビームの散乱強度分布のボ
デル関数の妥当性も評価出来る。以上、STEP(1)で求
めたwα、wβを用いてηを求める方法(1)、ηを求
める方法(2)、αを求める方法、βを求める方法
(1)、βを求める方法(2)を述べたが、これらの方
法の従属関係を第9図に示す。すなわち、αを求める方
法及びβを求める方法(1)は、その値をまず求めてお
く必要があるが、βを求める方法(2)は、wα及びw
βの値のみがわかれば実施できる。また、ηを求めるた
めには、ηを求める方法(1)あるいはηを求める方法
(2)のどちらかを行ってもよい。
Method for obtaining β (2) u << for the values Wα and Wβ obtained in STEP (1)
Under the conditions of wβ and Wα ≦ W, u of each block of Example 1 is fixed, W is changed, and the critical irradiation dose for each W is changed.
Seeking Q E, to obtain a straight line as shown in FIG. 8 is plotted (w / 2) 2 pairs lnQ E. Here, according to the condition of Wα ≦ W,
The amount of absorption due to forward scattering becomes zero, and u << wβ
From the condition of, the integral for the backscattering can be ignored in the equation (3), Next Therefore, 1 / β 2 can be obtained from the slope of the straight line in FIG.
Therefore, in the present embodiment, when performing the proximity effect correction, the important parameters η and β can be easily evaluated by different methods.
The validity of the Bodel function of the electron beam scattering intensity distribution can also be evaluated by comparing As described above, w (α) obtained in STEP (1) is used to obtain η (1), η is obtained (2), α is obtained, β is obtained (1), and β is obtained (2). ) Has been mentioned, the dependency of these methods is shown in FIG. That is, in the method for obtaining α and the method (1) for obtaining β, it is necessary to obtain the value first, but in the method (2) for obtaining β, wα and w
It can be implemented if only the value of β is known. Further, in order to obtain η, either the method for obtaining η (1) or the method for obtaining η (2) may be performed.

なお、以上の実施例はすべてポジ形レジストに対して
行ってきたが、ネガ形レジストに対してもレジストが除
去されるところをレジストが残留するとし、溶解吸収量
を不溶吸収量にすれば全く同じ方法でこれらの実施例を
行える。本実施例によれば、照射パターンとして、光学
顕微鏡によっても容易に確認出来る非常に大きなパター
ン全体の変化を観測データとして用いる。パターン全体
の変化は、同一条件となる多数の部分のレジストに対し
て、同時に起こる変化であるため、本実施例で得られる
結果は同一現象を何回も繰り返し測定し、平均化したも
のと同じ意味をもつ。また、すべてのパラメータは、観
測データから得られる直線の傾きから得られることによ
り、各パラメータは、露光装置の照射寸法及び照射量の
バラツキも、平均化されて、取り除かれたものとして評
価出来る。
Although all of the above examples have been performed on the positive type resist, it is assumed that the resist remains on the negative type resist even when the resist is removed. These embodiments can be done in the same way. According to the present embodiment, as the irradiation pattern, a very large change in the entire pattern that can be easily confirmed by an optical microscope is used as the observation data. Since the change of the entire pattern is a change that occurs at the same time for a large number of resists under the same condition, the results obtained in this example are the same as those obtained by repeatedly measuring and averaging the same phenomenon. Have meaning. Further, since all the parameters are obtained from the slopes of the straight lines obtained from the observation data, it is possible to evaluate the respective parameters as those in which variations in the irradiation size and the irradiation amount of the exposure apparatus are averaged and removed.

発明の効果 以上の説明からわかるように、本発明によれば、近接
効果補正を行うのに必要なパラメータα、β、ηを求め
るのに、現像後のレジスト寸法の測長を行なわずに、レ
ジスト形状の模様を観測するという、非常に容易な作業
のみによって、照射パターンの寸法と、照射量との特性
曲線を描くことが出来る。さらに、照射パターンの2次
元の周期パターンの周期を電子ビームの後方散乱長より
短くすることにより後方散乱によるレジスト中の電子ビ
ームの吸収量が照射パターンの寸法から容易に求められ
ることにより各パラメータを求める解析方法において、
前方散乱のみによる吸収量及び、後方散乱のみによる吸
収量が容易に評価出来るため、簡単な解析方法で各パラ
メータを求めることが出来る。
EFFECTS OF THE INVENTION As can be seen from the above description, according to the present invention, in order to obtain the parameters α, β, and η necessary for performing the proximity effect correction, the resist dimensions after development are not measured, The characteristic curve of the irradiation pattern size and the irradiation dose can be drawn only by observing the resist shape pattern, which is a very easy operation. Furthermore, by making the period of the two-dimensional periodic pattern of the irradiation pattern shorter than the backscattering length of the electron beam, the absorption amount of the electron beam in the resist due to backscattering can be easily obtained from the size of the irradiation pattern. In the required analysis method,
Since the absorption amount of only forward scattering and the absorption amount of only back scattering can be easily evaluated, each parameter can be obtained by a simple analysis method.

【図面の簡単な説明】[Brief description of drawings]

第1図は本発明の第1の実施例における網目状の照射パ
ターンを表わす図、第2図は本発明の第1の実施例にお
ける網目状のパターンで形成されるブロックの配置を示
す図、第3図は本発明の第2の実施例における臨界照射
量と非照射部との関係を示す特性曲線図、第4図は本発
明の第2の実施例における吸収量分布を示す図、第5図
は本発明の第2の実施例における照射部の面積比と臨界
照射量との関係を示す特性曲線図、第6図は本発明の第
2の実施例における臨界照射量と非照射部との関係を示
す特性曲線図、第7図は本発明の第2の実施例における
臨界照射量と非照射部との関係を示す特性曲線図、第8
図は本発明の第2の実施例における臨界照射量と非照射
部との関係を示す特性曲線図、第9図は本発明の第2の
実施例におけるα、β、ηを求める方法の従属関係を示
す図、第10図は従来における照射量とレジストの除去寸
法との関係を示す特性曲線図、第11図は従来における線
パターンからなる照射パターンの配置図、第12図は従来
における照射量とライン間隔との関係を示す特性曲線図
である。 1……照射パターン、2……照射部、3……非照射部、
4……ブロック
FIG. 1 is a diagram showing a mesh-like irradiation pattern in the first embodiment of the present invention, and FIG. 2 is a diagram showing an arrangement of blocks formed in the mesh-like pattern in the first embodiment of the present invention. FIG. 3 is a characteristic curve diagram showing the relationship between the critical irradiation dose and the non-irradiated portion in the second embodiment of the present invention, and FIG. 4 is a diagram showing the absorption amount distribution in the second embodiment of the present invention. FIG. 5 is a characteristic curve diagram showing the relationship between the area ratio of the irradiation part and the critical irradiation amount in the second embodiment of the present invention, and FIG. 6 is the critical irradiation amount and non-irradiation part in the second embodiment of the present invention. FIG. 7 is a characteristic curve diagram showing the relationship with FIG. 7, and FIG. 7 is a characteristic curve diagram showing the relationship between the critical irradiation dose and the non-irradiation area in the second embodiment of the present invention.
FIG. 9 is a characteristic curve diagram showing the relationship between the critical irradiation dose and the non-irradiated portion in the second embodiment of the present invention, and FIG. 9 is a subordinate of the method for obtaining α, β, η in the second embodiment of the present invention. FIG. 10 is a diagram showing the relationship, FIG. 10 is a characteristic curve diagram showing the relationship between the conventional irradiation amount and the resist removal dimension, FIG. 11 is a layout diagram of irradiation patterns consisting of conventional line patterns, and FIG. 12 is conventional irradiation. It is a characteristic curve figure which shows the relationship between quantity and a line space. 1 ... Irradiation pattern, 2 ... Irradiation part, 3 ... Non-irradiation part,
4 ... Block

フロントページの続き (72)発明者 濱口 洋光 大阪府門真市大字門真1006番地 松下電 器産業株式会社内 (56)参考文献 特開 昭57−83029(JP,A) 特開 昭58−10825(JP,A)Front page continuation (72) Inventor Yoko Hamaguchi 1006 Kadoma, Kadoma City, Osaka Prefecture Matsushita Electric Industrial Co., Ltd. (56) References JP 57-83029 (JP, A) JP 58-10825 (JP) , A)

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】非照射部を線状の照射部で囲んだ2次元の
周期パタンを電子ビームの散乱長よりもはるかに大きな
寸法で構成したブロックとし、そのブロックを照射パタ
ンとし、前記照射部の線幅が電子ビーム露光における後
方散乱長の長さよりも小さいものを用いて、非照射部あ
るいは照射部の寸法の異なる複数個の照射パタンをそれ
ぞれ複数個の異なる照射量を用いて露光し、現像後、ポ
ジ型レジストにおいては、非照射部の中心のレジストが
除去される最小照射量を臨界照射量として、前記非照射
部あるいは照射部の寸法の異なる各照射パタンに対して
臨界照射量を求めることにより電子ビームの散乱強度分
布を求めることを特徴とする電子ビーム露光方法。
1. A block composed of a two-dimensional periodic pattern in which a non-irradiation part is surrounded by a linear irradiation part and having a size much larger than a scattering length of an electron beam, and the block is an irradiation pattern, and the irradiation part is provided. The line width of is smaller than the length of the backscattering length in electron beam exposure, and a plurality of irradiation patterns with different sizes of the non-irradiated part or the irradiated part are exposed with a plurality of different irradiation doses, respectively. After development, in the positive type resist, the minimum irradiation dose at which the resist in the center of the non-irradiated part is removed is taken as the critical irradiation amount, and the critical irradiation amount for each irradiation pattern with different dimensions of the non-irradiated part or the irradiated part is set. An electron beam exposure method characterized in that a scattering intensity distribution of an electron beam is obtained by obtaining the distribution.
【請求項2】非照射部を線状の照射部で囲んだ2次元の
周期パタンを電子ビームの散乱長よりもはるかに大きな
寸法で構成したブロックとし、そのブロックを照射パタ
ンとし、前記周期パタンにおいてその周期が電子ビーム
露光における後方散乱長の倍の長さよりも小さいものを
用いて、非照射部あるいは照射部の寸法の異なる複数個
の照射パタンをそれぞれ複数個の異なる照射量を用いて
露光し、現像後、ポジ型レジストにおいては、非照射部
の中心のレジストが除去される最小照射量を臨界照射量
として、前記非照射部あるいは照射部の寸法の異なる各
照射パタンに対して臨界照射量を求めることにより電子
ビームの散乱強度分布を求めることを特徴とする電子ビ
ーム露光方法。
2. A two-dimensional periodic pattern in which a non-irradiated portion is surrounded by a linear irradiated portion is formed into a block having a size much larger than a scattering length of an electron beam, and the block is used as an irradiation pattern, and the periodic pattern is used. In which the period is smaller than double the backscattering length in electron beam exposure, a plurality of irradiation patterns with different sizes of the non-irradiated part or the irradiated part are exposed using different irradiation doses. After the development, in the positive type resist, the minimum irradiation dose at which the resist in the center of the non-irradiated part is removed is set as the critical irradiation amount, and the critical irradiation is performed for each irradiation pattern having different dimensions of the non-irradiated part or the irradiated part. An electron beam exposure method characterized in that a scattering intensity distribution of an electron beam is obtained by obtaining a quantity.
JP1040863A 1989-02-21 1989-02-21 Electronic beam exposure method Expired - Lifetime JP2512131B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1040863A JP2512131B2 (en) 1989-02-21 1989-02-21 Electronic beam exposure method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1040863A JP2512131B2 (en) 1989-02-21 1989-02-21 Electronic beam exposure method

Publications (2)

Publication Number Publication Date
JPH02220426A JPH02220426A (en) 1990-09-03
JP2512131B2 true JP2512131B2 (en) 1996-07-03

Family

ID=12592371

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1040863A Expired - Lifetime JP2512131B2 (en) 1989-02-21 1989-02-21 Electronic beam exposure method

Country Status (1)

Country Link
JP (1) JP2512131B2 (en)

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5783029A (en) * 1980-11-11 1982-05-24 Fujitsu Ltd Exposure of electron beam
JPS5810825A (en) * 1981-07-10 1983-01-21 Fujitsu Ltd Measuring method for distribution of electron beam scattering intensity

Also Published As

Publication number Publication date
JPH02220426A (en) 1990-09-03

Similar Documents

Publication Publication Date Title
TWI394197B (en) A process for controlling roximity effect correction in an electron beam lithography system
JP3971937B2 (en) Exposure condition monitoring method and apparatus, and semiconductor device manufacturing method
US20030071213A1 (en) Fine pattern inspection apparatus, managing apparatus of CD-SEM device, fine pattern inspection method, managing method of CD-SEM device and program
US8316698B2 (en) Determining a repairing form of a defect at or close to an edge of a substrate of a photo mask
KR100279034B1 (en) Dose-corrected Proximity Compensation Techniques for Electron Beam Lithography
JP7080992B2 (en) System for estimating the occurrence of defects and computer-readable media
DE102012101391A1 (en) Structure height measuring device and structure height measuring method
DE102018103231B4 (en) METHOD FOR OPTICAL NEAR-AREA CORRECTION AND METHOD FOR GENERATING A MASK USING THE SAME
JP4434440B2 (en) Inspection method for electron beam exposure mask and electron beam exposure method
JP2512131B2 (en) Electronic beam exposure method
Arat et al. Estimating step heights from top-down sem images
KR20060132631A (en) A method for measuring the position of a mark in a deflector system
JP3177599B2 (en) Pattern formation method
KR100233314B1 (en) Distribution and apparatus for editting a mask pattern
Farrow et al. Mark detection for alignment and registration in a high‐throughput projection electron lithography tool
JP4615168B2 (en) Semiconductor manufacturing method
JP2000340496A (en) Measuring method and equipment using charged particle beam
JP2781941B2 (en) Electron beam writing method
WO2021220697A1 (en) Charged particle beam drawing method and charged particle beam drawing device
US20020028012A1 (en) Instrument and method for metrology
JPH118187A (en) Verification method of electron beam exposure data, forming device thereof and mask forming equipment
JPS6262046B2 (en)
JPH09186070A (en) Variable shaped beam estimation method
JPS6314866B2 (en)
JPH11260694A (en) Method for measuring proximity effect parameter