JP2507783B2 - Control device for air conditioner - Google Patents

Control device for air conditioner

Info

Publication number
JP2507783B2
JP2507783B2 JP63138772A JP13877288A JP2507783B2 JP 2507783 B2 JP2507783 B2 JP 2507783B2 JP 63138772 A JP63138772 A JP 63138772A JP 13877288 A JP13877288 A JP 13877288A JP 2507783 B2 JP2507783 B2 JP 2507783B2
Authority
JP
Japan
Prior art keywords
temperature
heat
combustion amount
unit
pressure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP63138772A
Other languages
Japanese (ja)
Other versions
JPH01306779A (en
Inventor
博久 今井
晃一 竹村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP63138772A priority Critical patent/JP2507783B2/en
Publication of JPH01306779A publication Critical patent/JPH01306779A/en
Application granted granted Critical
Publication of JP2507783B2 publication Critical patent/JP2507783B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【発明の詳細な説明】 産業上の利用分野 本発明は燃焼により熱媒体を加熱する空気調和機の制
御装置の特に燃焼量制御に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a control device for an air conditioner that heats a heat medium by combustion, and more particularly to control of a combustion amount.

従来の技術 室内外のユニットを冷媒配管接続して、暖冷房を行う
装置として、ヒートポンプエアコンが一般的に実用化さ
れている。しかし、ヒートボンプエアコンの場合には、
暖房を最も必要とする低外気温時に能力が低下し、高温
の強風が吹き出せないという課題がある。
2. Description of the Related Art A heat pump air conditioner has been generally put into practical use as a device for heating and cooling by connecting indoor and outdoor units with a refrigerant pipe. But in the case of heat pump air conditioners,
There is a problem that the capacity decreases at the time of low outside temperature, which requires the most heating, and high-temperature strong wind cannot be blown out.

このような課題を解決するものとして例えば特願昭61
−245729号のシステムがある。すなわち第9図におい
て、暖房運転時には、先ず暖房開始時に第1電磁弁1、
第2電磁弁2、及び開閉弁3を閉成し、第3電磁弁4、
第4電磁弁5を開成して圧縮機6を運転する。第1電磁
弁1と第2逆止弁7の作用により冷媒経路は封止された
状態となるので、室外冷媒凝縮機8、アキュムレータ9
及びこれを接続した各種冷媒配管に分布していた冷媒は
圧縮機6の運転で吸入ポンプダウンされることになり、
全ての冷媒は第1逆止弁10を経て冷媒加熱機11に汲み上
げられてしまう。このポンプダウン運転後に圧縮機6を
停止し、第4電磁弁5を閉成すると共にバーナ(図示せ
ず)に点火して暖房運転を開始する。冷媒加熱機11に汲
み上げられた熱媒体はバーナにより加熱されて蒸発する
ことによる蒸発圧力の上昇で、蒸発した高温高圧の冷媒
ガスは冷媒加熱機11から第3電磁4、冷媒配管12から室
内熱交換器13に圧送される。このとき室内ファン14を運
転すると高温高圧の冷媒ガスは放熱して暖房を行うこと
により凝縮して液化する。冷媒液は冷媒配管15から第3
逆止弁16を経て受液器17に流入し受液されることにな
る。受液の液面が一定レベルになると開閉弁3を開成し
て、蒸発電力が受液器17に加わることになり、冷媒加熱
器11と同一静圧となるために、受液器17の液面水頭差圧
により、受液器17内の冷媒液は冷媒加熱器11に流入す
る。受液器17の液面が低下した後開閉弁3は閉成して初
期の状態になる。
To solve such a problem, for example, Japanese Patent Application No. 61
There is a system of −245729. That is, in FIG. 9, at the time of heating operation, first, at the start of heating, the first solenoid valve 1,
The second solenoid valve 2 and the opening / closing valve 3 are closed, and the third solenoid valve 4,
The fourth solenoid valve 5 is opened to operate the compressor 6. Since the refrigerant path is sealed by the action of the first solenoid valve 1 and the second check valve 7, the outdoor refrigerant condenser 8 and the accumulator 9 are provided.
And, the refrigerant distributed in the various refrigerant pipes connected to it is sucked down by the operation of the compressor 6,
All the refrigerant is pumped up to the refrigerant heater 11 via the first check valve 10. After the pump down operation, the compressor 6 is stopped, the fourth solenoid valve 5 is closed, and a burner (not shown) is ignited to start the heating operation. The heat medium pumped up to the refrigerant heater 11 is heated by the burner to evaporate and the evaporation pressure rises, and the evaporated high-temperature and high-pressure refrigerant gas flows from the refrigerant heater 11 to the third electromagnetic 4 and from the refrigerant pipe 12 to the indoor heat. It is pumped to the exchanger 13. At this time, when the indoor fan 14 is operated, the high-temperature and high-pressure refrigerant gas radiates heat and is heated to condense and liquefy. Refrigerant liquid is the third from the refrigerant pipe 15
After passing through the check valve 16, the liquid flows into the liquid receiver 17 and is received. When the liquid level of the received liquid reaches a certain level, the on-off valve 3 is opened, and the evaporation power is applied to the liquid receiver 17, and the static pressure becomes the same as that of the refrigerant heater 11. The refrigerant liquid in the liquid receiver 17 flows into the refrigerant heater 11 due to the surface head differential pressure. After the liquid level of the liquid receiver 17 is lowered, the on-off valve 3 is closed to return to the initial state.

以上のように暖房運転時にはバーナで冷媒を加熱し室
内ユニットに熱を搬送するので、低外気温時でも高温の
強風を吹き出すことが出来るのであるが、高温の冷媒が
循環するために、例えば室内機のほこりづまり等システ
ムの異常により十分に熱交換が行えなかった場合には圧
力の上昇による配管の破裂等危険な状態に陥る。そこで
冷媒配管に安全装置として圧力スイッチを取り付け、圧
力が上昇すると圧力スイッチの作動で機器の運転を停止
して安全を保証し、更に圧力スイッチの作動点まで圧力
が上昇することを防ぐため冷媒配管に温度センサを取り
付け温度上昇を検知すると燃焼を停止して圧力の上昇を
抑制するなどの構成があった。
As described above, during the heating operation, the refrigerant is heated by the burner and the heat is transferred to the indoor unit, so it is possible to blow out a high-temperature strong wind even at a low outdoor temperature. If heat exchange cannot be performed sufficiently due to a system abnormality such as dust clogging of the machine, a dangerous situation such as rupture of piping due to pressure increase will occur. Therefore, a pressure switch is attached to the refrigerant pipe as a safety device, and when the pressure rises, the operation of the pressure switch stops the operation of the equipment to guarantee safety and to prevent the pressure from rising to the operating point of the pressure switch. When a temperature sensor is attached to the temperature sensor to detect an increase in temperature, combustion is stopped to suppress an increase in pressure.

発明が解決しようとする課題 しかしながら上記のような方式では、配管圧力の上昇
を温度上昇で近似して検知し燃焼を停止するので、圧力
と温度には密接な関係があっても温度センサのばらつき
や温度センサの取り付け場所、取り付け方によるばらつ
き等により検知温度で近似した圧力のばらつきは大き
く、温度により圧力上昇を検知できず圧力スイッチ作動
点まで圧力が上昇してしまう危険性があり、又、ばらつ
きを考慮して確実に圧力スイッチ作動の前に温度で検知
する設計にすると、冷媒が低温でも燃焼を停止して十分
な暖房運転を行えないという課題を有していた。
However, in the above method, since the rise of the pipe pressure is detected by approximating the rise of the temperature and the combustion is stopped, even if there is a close relationship between the pressure and the temperature, there is a variation in the temperature sensor. There is a large variation in the pressure that is approximated by the detected temperature due to variations in the mounting location and mounting method of the temperature sensor, and there is a risk that the pressure rise due to temperature cannot be detected and the pressure rises to the pressure switch operating point. If the design is made to reliably detect the temperature before operating the pressure switch in consideration of variations, there is a problem that the combustion is stopped and the heating operation cannot be sufficiently performed even when the refrigerant is at a low temperature.

本発明はかかる従来の課題を解消するもので、配管温
度により配管圧力を近似して検知するときに発生するば
らつきを補正し、圧力上昇の前に確実に燃焼量を制御し
て安全性を確保し、十分な暖房能力を発揮することを目
的とする。
The present invention solves such a conventional problem, and corrects a variation that occurs when the pipe pressure is approximated and detected by the pipe temperature, and reliably controls the combustion amount before the pressure rises to ensure safety. However, the purpose is to exert sufficient heating capacity.

課題を解決するための手段 上記課題を解決するために本発明の空気調和機の制御
装置は、燃焼により熱媒体を加熱する熱源と、熱媒体と
の熱交換により空気を加熱する熱交換器と、熱媒体を前
記熱源と前記熱交換器で循環させる熱搬送手段と、前記
熱交換器に流入する熱媒体の温度を検知する温度検知手
段と、熱媒体の圧力上昇により作動して燃焼を停止する
圧力スイッチと、前記熱源を制御する制御部を有し、前
記制御部は前記圧力スイッチが動作したときの前記温度
検知手段の検知温度により検知温度または燃焼量の補正
値を設定する設定部と、前記温度検知手段の検知温度と
前記設定部の補正値より燃焼量を演算する演算部と、前
記演算部の演算結果なより前記熱源の燃焼量の制御する
熱源制御部を有する構成としたものであり。
Means for Solving the Problems To solve the above problems, the control device for an air conditioner of the present invention is a heat source that heats a heat medium by combustion, and a heat exchanger that heats air by heat exchange with the heat medium. , Heat transfer means for circulating the heat medium between the heat source and the heat exchanger, temperature detecting means for detecting the temperature of the heat medium flowing into the heat exchanger, and combustion due to pressure increase of the heat medium to stop combustion A pressure switch and a control unit for controlling the heat source, and the control unit sets a correction value of a detected temperature or a combustion amount according to a temperature detected by the temperature detection unit when the pressure switch operates. A configuration including a calculation unit that calculates a combustion amount from the detected temperature of the temperature detection unit and a correction value of the setting unit, and a heat source control unit that controls the combustion amount of the heat source based on the calculation result of the calculation unit And.

作用 本発明は上記した構成によって、圧力スイッチが作動
したときの温度センサの検知温度より補正値を設定し、
以後検知温度により設定された補正値だけ補正した温度
により燃焼量を演算し決定するので、温度による圧力の
近似検知のばらつきを補正し、燃焼量制御により確実に
圧力上昇を抑制して安全性を確保し、十分な暖房能力を
発揮することができるのである。
Action The present invention, by the above configuration, sets the correction value from the temperature detected by the temperature sensor when the pressure switch is activated,
After that, since the combustion amount is calculated and determined by the temperature corrected by the correction value set by the detected temperature, the variation in the approximate detection of the pressure due to the temperature is corrected, and the combustion amount control reliably suppresses the pressure rise to ensure safety. It is possible to secure it and to exert sufficient heating capacity.

実施例 以下、本発明の実施例を添付図面にもとづいて説明す
る。なお、実施例の説明にあたっては第9図と同一部分
には便宜上同一符号を付し、説明を省略する。
Embodiments Embodiments of the present invention will be described below with reference to the accompanying drawings. In the description of the embodiment, the same parts as those in FIG. 9 are designated by the same reference numerals for convenience, and the description thereof will be omitted.

第1図は、本発明のシステムブロック図を示す。第1
図に於て18は第9図と同様の機能を有する熱搬送手段、
19は圧力を検知する圧力スイッチで配管に取り付けら
れ、平常時には閉成され圧力上昇時に開成される構成の
スイッチであり、圧力スイッチ19が開成されると第1電
磁弁1、第2電磁弁2、開閉弁3、第3電磁弁4、第4
電磁弁5、圧縮機6、熱源11等の電源供給を停止するも
のである。20は熱媒体即ち冷媒の温度を検知するサーミ
スタで配管に取り付けられている。21は熱源11を制御す
る制御部、22は設定部で圧力スイッチ19が圧力上昇によ
り開成したときのサーミスタ20の検知温度TPと予め定め
た温度TSとの差△T=TS−TPを演算し△Tを補正値とし
て設定する。圧力スイッチ19が開成しなければ△T=0
である。23は演算部でサーミスタ20の検知温度Tと設定
部22で設定した補正値△Tにより補正された補正温度TH
=T+△Tより燃焼量Q1を演算する。24は室温を検知す
る第2のサーミスタで、25は第2の演算部で第2のサー
ミスタ20の検知温度より燃焼量Q2を演算する。26はQ1と
Q2を比較して小さい方を燃焼量Qとして出力する比較
部、27は比較部26から入力する燃焼量で熱源11を燃焼さ
せる熱源制御部である。第2図に制御部21の電気回路の
1実施例を示す。第1電磁弁1それを開閉する第1リレ
ー28の直列回路、第2電磁弁2とそれを開閉する第2リ
レー29の直列回路、開閉弁3とそれを開閉する第3リレ
ー30の直列回路、第3電磁弁4とそれを開閉する第4リ
レー31の直列回路、第4電磁弁5とそれを開閉する第5
リレー32の直列回路、圧縮機6とそれを入切する第6リ
レー33の直列回路、熱源11とそれを駆動制御する第7リ
レー34の直列回路と交流電源35が並列に接続され、交流
電源35と並列に接続されたトランス36を介して低電圧回
路を形成し、低電圧回路ダイオードブリッジ37で全波整
流、コンデンサ38で平滑化して直流電源を形成し、定電
圧IC39により安定した電圧をマイクロコンピュータ40に
供給する。第1リレー28を駆動する第1トランジスタ4
1、第2リレー29を駆動する第2トランジスタ42、第3
リレー30を駆動する第3トランジスタ43、第4リレー31
を駆動する第4トランジスタ44、第5リレー32を駆動す
る第5トランジスタ45、第6リレー33を駆動する第6ト
ランジスタ46、第7リレー34を駆動する第7トランジス
タ47は総てマイクロコンピュータ40により制御する。第
1リレー28と第1トランジスタ41の直列回路、第2リレ
ー29と第2トランジスタ42の直列回路、第3リレー30と
第3トランジスタ43の直列回路、第4リレー31と第4ト
ランジスタ44の直列回路、第5リレー32と第5トランジ
スタ45の直列回路、第6リレー33と第6トランジスタ46
の直列回路、第7リレー34と第7トランジスタ47の直列
回路が並列に接続され、その並列回路と圧力スイッチ19
が直列に接続されて直列電源に接続されている。即ち圧
力スイッチ19が開成すると全てのリレーに電圧が供給さ
れなくなり第1電磁弁1、第2電磁弁2、開閉弁3、第
3電磁弁4、第4電磁弁5が閉成し、圧縮機6、熱源11
は停止する。ここで圧力スイッチ19と直列に接続された
第1抵抗48と、第8トランジスタ49と第2抵抗50により
形成した圧力スイッチ作動検知回路により圧力スイッチ
19が閉成状態であればLO、開成状態であればHIがマイク
ロコンピュータ40に入力する。またサーミスタ20と直列
に接続された第3抵抗51の両端電圧がマイクロコンピュ
ータ40に入力し、AD変換により電圧を知りサーミスタ20
の抵抗値即ちサーミスタ20の取り付け部の配管温度を検
知する。またサーミスタ24と直列に接続された第4抵抗
52の両端電圧がマイクロコンピュータ40に入力し、AD変
換により電圧を知りサーミスタ24の抵抗値即ちサーミス
タ24の取り付け部の室温を検知する。第3図に配管圧力
と検知温度の特性を示す。配管圧力P>PMAXで圧力スイ
ッチ9が開成して機器を停止する。しかし安全のために
はP<PMAXの領域で熱源11の燃焼量を制御することによ
り圧力上昇を抑制できる。このP<PMAXの領域で配管圧
力Pをサーミスタ20の検知温度Tにより近似的に検知す
れば良いのであるが配管圧力と検知温度には第3図に示
すようにばらつきがあり、aやbの特性がある。そこで
マイクロコンピュータ40が圧力スイッチ作動検知回路よ
りHIを入力すると圧力スイッチ19が開成した、即ち配管
圧力P=PMAXを検知し、そのときのサーミスタ20による
検知温度TPと予め定めた設定温度TSとの差△T=TS−TP
を補正値として設定する。aの特性であれば△Ta=TS−
TPa、bの特性であれば△Tb=TS−TPbであり、以後マイ
クロコンピュータ40はサーミスタ20により検知した温度
を補正した温度TH=T+△Tを基に演算部23が燃焼量を
演算する。つまり配管圧力P=P1の時サーミスタ20の検
知温度はaの特性であればT1a、bの特性であればT1bで
あるが、TH=T1a+△Ta、TH=T1b+△Tbで補正するの
で、aやbの特性であっても仮想cの直線となりばらつ
きは補正される。第4図に演算部23が補正温度TH=T+
△Tより燃焼量Q1を演算した演算結果を示す。燃焼量Q1
はQH、QLの2段階に切り替えることができるとすると、
補正温度THがTH<TH1ならばQ1=QHとする。補正温度が
上昇しTH>TH1になると圧力上昇を抑えるために燃焼量
をQ1=QLとする。更に補正温度が上昇しTH>TH2になる
と安全のためにQ1=0即ち燃焼を停止する。第5図に第
2のサーミスタ24が室温TRを検知したときの第2の演算
部25の演算結果を示す。室温TRがTR<TR1ならばQ2=Q
H、室温が上昇しTR>TR1になるとQ2=QL、更に上昇しTR
>TR2になるとQ2=0即ち燃焼を停止する。TR1、TR2は
使用者が設定する設定温度により変化するものであり、
室温TRによって燃焼量を切り換えることにより室温が使
用者の設定温度に一致するように制御する。比較部26は
演算部23の演算結果Q1と第2の演算部26の演算結果Q2を
比較して小さい方の燃焼量をQとして熱源制御部27に出
力する。補正温度THと室温TRと比較部26の出力Qの関係
を次表に示す。
FIG. 1 shows a system block diagram of the present invention. First
In the figure, 18 is a heat transfer means having the same function as in FIG.
Reference numeral 19 denotes a pressure switch for detecting pressure, which is attached to the pipe, is normally closed, and is opened when the pressure rises. When the pressure switch 19 is opened, the first solenoid valve 1 and the second solenoid valve 2 are opened. , Open / close valve 3, third solenoid valve 4, fourth
The power supply to the solenoid valve 5, the compressor 6, the heat source 11, etc. is stopped. 20 is a thermistor that detects the temperature of the heat medium, that is, the refrigerant, and is attached to the pipe. Reference numeral 21 is a control section for controlling the heat source 11, and 22 is a setting section for calculating a difference ΔT = TS-TP between a temperature TP detected by the thermistor 20 and a predetermined temperature TS when the pressure switch 19 is opened due to an increase in pressure. ΔT is set as a correction value. If the pressure switch 19 does not open, △ T = 0
Is. Reference numeral 23 denotes a calculation unit, which is the correction temperature TH corrected by the detection temperature T of the thermistor 20 and the correction value ΔT set by the setting unit 22.
The combustion amount Q1 is calculated from = T + ΔT. Reference numeral 24 is a second thermistor for detecting the room temperature, and 25 is a second calculation unit for calculating the combustion amount Q2 from the detected temperature of the second thermistor 20. 26 is Q1
A comparison unit that compares Q2 and outputs the smaller one as the combustion amount Q, and 27 is a heat source control unit that combusts the heat source 11 with the combustion amount input from the comparison unit. FIG. 2 shows an embodiment of the electric circuit of the control unit 21. First solenoid valve 1 A series circuit of a first relay 28 that opens and closes it, a series circuit of a second solenoid valve 2 and a second relay 29 that opens and closes it, a series circuit of a shutoff valve 3 and a third relay 30 that opens and closes it. , A series circuit of a third solenoid valve 4 and a fourth relay 31 for opening and closing it, a fourth solenoid valve 5 and a fifth circuit for opening and closing it
A series circuit of the relay 32, a series circuit of the compressor 6 and a sixth relay 33 for connecting and disconnecting the compressor 6, a series circuit of the heat source 11 and a seventh relay 34 for driving and controlling the heat source 11 and an AC power source 35 are connected in parallel, and an AC power source. A low-voltage circuit is formed via a transformer 36 connected in parallel with 35, full-wave rectification is performed by a low-voltage circuit diode bridge 37, smoothing is performed by a capacitor 38 to form a DC power supply, and a stable voltage is generated by a constant-voltage IC 39. Supply to the microcomputer 40. First transistor 4 driving the first relay 28
1, the second transistor 42 for driving the second relay 29, the third
Third transistor 43 driving relay 30, fourth relay 31
The fourth transistor 44 for driving, the fifth transistor 45 for driving the fifth relay 32, the sixth transistor 46 for driving the sixth relay 33, and the seventh transistor 47 for driving the seventh relay 34 are all controlled by the microcomputer 40. Control. Series circuit of the first relay 28 and the first transistor 41, series circuit of the second relay 29 and the second transistor 42, series circuit of the third relay 30 and the third transistor 43, series circuit of the fourth relay 31 and the fourth transistor 44 Circuit, series circuit of fifth relay 32 and fifth transistor 45, sixth relay 33 and sixth transistor 46
, A series circuit of the seventh relay 34 and the seventh transistor 47 is connected in parallel, and the parallel circuit and the pressure switch 19
Are connected in series and connected to a series power supply. That is, when the pressure switch 19 is opened, no voltage is supplied to all relays, and the first solenoid valve 1, the second solenoid valve 2, the opening / closing valve 3, the third solenoid valve 4, and the fourth solenoid valve 5 are closed, and the compressor is closed. 6, heat source 11
Stops. Here, the pressure switch 19 is connected in series with the first resistor 48, and the pressure switch operation detection circuit formed by the eighth transistor 49 and the second resistor 50 causes the pressure switch to operate.
If 19 is closed, LO is input to the microcomputer 40, and if it is open, HI is input to the microcomputer 40. Further, the voltage across the third resistor 51 connected in series with the thermistor 20 is input to the microcomputer 40, and the voltage is known by AD conversion and the thermistor 20 is detected.
Resistance value, that is, the pipe temperature of the mounting portion of the thermistor 20 is detected. The fourth resistor connected in series with the thermistor 24
The voltage across 52 is input to the microcomputer 40, the voltage is known by AD conversion, and the resistance value of the thermistor 24, that is, the room temperature of the mounting portion of the thermistor 24 is detected. Fig. 3 shows the characteristics of pipe pressure and detected temperature. When the pipe pressure P> PMAX, the pressure switch 9 is opened to stop the equipment. However, for safety, the pressure rise can be suppressed by controlling the combustion amount of the heat source 11 in the region of P <PMAX. In this P <PMAX region, the pipe pressure P should be approximately detected by the detection temperature T of the thermistor 20, but the pipe pressure and the detection temperature have variations as shown in FIG. There is a characteristic. When the microcomputer 40 inputs HI from the pressure switch operation detection circuit, the pressure switch 19 is opened, that is, the pipe pressure P = PMAX is detected, and the temperature TP detected by the thermistor 20 at that time and the preset temperature TS are set. Difference ΔT = TS-TP
Is set as a correction value. If the characteristic is a, then ΔTa = TS-
If the characteristics are TPa and b, ΔTb = TS−TPb, and thereafter the microcomputer 40 calculates the combustion amount based on the temperature TH = T + ΔT obtained by correcting the temperature detected by the thermistor 20. That is, when the pipe pressure P = P1, the temperature detected by the thermistor 20 is T1a for the characteristic of a and T1b for the characteristic of b, but it is corrected by TH = T1a + ΔTa, TH = T1b + ΔTb. Even if the characteristic is b or b, it becomes a straight line of virtual c and the variation is corrected. In FIG. 4, the calculation unit 23 displays the correction temperature TH = T +.
The calculation result of calculating the combustion amount Q1 from ΔT is shown. Burning amount Q1
Assuming that you can switch between two levels of QH and QL,
If the correction temperature TH is TH <TH1, set Q1 = QH. When the correction temperature rises and TH> TH1, the combustion amount is set to Q1 = QL to suppress the pressure rise. When the correction temperature further rises and TH> TH2, for safety, Q1 = 0, that is, combustion is stopped. FIG. 5 shows the calculation result of the second calculation unit 25 when the second thermistor 24 detects the room temperature TR. If room temperature TR is TR <TR1, Q2 = Q
H, room temperature rises and TR> TR1, Q2 = QL, further rises TR
When> TR2, Q2 = 0, that is, combustion is stopped. TR1 and TR2 change depending on the set temperature set by the user,
By controlling the combustion amount by the room temperature TR, the room temperature is controlled to match the user's set temperature. The comparison unit 26 compares the calculation result Q1 of the calculation unit 23 and the calculation result Q2 of the second calculation unit 26 and outputs the smaller combustion amount as Q to the heat source control unit 27. The relationship between the corrected temperature TH, the room temperature TR and the output Q of the comparison unit 26 is shown in the following table.

以上の制御のフローチャートを第6図に示す。第6図
に於て機能を有する部品の記号を横に付す。以上の実施
例では室温を一定に制御し、且つ安全性を確保するとい
う効果がある。
A flowchart of the above control is shown in FIG. In FIG. 6, the symbols of parts having functions are added to the side. The above embodiments have the effects of controlling the room temperature at a constant level and ensuring safety.

次に本発明の他の実施例を第7図を用いて説明する。
第7図に於て前記実施例と相違する点は圧力スイッチ19
を高電圧側に接続したことであり、圧力スイッチ19が閉
成していればフォトカブラ53のダイオードと第5抵抗54
の直列回路に電流が流れるのでフォトカプラ53のトラン
ジスタと第6抵抗55に電流が流れ、マイクロコンピュー
タ40はL0入力を検知し、圧力スイッチ19が開成していれ
ばフォトカプラ53のダイオード電流が流れないのでトラ
ンジスタにも電流が流れずマイクロコンピュータ40はHI
入力を検知する。この構成によればリレーの溶着による
危険も回避できより安全なシステムを提供できるという
効果がある。以上の説明では温度センサを圧力スイッチ
と同じ場所に取り付けた構成で説明したが、温度センサ
を例えば室内機など別の場所に取り付けても同様の効果
を得る。又、以上の説明で燃焼量をQH、QLの2段階で説
明したが段階数を増やしたり連続的に変更可能としても
同様の効果を得る。その場合には第8図の直線dのよう
に予め燃焼量と検知温度の関係をQ=k1*T+k2(k1と
k2は定数)で設定しておき、1度圧力スイッチが作動す
るとその後は補正値△Tで検知温度を補正し、例えば検
知温度がT2であればQ2=k1*(T2+△T)+k2で燃焼量
を演算することになる。又、この場合には設定部22で検
知温度の補正値ではなく燃焼量の補正値を△Qとして設
定し、演算部23がQ=k1*T+k2−△Qで燃焼量を演算
すると第9図の直線eのようになり、検知温度がT2であ
ればQ2=k1*T2+k2−△Qとなり同じ結果を得ることが
できる。このように燃焼量の段階数を増やしたり連続的
に変更可能とするときめ細かな燃焼量制御が可能にな
る。
Next, another embodiment of the present invention will be described with reference to FIG.
In FIG. 7, the point different from the above embodiment is the pressure switch 19
Is connected to the high voltage side, and if the pressure switch 19 is closed, the diode of the photo-cabler 53 and the fifth resistor 54
Since the current flows in the series circuit of, the current flows in the transistor of the photocoupler 53 and the sixth resistor 55, the microcomputer 40 detects the L0 input, and the diode current of the photocoupler 53 flows if the pressure switch 19 is opened. Since there is no current, no current flows through the transistor and the microcomputer 40
Detect input. According to this configuration, there is an effect that a danger due to welding of the relay can be avoided and a safer system can be provided. In the above description, the temperature sensor is attached to the same place as the pressure switch, but the same effect can be obtained by attaching the temperature sensor to another place such as an indoor unit. Further, in the above description, the combustion amount is explained in two stages of QH and QL, but the same effect can be obtained even if the number of stages is increased or can be continuously changed. In that case, the relationship between the combustion amount and the detected temperature is previously expressed as Q = k1 * T + k2 (k1
Set k2 as a constant), and once the pressure switch is activated, the detected temperature is corrected with the correction value ΔT. For example, if the detected temperature is T2, burn with Q2 = k1 * (T2 + ΔT) + k2 The amount will be calculated. In this case, the setting unit 22 sets the correction value of the combustion amount as ΔQ instead of the correction value of the detected temperature, and the calculation unit 23 calculates the combustion amount by Q = k1 * T + k2-ΔQ. When the detected temperature is T2, Q2 = k1 * T2 + k2-ΔQ and the same result can be obtained. As described above, when the number of stages of the combustion amount is increased or can be continuously changed, fine combustion amount control can be performed.

発明の効果 以上のように本発明の空気調和機の制御装置によれば
次の効果が得られる。
Effects of the Invention As described above, according to the control device for an air conditioner of the present invention, the following effects are obtained.

(1) 圧力上昇により圧力スイッチが作動したときの
温度により補正値を設定し、以後補正された温度により
燃焼量を制御するので、確実に圧力上昇を抑制できる安
全な空気調和機を提供できる。
(1) Since the correction value is set according to the temperature when the pressure switch operates due to the pressure increase and the combustion amount is controlled by the corrected temperature thereafter, it is possible to provide a safe air conditioner capable of reliably suppressing the pressure increase.

(2) 又、温度センサによる圧力近似のばらつきを補
正できるので、逆に安全な圧力の領域で必要以上に燃焼
量を低下させることがなく、十分に暖房効果を発揮でき
る暖房能力の高い空気調和機を提供できる。
(2) Further, since the variation of the pressure approximation by the temperature sensor can be corrected, on the contrary, the air conditioning with a high heating capacity, which does not lower the combustion amount more than necessary in the safe pressure range and can sufficiently exert the heating effect. Machine can be provided.

(3) 温度センサの検知温度による圧力近似のばらつ
きを補正できるので、温度センサの取り付け場所の選択
範囲が広がり容易な設計を可能とする。
(3) Since variations in pressure approximation due to the temperature detected by the temperature sensor can be corrected, the selection range of the mounting location of the temperature sensor is widened, and an easy design is possible.

【図面の簡単な説明】[Brief description of drawings]

第1図は本発明の一実施例における空気調和機の制御装
置のシステムブロック図、第2図は同空気調和機の制御
部の電気回路図、第3図は検知温度と配管圧力の関係を
示す特性図、第4図は補正温度と燃焼量の関係を示す特
性図、第5図は室内温度と燃焼量の関係を示す特性図、
第6図はマイクロコンピュータの処理の流れを示すフロ
ーチャート、第7図は他の実施例の制御部の電気回路
図、第8図は他の実施例の検知温度と燃焼量の関係を示
す特性図、第9図は従来例を説明するシステム図であ
る。 11……熱源、13……熱交換器、18……熱搬送手段、19…
…圧力スイッチ、20……温度検知手段、21……制御部、
22……設定部、23……演算部、27……熱源制御部。
FIG. 1 is a system block diagram of a control device for an air conditioner according to an embodiment of the present invention, FIG. 2 is an electric circuit diagram of a control portion of the air conditioner, and FIG. 3 is a relationship between detected temperature and pipe pressure. FIG. 4 is a characteristic diagram showing the relationship between the correction temperature and the combustion amount, and FIG. 5 is a characteristic diagram showing the relationship between the indoor temperature and the combustion amount.
FIG. 6 is a flow chart showing the flow of processing of the microcomputer, FIG. 7 is an electric circuit diagram of the control unit of another embodiment, and FIG. 8 is a characteristic diagram showing the relationship between the detected temperature and the combustion amount of the other embodiment. , FIG. 9 is a system diagram for explaining a conventional example. 11 ... Heat source, 13 ... Heat exchanger, 18 ... Heat transfer means, 19 ...
… Pressure switch, 20… Temperature detection means, 21… Control section,
22 ... Setting section, 23 ... Calculation section, 27 ... Heat source control section.

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】燃焼により熱媒体を加熱する熱源と、熱媒
体との熱交換により空気を加熱する熱交換器と、熱媒体
を前記熱源と前記熱交換器で循環させる熱搬送手段と、
前記熱交換器に流入する熱媒体の温度を検知する温度検
知手段と、熱媒体の圧力上昇により作動して燃焼を停止
する圧力スイッチと、前記熱源を制御する制御部を有
し、前記制御部は前記圧力スイッチが動作したときの前
記温度検知手段の検知温度により検知温度または燃焼量
の補正値を設定する設定部と、前記温度検知手段の検知
温度と前記設定部の補正値より燃焼量を演算する演算部
と、前記演算部の演算結果により前記熱原の燃焼量を制
御する熱源制御部を有する空気調和機の制御装置。
1. A heat source for heating a heat medium by combustion, a heat exchanger for heating air by heat exchange with the heat medium, and a heat transfer means for circulating the heat medium between the heat source and the heat exchanger.
The control unit includes a temperature detection unit that detects the temperature of the heat medium flowing into the heat exchanger, a pressure switch that operates by an increase in the pressure of the heat medium to stop combustion, and a control unit that controls the heat source. Is a setting unit for setting the correction value of the detected temperature or the combustion amount according to the detection temperature of the temperature detection unit when the pressure switch is operated, and the combustion amount from the detection temperature of the temperature detection unit and the correction value of the setting unit. An air conditioner control device comprising: a calculation unit that performs calculation; and a heat source control unit that controls a combustion amount of the heat source based on a calculation result of the calculation unit.
【請求項2】制御部は室温を検知する第2の温度検知部
と、前記第2の温度検知手段の検知温度より燃焼量を演
算する第2の演算部を有し、演算部と前記第2の演算部
の演算結果を比較して燃焼量の小さい方を熱源制御部に
出力する比較部を有する特許請求の範囲第1項記載の空
気調和機の制御装置。
2. The control section has a second temperature detecting section for detecting a room temperature and a second calculating section for calculating a combustion amount based on the temperature detected by the second temperature detecting means. The control device for an air conditioner according to claim 1, further comprising a comparison unit that compares the calculation results of the two calculation units and outputs the one with a smaller combustion amount to the heat source control unit.
JP63138772A 1988-06-06 1988-06-06 Control device for air conditioner Expired - Fee Related JP2507783B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63138772A JP2507783B2 (en) 1988-06-06 1988-06-06 Control device for air conditioner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63138772A JP2507783B2 (en) 1988-06-06 1988-06-06 Control device for air conditioner

Publications (2)

Publication Number Publication Date
JPH01306779A JPH01306779A (en) 1989-12-11
JP2507783B2 true JP2507783B2 (en) 1996-06-19

Family

ID=15229838

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63138772A Expired - Fee Related JP2507783B2 (en) 1988-06-06 1988-06-06 Control device for air conditioner

Country Status (1)

Country Link
JP (1) JP2507783B2 (en)

Also Published As

Publication number Publication date
JPH01306779A (en) 1989-12-11

Similar Documents

Publication Publication Date Title
CA1305111C (en) Control system for a furnace operating in the continuous blower mode
JPH05312380A (en) Controller for air conditioner
JP2507783B2 (en) Control device for air conditioner
JP2506942B2 (en) Control device for air conditioner
JP2000097510A (en) Refrigerant heating type air conditioner
JPH0745954B2 (en) Air conditioner control device
JP4136155B2 (en) Air conditioner
JPH01111153A (en) Controller of air conditioner
JPH0748022B2 (en) Air conditioner control device
JPH0745955B2 (en) Air conditioner control device
JP3047297B2 (en) Air conditioner
JPS5947214B2 (en) air conditioner
JP2000097511A (en) Refrigerant heating type air conditioner
JPS5947212B2 (en) air conditioner
JPH01174842A (en) Safety device for prevention of overheating of heater in air conditioner
JPH01137168A (en) Air conditioner
JPH0387578A (en) Heat pump type air conditioner
JPS5947210B2 (en) air conditioner
JPS62225855A (en) Air conditioner
JPH01111155A (en) Controller of air conditioner
JPH02150652A (en) Controller for air conditioner
JPS5818120Y2 (en) refrigerator
JPH01111157A (en) Controller of air conditioner
JPS5947211B2 (en) air conditioner
JPH01111156A (en) Controller of air conditioner

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees