JP2506476B2 - Free cutting brass - Google Patents

Free cutting brass

Info

Publication number
JP2506476B2
JP2506476B2 JP2062228A JP6222890A JP2506476B2 JP 2506476 B2 JP2506476 B2 JP 2506476B2 JP 2062228 A JP2062228 A JP 2062228A JP 6222890 A JP6222890 A JP 6222890A JP 2506476 B2 JP2506476 B2 JP 2506476B2
Authority
JP
Japan
Prior art keywords
weight
resistance value
content
cutting resistance
straight shank
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2062228A
Other languages
Japanese (ja)
Other versions
JPH03264629A (en
Inventor
敏行 大迫
公一 横沢
巌 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Metal Mining Co Ltd
Original Assignee
Sumitomo Metal Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Mining Co Ltd filed Critical Sumitomo Metal Mining Co Ltd
Priority to JP2062228A priority Critical patent/JP2506476B2/en
Publication of JPH03264629A publication Critical patent/JPH03264629A/en
Application granted granted Critical
Publication of JP2506476B2 publication Critical patent/JP2506476B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

【発明の詳細な説明】 『産業上の利用分野』 本発明は、油圧部品、機械部品、等に広く利用され、
被削性、特に、穿孔性に優れた快削黄銅に関する。
DETAILED DESCRIPTION OF THE INVENTION "Industrial field of application" The present invention is widely used for hydraulic parts, machine parts, etc.,
The present invention relates to free-cutting brass having excellent machinability, especially perforation property.

『従来の技術』 従来より、軸受け、歯車、螺子、バルブ等の油圧部
品、機械部品、の素材として、Cu−Zn合金にPbを添加し
た快削黄銅(例えば、JIS C3601〜C3605)が広く利用
されている。
"Prior art" Conventionally, free-cutting brass (for example, JIS C3601 to C3605) in which Pb is added to Cu-Zn alloy is widely used as a material for hydraulic parts such as bearings, gears, screws, valves, and machine parts. Has been done.

『発明が解消しようとする課題』 一般に、市販されている快削黄銅(例えば、JIS C36
01〜C3605)は、素材の製造原価を低下させる目的か
ら、その製造に際して多くの端材を原料としなければな
らず、端材中に混入され易い多くの不純物元素を、その
まま、製品としての快削黄銅材中に持ち来されて居た。
"Problems to be solved by the invention" Generally, commercially available free-cutting brass (for example, JIS C36
01-C3605), in order to reduce the manufacturing cost of raw materials, many scraps must be used as raw materials in the manufacturing process, and many impurity elements that are easily mixed in the scraps can be directly used as products. It was brought into the ground brass material.

上記の不純物元素の中、FeとSnとの含有上限量に関し
てはJIS規格等によって規定されているものの、他の元
素については特に規定されて居らず、快削黄銅材を利用
して製品に加工する場合、特に穿孔作業を伴う場合に
は、工具寿命に著しい変動が認められ、製品加工の多く
が自動機の並列同時加工によって処理されている現状で
は、工具交換の時間に大幅な変動を生じる様になる為、
一定時間で工具の交換を実施した場合には、加工部分の
寸法が製品の要求仕様を満足できなくなる場合が多く見
られ、製品不良の防止には加工部分の寸法検査に多大の
工数を割かなければならなくなる為、早期に課題の解決
策を提示する事が望まれて居た。
Of the above impurity elements, the upper limit of Fe and Sn content is specified by JIS standards, etc., but other elements are not specified and processed into products using free-cutting brass materials. In particular, when the drilling work is involved, a significant change in the tool life is recognized, and in the current situation that most of the product processing is processed by the parallel simultaneous processing of automatic machines, the tool change time changes significantly. To be like
When the tools are replaced within a certain period of time, the dimensions of the machined part often cannot meet the required specifications of the product, and a large number of man-hours must be devoted to the dimension inspection of the machined part to prevent product defects. Since it becomes unnecessary, it was desired to present a solution to the problem at an early stage.

本発明は、上記の課題を解決し、被削性、特に、穿孔
性が良好でしかも工具寿命を永く保つ事の出来る快削黄
銅を提供する事を目的とする。
An object of the present invention is to solve the above problems and to provide a free-cutting brass which has good machinability, particularly piercing property, and can maintain a long tool life.

『課題を解決するための手段』 本発明者等は、鋭意研究の結果、一般的に使用されて
いる快削黄銅中にFeが含まれて居り、しかも、SiやPが
不純物としてFeと共存している場合には、このSiやPが
Feと反応して化合物を形成し、この化合物が工具の寿命
を縮減する一つの原因となっている事を見出だし、以下
に示す、本発明に至ったものである。
[Means for Solving the Problem] As a result of earnest research, the present inventors have found that commonly used free-cutting brass contains Fe, and Si and P coexist with Fe as impurities. If Si and P are
It was found that this compound reacts with Fe to form a compound, and that this compound is one of the causes for shortening the life of the tool, and has reached the present invention described below.

即ち、本発明は、Cuを56.0〜63.0重量%と、Pbを1.8
〜4.5重量%と、Feを0.01重量%以上含み、残部がZnと
不可避的不純物からなり、SiとPの含有量が夫々0.001
重量%未満である様に調製された銅合金を開示する事に
よって、課題を解決したものである。
That is, according to the present invention, Cu is 56.0 to 63.0 wt% and Pb is 1.8%.
~ 4.5% by weight, 0.01% by weight or more of Fe, the balance Zn and unavoidable impurities, the content of Si and P is 0.001 each
The problem was solved by disclosing a copper alloy prepared to be less than wt%.

『作用』 以下に、本発明の作用に関して詳述する。"Operation" The operation of the present invention will be described in detail below.

本発明は、Cuの含有量を56.0〜63.0重量%に限定して
いるが、この場合、Cuの含有量を56.0重量%以上に規定
したのは、Cuの含有量は、素材の引っ張り強さ、伸び、
及び硬さを適度に保持する上で、56.0重量%以上が必要
であると共に、逆に、Cuの含有量が63.0重量%を超える
と素材中に占めるα相の領域が多くなって来る事によっ
て、素材の熱間加工性が急激に劣化して来る為である。
The present invention limits the Cu content to 56.0 to 63.0% by weight, but in this case, the Cu content is specified to be 56.0% by weight or more because the Cu content is the tensile strength of the material. , Stretch,
In addition, 56.0% by weight or more is necessary to maintain an appropriate hardness, and conversely, if the Cu content exceeds 63.0% by weight, the α phase region in the material increases, This is because the hot workability of the material deteriorates rapidly.

一方、経済的な面からも、原料価格が高い銅の使用量
は極力少なく抑えて置く事が好ましい。
On the other hand, from the economical aspect, it is preferable to keep the amount of copper, which is expensive as a raw material, as small as possible.

又、Pbの含有量を1.8〜4.5重量%に限定して居るが、
この場合、Pbは素材の被削性を向上させる場合に必要な
元素であるものの、Pbの含有量が0.8重量%未満の場合
には、被削性の改善度を十分に高める事が出来ず、逆
に、Pbの含有量が4.5重量%を超えると、素材の硬さが
増加して来ると共に、素材の伸びが低下して来て、素材
作成時に於ける、材料の変形性能が弱められてしまう為
である。
Also, although the Pb content is limited to 1.8 to 4.5% by weight,
In this case, Pb is an element necessary for improving the machinability of the material, but if the Pb content is less than 0.8% by weight, the machinability cannot be improved sufficiently. On the contrary, when the Pb content exceeds 4.5% by weight, the hardness of the material increases and the elongation of the material decreases, which weakens the deformability of the material when creating the material. This is because it will end up.

更に、本発明では、Feの含有量を0.01重量%以上に規
定して居るが、Feは元素不純物であるものの、本発明の
対象とする快削黄銅を溶解製造する際に、殆ど必然的に
素材中に持ち込まれるものであって、快削黄銅の製造に
際しては、Feの存在を避けては通れないものであり、し
ばしば、快削黄銅中に含有されるその他の元素と結び付
いて、素材中に、硬質な、化合物分散相を形成する様に
なる為、加工工具の損耗を促進すると共に、加工工具の
交換移行時間が工具毎に異なってくる事もあって、切削
工程の能率化をさまたげていた。
Furthermore, in the present invention, the content of Fe is specified to be 0.01% by weight or more, but although Fe is an elemental impurity, it is almost inevitable when the free-cutting brass targeted by the present invention is dissolved and produced. It is something that is brought into the material, and in the production of free-cutting brass, the presence of Fe cannot be avoided, and it is often associated with other elements contained in free-cutting brass. In addition, since a hard compound dispersed phase is formed, the wear of the machining tools is promoted and the changeover time of the machining tools may vary from tool to tool, which prevents the efficiency of the cutting process. Was there.

しかしながら、Feの含有量が0.01重量%未満の場合に
は、SiやPとの共存状態にあっても、特に硬質な化合物
分散相が形成される可能性は極めて少なくなり、切削加
工時に於ける、工具の損耗現象が極めて少なくなって来
る為である。
However, when the Fe content is less than 0.01% by weight, the possibility that a particularly hard compound dispersed phase is formed is extremely small even in the coexistence state with Si and P, and it becomes This is because the wear phenomenon of tools is extremely reduced.

本発明の対象とする快削黄銅の製造に際しては、更
に、Feの含有量が0.01重量%以上存在する場合に特定し
て、SiとPの含有量を、夫々、0.001重量%未満である
様に規定して居るが、この場合、Si、又は、Pの含有量
を0.001重量%未満である様に規定したのは、Si、又
は、Pの含有量が0.001重量%を超えた場合には、快削
黄銅の原料に混入して来ているFeに対して、上記のSiや
Pが反応する事によって形成されたFeSiやFeP等の硬質
の化合物分散相の存在によって、素材加工に使用される
加工工具の損耗が激しくなって来る為である。
In the production of the free-cutting brass targeted by the present invention, further, when the Fe content is 0.01% by weight or more, the Si and P contents are less than 0.001% by weight, respectively. In this case, the content of Si or P is specified to be less than 0.001% by weight when the content of Si or P exceeds 0.001% by weight. It is used for material processing due to the presence of a hard compound dispersed phase such as FeSi or FeP formed by the reaction of Si or P with Fe that has been mixed in the raw material of free-cutting brass. This is because the wear of the machining tool becomes severe.

『実施例』 本発明の実施例については、以下に詳細を述べる。"Examples" Examples of the present invention will be described in detail below.

「実施例1」 大気溶解炉中で、電気銅2990g、電気亜鉛1850g、金属
鉛150g、軟鋼薄板10gを原料として溶解し、厚さ30mm、
幅100mm、長さ150mm、重さ5Kgの銅合金の鋳塊を溶製し
た。
Example 1 In an air melting furnace, 2990 g of electrolytic copper, 1850 g of electrolytic zinc, 150 g of metallic lead, and 10 g of mild steel thin plate were melted as raw materials to obtain a thickness of 30 mm,
A copper alloy ingot having a width of 100 mm, a length of 150 mm and a weight of 5 kg was melted.

溶製された鋳塊の分析値は、Cuが60.6重量%、Pbが3.
03重量%、Feが0.19重量%、含有されると共に、不可避
的不純物とZnが残部であって、しかも、不可避的不純物
であるSiが0.001重量%未満であり、同じくPも0.001重
量%未満であった。
The analytical values of the molten ingot are 60.6% by weight for Cu and 3.
03 wt%, Fe 0.19 wt%, unavoidable impurities and Zn are the balance, Si, which is an unavoidable impurity, is less than 0.001 wt%, and P is also less than 0.001 wt%. there were.

以上の様に溶製された鋳塊について、全表面を硬側2m
mづつ面削りした後、750℃にて熱間圧延し、厚さ13mmの
熱延板とした。この熱延板を450℃の窒素ガス雰囲気中
で1時間に亘って加熱し、熱延板を焼鈍した後、熱延板
の両表面を夫々1mmづつ面削りして、厚さ11mmの試験材
とした。
For the ingot melted as above, the entire surface is 2m on the hard side
After chamfering each m, it was hot-rolled at 750 ° C. to obtain a hot-rolled sheet having a thickness of 13 mm. After heating this hot-rolled sheet in a nitrogen gas atmosphere at 450 ° C for 1 hour to anneal the hot-rolled sheet, both surfaces of the hot-rolled sheet were chamfered by 1 mm each, and a test material with a thickness of 11 mm And

本発明では、試験材の穿孔性を評価する為の手段とし
て、日本工具工業会規格TAS−1103に規定された、直径
1.0mm、全長100mm、溝長40mmに未使用のストレートシャ
ンクドリルを用いる事とし、先ず、未使用ストレートシ
ャンクドリルの初期切削抵抗値を測定する為、このスト
レートシャンクドリルをNCボール盤に取り付けた後、こ
のストレートシャンクドリルに毎分2300回の回転と、1
回転当たり0.68mmの穿孔速度をもった回転穿孔作業を行
わしめ、上記試験材に、深さ5mmの試験孔を1ケ穿孔さ
せながら、試験材穿孔時の推力の値を工具動力計「佐藤
工機(株)製、AST−BL型 計器」によって測定し、測
定値の不安定部分を除外する為、試験材の深さ1〜4mm
の間を穿孔した際に得られた推力値についての平均値を
求めて、この平均値を未使用ストレートシャンクドリル
の初期切削抵抗値とした。次いで、未使用ストレートシ
ャンクドリルの初期切削抵抗値の測定されたストレート
シャンクドリルをNCボール盤に取り付けた後、このスト
レートシャンクドリル毎分1500回の回転と、1回転当た
り1.58mmの穿孔速度を与えながら、前記の試験材に深さ
5mmの穿孔を500ケ穿った後に、未使用ストレートシャン
クドリルの初期切削抵抗値を測定したと同様の方法に
て、500ケの穿孔をおこなった後のストレートシャンク
ドリルの初期抵抗値を測定したところ、測定された切削
抵抗値と、初期切削抵抗値との数値差は0.00Kgであっ
た。この500ケの穿孔をおこなった後にストレートシャ
ンクドリルの初期抵抗値を測定したストレートシャンク
ドリルについて、更に、同一の試験材を対象とした穿孔
を500ケ重ねて行い、合計1000ケの穿孔を行った後に測
定したストレートシャンクドリルの初期抵抗値と、初期
切削抵抗値との数値差は0.03Kgであった。また前記の穿
孔試験と同様にして、更に、1000ケの穿孔を重ね、合計
2000ケの穿孔を行った後に測定したストレートシャンク
ドリルの切削抵抗値と、初期切削抵抗値との数値差は0.
26Kgであった。
In the present invention, as a means for evaluating the piercing property of the test material, the diameter defined by the Japan Tool Industry Association Standard TAS-1103,
We decided to use an unused straight shank drill with 1.0 mm, total length 100 mm, groove length 40 mm.First, in order to measure the initial cutting resistance value of the unused straight shank drill, after attaching this straight shank drill to the NC drilling machine, 2300 revolutions per minute with this straight shank drill and 1
While performing a rotary drilling work with a drilling speed of 0.68 mm per rotation, while making one test hole with a depth of 5 mm in the above test material, the thrust value at the time of drilling the test material AST-BL type instrument manufactured by Kiki Co., Ltd. ", and the depth of the test material is 1 to 4 mm in order to exclude the unstable part of the measured value.
The average value of the thrust values obtained when the holes were drilled was determined, and this average value was used as the initial cutting resistance value of the unused straight shank drill. Then, after mounting the straight shank drill whose initial cutting resistance value of the unused straight shank drill was measured on the NC drilling machine, while giving the straight shank drill 1500 revolutions per minute and a drilling speed of 1.58 mm per revolution. , Depth to the test material
After drilling 5 mm holes, measuring the initial resistance value of the straight shank drill after drilling 500 holes in the same way as measuring the initial cutting resistance value of the unused straight shank drill. The numerical difference between the measured cutting resistance value and the initial cutting resistance value was 0.00 Kg. About the straight shank drill that measured the initial resistance value of the straight shank drill after performing the 500 holes, further 500 holes were drilled for the same test material, and a total of 1000 holes were drilled. The numerical difference between the initial resistance value of the straight shank drill measured later and the initial cutting resistance value was 0.03 Kg. In addition, in the same way as the above-mentioned drilling test, 1000 holes were stacked, and the total
The numerical difference between the cutting resistance value of the straight shank drill measured after making 2000 holes and the initial cutting resistance value is 0.
It was 26 kg.

尚、いずれの場合も、穿孔時には切削油を使用しない
で作業すると共に、発生して来た切り屑は送風により除
去した。
In each case, the drilling was performed without using cutting oil, and the generated chips were removed by blowing air.

「実施例2」 大気溶解炉中で、電気銅2900g、電気亜鉛1895g、金属
鉛200g、軟鋼薄板5gを原料として溶解し、溶製された鋳
塊の分析値を、Cuが58.0重量%、Pbが4.01重量%、Feが
0.09重量%、含有されると共に、不可避的不純物とZnが
残部であって、しかも、不可避的不純物であるSiが0.00
1重量%未満であり、同じくPも0.001重量%未満である
様に処理した以外は、全て、実施例1と同様な穿孔試験
を行った場合のストレートシャンクドリルの切削抵抗値
と、初期切削抵抗値との数値差は、夫々、500ケの穿孔
後が0.01Kg、1000ケの穿孔後が0.03Kg、2000ケの穿孔後
が0.14Kgであった。
"Example 2" 2900 g of electrolytic copper, 1895 g of electrolytic zinc, 200 g of metallic lead, and 5 g of mild steel thin plate were melted as raw materials in an air melting furnace, and the analysis value of the ingot was 58.0% by weight of Cu and Pb. 4.01% by weight, Fe
0.09% by weight, the balance of unavoidable impurities and Zn, and 0.00% of Si, which is an unavoidable impurity.
The cutting resistance value and the initial cutting resistance of the straight shank drill when the same drilling test as in Example 1 was performed except that the P content was less than 1% by weight and the P content was also less than 0.001% by weight. The numerical differences from the values were 0.01 kg after 500 perforations, 0.03 kg after 1000 perforations, and 0.14 kg after 2000 perforations, respectively.

「実施例3」 大気溶解炉中で、電気銅3100g、電気亜鉛1795g、金属
鉛100g、軟鋼薄板5gを原料として溶解し、溶製された鋳
塊の分析値を、Cuが62.0重量%、Pbが2.03重量%、Feが
0.11重量%、含有されると共に、不可避的不純物とZnが
残部であって、しかも、不可避的不純物であるSiが0.00
1重量%未満であり、同じくPも0.001重量%未満である
様に処理した以外は、全て、実施例1と同様な穿孔試験
を行った場合のストレートシャンクドリルの切削抵抗値
と、初期切削抵抗値との数値差は、夫々、500ケの穿孔
後が0.00Kg、1000ケの穿孔後が0.04Kg、2000ケの穿孔後
が0.30Kgであった。
[Example 3] In an air melting furnace, 3100 g of electrolytic copper, 1795 g of electrolytic zinc, 100 g of metallic lead, and 5 g of mild steel sheet were melted as raw materials, and the analysis value of the ingot was 62.0 wt% Cu and Pb. 2.03% by weight, Fe
0.11% by weight, the balance of unavoidable impurities and Zn, and the unavoidable impurities of Si is 0.00
The cutting resistance value and the initial cutting resistance of the straight shank drill when the same drilling test as in Example 1 was performed except that the P content was less than 1% by weight and the P content was also less than 0.001% by weight. The numerical differences from the values were 0.00 kg after 500 perforations, 0.04 kg after 1000 perforations, and 0.30 kg after 2000 perforations, respectively.

「実施例4」 大気溶解炉中で、電気銅3000g、電気亜鉛1848g、金属
鉛150g、軟鋼薄板2.5gを原料として溶解し、溶製された
鋳塊の分析値を、Cuが60.2重量%、Pbが3.10重量%、Fe
が0.03重量%、含有されると共に、不可避的不純物とZn
が残部であって、しかも、不可避的不純物であるSiが0.
001重量%未満であり、同じくPも0.001重量%未満であ
る様に処理した以外は、全て、実施例1と同様な穿孔試
験を行った場合のストレートシャンクドリルの切削抵抗
値と、初期切削抵抗値との数値差は、夫々、500ケの穿
孔後が0.02Kg、1000ケの穿孔後が0.03Kg、2000ケの穿孔
後が0.20Kgであった。
[Example 4] 3000 g of electrolytic copper, 1848 g of electrolytic zinc, 150 g of metallic lead, and 2.5 g of mild steel sheet were melted as raw materials in an air melting furnace, and the analysis value of the ingot was 60.2 wt% Cu. 3.10 wt% Pb, Fe
0.03% by weight, unavoidable impurities and Zn
Is the balance, and Si, which is an unavoidable impurity, is 0.
The cutting resistance value of the straight shank drill and the initial cutting resistance when the same drilling test as in Example 1 was performed except that the treatment was performed so as to be less than 001% by weight and P was also less than 0.001% by weight. The numerical differences from the values were 0.02 Kg after 500 perforations, 0.03 Kg after 1000 perforations, and 0.20 Kg after 2000 perforations, respectively.

「比較例1」 大気溶解炉中で、電気銅2988g、電気亜鉛1850g、金属
鉛150g、軟鋼薄板10g、15%Si含有Cu母合金1.6gを原料
として溶解し、溶製された鋳塊の分析値を、Cuが60.2重
量%、Pbが2.80重量%、Feが0.16重量%、Siが0.002重
量%、含有されると共に、不可避的不純物とZnが残部で
あって、しかも、不可避的不純物であるPが0.001重量
%未満である様に処理した以外は、全て、実施例1と同
様な穿孔試験を行った場合のストレートシャンクドリル
の切削抵抗値と、初期切削抵抗値との数値差は、夫々、
500ケの穿孔後が0.25Kg、1000ケの穿孔後が0.34Kg、200
0ケの穿孔後が0.46Kgであった。
"Comparative Example 1" In an air melting furnace, 2988 g of electrolytic copper, 1850 g of electrolytic zinc, 150 g of metallic lead, 10 g of mild steel thin plate, 1.6 g of Cu master alloy containing 15% Si were used as raw materials, and an ingot was analyzed. The content of Cu is 60.2% by weight, Pb is 2.80% by weight, Fe is 0.16% by weight, Si is 0.002% by weight, and inevitable impurities and Zn are the balance and are inevitable impurities. The numerical difference between the cutting resistance value of the straight shank drill and the initial cutting resistance value when the same drilling test as in Example 1 was performed except that P was treated to be less than 0.001% by weight, respectively. ,
0.25 kg after 500 holes, 0.34 kg after 1000 holes, 200
After 0 perforations was 0.46 Kg.

「比較例2」 大気溶解炉中で、電気銅2957g、電気亜鉛1850g、金属
鉛150g、軟鋼薄板10g、15%Si含有Cu母合金33.3gを原料
として溶解し、溶製された鋳塊の分析値を、Cuが60.0重
量%、Pbが2.50重量%、Feが0.14重量%、Siが0.072重
量%、含有されると共に、不可避的不純物とZnが残部で
あって、しかも、不可避的不純物であるPが0.001重量
%未満である様に処理した以外は、全て、実施例1と同
様な穿孔試験を行った場合のストレートシャンクドリル
の切削抵抗値と、初期切削抵抗値との数値差は、夫々、
500ケの穿孔後が0.54Kg、1000ケの穿孔後が0.60Kg、200
0ケの穿孔後が0.84Kgであった。
"Comparative Example 2" In an air melting furnace, 2957 g of electrolytic copper, 1850 g of electrolytic zinc, 150 g of metallic lead, 10 g of mild steel sheet, 33.3 g of Cu master alloy containing 15% Si were used as raw materials, and an ingot was analyzed. The content of Cu is 60.0% by weight, Pb is 2.50% by weight, Fe is 0.14% by weight, Si is 0.072% by weight, and unavoidable impurities and Zn are the rest, and are inevitable impurities. The difference between the cutting resistance value of the straight shank drill and the initial cutting resistance value when the same drilling test as in Example 1 was performed, except that P was treated to be less than 0.001% by weight, respectively. ,
0.54 kg after 500 holes, 0.60 kg after 1000 holes, 200
After 0 holes were 0.84 kg.

「比較例3」 大気溶解炉中で、電気銅2988g、電気亜鉛1850g、金属
鉛150g、軟鋼薄板10g、15%P含有Cu母合金1.7gを原料
として溶解し、溶製された鋳塊の分析値を、Cuが60.4重
量%、Pbが1.91重量%、Feが0.12重量%、Pが0.003重
量%、含有されると共に、不可避的不純物とZnが残部で
あって、しかも、不可避的不純物であるSiが0.001重量
%未満である様に処理した以外は、全て、実施例1と同
様な穿孔試験を行った場合のストレートシャンクドリル
の切削抵抗値と、初期切削抵抗値との数値差は、夫々、
500ケの穿孔後が0.19Kg、1000ケの穿孔後が0.60Kg、200
0ケの穿孔後が0.98Kgであった。
"Comparative Example 3" In an air melting furnace, 2988 g of electrolytic copper, 1850 g of electrolytic zinc, 150 g of metallic lead, 10 g of mild steel thin plate, 1.7 g of Cu master alloy containing 15% P were melted as raw materials, and an ingot was analyzed. The content of Cu is 60.4% by weight, Pb is 1.91% by weight, Fe is 0.12% by weight, P is 0.003% by weight, and inevitable impurities and Zn are the balance, and are inevitable impurities. The difference between the cutting resistance value of the straight shank drill and the initial cutting resistance value when the same drilling test as in Example 1 was performed, except that Si was treated to be less than 0.001% by weight, respectively. ,
0.19 kg after 500 holes, 0.60 kg after 1000 holes, 200
It was 0.98 Kg after 0 perforations.

「比較例4」 大気溶解炉中で、電気銅2983g、電気亜鉛1850g、金属
鉛150g、軟鋼薄板10g、15%P含有Cu母合金6.7gを原料
として溶解し、溶製された鋳塊の分析値を、Cuが60.5重
量%、Pbが2.34重量%、Feが0.10重量%、Pが0.013重
量%、含有されると共に、不可避的不純物とZnが残部で
あって、しかも、不可避的不純物であるSiが0.001重量
%未満である様に処理した以外は、全て、実施例1と同
様な穿孔試験を行った場合のストレートシャンクドリル
の切削抵抗値と、初期切削抵抗値との数値差は、夫々、
500ケの穿孔後が0.21Kg、1000ケの穿孔後が0.40Kg、200
0ケの穿孔後が1.02Kgであった。
“Comparative Example 4” In an air melting furnace, 2983 g of electrolytic copper, 1850 g of electrolytic zinc, 150 g of metallic lead, 10 g of mild steel sheet, 6.7 g of Cu master alloy containing 15% P were melted as raw materials, and an analysis of the ingot was performed. The values are 60.5% by weight of Cu, 2.34% by weight of Pb, 0.10% by weight of Fe and 0.013% by weight of P, and inevitable impurities and Zn are the balance, and are inevitable impurities. The difference between the cutting resistance value of the straight shank drill and the initial cutting resistance value when the same drilling test as in Example 1 was performed, except that Si was treated to be less than 0.001% by weight, respectively. ,
0.21 Kg after 500 perforations, 0.40 Kg after 200 perforations, 200
After 0 holes were 1.02 kg.

「比較例5」 大気溶解炉中で、電気銅2957g、電気亜鉛1850g、金属
鉛150g、軟鋼薄板10g、15%P含有Cu母合金33.3gを原料
として溶解し、溶製された鋳塊の分析値を、Cuが60.5重
量%、Pbが2.37重量%、Feが0.19重量%、Pが0.073重
量%、含有されると共に、不可避的不純物とZnが残部で
あって、しかも、不可避的不純物であるSiが0.001重量
%未満である様に処理した以外は、全て、実施例1と同
様な穿孔試験を行った場合のストレートシャンクドリル
の切削抵抗値と、初期切削抵抗値との数値差は、夫々、
500ケの穿孔後が0.54Kg、1000ケの穿孔後が0.72Kg、200
0ケの穿孔後が1.18Kgであった。
[Comparative Example 5] In an air melting furnace, 2957 g of electrolytic copper, 1850 g of electrolytic zinc, 150 g of metallic lead, 10 g of mild steel thin plate, 33.3 g of Cu master alloy containing 15% P were melted as raw materials, and analysis of ingot The content of Cu is 60.5% by weight, Pb is 2.37% by weight, Fe is 0.19% by weight, P is 0.073% by weight, and inevitable impurities and Zn are the balance, and are inevitable impurities. The difference between the cutting resistance value of the straight shank drill and the initial cutting resistance value when the same drilling test as in Example 1 was performed, except that Si was treated to be less than 0.001% by weight, respectively. ,
0.54 kg after 500 holes, 0.72 kg after 1000 holes, 200
After 0 perforations were 1.18 Kg.

以上の如く、本発明による場合には、工具の減耗に大
いなる関係を有するストレートシャンクドリルの穿孔試
験での切削抵抗が、比較例に比べて、著しく改善される
事になった。
As described above, in the case of the present invention, the cutting resistance in the drilling test of the straight shank drill, which has a great relation to the wear of the tool, is remarkably improved as compared with the comparative example.

尚、既に、実施例と比較例にて開示した、本発明合金
と比較合金の夫々の組成と、夫々の組成の合金を対象と
した穿孔試験の結果として、500ケ、1000ケ、2000ケの
穿孔加工を重ねる度のストレートシャンクドリルの切削
抵抗値とを、第1表に纏めて表示した。
Incidentally, already disclosed in the examples and comparative examples, each composition of the present invention alloy and comparative alloy, as a result of the perforation test for the alloy of each composition, 500, 1000, 2000 of The cutting resistance value of the straight shank drill for each repeated drilling process is shown in Table 1.

『発明の効果』 本発明による場合には、実施例からも明らかな如く、
切削抵抗値が低く、被削性、特に穿孔性に優れる快削黄
銅の提供が容易に成される事になったので、産業界に寄
与するところ大なるものがある。
"Effects of the Invention" In the case of the present invention, as is clear from the examples,
Since it has been possible to easily provide free-cutting brass having a low cutting resistance value and excellent machinability, especially piercing property, there is a great contribution to the industry.

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】Cuを56.0〜63.0重量%と、Pbを1.8〜4.5重
量%と、Feを0.01重量%以上含み、残部がZnと不可避的
不純物からなり、SiとPの含有量が夫々0.001重量%未
満である事を特徴とする快削黄銅。
1. A Cu content of 56.0-63.0% by weight, Pb content of 1.8-4.5% by weight, Fe content of 0.01% by weight or more, the balance being Zn and inevitable impurities, and Si and P contents of 0.001 respectively. Free-cutting brass characterized by less than wt%.
JP2062228A 1990-03-12 1990-03-12 Free cutting brass Expired - Lifetime JP2506476B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2062228A JP2506476B2 (en) 1990-03-12 1990-03-12 Free cutting brass

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2062228A JP2506476B2 (en) 1990-03-12 1990-03-12 Free cutting brass

Publications (2)

Publication Number Publication Date
JPH03264629A JPH03264629A (en) 1991-11-25
JP2506476B2 true JP2506476B2 (en) 1996-06-12

Family

ID=13194093

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2062228A Expired - Lifetime JP2506476B2 (en) 1990-03-12 1990-03-12 Free cutting brass

Country Status (1)

Country Link
JP (1) JP2506476B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100336927C (en) * 2003-12-12 2007-09-12 上海第一铜棒厂 Quick cutting alloy material in low copper and machining method

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS53114723A (en) * 1977-02-22 1978-10-06 Nippon Burasu Kougiyou Kk Copper alloy with good corrosion resistance and machinability
JPS58167738A (en) * 1982-03-26 1983-10-04 Furukawa Electric Co Ltd:The Free cutting copper alloy

Also Published As

Publication number Publication date
JPH03264629A (en) 1991-11-25

Similar Documents

Publication Publication Date Title
CA2040725C (en) Machinable lead-free wrought copper-containing alloys
KR101313373B1 (en) Steel for machine structure use attaining excellent cutting-tool life and method for cutting same
KR20080080156A (en) Copper-zinc alloy and synchronizing ring produced therefrom
JP5307729B2 (en) Lead free free cutting steel
Rechberger et al. High performance cutting tools with a solid lubricant physically vapour-deposited coating
JPH05507125A (en) Deep hardened steel with improved fracture toughness
US3846186A (en) Stainless steel having improved machinability
JP2506476B2 (en) Free cutting brass
CN1035561C (en) Copper alloy
KR100864910B1 (en) A free-cutting copper alloy
US4784828A (en) Low carbon plus nitrogen, free-machining austenitic stainless steel
JP4023196B2 (en) Machine structural steel with excellent machinability
KR910009969B1 (en) Intermetallic compound type alloy having improved toughness machinability and wear resistance
JP2003049240A (en) Free-cutting steel
US4734254A (en) Enhanced machining anneal resistant copper alloy
JPH07173573A (en) Free-cutting steel excellent in machinability by carbide tool and internal quality
US5656237A (en) Resulfurized austenitic stainless steel with improved machinability
US3158470A (en) Copper base alloys and the method of treating the same to improve their machinability
JP2505611B2 (en) Free cutting copper alloy
JP2002155342A (en) Steel for diecasting mold for small quantity producing and diecasting mold for small quantity production
Adinamis et al. High speed machining of brass rod alloys
WO2022070905A1 (en) Manganese-aluminum bronze casting alloy
DeBenedictis A short course in cast-iron turning
JPH10306354A (en) Cutting tool for free cutting steel product
JPS62253744A (en) Free-cutting oxygen-free copper