JP2506646B2 - Fluorescent lamp manufacturing method - Google Patents

Fluorescent lamp manufacturing method

Info

Publication number
JP2506646B2
JP2506646B2 JP60263362A JP26336285A JP2506646B2 JP 2506646 B2 JP2506646 B2 JP 2506646B2 JP 60263362 A JP60263362 A JP 60263362A JP 26336285 A JP26336285 A JP 26336285A JP 2506646 B2 JP2506646 B2 JP 2506646B2
Authority
JP
Japan
Prior art keywords
glass
amalgam
glass tube
forming substance
tube
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP60263362A
Other languages
Japanese (ja)
Other versions
JPS62123637A (en
Inventor
誠 福田
正毅 周防
慶一 浅田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electronics Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electronics Corp filed Critical Matsushita Electronics Corp
Priority to JP60263362A priority Critical patent/JP2506646B2/en
Publication of JPS62123637A publication Critical patent/JPS62123637A/en
Application granted granted Critical
Publication of JP2506646B2 publication Critical patent/JP2506646B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Manufacture Of Electron Tubes, Discharge Lamp Vessels, Lead-In Wires, And The Like (AREA)

Description

【発明の詳細な説明】 産業上の利用分野 本発明は螢光ランプの製造方法に関し、特にアマルガ
ム形成物質によって管内水銀蒸気圧が制御される螢光ラ
ンプの製造方法に関するものである。
Description: TECHNICAL FIELD The present invention relates to a method for manufacturing a fluorescent lamp, and more particularly to a method for manufacturing a fluorescent lamp in which the mercury vapor pressure in a tube is controlled by an amalgam-forming substance.

従来の技術 白熱電球に対する省電力効果を求めて、U形またはダ
ブルU形に成形した螢光ランプを、安定器,点灯管およ
び電球口金とともに密閉外管内に一体化した構造の螢光
ランプ装置が広く普及してきている。
Fluorescent lamp device having a structure in which a U-shaped or double-U-shaped fluorescent lamp is integrated in a sealed outer tube together with a ballast, a lighting tube, and a bulb base cap in order to save power for an incandescent light bulb. Has become widespread.

ところが、このような構成の螢光ランプ装置では、螢
光ランプが外管内に密閉される構造を採る関係上、螢光
ランプの周囲温度が最適の20〜25℃を越えて著しく高く
なる。このような場合には、水銀蒸気圧の過上昇を抑
え、発光効率の低下を防ぐため、純粋水銀より蒸気圧の
低いアマルガム形成物質を用いることが知られている。
同物質としては、純粋InまたはIn系の合金例えばBiIn,I
nSnPb等が最適とされており、現在製品化されて広く用
いられている。これらのアマルガム形成物質には水銀蒸
気圧に対し、それぞれに固有の最適温度があって、それ
は通常その金属または合金の溶融点付近である。したが
って、ガラス管内にアマルガム形成物質を設ける場所
は、その物質の種類によって決まることになる。放電空
間を避けてステム上に設けられることもあるが、一般に
は製造上の観点からもガラス管内に通じるガラス細管内
が選ばれる。ランプの点灯方向は口金上の場合が大部分
であるので、ガラス細管内に規定長さのガラス無空棒を
スペーサとして介してその上面にアマルガム形成物質が
保持され、ランプ点灯中電極輝点からの輻射熱によって
アマルガムの温度がその作用に最も適した温度に達する
ようになっている。
However, in the fluorescent lamp device having such a structure, the ambient temperature of the fluorescent lamp is significantly higher than the optimum temperature of 20 to 25 ° C. due to the structure in which the fluorescent lamp is sealed in the outer tube. In such a case, it is known to use an amalgam-forming substance having a vapor pressure lower than that of pure mercury in order to suppress an excessive rise in mercury vapor pressure and prevent a decrease in luminous efficiency.
As the same material, pure In or In-based alloy such as BiIn, I
nSnPb and the like are considered to be optimal, and are now commercialized and widely used. Each of these amalgam formers has its own optimum temperature for mercury vapor pressure, which is usually near the melting point of the metal or alloy. Therefore, the place where the amalgam forming substance is provided in the glass tube depends on the type of the substance. It may be provided on the stem while avoiding the discharge space, but in general, from the viewpoint of manufacturing, the inside of the glass thin tube communicating with the inside of the glass tube is selected. Since the lighting direction of the lamp is mostly on the base, the amalgam forming substance is held on the upper surface of the glass thin tube through a glass blank tube of a specified length as a spacer in the glass thin tube, and from the electrode bright point during lamp lighting. The radiant heat of the amalgam causes the temperature of the amalgam to reach the temperature most suitable for its action.

第3図はガラス管1の両端に設けられた一対の電極の
うち、アマルガム形成物質9を有する側の拡大断面図で
あって、電極コイル5は内部リード線6によって保持さ
れている。一端を封止されたガラス細管10の他端はガラ
ス管1の内部に向かう開口部7になっている。ガラス細
管10の中にはスペーサ8を介して球形のアマルガム形成
物質9が位置している。
FIG. 3 is an enlarged cross-sectional view of the side having the amalgam forming substance 9 among the pair of electrodes provided at both ends of the glass tube 1, and the electrode coil 5 is held by the internal lead wire 6. The other end of the glass thin tube 10 whose one end is sealed is an opening 7 that faces the inside of the glass tube 1. A spherical amalgam forming substance 9 is located in the glass capillary 10 via a spacer 8.

発明が解決しようとする問題点 ところで、インジウム系の合金は溶けやすいうえに、
簡単にガラス表面に付着する。そして、口金上点灯の場
合、第4図に示すようにアマルガム形成物質がガラス細
管10の頂部内面に付着したまま、スペーサ8の上面上に
位置しないことがある。このような状態になると、アマ
ルガム形成物質9と電極輝点間の距離は、スペーサ8に
よって規定されている当初の距離より長くなり、アマル
ガム形成物質9は最適温度よりはるかに低いままに放置
されランプ効率は著しく低下する。
Problems to be Solved by the Invention By the way, indium alloys are easily melted,
Easily adheres to the glass surface. When the lamp is turned on, the amalgam-forming substance may remain on the upper surface of the spacer 8 while being attached to the inner surface of the top of the glass capillary 10 as shown in FIG. In such a state, the distance between the amalgam forming substance 9 and the electrode bright spot becomes longer than the initial distance defined by the spacer 8, and the amalgam forming substance 9 is left at a temperature much lower than the optimum temperature and the lamp is left. Efficiency is significantly reduced.

本発明は、このような問題点を解決するためになされ
たもので、アマルガム形成物質の効果を十分に発揮さ
せ、高い発光効率を維持することができる螢光ランプの
製造方法を提供するものである。
The present invention has been made in order to solve such problems, and provides a method for manufacturing a fluorescent lamp capable of sufficiently exhibiting the effect of an amalgam-forming substance and maintaining high luminous efficiency. is there.

問題点を解決するための手段 発明者らは、アマルガム形成物質のガラス細管内面へ
の付着力が螢光ランプ製造工程における同物質の溶融状
態に大きな影響を受けることを知見し、本発明を完成す
るに至った。
Means for Solving Problems The inventors have found that the adhesive force of an amalgam-forming substance to the inner surface of a glass capillary tube is greatly affected by the molten state of the substance in the fluorescent lamp manufacturing process, and completed the present invention. Came to do.

すなわち、本発明の螢光ランプの製造方法は、ガラス
管の一端に設けられ、かつ内部にインジウム系のアマル
ガム形成物質が挿入された先端開口のガラス細管の前記
開口が上向きとなるように、前記ガラス管を保持し、前
記ガラス細管を加熱して封止し、次いで前記ガラス細管
の封止部分を前記アマルガム形成物質の溶融点以下の温
度まで冷却させた後、前記ガラス管の上下位置を反転さ
せ、しかる後前記ガラス管を加熱排気しこのガラス管内
に水銀を封入して螢光ランプを得ることを特徴とするも
のである。
That is, the method for manufacturing a fluorescent lamp of the present invention is provided at one end of a glass tube, and the opening of the glass capillary having a tip opening in which an indium-based amalgam forming substance is inserted is directed upward, Hold the glass tube, heat and seal the glass capillary, then cool the sealed portion of the glass capillary to a temperature below the melting point of the amalgam-forming substance, and then reverse the vertical position of the glass tube After that, the glass tube is heated and evacuated, and mercury is enclosed in the glass tube to obtain a fluorescent lamp.

作用 ガラス細管を加熱して封止した後、そのままガラス管
を上下に反転させると、アマルガム形成物質がまだ高温
のガラス細管内面に触れて瞬時に溶解してその内面に付
着する。この場合の付着は非常に強固なものであるとと
もに、この溶融が通常空気中で行なわれることから、材
質が酸化し、表面張力を失うため、再度この物質が室温
まで冷えても球形になりにくく、ガラス細管内面に付着
したままでいることが多い。
When the glass tube is heated and sealed, and then the glass tube is turned upside down as it is, the amalgam-forming substance touches the inner surface of the still hot glass tube and is instantly melted to adhere to the inner surface. In this case, the adhesion is very strong, and since this melting is usually performed in air, the material oxidizes and loses the surface tension, so even if this substance is cooled to room temperature again, it is unlikely to become spherical. , Often remains attached to the inner surface of the glass capillary.

しかし、ガラス細管の封止後、この封止部分を、アマ
ルガム形成物質の溶融以下に冷却させ、次いでガラス管
の上下を反転させると、アマルガム形成物質は溶けずに
原形を保っており、その後の加熱排気工程ではじめて溶
ける。この場合は、非酸化性雰囲気中であり、アマルガ
ム形成物質の接触しているガラス細管内面と同時にアマ
ルガム形成物質の温度が上昇して同物質の溶融が徐々に
進むので、材質の酸化もなく、表面張力も失われない。
したがって、螢光ランプ完成後再び室温まで温度が下る
と、アマルガム形成物質は球形となり、ガラス細管内面
に付着せず、本来の機能を十分に発揮することとなっ
て、ランプは高い発光効率を示す。
However, after sealing the glass capillary, this sealing part is cooled below the melting of the amalgam-forming substance, and then the glass tube is turned upside down, the amalgam-forming substance does not melt and maintains its original shape. It only melts in the heating and exhausting process. In this case, in a non-oxidizing atmosphere, since the temperature of the amalgam forming substance rises simultaneously with the inner surface of the glass capillary in contact with the amalgam forming substance and the melting of the substance gradually progresses, there is no oxidation of the material, The surface tension is not lost.
Therefore, after the fluorescent lamp is completed, when the temperature falls to room temperature again, the amalgam-forming substance becomes spherical, does not adhere to the inner surface of the glass capillary, and fully exhibits its original function, thus the lamp exhibits high luminous efficiency. .

実施例 以下、本発明の一実施例について図面を用いて説明す
る。
Embodiment An embodiment of the present invention will be described below with reference to the drawings.

第1図(a)において、先端開口の内径3.3mmのガラ
ス細管10の中に、まずスペーサ8として、外径2.6mm,長
さ11mmのガラス無空棒を挿入し、次にアマルガム形成物
質9として、外径2.8mm,長さ4mm,重さ180mgのBiIn合金
のペレット(融点110℃)を挿入した。その後、第1図
(b)に示すように、そのままの方向でペレットの近傍
3mm上の部分をチップバーナ(図示せず)で加熱してガ
ラス細管10を封止した。しかる後、ガラス細管10に歪が
発生しない時間スケジュールで封止部分を空冷し、この
部分の温度を110℃以下とした。続いて第1図(c)に
示すように、ガラス管1の上下位置を反転させる。この
反転工程では、図に示すとおり、ペレットは溶融せず原
形を保っていた。以後、通常のとおりの加熱排気工程を
経て、最後に他方のガラス細管からガラス管1内に6mg
の水銀と400Paのアルゴンガスを封入した後、第1図
(d)に示すように他方のガラス細管を封止してアマル
ガム形成物質を有する螢光ランプを完成した。なお、ダ
ブルU形に成形したガラス管1の径は15.5mm、電極間距
離は280mmで、その内面には、色温度2800Kに発光する三
波長発光域形の稀土類螢光体を5mg/cm5の割合で塗布し
た。
In FIG. 1 (a), a glass empty tube having an outer diameter of 2.6 mm and a length of 11 mm is first inserted as a spacer 8 into a glass capillary tube 10 having an inner diameter of 3.3 mm at the tip opening, and then an amalgam forming substance 9 is used. As a pellet, a BiIn alloy pellet having an outer diameter of 2.8 mm, a length of 4 mm and a weight of 180 mg (melting point 110 ° C.) was inserted. After that, as shown in FIG. 1 (b), the vicinity of the pellet is kept in the same direction.
The portion 3 mm above was heated with a chip burner (not shown) to seal the glass capillary 10. After that, the sealed portion was air-cooled in a time schedule such that no strain was generated in the glass thin tube 10, and the temperature of this portion was set to 110 ° C. or lower. Subsequently, as shown in FIG. 1 (c), the vertical position of the glass tube 1 is reversed. In this reversal process, as shown in the figure, the pellets did not melt and maintained their original shape. After that, the usual heating and exhausting process was performed, and finally 6 mg from the other glass capillary into the glass tube 1.
After filling with mercury and 400 Pa of argon gas, the other glass capillary was sealed as shown in FIG. 1 (d) to complete a fluorescent lamp having an amalgam forming substance. The diameter of the double U-shaped glass tube 1 is 15.5 mm, the distance between the electrodes is 280 mm, and the inner surface of the glass tube is a rare-earth fluorescent substance of the three-wavelength emission region that emits light at a color temperature of 2800 K. It was applied at a rate of 5 .

この螢光ランプを通常のとおり、第2図に示す形状の
拡散・密閉形の外径104mmのガラス外管2、安定器3と
ともに一体化して電球形螢光ランプ装置を完成した。な
お、第2図中、4は電球口金を示す。
As usual, this fluorescent lamp was integrated with a diffused / sealed glass outer tube 2 having an outer diameter of 104 mm and a ballast 3 as shown in FIG. 2 to complete a bulb-type fluorescent lamp device. In addition, in FIG. 2, 4 shows a light bulb base.

このランプを周囲温度25℃、口金上の点灯方向で安定
器損をも含めた全入力電力17Wで点灯したところ、アマ
ルガム形成物質は所定の効果を発揮し、45lm/Wの高効率
を示した。この値は、従来のガラス細管内面にアマルガ
ム形成物質が付着した場合におけるランプ効率約41m/
Wに比較し10%の大幅な向上となったものである。
When this lamp was lit at an ambient temperature of 25 ° C and a total input power of 17 W including ballast loss in the lighting direction on the base, the amalgam forming substance exhibited a predetermined effect and showed a high efficiency of 45 lm / W. . This value is the lamp efficiency of about 41 m / m when the amalgam forming substance adheres to the inner surface of the conventional glass capillary.
This is a significant improvement of 10% compared to W.

本発明において、ガラス細管を封止した後にガラス管
の上下位置を反転させるのは次の理由による。すなわ
ち、一般に、アマルガム形成物質としては、融点200℃
以下の低融点合金が用いられるので、もし400℃以上の
高温になる螢光ランプの加熱排気工程において、第1図
(b)に示す状態、つまりガラス細管を上向きにしたま
まの状態でガラス管の加熱排気を行なったならば、排気
炉の中でアマルガム形成物質が溶融してスペーサの外周
面とガラス細管の内周面との間隙を通してガラス管の内
部に落下するという危険がある。
In the present invention, the vertical position of the glass tube is inverted after sealing the glass tube for the following reason. That is, in general, the amalgam-forming substance has a melting point of 200 ° C.
Since the following low-melting-point alloys are used, in the heating and exhausting process of a fluorescent lamp that reaches a temperature of 400 ° C. or higher, the glass tube is in the state shown in FIG. 1 (b), that is, with the glass thin tube facing upward. If heating and exhausting are carried out, there is a risk that the amalgam forming substance will melt in the exhaust furnace and fall into the glass tube through the gap between the outer peripheral surface of the spacer and the inner peripheral surface of the glass capillary.

そこで、本発明においては、加熱排気工程において、
ガラス細管の封止部分の底面部にアマルガム形成物質を
保持すべく、ガラス細管の封止後、ガラス管の上下位置
を反転させるのである。
Therefore, in the present invention, in the heating and exhausting step,
In order to retain the amalgam-forming substance on the bottom surface of the sealed portion of the glass capillary, the glass tube is sealed and then the vertical position of the glass tube is reversed.

また、本発明において、ガラス細管の封止後、この封
止部分をアマルガム形成物質の溶融点以下の温度まで冷
却させるのは次の理由による。すなわち、もし前記冷却
工程を経ないで、ガラス管を上下反転させたならば、ま
だ高温になっているガラス細管の封止部分の内面にアマ
ルガム形成物質が接触して溶融するため、同物質がその
内面に付着するという不都合を生じる。
Further, in the present invention, after sealing the glass thin tube, the sealed portion is cooled to a temperature below the melting point of the amalgam forming substance for the following reason. That is, if the glass tube is turned upside down without going through the cooling step, the amalgam-forming substance is melted by contact with the inner surface of the sealing portion of the glass capillary still hot, so that the same substance The inconvenience of adhering to the inner surface occurs.

しかし、本発明のように、ガラス細管の封止部分の温
度をアマルガム形成物質の溶融点以下の温度まで冷却さ
れると、ガラス管を上下反転させ、その加熱排気後にお
いて、アマルガム形成物質が疑固する時、十分な表面張
力によって球状となるため、同物質がガラス細管内面に
付着するという不都合を回避することができるのであ
る。
However, as in the present invention, when the temperature of the sealed portion of the glass capillary is cooled to a temperature equal to or lower than the melting point of the amalgam forming substance, the glass pipe is turned upside down, and after heating and evacuation, the amalgam forming substance is suspected. When it solidifies, it becomes spherical due to sufficient surface tension, so that it is possible to avoid the inconvenience that the same substance adheres to the inner surface of the glass capillary.

発明の効果 以上説明したように、本発明の製造方法によれば、ガ
ラス管の一端に設けられ、かつ内部にインジウム系のア
マルガム形成物質が挿入された先端開口のガラス細管の
前記開口が上向きとなるように、前記ガラス管を保持
し、前記ガラス細管を加熱して封止し、次いで前記ガラ
ス細管の封止部分を前記アマルガム形成物質の溶融点以
下の温度まで冷却させた後、前記ガラス管の上下位置を
反転させ、しかる後前記ガラス管を加熱排気しこのガラ
ス管内に水銀を封入して螢光ランプを得るようにしたの
で、アマルガム形成物質のガラス細管内面への付着をな
くすことができ、したがってアマルガム形成物質本来の
機能を十分に発揮させることができ、所定の発光効率を
示す螢光ランプを得ることができるとともに、何らの付
加的な材料を追加使用する必要もなく、その効果はきわ
めて大きなものである。
Effects of the Invention As described above, according to the manufacturing method of the present invention, the opening of the glass capillary having a tip opening provided at one end of the glass tube and having an indium-based amalgam forming substance inserted therein is directed upward. So that the glass tube is held, the glass tube is heated and sealed, and then the sealed portion of the glass tube is cooled to a temperature below the melting point of the amalgam-forming substance, and then the glass tube. Since the upper and lower positions of the glass tube were inverted, and then the glass tube was heated and evacuated and mercury was enclosed in the glass tube to obtain a fluorescent lamp, adhesion of the amalgam-forming substance to the inner surface of the glass thin tube can be eliminated. Therefore, it is possible to obtain a fluorescent lamp exhibiting a predetermined luminous efficiency, which is capable of sufficiently exhibiting the original function of the amalgam-forming substance, and also any additional material. There is no need to use additional, and the effect is extremely large.

【図面の簡単な説明】[Brief description of drawings]

第1図(a)〜(d)は本発明の一実施例における螢光
ランプの製造方法の工程図、第2図はこの螢光ランプを
組み込んだ螢光ランプ装置の一例を示す正面図、第3図
は従来の螢光ランプの一部拡大断面図、第4図は従来の
螢光ランプの製造方法における不都合を説明するための
図である。 1……ガラス管、9……アマルガム形成物質、10……ガ
ラス細管。
1 (a) to 1 (d) are process diagrams of a method for manufacturing a fluorescent lamp according to an embodiment of the present invention, and FIG. 2 is a front view showing an example of a fluorescent lamp device incorporating the fluorescent lamp. FIG. 3 is a partially enlarged cross-sectional view of a conventional fluorescent lamp, and FIG. 4 is a diagram for explaining inconveniences in a conventional fluorescent lamp manufacturing method. 1 ... Glass tube, 9 ... Amalgam forming substance, 10 ... Glass thin tube.

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】ガラス管の一端に設けられ、かつ内部にイ
ンジウム系のアマルガム形成物質が挿入された先端開口
のガラス細管の前記開口が上向きとなるように、前記ガ
ラス管を保持し、前記ガラス細管を加熱して封止し、次
いで前記ガラス細管の封止部分を前記アマルガム形成物
質の溶融点以下の温度まで冷却させた後、前記ガラス管
の上下位置を反転させ、しかる後前記ガラス管を加熱排
気しこのガラス管内に水銀を封入して螢光ランプを得る
ことを特徴とする螢光ランプの製造方法。
1. A glass tube which is provided at one end of a glass tube and in which an indium-based amalgam-forming substance is inserted into the glass tube, the glass tube being held so that the opening thereof faces upward, The thin tube is heated and sealed, then, the sealed portion of the glass thin tube is cooled to a temperature equal to or lower than the melting point of the amalgam-forming substance, and then the vertical position of the glass tube is reversed, and then the glass tube is closed. A method of manufacturing a fluorescent lamp, which comprises heating and exhausting, and enclosing mercury in the glass tube to obtain a fluorescent lamp.
JP60263362A 1985-11-22 1985-11-22 Fluorescent lamp manufacturing method Expired - Lifetime JP2506646B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60263362A JP2506646B2 (en) 1985-11-22 1985-11-22 Fluorescent lamp manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60263362A JP2506646B2 (en) 1985-11-22 1985-11-22 Fluorescent lamp manufacturing method

Publications (2)

Publication Number Publication Date
JPS62123637A JPS62123637A (en) 1987-06-04
JP2506646B2 true JP2506646B2 (en) 1996-06-12

Family

ID=17388433

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60263362A Expired - Lifetime JP2506646B2 (en) 1985-11-22 1985-11-22 Fluorescent lamp manufacturing method

Country Status (1)

Country Link
JP (1) JP2506646B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0330238A (en) * 1989-06-27 1991-02-08 Matsushita Electric Works Ltd Manufacture of electrodeless discharge lamp
DE19512129A1 (en) * 1995-03-31 1996-10-02 Patent Treuhand Ges Fuer Elektrische Gluehlampen Mbh Low pressure mercury vapor discharge lamp

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0687403B2 (en) * 1985-09-03 1994-11-02 東芝ライテック株式会社 Method for manufacturing low-pressure mercury vapor discharge lamp

Also Published As

Publication number Publication date
JPS62123637A (en) 1987-06-04

Similar Documents

Publication Publication Date Title
US4202999A (en) Fused silica lamp envelope and seal
JPS6059701B2 (en) Universal combustion alkali metal vapor lamp
JP2506646B2 (en) Fluorescent lamp manufacturing method
JP2871499B2 (en) Manufacturing method of cold cathode fluorescent lamp
JP3617228B2 (en) Manufacturing method of fluorescent lamp
GB1561919A (en) High pressure vapour discharge lamp
JPH0515025B2 (en)
JP3773023B2 (en) High pressure discharge lamp and lighting device
US3869772A (en) Method of incorporating amalgam-forming material in a fluorescent lamp
JP3956040B2 (en) Fluorescent lamp and lighting device
JPH05258717A (en) Fluorescent lamp and manufacture thereof
JPH041980B2 (en)
JP3956009B2 (en) Fluorescent lamps and lighting fixtures
JPH03171529A (en) Manufacture of fluorescent lamp
JPS6366842A (en) Low-pressure mercury vapor discharge lamp
JPH0582698B2 (en)
JP2001093466A (en) Fluorescent lamp
JPH08321281A (en) Fluorescent lamp and its manufacture
JPH01243339A (en) Manufacture of fluorescent lamp
JPH034436A (en) Metal halide lamp and lighting device therefor
JP2001076673A (en) Fluorescent lamp
JPH07122236A (en) High pressure sodium lamp
JP2001291488A (en) Double ring fluorescent lamp
JPS6081756A (en) Metal vapor discharge lamp
JPS61200645A (en) Manufacture of mercury vapor discharge lamp