JP2510114Y2 - Laminated heat exchanger - Google Patents

Laminated heat exchanger

Info

Publication number
JP2510114Y2
JP2510114Y2 JP1989035811U JP3581189U JP2510114Y2 JP 2510114 Y2 JP2510114 Y2 JP 2510114Y2 JP 1989035811 U JP1989035811 U JP 1989035811U JP 3581189 U JP3581189 U JP 3581189U JP 2510114 Y2 JP2510114 Y2 JP 2510114Y2
Authority
JP
Japan
Prior art keywords
holes
temperature side
side fluid
hole
spacer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP1989035811U
Other languages
Japanese (ja)
Other versions
JPH02127959U (en
Inventor
信太郎 原田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Aisin Corp
Original Assignee
Aisin Seiki Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Aisin Seiki Co Ltd filed Critical Aisin Seiki Co Ltd
Priority to JP1989035811U priority Critical patent/JP2510114Y2/en
Priority to US07/498,688 priority patent/US5058665A/en
Publication of JPH02127959U publication Critical patent/JPH02127959U/ja
Application granted granted Critical
Publication of JP2510114Y2 publication Critical patent/JP2510114Y2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

【考案の詳細な説明】 〔考案の目的〕 (産業上の利用分野) 本考案は、積層熱交換器に関し、ヘリウム冷凍機等の
小型の高効率な熱交換器に関する。
DETAILED DESCRIPTION OF THE INVENTION [Object of the Invention] (Industrial field of application) The present invention relates to a laminated heat exchanger, and to a small and highly efficient heat exchanger such as a helium refrigerator.

(従来の技術) 従来、この種の熱交換器として実公昭63-50618号公報
に開示され、第5図に示されるものがあつた。このもの
は、第5図において、熱伝導率の大きな材料、例えば、
アルミニウムで形成され高温側流体Aと低温側流体Bと
を熱交換させる多孔板1と、熱伝導率の小さな材料、例
えば、プラスチツクで形成され高温側流体Aと低温側流
体Bとを分離するスペーサ2とが交互に積層され接着又
は接合して製作されている。
(Prior Art) Conventionally, as this type of heat exchanger, there is one disclosed in Japanese Utility Model Publication No. 63-50618 and shown in FIG. In FIG. 5, this is a material having a large thermal conductivity, for example,
A porous plate 1 made of aluminum for exchanging heat between the high temperature side fluid A and the low temperature side fluid B, and a spacer for separating the high temperature side fluid A and the low temperature side fluid B formed of a material having a small thermal conductivity, for example, plastic. It is manufactured by alternately laminating 2 and bonding or joining.

(考案が解決しようとする課題) しかしながら、上記した従来の熱交換器は、スペーサ
を介して相隣接する多孔板の配列が不規則であるか、又
は第5図に示すように略一致しているため、この熱交換
器の全伝熱面を流れる流量分布が悪く、特に多孔板の表
面粗度が低いので熱交換効率が期待した程良くなく、圧
力損失も大きいという問題があつた。
(Problems to be solved by the invention) However, in the above-described conventional heat exchanger, the arrangement of the perforated plates adjacent to each other via the spacer is irregular, or as shown in FIG. Therefore, the distribution of the flow rate on all the heat transfer surfaces of this heat exchanger is poor, and since the surface roughness of the perforated plate is particularly low, the heat exchange efficiency is not as good as expected and the pressure loss is large.

そこで本考案は、出来る限り流量分布と流速の均一化
を行つて全多孔板の伝熱面積を有効に使用し熱交換率が
高く、圧力損失が少ない積層熱交換器を提供することを
その技術的課題とする。
Therefore, the present invention aims to provide a laminated heat exchanger having a high heat exchange rate and a small pressure loss by making the flow rate distribution and the flow velocity as uniform as possible and effectively using the heat transfer area of the perforated plate. Subject.

〔考案の構成〕[Constitution of device]

(課題を解決するための手段) 上記した技術的課題を解決するために講じた手段は、
当該積層熱交換器において、前記各多孔板の孔が夫々同
一の孔間ピッチ配列を成し、各多孔板は前記スペーサを
介して隣接する各多孔板の孔の各孔位置が一方の多孔板
の各孔がそれに隣接する多孔板の最も近い複数個の孔に
対して等間隔を成すように配置し、多孔板の孔の中心軸
とスペーサを介して相隣接する多孔板の前記孔と最も近
くにある孔の中心軸の間隔が、前記孔の内径と略等しく
なるように構成したことである。
(Means for Solving the Problems) Means taken for solving the above technical problems are
In the laminated heat exchanger, the holes of each of the perforated plates have the same inter-hole pitch arrangement, and each of the perforated plates has one hole position of each hole of the adjacent perforated plates through the spacer. The holes of the perforated plate are arranged at equal intervals with respect to the nearest holes of the adjacent perforated plate, and the central axis of the holes of the perforated plate and the hole of the adjacent perforated plate are most adjacent to each other via a spacer. The distance between the central axes of nearby holes is substantially equal to the inner diameter of the holes.

前記多孔板の厚さと孔の内径及びスペーサの厚さが、
略4:4:1の比を有するのが望ましい。
The thickness of the perforated plate and the inner diameter of the holes and the thickness of the spacer are
It is desirable to have a ratio of approximately 4: 4: 1.

また前記多孔板の全孔の両端面側を面取しても良い。 Further, both end surfaces of all the holes of the perforated plate may be chamfered.

(作用及び考案の効果) これによれば、高温側流体或いは低温側流体が多孔板
の各孔をある流速で流れ、この孔から流出して隣合う多
孔板の孔に流入する場合に、複数等分(後述する実施例
では3等分)して、夫々流入し、どの孔の流量も略等し
く流れる。また、この過程で孔の断面積と、スペーサの
間隙がこの孔の径とで形成する断面積とが略等しいた
め、流速が殆ど変化せず、流量分布も略均一になつて流
れる。従つて、高温側流体及び低温側流体が多孔板の全
孔及びスペーサが形成する間隙を略均一な流速と流量分
布で通過するので、全ての伝熱表面が有効に熱伝達に寄
与し熱交換効率を向上することができると共に、圧力損
失を低減することができる。更に全ての孔の両端に滑ら
かな面取りを施してやれば、圧力損失を更に低減するこ
とができる。
According to this, according to this, when the high temperature side fluid or the low temperature side fluid flows through each hole of the perforated plate at a certain flow velocity and flows out from this hole and into the hole of the adjacent perforated plate, a plurality of holes are formed. They are equally divided (three equally divided in the embodiment described later) and flow into each, and the flow rates of all the holes are substantially equal. Further, in this process, since the cross-sectional area of the hole and the cross-sectional area of the spacer formed by the diameter of the hole are substantially equal to each other, the flow velocity is hardly changed and the flow rate distribution is substantially uniform. Therefore, the high temperature side fluid and the low temperature side fluid pass through all the holes of the perforated plate and the gap formed by the spacers with a substantially uniform flow velocity and flow rate distribution, so that all the heat transfer surfaces effectively contribute to heat transfer and heat exchange. The efficiency can be improved and the pressure loss can be reduced. Further, if both ends of all the holes are chamfered smoothly, the pressure loss can be further reduced.

(実施例) 以下、本考案の一実施例を図面に基づき説明する。Hereinafter, an embodiment of the present invention will be described with reference to the drawings.

第1図及び第2図において、熱伝導率の大きな材料、
例えば、銅で形成され、高温側流体Aと低温側流体Bと
を熱交換させる板厚4mmの多孔板1a,1bが、高温側流体A
と低温側流体Bとを分離し、熱伝導率の小さな材料、例
えば、ステンレスで形成されるスペーサ2を介して交互
に間隙1.25mmで積層されている。スペーサ2は多孔板1
a,1bに接着もしくは接合されていて、また多孔板1a,1b
の各孔3a,3bはその両端をエツチング等により面取りさ
れている。
In FIGS. 1 and 2, a material having a large thermal conductivity,
For example, the perforated plates 1a and 1b having a thickness of 4 mm, which are made of copper and exchange heat between the high temperature side fluid A and the low temperature side fluid B, are the high temperature side fluid A.
And the low temperature side fluid B are separated, and they are alternately laminated with a gap of 1.25 mm via a spacer 2 made of a material having a small thermal conductivity, for example, stainless steel. Spacer 2 is perforated plate 1
Adhered or bonded to a, 1b, and perforated plates 1a, 1b
Both ends of the holes 3a and 3b are chamfered by etching or the like.

第3図及び第4図に示すように、多孔板1a,1bの各孔3
a,3bは同一の孔間ピッチ配列を成し、多孔板1aの各孔3a
の中心軸間距離は第3図に示すように多孔板1bの各孔3
a,3b,3cの中心軸間距離と同じであり、この間隔は各孔
の径と同等の5mmとされている。また、多孔板1aはスペ
ーサ2を介して隣接する多孔板1bの孔3bの各孔位置が一
方の多孔板1aの各孔3aがそれに隣接する多孔板1bの最も
近い3個の孔3b1,3b2,3b3に対して等間隔を成すように
配置されている。
As shown in FIG. 3 and FIG. 4, each hole 3 of the perforated plates 1a, 1b
a and 3b have the same hole pitch arrangement, and each hole 3a of the perforated plate 1a
As shown in Fig. 3, the distance between the central axes of the holes 3 of the perforated plate 1b
It is the same as the distance between the central axes of a, 3b, and 3c, and this distance is set to 5 mm, which is equivalent to the diameter of each hole. Further, in the perforated plate 1a, the positions of the holes 3b of the perforated plates 1b adjacent to each other via the spacer 2 are the three holes 3b1 and 3b2 of the perforated plate 1b which are adjacent to the holes 3a of the one perforated plate 1a. , 3b3 are arranged at equal intervals.

以上の構成から成る本実施例においては、高温側流体
A或いは低温側流体Bが多孔板1aの各孔3aをある流速で
流れ、この孔1aから流出して隣合う多孔板1bの孔3bに流
入する場合に、3等分して、夫々流入し、どの孔3b1,3b
2,3b3も略等しく流れる。また、この過程で孔3aの断面
積と、スペーサ2の間隙がこの孔3aの径とで形成する断
面積とが略等しいため、流速が殆ど変化せず、流量分布
も略均一になつて流れる。従つて、高温側流体A及び低
温側流体Bが多孔板1a,1bの全孔及びスペーサ2が形成
する間隙を略均一な流速と流量分布で通過するので、全
ての伝熱表面が有効に熱伝達に寄与し熱交換効率を向上
することができると共に、圧力損失を低減することがで
きる。更に全ての孔の両端に滑らかな面取りを施されて
いるので、圧力損失を更に低減することができる。
In this embodiment having the above structure, the high temperature side fluid A or the low temperature side fluid B flows through each hole 3a of the perforated plate 1a at a certain flow velocity and flows out from this hole 1a to the hole 3b of the adjacent perforated plate 1b. When it flows in, it is divided into three equal parts, each of which flows in, which hole 3b1,3b
2,3b3 flows almost equally. Further, in this process, since the cross-sectional area of the hole 3a and the cross-sectional area of the spacer 2 formed by the diameter of the hole 3a are substantially equal to each other, the flow velocity hardly changes and the flow rate distribution flows substantially evenly. . Therefore, since the high temperature side fluid A and the low temperature side fluid B pass through all the holes of the perforated plates 1a and 1b and the gap formed by the spacer 2 with a substantially uniform flow velocity and flow rate distribution, all the heat transfer surfaces are effectively heated. It is possible to contribute to the transfer, improve the heat exchange efficiency, and reduce the pressure loss. Further, since both ends of all the holes are smoothly chamfered, the pressure loss can be further reduced.

尚、以上説明した実施例においては多孔板1a,1bにつ
いて説明したが、多孔板の枚数は何枚でも良く、要は互
いに隣合う多孔板がそれらの孔が夫々同一の孔間ピッチ
配列を成し、各多孔板がスペーサを介して隣接する各多
孔板の孔の各孔位置が一方の多孔板の各孔がそれに隣接
する多孔板の最も近い複数個の孔に対して等間隔を成す
ように配置し、多孔板の孔の中心軸とスペーサを介して
相隣接する多孔板の孔と最も近くにある孔の中心軸の間
隔が、孔の内径と略等しくなるように構成されていれば
良い。
Although the porous plates 1a and 1b have been described in the above-described embodiments, the number of the porous plates may be any number, that is, adjacent porous plates have their holes having the same hole pitch arrangement. Then, the positions of the holes of the perforated plates that are adjacent to each other through the spacers are such that the holes of one of the perforated plates are evenly spaced from the nearest holes of the adjacent perforated plate. If the distance between the center axis of the hole of the perforated plate and the center axis of the hole closest to the hole of the perforated plate adjacent to each other via the spacer is substantially equal to the inner diameter of the hole, good.

【図面の簡単な説明】[Brief description of drawings]

第1図は本考案に従つた積層熱交換器の一実施例を示す
部分横断面図、第2図は第1図の縦断面図、第3図は高
温側流体及び低温側流体が流れる流路の構成を示す部分
拡大横断面図、第4図は第3図の縦断面図、第5図は従
来の積層熱交換器を示す部分縦断面図である。 1a,1b……多孔板、2……スペーサ、3a,3b,3b1,3b2,3b3
……孔、A……高温側流体、B……低温側流体。
FIG. 1 is a partial cross-sectional view showing an embodiment of a laminated heat exchanger according to the present invention, FIG. 2 is a vertical cross-sectional view of FIG. 1, and FIG. 3 is a flow of a high temperature side fluid and a low temperature side fluid. FIG. 4 is a partially enlarged cross-sectional view showing the structure of the passage, FIG. 4 is a vertical cross-sectional view of FIG. 3, and FIG. 5 is a partial vertical cross-sectional view of a conventional laminated heat exchanger. 1a, 1b ... perforated plate, 2 ... spacer, 3a, 3b, 3b1,3b2,3b3
...... Hole, A ... High temperature side fluid, B ... Low temperature side fluid.

Claims (1)

(57)【実用新案登録請求の範囲】(57) [Scope of utility model registration request] 【請求項1】高温側流体と低温側流体とが熱交換を行う
多孔板と、前記高温側流体と前記低温側流体とを分離す
るスペーサとを交互に積層して成る積層熱交換器におい
て、前記各多孔板の孔が夫々同一の孔間ピッチ配列を成
し、各多孔板は前記スペーサを介して隣接する各多孔板
の孔の各孔位置が一方の多孔板の各孔がそれに隣接する
多孔板の最も近い複数個の孔に対して等間隔を成すよう
に配置し、前記多孔板の孔の中心軸と前記スペーサを介
して相隣接する多孔板の前記孔と最も近くにある孔の中
心軸の間隔が、前記孔の内径と略等しいことを特徴とす
る積層熱交換器。
1. A laminated heat exchanger in which a porous plate for exchanging heat between a high temperature side fluid and a low temperature side fluid and a spacer for separating the high temperature side fluid and the low temperature side fluid are alternately laminated, The holes of the perforated plates form the same inter-hole pitch arrangement, and the perforated plates have the respective hole positions of the holes of the respective perforated plates which are adjacent to each other through the spacer, and the respective holes of one of the perforated plates are adjacent to it. Arranged at equal intervals to the closest plurality of holes of the perforated plate, of the holes closest to the central axis of the holes of the perforated plate and the holes of the perforated plates adjacent to each other via the spacer. A laminated heat exchanger characterized in that the distance between the central axes is substantially equal to the inner diameter of the hole.
JP1989035811U 1989-03-28 1989-03-29 Laminated heat exchanger Expired - Lifetime JP2510114Y2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP1989035811U JP2510114Y2 (en) 1989-03-29 1989-03-29 Laminated heat exchanger
US07/498,688 US5058665A (en) 1989-03-28 1990-03-26 Stacked-plate type heat exchanger

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1989035811U JP2510114Y2 (en) 1989-03-29 1989-03-29 Laminated heat exchanger

Publications (2)

Publication Number Publication Date
JPH02127959U JPH02127959U (en) 1990-10-22
JP2510114Y2 true JP2510114Y2 (en) 1996-09-11

Family

ID=31541492

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1989035811U Expired - Lifetime JP2510114Y2 (en) 1989-03-28 1989-03-29 Laminated heat exchanger

Country Status (1)

Country Link
JP (1) JP2510114Y2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3879099B2 (en) * 2002-08-05 2007-02-07 グローバル クーリング ビー ヴイ Heat exchanger for Stirling engine

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58112873U (en) * 1982-01-20 1983-08-02 株式会社日立製作所 Laminated heat exchanger

Also Published As

Publication number Publication date
JPH02127959U (en) 1990-10-22

Similar Documents

Publication Publication Date Title
JP4127859B2 (en) Plate heat exchanger for three heat exchange fluids
US5628363A (en) Composite continuous sheet fin heat exchanger
JP6531325B2 (en) Heat exchanger
US5058665A (en) Stacked-plate type heat exchanger
JP2510114Y2 (en) Laminated heat exchanger
JP2952261B2 (en) Plate heat exchanger
GB2539915A (en) Heat exchangers
JPS62213688A (en) Plate fin heat exchanger
JPS61114094A (en) Heat exchanger
JPH0534089A (en) Heat exchanging element
JPS60256799A (en) Lamination type heat exchanger
JP2523797B2 (en) Stacked heat exchanger
CN209910467U (en) Double-sided integrated runner plate for heat exchanger
JP2741950B2 (en) Stacked heat exchanger
JPH0734293Y2 (en) Laminated heat exchanger
CN214173057U (en) Sensible heat type heat exchange core
JPH0318872Y2 (en)
JPH0338612Y2 (en)
CN210602923U (en) Energy-saving plate heat exchanger
JPH0429957B2 (en)
JPS62258992A (en) Laminate type heat exchanger
JPH04371794A (en) Lamination type heat exchanger
JPH0697157B2 (en) Heat exchanger
JPS60101488A (en) Layered type heat exchanger
JPH05701Y2 (en)