JP2511176B2 - Steam prime mover - Google Patents
Steam prime moverInfo
- Publication number
- JP2511176B2 JP2511176B2 JP2152706A JP15270690A JP2511176B2 JP 2511176 B2 JP2511176 B2 JP 2511176B2 JP 2152706 A JP2152706 A JP 2152706A JP 15270690 A JP15270690 A JP 15270690A JP 2511176 B2 JP2511176 B2 JP 2511176B2
- Authority
- JP
- Japan
- Prior art keywords
- working gas
- expander
- condenser
- expansion chamber
- expansion
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01K—STEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
- F01K7/00—Steam engine plants characterised by the use of specific types of engine; Plants or engines characterised by their use of special steam systems, cycles or processes; Control means specially adapted for such systems, cycles or processes; Use of withdrawn or exhaust steam for feed-water heating
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01C—ROTARY-PISTON OR OSCILLATING-PISTON MACHINES OR ENGINES
- F01C20/00—Control of, monitoring of, or safety arrangements for, machines or engines
- F01C20/18—Control of, monitoring of, or safety arrangements for, machines or engines characterised by varying the volume of the working chamber
- F01C20/20—Control of, monitoring of, or safety arrangements for, machines or engines characterised by varying the volume of the working chamber by changing the form of the inner or outlet contour of the working chamber
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01C—ROTARY-PISTON OR OSCILLATING-PISTON MACHINES OR ENGINES
- F01C20/00—Control of, monitoring of, or safety arrangements for, machines or engines
- F01C20/24—Control of, monitoring of, or safety arrangements for, machines or engines characterised by using valves for controlling pressure or flow rate, e.g. discharge valves
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Physics & Mathematics (AREA)
- Fluid Mechanics (AREA)
- Engine Equipment That Uses Special Cycles (AREA)
Description
【発明の詳細な説明】 〔発明の目的〕 (産業上の利用分野) 本発明は、熱効率を向上させた蒸気原動機に係わり、
特に高効率、高比出力が要求される自動車エンジンの排
熱を利用した自動車搭載用、あるいは産業排熱を利用す
る定置用の蒸気原動機に関するものである。DETAILED DESCRIPTION OF THE INVENTION [Object of the Invention] (Field of Industrial Application) The present invention relates to a steam engine with improved thermal efficiency,
In particular, the present invention relates to a steam engine mounted on a vehicle that uses exhaust heat of an automobile engine that requires high efficiency and high specific output, or a stationary steam engine that uses industrial exhaust heat.
(従来の技術) ランキンサイクルをベースとする蒸気原動機は、凝縮
液をポンプ(給水ポンプ)で断熱圧縮して蒸発器(ボイ
ラ)へ送る工程、蒸発器で等圧過熱を行い動作ガス(過
熱蒸気)とする工程、膨脹機(タービン)でこれを断熱
膨脹させて仕事を得る工程、排気を凝縮器(復水器)で
等圧冷却させ凝縮させる工程を有し、この工程を順次く
り返すことで機械的出力を得ている。(Prior Art) A steam engine based on a Rankine cycle is a process of adiabatic compression of a condensate by a pump (water supply pump) and sending it to an evaporator (boiler), isobaric superheating in the evaporator, and working gas (superheated steam). ), A step of adiabatically expanding it with an expander (turbine) to obtain work, and a step of isothermally cooling the exhaust gas with a condenser (condenser) and condensing, and repeating this step in sequence. Is getting the mechanical output.
これらの工程を行なう各機器は、第2図に示されるよ
うに組合される。膨脹機110は作動子たるロータ115によ
り画定された膨脹室114を有し、該膨張室114は、蒸発器
113からの動作ガスを受け、この動作ガスを膨張させ、
更に膨脹工程完了後の動作ガスを凝縮器111へ送る働き
をする。凝縮器111、ポンプ112と蒸発器113とは図示の
如く直列に連結させる。The respective devices for performing these steps are combined as shown in FIG. The expander 110 has an expansion chamber 114 defined by an actuator rotor 115, and the expansion chamber 114 includes an evaporator.
Receive working gas from 113, expand this working gas,
Further, it works to send the working gas after the completion of the expansion process to the condenser 111. The condenser 111, the pump 112 and the evaporator 113 are connected in series as shown.
蒸発器113で圧縮凝縮液を等圧加熱させて動作ガス
(過熱蒸気)を得るための熱源を、産業廃熱や自動車エ
ンジンの廃熱に求めている。A heat source for heating the compressed condensate at a constant pressure in the evaporator 113 to obtain a working gas (superheated steam) is required for industrial waste heat or waste heat of an automobile engine.
この種の蒸気原動機の理論熱効率は、膨脹室への動作
ガスの初圧と初温を高め、凝縮器への排圧を低めればよ
い。The theoretical thermal efficiency of this type of steam engine can be obtained by increasing the initial pressure and temperature of the working gas to the expansion chamber and lowering the exhaust pressure to the condenser.
(本発明が解決しようとする課題) 蒸発器への廃熱量等の変化によって、膨脹機へ供給さ
れる動作ガスの圧力や温度状態が常時変っているにも拘
らず、これ迄は、膨脹過程前後の圧力比率が一定であっ
た。このため、膨脹室から凝縮器へ戻される膨脹過程終
了後の動作ガスの圧力が自由に変更できず、凝縮器内の
圧力を膨脹機から吐出された動作ガスの圧力が適合しな
い。云い換えれば、たとえば、外気温度が下がって、こ
の外気温度に対応する飽和蒸気圧も下がっているにも拘
らず、この飽和蒸気圧以上の動作ガスが膨張機より凝縮
器内に吸入され、動作ガスが充分な膨張仕事をしないう
ちに膨張機から吐出されるため、単位流量当たりの膨張
仕事量が低下し、システム全体の効率を下げている。(Problems to be solved by the present invention) Although the pressure and temperature of the working gas supplied to the expander are constantly changed due to changes in the amount of waste heat to the evaporator, etc. The pressure ratio before and after was constant. Therefore, the pressure of the working gas returned from the expansion chamber to the condenser cannot be freely changed after the expansion process, and the pressure of the working gas discharged from the expander does not match the pressure in the condenser. In other words, for example, even though the outside air temperature is lowered and the saturated vapor pressure corresponding to the outside air temperature is also lowered, the working gas having the saturated vapor pressure or higher is sucked into the condenser from the expander to operate. Since the gas is discharged from the expander before performing sufficient expansion work, the amount of expansion work per unit flow rate is reduced, and the efficiency of the entire system is reduced.
逆に外気温が上昇して、この外気温に対応する飽和蒸
気圧が上昇しているにも拘わらず、この飽和蒸気圧以下
の動作ガスが膨張機により吐出される場合には、膨張機
内で負のトルクは発生して取り出せる膨張仕事が低下し
て、蒸気原動機全体の効率を下げる。On the contrary, when the outside air temperature rises and the saturated vapor pressure corresponding to this outside temperature rises, when the working gas below this saturated vapor pressure is discharged by the expander, Negative torque is generated and the work of expansion that can be taken out is reduced, reducing the efficiency of the entire steam engine.
それ故に、本発明は前述した従来技術の不具合を解消
させることを解決すべき課題とする。Therefore, an object of the present invention is to solve the above-mentioned disadvantages of the related art.
(課題を解決するための手段) 本発明は、前述した課題を解決するために、膨脹過程
終了後の膨脹機からの動作ガスの状態を、外気温で定ま
る凝縮器内の動作ガスの状態とほぼ同じとするために、
蒸発器からの動作ガスの実際の温度や圧力状態および外
気温度に応じて、バルブ機構によりこの動作ガスの膨脹
室での断熱膨脹の開始時期を調整するという基本的考え
を採用する。(Means for Solving the Problem) In order to solve the above-mentioned problems, the present invention sets the state of the working gas from the expander after the expansion process to the state of the working gas in the condenser determined by the outside temperature. To be almost the same,
The basic idea is to adjust the start timing of adiabatic expansion of the working gas in the expansion chamber by the valve mechanism according to the actual temperature and pressure state of the working gas from the evaporator and the outside air temperature.
上記技術的課題を達成するために講じた本発明による
技術的手段は、まず蒸発器から膨張機の膨張室へと動作
ガスを導く通路に該通路を開閉作動するバルブ機構を設
け、膨張室内で動作ガスが断熱膨張を開始する時期を制
御することであり、更には、凝縮器内の動作ガス圧力
(又は膨張室と凝縮器との間の通路の動作ガス圧力)を
検出するセンサーを設け、膨張室の膨張過程終了時の動
作ガス圧力(又は気化器と膨張室との間の通路内の動作
ガス圧力より換算される)と凝縮器内の動作ガス圧力
(又は温度より換算される圧力)とが等しくなり高効率
な膨張作動をなすよう、又は動作ガスの供給量を増加
し、比出力を増すよう膨張室へ動作ガスの供給をバルブ
機構にて制御することである。The technical means according to the present invention taken to achieve the above-mentioned technical problem is as follows. First, a valve mechanism for opening and closing the passage is provided in a passage for guiding a working gas from the evaporator to the expansion chamber of the expander, Controlling the timing at which the working gas starts adiabatic expansion, and further providing a sensor for detecting the working gas pressure in the condenser (or the working gas pressure in the passage between the expansion chamber and the condenser), Working gas pressure at the end of the expansion process in the expansion chamber (or converted from the working gas pressure in the passage between the vaporizer and expansion chamber) and working gas pressure in the condenser (or pressure converted from temperature) To control the supply of the working gas to the expansion chamber by the valve mechanism so as to achieve a highly efficient expansion operation or to increase the supply amount of the working gas to increase the specific output.
本発明は、より具体的には、動作ガスを断熱膨脹させ
て機械的仕事を得る膨脹機10、膨脹機から排出された動
作ガスを等圧冷却させて凝縮させる凝縮器11、凝縮器か
らの凝縮液を断熱圧縮するポンプ12、ポンプからの凝縮
液を等圧加熱を行い過熱蒸気たる動作ガスとする蒸発器
13、蒸発器と膨脹機の膨脹室14とを第1のバルブ機構1
6,16′を介して連結させる通路33,33、および膨脹機の
膨脹室と凝縮器とを第2のバルブ機構を介して連結させ
る通路34,34とを有し、第1のバルブ機構により膨脹室
内での動作ガスの断熱膨脹開始時期を調整する蒸気原動
機を提供する。More specifically, the present invention relates to an expander 10 that adiabatically expands a working gas to obtain mechanical work, a condenser 11 that cools the working gas discharged from the expander to an isobaric pressure and condenses it, and a condenser from a condenser. A pump 12 for adiabatically compressing the condensate, and an evaporator that heats the condensate from the pump isobarically and uses it as working gas that is superheated steam.
13, the evaporator and the expansion chamber 14 of the expander the first valve mechanism 1
6, 16 ', and passages 34, 34 for connecting the expansion chamber of the expander and the condenser via the second valve mechanism. (EN) Provided is a steam engine which adjusts the start time of adiabatic expansion of a working gas in an expansion chamber.
(作用) 上記技術的手段は要約すると次のように作用する。(Operation) In summary, the above technical means operates as follows.
本発明では、動作ガス供給停止バルブ(第1のバルブ
機構)を閉じる時期を変えることにより、膨張機に流入
する動作ガスの断熱膨張期間を調整し、膨張後の動作ガ
スの圧力を、外気温度で定まる凝縮器内部の圧力に等し
くする。又、本発明では、蒸発器への高熱入力時即ちエ
ネルギー源の熱エネルギー量が増加すると、動作ガス供
給停止バルブを閉じる時期を遅らせ、膨張室内をその分
長時間高圧とし、膨張機内の回転子(ローター)から取
り出せるトルクを大きくできる。云い換えれば、本発明
の原動機は、エネルギー源としての熱量が充分供給され
ない時は限られたエネルギー源から効率よく大きな出力
を取り出し、エネルギー源としての熱量が充分供給され
るなら、必要なトルクをより小さな原動機から発生させ
る作用をなす。In the present invention, the adiabatic expansion period of the working gas flowing into the expander is adjusted by changing the timing of closing the working gas supply stop valve (first valve mechanism), and the pressure of the working gas after expansion is adjusted to the outside air temperature. Equalize the pressure inside the condenser determined by. Further, in the present invention, when the heat input to the evaporator is high, that is, when the heat energy amount of the energy source is increased, the timing of closing the working gas supply stop valve is delayed, and the expansion chamber is set to a high pressure for a correspondingly long time, thereby the rotor in the expander The torque that can be taken out from the (rotor) can be increased. In other words, the prime mover of the present invention efficiently takes out a large output from the limited energy source when the heat amount as the energy source is not sufficiently supplied, and when the heat amount as the energy source is sufficiently supplied, the required torque is obtained. It acts to generate from a smaller prime mover.
本発明の作用をより詳しく説明する。 The operation of the present invention will be described in more detail.
凝縮器内の動作ガス圧力あるいは温度をセンサーによ
り検出する。これらの情報は、圧力の場合は直接、温度
の場合は既知の動作ガス飽和蒸気圧曲線を用いて圧力に
変換後、コントロールユニットにPminとして読み取られ
る。即ち、大気温度等の変化による動作ガスの圧力や温
度変化もコントロールユニットに記録される。A sensor detects the working gas pressure or temperature in the condenser. This information is read directly into the control unit as P min after conversion into pressure using the known operating gas saturation vapor pressure curve for temperature and directly for temperature. That is, changes in the pressure and temperature of the working gas due to changes in atmospheric temperature and the like are also recorded in the control unit.
一方、膨張機内の膨張過程終了直後の圧力PL 0は圧力
センサーで直接読み取られる。ところでこの圧力PL 0は
膨張室入口圧力Pmaxと膨張室への動作ガス供給閉鎖角度
θ0で決定され、次式の関係を満たす。尚、動作ガス供
給閉鎖角度θ0は、回転子(ローター)の中心O′の膨
張機ハウジングの中心Oに対する角度(回路子が上死点
にある時を基点とする)であり、回転子の1つの側面は
元の位置に戻るまでθは1080°回路することになる。On the other hand, the pressure P L 0 immediately after the end of the expansion process in the expander is directly read by the pressure sensor. By the way, this pressure P L 0 is determined by the expansion chamber inlet pressure P max and the operating gas supply closing angle θ 0 to the expansion chamber, and satisfies the relationship of the following equation. The operating gas supply closing angle θ 0 is the angle of the rotor center O ′ to the center O of the expander housing (based on when the circuit is at the top dead center). One side will have a θ circuit of 1080 ° until it returns to its original position.
PL 0=Pmax×〔{VM+VH(1-cos(2θ0/3))/2} /{VM+VH}〕K …(1) ここでVM:膨張室の死容積 VH:膨張室の可変容積 K:動作ガスの両比熱比 すなわち動作ガス供給閉鎖角度θ0を変えることによ
りPL 0を制御することができる。PL 0がPminより大きい時
はコントロールユニットによりθ0を小さくするようバ
ルブの閉鎖時期は早められ、逆にPL 0がPminより小さい
ときは、θ0を大きくするようバルブ閉鎖時期を遅らさ
れる。P L 0 = P max × [{V M + V H (1 -cos (2θ 0/3)) / 2} / {V M + V H} ] K ... (1) where V M: dead volume of the expansion chamber V H : Variable volume of expansion chamber K: Both specific heat ratio of working gas, that is, P L 0 can be controlled by changing working gas supply closing angle θ 0 . When P L 0 is larger than P min, the control unit advances the valve closing timing to decrease θ 0, and when P L 0 is smaller than P min , the valve closing timing is set to increase θ 0. Be delayed.
こうしてPmin=PL 0となるよう、バルブ機構によって
膨張室への動作ガスの供給は制御され、最大効率の動力
が得られる。In this way, the supply of the working gas to the expansion chamber is controlled by the valve mechanism so that P min = P L 0, and power with maximum efficiency is obtained.
ところで、θ0を変えると効率ηが制御できること、
また、最大効率の動力がPmin=PL 0で得られることは以
下に示される。By the way, the efficiency η can be controlled by changing θ 0 ,
Further, it is shown below that the power of maximum efficiency can be obtained at P min = P L 0 .
第3図で、高温熱源100℃、凝縮温度50(℃)では、
θ0を変えるとI−η(θ0)の曲線で示されるように効
率η(θ0)が変化する。ところで、この時の最大効率
を与えるθ0は122(℃)であり、膨張過程終了直後の圧
力PL 0は(1)式より約2.5(bar)と計算される。一
方、凝縮温度50(℃)に対応するこの動作ガスの飽和蒸
気圧曲線から求められる臨界圧力(即ち、凝縮器圧力P
min)はやはり2.5(bar)で前述のPL 0と一致することに
なる。同様に、外気温の降下に伴い、凝縮温度が25
(℃)になると効率はII−η(θ0)に示されるように
変化する。このときの最大効率を与えるθ0は82(℃)
で、膨張過程終了直後の圧力PL 0は約1.3(bar)とな
る。これは、凝縮温度25(℃)から求まる臨界圧力約1.
2(bar)とほぼ一致する。In Fig. 3, when the high temperature heat source is 100 ℃ and the condensing temperature is 50 ℃
When θ 0 is changed, the efficiency η (θ 0 ) changes as shown by the I-η (θ 0 ) curve. By the way, θ 0 that gives the maximum efficiency at this time is 122 (° C.), and the pressure P L 0 immediately after the end of the expansion process is calculated to be about 2.5 (bar) from the equation (1). On the other hand, the critical pressure (that is, the condenser pressure P obtained from the saturated vapor pressure curve of this working gas corresponding to the condensation temperature 50 (° C))
min ) is still 2.5 (bar), which agrees with P L 0 described above. Similarly, as the outside air temperature drops, the condensation temperature rises to 25
At (° C), the efficiency changes as shown by II-η (θ 0 ). At this time, θ 0 that gives the maximum efficiency is 82 (° C)
Thus, the pressure P L 0 immediately after the expansion process is about 1.3 (bar). This is a critical pressure of about 1.
It is almost the same as 2 (bar).
バンケル式自転ロータ膨張機のように膨張室内部の圧
力測定が難しい時は、同じく式(1)により膨張機入口
の圧力Pmax及び動作ガス供給閉鎖角度θ0からPL 0を推定
でき、バルブの制御は上述と同様となる。When it is difficult to measure the pressure inside the expansion chamber as in the Wankel type rotary rotor expander, the formula (1) can also be used to estimate P L 0 from the expander inlet pressure P max and the operating gas supply closing angle θ 0 , and the valve The control is similar to that described above.
(実施例) 以下、本発明を実施例に基づき説明する。(Examples) Hereinafter, the present invention will be described based on examples.
第1図において、凝縮器11、ポンプ12、蒸発器13、膨
張機10は、通路31、32、33、34によって連結される。膨
張機10内には移動子であるロータ15が配され、膨張室14
を形成する。ロータ15は出力軸に連結される。蒸発器13
から膨張機10に通ずる通路33及び膨張機10から凝縮器11
に通ずる通路34には、第1のバルブ機構16、16′と第2
のバルブ機構17、17′が設けられ、通路33、34の開閉を
行う。コントロールユニット20は、上述の各バルブ機構
16、16′、17、17′を開閉動作する機能、凝縮器11内の
ガス圧又は温度を検知するセンサー21、及び膨張機10に
設けられ膨張室14内のガス圧力を検出するセンサー23か
らの信号を比較演算する機能、ロータ15の位置状態を検
出するセンサー23′や蒸発器13から膨張機10に通じる通
路33内に設けられ膨張室14へ流入するガス圧力を検出す
るセンサー22からの信号を受信する機能、及びこれらの
機能を総合的に関連制御する機能からなる。In FIG. 1, the condenser 11, the pump 12, the evaporator 13, and the expander 10 are connected by passages 31, 32, 33, and 34. A rotor 15, which is a moving element, is arranged in the expander 10, and the expansion chamber 14
To form. The rotor 15 is connected to the output shaft. Evaporator 13
Passage 33 from the expander 10 to the condenser 11
In the passage 34 leading to the first valve mechanism 16, 16 'and the second valve mechanism 16,
The valve mechanisms 17 and 17 'are provided to open and close the passages 33 and 34. The control unit 20 is a valve mechanism described above.
From the function of opening and closing 16, 16 ', 17, 17', the sensor 21 for detecting the gas pressure or temperature in the condenser 11, and the sensor 23 for detecting the gas pressure in the expansion chamber 14 provided in the expander 10. From the sensor 22 'which detects the gas pressure flowing into the expansion chamber 14 provided in the passage 33 leading from the evaporator 13 to the expander 10 and the sensor 23' which detects the position state of the rotor 15. It has a function of receiving signals and a function of comprehensively controlling these functions.
上記構成により、大気温度が変化し凝縮機11内の動作
ガス圧力又は温度が変化すると、センサー21により感知
されたその圧力又は温度信号は制御回路20内に送られ
る。一方、膨張機10に設けられたセンサー23で感知され
た膨張室14内の動作ガス圧力信号もコントロールユニッ
ト20内に送られる。更に場合によってはロータ15の回転
位置状態を知らせる信号もセンサー23′より、又、蒸発
器13と膨張機10の膨張室14とを連結する通路33内に設け
られたセンサー22により感知された膨張機入口動作ガス
圧力信号もセンサー22によりコントロールユニット20内
に送られる。以上の信号から、膨張室14内の動作ガスの
膨張終了時圧力が凝縮器11内動作ガス圧力に等しくなる
よう各バルブ機構16、16′17、17′に開閉調整信号を送
り、供給ガス量を調整する。これにより、膨張機10は最
大効率の膨張作動を行う。With the above configuration, when the atmospheric temperature changes and the working gas pressure or temperature in the condenser 11 changes, the pressure or temperature signal sensed by the sensor 21 is sent to the control circuit 20. On the other hand, the operating gas pressure signal in the expansion chamber 14 sensed by the sensor 23 provided in the expander 10 is also sent to the control unit 20. Further, in some cases, the signal indicating the rotational position of the rotor 15 is detected by the sensor 23 'and the expansion detected by the sensor 22 provided in the passage 33 connecting the evaporator 13 and the expansion chamber 14 of the expander 10. The machine inlet working gas pressure signal is also sent into the control unit 20 by the sensor 22. From the above signals, an opening / closing adjustment signal is sent to each valve mechanism 16, 16'17, 17 'so that the pressure at the end of expansion of the working gas in the expansion chamber 14 becomes equal to the working gas pressure in the condenser 11, and the supply gas amount is supplied. Adjust. As a result, the expander 10 performs expansion operation with maximum efficiency.
尚、第2のバルブ機構17、17′は、膨張室14内で断熱
膨張した動作ガスを凝縮器11に周期的に送り出す。即
ち、膨張室14が最大容積(θ=270°の時)になる所で
第2のバルブ機構が開となり、膨張室14が最小容積(θ
=540°の時)となる所で第2のバルブ機構が閉とな
る。The second valve mechanisms 17 and 17 ′ periodically send the working gas adiabatically expanded in the expansion chamber 14 to the condenser 11. That is, the second valve mechanism opens when the expansion chamber 14 reaches the maximum volume (when θ = 270 °), and the expansion chamber 14 reaches the minimum volume (θ
= 540 °), the second valve mechanism closes.
本例で使用される動作ガス即ち動作媒体としては水、
フレオン等が用いられる。The working gas or working medium used in this example is water,
Freon or the like is used.
本発明は、上述の機構に更に、蒸発器13に供給される
熱入力を測定するセンサー24を蒸発器13に取付け、この
センサー24からの熱入力信号を受信し、前述の制御機能
と共に膨張機10を制御することも可能である。すなわ
ち、低熱入力時には上述の如く最大効率の膨張作動をな
すようコントロールユニット20はバルブ機構16、16′、
17、17′を調整するが、高熱入力時には、バルブが遅れ
て閉鎖するよう、すなわち膨張室14内に、より多量に動
作ガスを供給するようコントロールユニット20はバルブ
機構16、16′、17、17′を調整する。これにより膨張機
10は最大効率は得られないが多量の動力を取り出すこと
が可能となる。The present invention further includes a sensor 24, which measures the heat input supplied to the evaporator 13, in the evaporator 13, receives a heat input signal from the sensor 24, and expands the expander together with the control function described above. It is also possible to control 10. That is, when the heat input is low, the control unit 20 controls the valve mechanisms 16, 16 ', so as to perform the expansion operation with the maximum efficiency as described above.
The control unit 20 controls the valve mechanism 16, 16 ', 17, so that the valve is closed later, that is, in order to supply a larger amount of working gas into the expansion chamber 14, at the time of high heat input. Adjust 17 '. This allows the expander
The maximum efficiency of 10 is not obtained, but a large amount of power can be taken out.
第4図は効率η及び動力出力Pの動作ガス供給閉鎖角
度θ0に対する変化を示した一例である。θ0を180°程
度まで遅らせると効率ηは7%強に低下するが、出力P
自身は4.2KW(θ0=110°では2.6KW)に増大することが
示される。FIG. 4 is an example showing changes in the efficiency η and the power output P with respect to the operating gas supply closing angle θ 0 . When θ 0 is delayed to about 180 °, the efficiency η drops to over 7%, but the output P
It is shown to increase to 4.2KW (2.6KW at θ 0 = 110 °).
尚、膨張機10として、実施例はロータリー式を使用し
ているが、往復ピストン式(移動子はピストン)を利用
することも可能である。As the expander 10, a rotary type is used in the embodiment, but a reciprocating piston type (moving element is a piston) can also be used.
〔効果〕 本発明は例えば自動車エンジン排気ガス熱エネルギー
のように運転状態により利用できる熱エネルギーが変動
する時、排熱エネルギーが少ない時は通路の開度状態を
短く設定し(例えば上死点後110°で通路は閉鎖され
る)効率を上げることで、限られた熱エネルギーから最
大の動力を取り出せるようにし、排熱エネルギーが多い
時は通路の開度状態を長く設定し(例えば上死点後180
°で通路は閉鎖される)限られたエンジン回転数で多量
の動力を取り出すことができる。[Effect] The present invention sets the opening degree of the passage to be short when exhaust heat energy is small when the available heat energy fluctuates depending on operating conditions such as automobile engine exhaust gas heat energy (e.g. By increasing the efficiency, the maximum power can be taken out from the limited thermal energy, and when the exhaust heat energy is large, the opening state of the passage is set long (for example, top dead center). After 180
(The passage is closed at °) A large amount of power can be taken out at a limited engine speed.
第1図は本発明に関わる蒸気原動機システムのスケマチ
ック図、第2図は従来技術のスケマチック図、第3図は
本発明に係わる蒸気原動機システムの効率−動作ガス供
給閉鎖角度特性図、第4図は本発明に係わる蒸気原動機
システムの出力及び効率−動作ガス供給閉鎖角度特性図
である。 図中 10…膨張機、11…凝縮器、12…ポンプ、13…蒸発
器、14…膨張室、15…ロータ(移動子)、16,16′,17,1
7′…バルブ機構、20…コントロールユニット、21…ガ
ス圧又は温度センサー、22,23…ガス圧センサー、23′
…位置センサー、24…熱入力センサー、31,32,33,34…
通路。1 is a schematic diagram of a steam engine system according to the present invention, FIG. 2 is a schematic diagram of a conventional technology, FIG. 3 is a characteristic diagram of efficiency-operating gas supply closing angle of a steam engine system according to the present invention, FIG. FIG. 4 is a characteristic diagram of output and efficiency-operating gas supply closing angle of the steam engine system according to the present invention. In the figure, 10 ... expander, 11 ... condenser, 12 ... pump, 13 ... evaporator, 14 ... expansion chamber, 15 ... rotor (mover), 16,16 ', 17,1
7 '... Valve mechanism, 20 ... Control unit, 21 ... Gas pressure or temperature sensor, 22,23 ... Gas pressure sensor, 23'
… Position sensor, 24… Heat input sensor, 31, 32, 33, 34…
aisle.
フロントページの続き (56)参考文献 特開 昭58−48706(JP,A) 特開 昭61−123704(JP,A) 特開 昭55−17655(JP,A)Continuation of the front page (56) Reference JP-A-58-48706 (JP, A) JP-A-61-123704 (JP, A) JP-A-55-17655 (JP, A)
Claims (3)
る膨張機10、膨張機から排出された動作ガスを等圧冷却
させて凝縮させる凝縮器11、凝縮器からの凝縮液を断熱
圧縮するポンプ12、ポンプからの凝縮液を等圧加熱を行
い過熱蒸気たる動作ガスとする蒸発器13、蒸発器と膨張
機の膨張室14とを第1のバルブ機構16,16′を介して連
結させる通路33,33、および膨張機の膨張室と凝縮器と
を第2のバルブ機構17,17′を介して連結させる通路34,
34とを有し、第1のバルブ機構により膨張室内での動作
ガスの断熱膨張開始時期を調整し、 凝縮器内の動作ガス圧力と膨張機内での膨張過程終了時
の動作ガス圧力とをほぼ等しくさせるよう第1のバルブ
機構の開閉を制御する蒸気原動機。1. An expander 10 for adiabatically expanding a working gas to obtain mechanical work, a condenser 11 for isostatically cooling a working gas discharged from the expander to condense it, and an adiabatic compression of a condensate from the condenser. Pump 12, an evaporator 13 that heats the condensate from the pump to the working gas that is superheated steam by isobaric heating, and the evaporator and the expansion chamber 14 of the expander are connected via the first valve mechanism 16 and 16 '. Passages 33, 33 for connecting the expansion chamber of the expander and the condenser via the second valve mechanism 17, 17 '
34, and adjusts the adiabatic expansion start timing of the working gas in the expansion chamber by the first valve mechanism so that the working gas pressure in the condenser and the working gas pressure at the end of the expansion process in the expander are almost A steam engine that controls the opening and closing of the first valve mechanism so that they are equal.
る膨張機10、膨張機から排出された動作ガスを等圧冷却
させて凝縮させる凝縮器11、凝縮器からの凝縮液を断熱
圧縮するポンプ12、ポンプからの凝縮液を等圧加熱を行
い過熱蒸気たる動作ガスとする蒸発器13、蒸発器と膨張
機の膨張室14とを第1のバルブ機構16,16′を介して連
結させる通路33,33、および膨張機の膨張室と凝縮器と
を第2のバルブ機構17,17′を介して連結させる通路34,
34とを有し、第1のバルブ機構により膨張室内での動作
ガスの断熱膨張開始時期を調整し、さらに、凝縮器11内
の動作ガス圧力又は温度を検出するセンサー21および膨
張室14内の動作ガス圧力又は通路33の動作ガス圧力を検
出するセンサー22を有し、凝縮器内の動作ガス圧力と膨
張機内での膨張過程終了時の動作ガス圧力とをほぼ等し
くさせるため、コントロールユニットが第1のバルブ機
構の開閉を制御し、 膨張室14又は通路33内の動作ガス圧力より換算される膨
張過程終了時の動作ガス圧力と凝縮器11内の動作ガス圧
力又は温度より換算される圧力とが等しくなり高効率な
膨張作動をなすよう、コントロールユニットにより膨張
室14への動作ガスの供給をバルブ機構16,16′にて制御
し、 コントロールユニットが蒸発器への熱入力に応じた信号
を受け、蒸発器への低熱入力時には前記高効率な膨張作
動を成すよう、また、蒸発器への高熱入力時には前記高
効率な膨張作動を無視して第1のバルブ機構の閉鎖時期
を遅延させて膨張室への動作ガスの供給量を増加させる
ように第1のバルブ機構を開閉制御する蒸気原動機。2. An expander 10 for adiabatically expanding a working gas to obtain mechanical work, a condenser 11 for isostatically cooling and condensing the working gas discharged from the expander, and an adiabatic compression of a condensate from the condenser. Pump 12, an evaporator 13 that heats the condensate from the pump to the working gas that is superheated steam by isobaric heating, and the evaporator and the expansion chamber 14 of the expander are connected via the first valve mechanism 16 and 16 '. Passages 33, 33 for connecting the expansion chamber of the expander and the condenser via the second valve mechanism 17, 17 '
34, which adjusts the adiabatic expansion start timing of the working gas in the expansion chamber by the first valve mechanism, and further detects the working gas pressure or temperature in the condenser 11 and the inside of the expansion chamber 14. The control unit has a sensor 22 for detecting the working gas pressure or the working gas pressure in the passage 33, and a control unit is provided to make the working gas pressure in the condenser approximately equal to the working gas pressure at the end of the expansion process in the expander. By controlling the opening and closing of the valve mechanism of No. 1, the working gas pressure at the end of the expansion process converted from the working gas pressure in the expansion chamber 14 or the passage 33 and the working gas pressure in the condenser 11 or the pressure converted from the temperature. The control unit controls the supply of the working gas to the expansion chamber 14 with the valve mechanisms 16 and 16 'so that the expansion operation becomes highly efficient and the control unit outputs a signal according to the heat input to the evaporator. When the heat input to the evaporator is low, the high-efficiency expansion operation is performed, and when the heat input to the evaporator is high, the high-efficiency expansion operation is ignored and the closing timing of the first valve mechanism is delayed. A steam engine that controls opening and closing of the first valve mechanism so as to increase the amount of working gas supplied to the expansion chamber.
ンサー24を有する請求項(2)の蒸気原動機。3. The steam engine according to claim 2, further comprising a sensor 24 for measuring a heat input supplied to the evaporator 13.
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2152706A JP2511176B2 (en) | 1990-06-13 | 1990-06-13 | Steam prime mover |
DE19914119242 DE4119242C2 (en) | 1990-06-13 | 1991-06-11 | Steam engine |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2152706A JP2511176B2 (en) | 1990-06-13 | 1990-06-13 | Steam prime mover |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH0447104A JPH0447104A (en) | 1992-02-17 |
JP2511176B2 true JP2511176B2 (en) | 1996-06-26 |
Family
ID=15546373
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2152706A Expired - Lifetime JP2511176B2 (en) | 1990-06-13 | 1990-06-13 | Steam prime mover |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP2511176B2 (en) |
DE (1) | DE4119242C2 (en) |
Families Citing this family (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
AU2001282624A1 (en) | 2000-09-05 | 2002-03-22 | Honda Giken Kogyo Kabushiki Kaisha | Rankine cycle device |
JP4767455B2 (en) * | 2000-09-05 | 2011-09-07 | 本田技研工業株式会社 | Rankine cycle equipment |
JP2004197640A (en) * | 2002-12-18 | 2004-07-15 | Daikin Ind Ltd | Positive displacement expander and fluid machinery |
JP2008038745A (en) * | 2006-08-04 | 2008-02-21 | Shin Kagaku Kaihatsu Kenkyusho:Kk | Prime mover |
EP2217800A2 (en) * | 2007-01-24 | 2010-08-18 | TOROK, Arpad | Progressive thermodynamic system |
EP2167791A1 (en) * | 2007-07-03 | 2010-03-31 | Vladimír Vavrus | Steam engine with rotating piston and the manner of cooling and lubricating thereof |
SK288056B6 (en) | 2009-07-06 | 2013-03-01 | Jan Tuna | Valves for steam engine with rotary piston and their drive |
US10208599B2 (en) | 2011-05-13 | 2019-02-19 | Brian Davis | Heat engine with linear actuators |
WO2012158547A1 (en) * | 2011-05-13 | 2012-11-22 | Brian Davis | Heat engine |
JP5589981B2 (en) * | 2011-07-11 | 2014-09-17 | 株式会社豊田自動織機 | Waste heat recovery device |
JP6552883B2 (en) * | 2015-06-18 | 2019-07-31 | 伸郎 池永 | External combustion type rotary engine |
JP6526537B2 (en) * | 2015-09-29 | 2019-06-05 | 日野自動車株式会社 | Waste heat recovery system |
JP6747697B2 (en) * | 2018-10-29 | 2020-08-26 | 伸郎 池永 | External combustion rotary engine |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE1049155B (en) * | 1954-09-17 | 1959-01-22 | Nsu Werke Ag | An engine consisting of an internal combustion engine and a steam engine |
JPS5517655A (en) * | 1978-07-22 | 1980-02-07 | Tetsushige Ito | Flon gas vaporizer by use of rotary frictional heat |
DE2838670A1 (en) * | 1978-09-05 | 1980-03-13 | Klaus Krismer | Steam driven power generating unit - has rotary piston expansion engine with separately heated ducts in casing walls |
JPS5848706A (en) * | 1981-09-18 | 1983-03-22 | Toshiba Corp | Rankine cycle device |
JPS61123704A (en) * | 1984-11-21 | 1986-06-11 | Hitachi Ltd | Turbine load reducer |
-
1990
- 1990-06-13 JP JP2152706A patent/JP2511176B2/en not_active Expired - Lifetime
-
1991
- 1991-06-11 DE DE19914119242 patent/DE4119242C2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
DE4119242A1 (en) | 1992-02-06 |
DE4119242C2 (en) | 1994-02-10 |
JPH0447104A (en) | 1992-02-17 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP2511176B2 (en) | Steam prime mover | |
US6581384B1 (en) | Cooling and heating apparatus and process utilizing waste heat and method of control | |
US6928820B2 (en) | Waste heat collecting system having rankine cycle and heating cycle | |
US4896515A (en) | Heat pump, energy recovery method and method of curtailing power for driving compressor in the heat pump | |
JPS622241Y2 (en) | ||
US20100287920A1 (en) | Device for controlling the working fluid circulating in a closed circuit operating according to a rankine cycle and method of using same | |
US4185465A (en) | Multi-step regenerated organic fluid helical screw expander hermetic induction generator system | |
JP2011508129A (en) | Loss heat recovery method for internal combustion engine | |
US6922999B2 (en) | Single-winding multi-stage scroll expander | |
US4480654A (en) | Multipressure compressor | |
US5216899A (en) | Rotating single cycle two-phase thermally activated heat pump | |
US20060037320A1 (en) | Process and device for utilizing waste heat | |
US4260335A (en) | Process for the compression of steam and thermal circuits for its implementation | |
KR20040061773A (en) | Three generation energy system for controlling among cooling/heating and electric power generation | |
JP2005061260A (en) | Waste heat recovery system | |
JPS61155614A (en) | Cooling device for automobile internal combustion engine | |
US4208885A (en) | Expander-compressor transducer | |
JPS6256421B2 (en) | ||
WO2012064208A1 (en) | Method for converting low temperature thermal energy into high temperature thermal energy and mechanical energy and a heat pump device for such conversion | |
JPH1193772A (en) | Exhaust heat recovery device for internal combustion engine | |
JPH0354326A (en) | Surplus power utilizing system | |
RU2285872C1 (en) | Heat pump | |
US2202298A (en) | Power generating, transmitting, and delivering apparatus | |
SU1780557A3 (en) | Method for converting gas inner energy to heat in compression- expanding machine with free liquid piston | |
JPH025317Y2 (en) |