JP2505519B2 - Fluorine-containing silyl compound and method for producing the same - Google Patents

Fluorine-containing silyl compound and method for producing the same

Info

Publication number
JP2505519B2
JP2505519B2 JP63032883A JP3288388A JP2505519B2 JP 2505519 B2 JP2505519 B2 JP 2505519B2 JP 63032883 A JP63032883 A JP 63032883A JP 3288388 A JP3288388 A JP 3288388A JP 2505519 B2 JP2505519 B2 JP 2505519B2
Authority
JP
Japan
Prior art keywords
ppm
compound
nmr
general formula
fluorine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP63032883A
Other languages
Japanese (ja)
Other versions
JPH01211593A (en
Inventor
祐二 井関
昭彦 中原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokuyama Corp
Original Assignee
Tokuyama Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokuyama Corp filed Critical Tokuyama Corp
Priority to JP63032883A priority Critical patent/JP2505519B2/en
Publication of JPH01211593A publication Critical patent/JPH01211593A/en
Application granted granted Critical
Publication of JP2505519B2 publication Critical patent/JP2505519B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Silicon Polymers (AREA)

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、新規な含フッ素シリル化合物及びその製造
方法に関する。
TECHNICAL FIELD The present invention relates to a novel fluorine-containing silyl compound and a method for producing the same.

(従来技術及び発明が解決しようとする問題点) 従来、パーフルオロ有機基とシリル基を同一分子内に
有する化合物は、パーフルオロ有機基及びシリル基の特
徴を生かした種々の有用な材料の原料化合物として用い
られている。例えば、トリフルオロプロピルメチルジヒ
ドロシランの脱水縮合物は、耐溶剤性,耐熱性を有する
シリコンオイルとして市販されている。また、米国特許
3484470号明細書には次式 で示される化合物を、織布の撥水,撥油処理剤の原料と
して用いる事が提案されている。また、特開昭62−4760
5号公報には次式 CF3OCF(CF3)CH2O(CH23Si(CH3)Cl2 で示される化合物を他のシリル化合物と共重合したの
ち、光ファイバーのクラッド材として用いる事が提案さ
れている。
(Problems to be Solved by Prior Art and Invention) Conventionally, compounds having a perfluoroorganic group and a silyl group in the same molecule are raw materials of various useful materials that make the best use of the characteristics of the perfluoroorganic group and the silyl group. It is used as a compound. For example, a dehydration condensate of trifluoropropylmethyldihydrosilane is commercially available as a solvent-resistant and heat-resistant silicone oil. US patent
No. 3484470 has the following formula It has been proposed to use the compound represented by as a raw material for a water-repellent and oil-repellent treatment agent for woven fabric. In addition, JP-A-62-4760
No. 5 discloses that a compound represented by the following formula CF 3 OCF (CF 3 ) CH 2 O (CH 2 ) 3 Si (CH 3 ) Cl 2 is used as a clad material for an optical fiber after being copolymerized with another silyl compound. Things have been proposed.

しかしながら、上述したような公知の化合物は、表面
処理剤として用いた場合には接着強度が必ずしも強いと
はいえず、また、重合した場合、その重合体の機械的強
度は必ずしも十分とはいえないといった欠点を有してい
た。
However, the known compounds as described above do not necessarily have strong adhesive strength when used as a surface treatment agent, and when polymerized, the mechanical strength of the polymer is not always sufficient. Had the drawbacks.

(問題を解決するための手段) 本発明者らは、以上の点に鑑み、他のモノマーと共重
合をおこなった場合には有効な架橋剤として働き、また
単独で重合した場合には高度に架橋した重合体を与え、
さらにまた表面処理剤として用いた場合には基質に対し
強固な接着性を有する含フッ素化合物を得ることを目的
として鋭意研究を重ねた結果、一分子中に2〜4個のケ
イ素原子を有する新規な含フッ素シリル化合物の製造に
成功し、また、該化合物が上記の目的を達成する化合物
である事を見い出し、本発明を完成させるに至った。
(Means for Solving the Problem) In view of the above points, the inventors of the present invention act as an effective cross-linking agent when copolymerized with other monomers, and when highly polymerized alone Gives a crosslinked polymer,
Furthermore, as a result of intensive research aimed at obtaining a fluorine-containing compound having strong adhesion to a substrate when used as a surface treatment agent, as a result, a novel compound having 2 to 4 silicon atoms in one molecule has been obtained. The present invention has been completed by successfully producing such a fluorinated silyl compound and finding that the compound achieves the above object.

即ち、本発明は、下記一般式〔I〕 RfO−R−SiR1R2R3 〔I〕 で示される含フッ素シリル化合物である。That is, the present invention provides the following general formula [I] R f O-R-SiR 1 R 2 R 3 ) n [I] Is a fluorinated silyl compound.

上記一般式〔I〕中、Rfは2〜4価のパーフルオロ有
機基であればどのような基であっても採用し得る。特に
本発明に於いて好適な基としては、以下の一般式で示さ
れるような基である。
In the above general formula [I], R f may be any group as long as it is a divalent to tetravalent perfluoro organic group. Particularly preferred groups in the present invention are groups represented by the following general formula.

2価の基: CF2 X+1, −CF2CFYO(CF2CFYO)(CF2X+1 (OCFYCF2zOCFYCF2−, 上記一般式で示した2〜4価のパーフルオロ有機基
中、Yで示されるパーフルオロアルキル基は原料の入手
の容易さから炭素数1〜4であることが好ましい。ま
た、xは1以上の整数であれば良いが、1〜7の範囲で
あることが好ましく、y及びzは0以上の整数であれば
良いが、一般には0〜3の範囲であることが好ましい。
Divalent groups: CF 2 X + 1, -CF 2 CFYO (CF 2 CFYO) y (CF 2) X + 1 (OCFYCF 2) z OCFYCF 2 -, Among the divalent to tetravalent perfluoroorganic groups represented by the above general formula, the perfluoroalkyl group represented by Y preferably has 1 to 4 carbon atoms from the viewpoint of easy availability of raw materials. Further, x may be an integer of 1 or more, but is preferably in the range of 1 to 7, and y and z may be an integer of 0 or more, but is generally in the range of 0 to 3. preferable.

次に、前記一般式〔I〕中、Rはアルキレン基が何ら
制限なく採用されるが、一般には炭素数3〜8のアルキ
レン基が好ましい。例えば一般式 で示されるアレキレン基が本発明において好適に採用さ
れる。
Next, in the general formula [I], an alkylene group is adopted as R without any limitation, but an alkylene group having 3 to 8 carbon atoms is generally preferable. For example, the general formula The alkylene group represented by is preferably used in the present invention.

上記式中のアルキル基としては、炭素数に特に制限さ
れないが、一般に原料の入手のしやすさ及び本発明の化
合物の合成のしやすさ等の理由から炭素数は1〜3の範
囲であることが好ましい。
The alkyl group in the above formula is not particularly limited in carbon number, but generally has a carbon number in the range of 1 to 3 for reasons such as easy availability of raw materials and easy synthesis of the compound of the present invention. It is preferable.

次に前記一般式〔I〕中、R1,R2及びR3で示されるハ
ロゲン原子としては、フッ素,塩素,臭素及びヨウ素が
用いられる。また、前記一般式〔I〕中、R1,R2及びR3
で示されるアルキル基,アルコキシ基は特に制限される
ものではないが、原料の入手の容易さ、生成物の反応性
等の理由から、炭素数1〜4の範囲であることが好まし
い。また、R1,R2及びR3で示されるアルキル基及びアル
コキシ基は部分フッ素化物であっても良い。具体的に
は、アルキル基としては、メチル基,エチル基,プロピ
ル基,トリフルオロプロピル基,ブチル基,トリフルオ
ロブチル基等が挙げられる。又、アルコキシ基として
は、メトキシ基,エトキシ基,プロポキシ基,トリフル
オロプロポキシ基,ブトキシ基,トリフルオロブトキシ
基等が挙げられる。
Next, in the general formula [I], as the halogen atom represented by R 1 , R 2 and R 3 , fluorine, chlorine, bromine and iodine are used. In the general formula [I], R 1 , R 2 and R 3
The alkyl group and the alkoxy group represented by are not particularly limited, but preferably have a carbon number of 1 to 4 for reasons such as easy availability of raw materials and reactivity of the product. Further, the alkyl group and the alkoxy group represented by R 1 , R 2 and R 3 may be partially fluorinated. Specifically, examples of the alkyl group include a methyl group, an ethyl group, a propyl group, a trifluoropropyl group, a butyl group and a trifluorobutyl group. Examples of the alkoxy group include a methoxy group, an ethoxy group, a propoxy group, a trifluoropropoxy group, a butoxy group and a trifluorobutoxy group.

また、前記一般式〔I〕中、nは2〜4の整数を取り
得る。
Moreover, in the said general formula [I], n can take the integer of 2-4.

本発明の前記一般式〔I〕で示される化合物は、新規
化合物であり、その構造は次の手段によって確認する事
ができる。
The compound represented by the above general formula [I] of the present invention is a novel compound, and its structure can be confirmed by the following means.

(イ)赤外吸収スペクトル(以下、IRと略称する。)を
測定する事により、本発明の前記一般式〔I〕で示され
る化合物中に存在する特定の原子団を知る事が出来る。
(A) By measuring an infrared absorption spectrum (hereinafter abbreviated as IR), it is possible to know the specific atomic group existing in the compound represented by the above general formula [I] of the present invention.

本発明の前記一般式〔I〕で示される化合物の代表例
として下記式 で示される化合物のIRチヤートを第1図に示す。
As a typical example of the compound represented by the above general formula [I] of the present invention, the following formula The IR chart of the compound represented by is shown in FIG.

(ロ) 19F−核磁気共鳴スペクトル(以下、19F−NMR
と略称する。)(トリクロロフルオロメタン基準;高磁
場側を正としppmで表わす)を測定する事により、前記
一般式〔I〕で示される化合物中に存在するフッ素原子
の結合様式を知ることができる。また、1H−核磁気共鳴
スペクトル(以下、1H−NMRと略称する。)(テトラメ
チルシラン基準;低磁場側を正とし、ppmで表わす) を測定する事により該化合物中に存在する水素原子の結
合様式を知ることができる。
(B) 19 F-nuclear magnetic resonance spectrum (hereinafter, 19 F-NMR
Is abbreviated. ) (Trichlorofluoromethane standard; expressed in ppm with the high magnetic field side being positive), the binding mode of the fluorine atom present in the compound represented by the general formula [I] can be known. Further, 1 H- nuclear magnetic resonance spectrum (hereinafter abbreviated to 1 H-NMR.); Hydrogen present in the compounds by measuring the (tetramethylsilane reference downfield positive, expressed in ppm) You can know the bonding mode of atoms.

本発明の前記一般式〔I〕で示される化合物の代表例
として下式 で示される化合物について19F−NMRチヤートを第2図
に、また1H−NMRチヤートを第3図に示す。
As a typical example of the compound represented by the above general formula [I] of the present invention, the following formula The 19 F-NMR chart and the 1 H-NMR chart of the compound represented by are shown in FIG. 2 and FIG. 3, respectively.

(ハ)質量スペクトル(以下、MSと略称する)を測定
し、観察された各ピーク(一般にはイオン質量Mをイオ
ンの荷電数eで除したM/eで表わされる値)に相当する
組成式を算出する事により、測定に供した化合物の分子
量ならびに、該分子内における各原子団の結合様式を知
る事ができる。
(C) A composition formula corresponding to each observed peak (generally, a value represented by M / e obtained by dividing the ion mass M by the charge number e of the ion) by measuring a mass spectrum (hereinafter abbreviated as MS) By calculating, it is possible to know the molecular weight of the compound used for the measurement and the binding mode of each atomic group in the molecule.

(ニ)元素分析によって、炭素,水素,ケイ素,及びハ
ロゲンの各重量%を求め、さらに認知された各元素の重
量%の和を100から減じる事により酸素の重量%を算出
する事ができ、従って、該化合物の組成式を決定する事
ができる。
(D) By elemental analysis, each weight% of carbon, hydrogen, silicon, and halogen is obtained, and the weight% of oxygen can be calculated by subtracting the sum of the weight% of each recognized element from 100. Therefore, the composition formula of the compound can be determined.

本発明の前記一般式〔I〕で示される化合物の製造方
法は、特に制限されるものではなく、どのような方法で
あっても良いが、例えば下記の方法によって好適に製造
することができる。
The method for producing the compound represented by the above general formula [I] of the present invention is not particularly limited and may be any method, but for example, it can be suitably produced by the following method.

一般式〔II〕 RfOR′) 〔II〕 で示される含フッ素アルケニルエーテル化合物と下記式
〔III〕 H−SiR1R2R3 〔III〕 で示されるシラン化合物とを反応させ、必要により加水
分解する方法である。
General formula [II] R f OR ') n [II] And a fluorine-containing alkenyl ether compound represented by the following formula [III] H-SiR 1 R 2 R 3 [III] This is a method of reacting with a silane compound represented by and hydrolyzing as necessary.

上記式〔II〕で示される含フッ素アルケニルエーテル
化合物は、次のような方法で製造することができる。
The fluorine-containing alkenyl ether compound represented by the above formula [II] can be produced by the following method.

下記一般式〔IV〕 (R′ COF) 〔IV〕 で示される酸フルオリド化合物と下記一般式〔V〕 R′−X 〔V〕 で示されるアルケニルハライド化合物とをフッ素イオン
の存在下に反応させることにより上記式〔II〕で示され
る含フッ素アルケニルエーテル化合物を製造することが
できる。(但し、上記式〔II〕中のRfと上記式〔IV〕中
のR′との関係は、n=2のときRf=−CF2−R′
−CF2−であり、n=3のとき であり、n=4のとき である。) 上記一般式〔IV〕で示される酸フルオリド化合物は、
公知の方法で製造できる。例えば以下のとおりである。
The following general formula [IV] (R 'f m COF) n [IV] And an acid fluoride compound represented by the following general formula [V] R'-X [V] The fluorine-containing alkenyl ether compound represented by the above formula [II] can be produced by reacting with the alkenyl halide compound represented by the formula (1) in the presence of a fluorine ion. (However, the relationship between R f in the above formula [II] and R ′ f in the above formula [IV] is such that when n = 2, R f = −CF 2 −R ′ f
-CF 2- , and when n = 3 And when n = 4 Is. ) The acid fluoride compound represented by the above general formula [IV] is
It can be manufactured by a known method. For example:

2価の酸フルオリド化合物のうち FOC(CF2x-1COF(但しxは1以上の整数である)で示
されるものは、市販品を利用しても良いし、電解フッ素
化等の方法で製造しても良い。FOC(CF2x-1COFで示さ
れる2価の酸フルオリド化合物は、さらに 等のパーフルオロアルキレンオキサイドと反応させるこ
とにより、他の2価の酸フルオリド化合物とすることが
できる。例えばFOC(CF22COFの場合は次のようなもの
が得られる。
Among divalent acid fluoride compounds, those represented by FOC (CF 2 ) x-1 COF (where x is an integer of 1 or more) may be commercially available products, or methods such as electrolytic fluorination It may be manufactured in. The divalent acid fluoride compound represented by FOC (CF 2 ) x-1 COF is Other divalent acid fluoride compounds can be obtained by reacting with other perfluoroalkylene oxides. For example, in the case of FOC (CF 2 ) 2 COF, the following is obtained.

〔但し、y及びzは0以上の整数である〕 また、2価の酸フルオリド化合物は、以下の方法によ
っても製造することができる。下記式で示される1価の
カルボン酸フルオリド化合物 ClF2l+1COF 〔lは1以上の整数である。〕 又は、 〔Yはフッ素原子又はパーフルオロアルキル基であり、
xは1以上の整数であり、yは0以上の整数である。〕 と次式〔VI〕で示されるエポキシ化合物 〔但し、R″はアルキル基である。〕 とを、フッ素イオン生成化合物としてNaF,KF,CsF,RbF,A
gF,N(CH34F等の存在下にジグライム,トリグライ
ム,テトラグライム等のグライム類、及びアセトニトリ
ル,スルホラン,ジメチルホルムアミド等の非プロトン
性極性溶媒中で−20〜80℃の温度下に数時間〜数日反応
させることにより、次に示される化合物が得られる。
[However, y and z are integers of 0 or more] The divalent acid fluoride compound can also be produced by the following method. Monovalent carboxylic acid fluoride compound represented by the following formula: ClF 2l + 1 COF [l is an integer of 1 or more. ] Or [Y is a fluorine atom or a perfluoroalkyl group,
x is an integer of 1 or more, and y is an integer of 0 or more. ] And an epoxy compound represented by the following formula [VI] [However, R ″ is an alkyl group.] As NaF, KF, CsF, RbF, A
In the presence of gF, N (CH 3 ) 4 F, etc., in glymes such as diglyme, triglyme, and tetraglyme, and aprotic polar solvents such as acetonitrile, sulfolane, dimethylformamide, etc., at a temperature of -20 to 80 ° C. By reacting for several hours to several days, the compound shown below is obtained.

ClF2l+1COFの場合には が得られ、また、 の場合には、 が得られる。これらの化合物を一般式で下記のように表
わす。
In case of ClF 2l + 1 COF Is obtained, and In Case of, Is obtained. These compounds are represented by the general formula as follows:

得られた化合物をさらにSbF5等のルイス酸触媒と室温
〜150℃の温度下で数時間〜数日間反応させることによ
り、−CF2OR″基を−COF基に変換することができる。こ
の反応は一般的に下記の反応式で表わされる。
By reacting for several hours to several days at a temperature of the resulting compound further S b F 5 or the like Lewis acid catalyst at room temperature to 150 DEG ° C., it is possible to convert the -CF 2 OR "groups -COF group This reaction is generally represented by the following reaction formula.

このようにして2価の酸フルオリド化合物を得ること
ができる。
In this way, a divalent acid fluoride compound can be obtained.

3価の酸フルオリド化合物の製造には多くの方法が考
えられる。例えば、2価の酸フルオリド化合物(一般的
にFOCRfCOFで表わす。但しRはパーフルオロ有機
基である。)の一方の−COF基に一般式〔VI〕で示され
るエポキシ化合物を前述した方法で反応させ、さらに前
述したSbF5等のルイス酸と反応させることで反応式
(I)と同様にして3価の酸フルオリド化合物を得るこ
とができる。
There are many possible methods for producing the trivalent acid fluoride compound. For example, the epoxy compound represented by the general formula [VI] is added to one of the --COF groups of one of the divalent acid fluoride compounds (generally represented by FOCR f COF, where R f is a perfluoro organic group). A trivalent acid fluoride compound can be obtained in the same manner as in the reaction formula (I) by reacting by the method and further by reacting with the above-mentioned Lewis acid such as S b F 5 .

反応の次のようになる。 The reaction looks like this:

他の方法としては、一般式〔VI〕で示されるエポキシ
化合物からフッ素アニオンを触媒として2量体をつく
り、さらにその2量体を反応式〔I〕に準じてSbF5等の
ルイス酸触媒により3価の酸フルオリド化合物を得るこ
とができる。反応は次のようになる。
As another method, a dimer is prepared from an epoxy compound represented by the general formula [VI] using a fluorine anion as a catalyst, and the dimer is further reacted with a Lewis acid catalyst such as SbF 5 according to the reaction formula [I]. A trivalent acid fluoride compound can be obtained. The reaction is as follows.

さらに4価の酸フルオリド化合物は、FOCRfCOFの両
方の−CO基と一般式〔VI〕で示されるエポキシ化合物を
反応させ、さらに前述したSbF5等のルイス酸触媒と反応
させることで製造することができる。反応は次のように
なる。
Further, a tetravalent acid fluoride compound is produced by reacting both -CO groups of FOCR f COF with the epoxy compound represented by the general formula [VI] and further reacting with the Lewis acid catalyst such as SbF 5 mentioned above. be able to. The reaction is as follows.

このようにして得られた前記一般式〔IV〕で示される
酸フルオリド化合物と前記一般式〔V〕で示されるアル
ケニルハライド化合物の反応はフッ素陰イオンの存在下
におこなわれる。フッ素イオンは、フッ素イオン生成化
合物によって得られる。フッ素イオン生成化合物として
は、次式 で示される化合物が好適に使用される。フッ素イオンの
存在量は、特に制限されず広い範囲から採用されるが、
一般には酸フルオリド化合物の−COF基に対して当量〜
4倍当量の範囲が好適である。
The reaction of the thus obtained acid fluoride compound represented by the general formula [IV] and the alkenyl halide compound represented by the general formula [V] is carried out in the presence of a fluorine anion. Fluoride ions are obtained by a fluoride ion generating compound. As the fluorine ion-generating compound, the following formula The compound represented by is preferably used. The amount of fluorine ions present is not particularly limited and is adopted from a wide range,
Generally, the equivalent to the -COF group of the acid fluoride compound
A range of 4 equivalents is preferred.

前記した原料である酸フルオリド化合物とアルケニル
ハライド化合物との反応割合は、特に制限されないが、
通常は酸フルオリド化合物の−COF基に対して当量〜4
倍当量の範囲でアルケニルハライド化合物を使用するこ
とが好ましい。
The reaction ratio of the above-mentioned raw material acid fluoride compound and alkenyl halide compound is not particularly limited,
Usually, it is equivalent to 4 to the -COF group of the acid fluoride compound.
It is preferred to use the alkenyl halide compound in a range of double equivalents.

上記した原料を、非プロトン性極性溶媒、例えば、ジ
グライム,トリグライム,テトラグライム等のグライム
類;アセトニトリル;セレホラン;ジメチルホルムアミ
ド等を用いて、0℃から200℃位の温度下に数時間〜数
日反応させることで前記一般式〔II〕で示される含フッ
素アルケニルエーテル化合物を得る事ができる。
An aprotic polar solvent, for example, glymes such as diglyme, triglyme, tetraglyme, etc .; acetonitrile; seleforane; dimethylformamide, etc., at a temperature of 0 to 200 ° C. for several hours to several days. By reacting, the fluorinated alkenyl ether compound represented by the general formula [II] can be obtained.

次に、前記一般式〔I〕で示される本発明の含フッ素
シリル化合物は、前記一般式〔II〕で示される含フッ素
アルケニルエーテル化合物をヒドロシリル化し、必要に
よっては、更にケイ素に置換したハロゲン原子の加水分
解反応によって得ることができる。
Next, the fluorine-containing silyl compound of the present invention represented by the general formula [I] is obtained by hydrosilylating the fluorine-containing alkenyl ether compound represented by the general formula [II] and, if necessary, further substituted with a halogen atom substituted with silicon. Can be obtained by the hydrolysis reaction of.

ヒドロシリル化の方法は特に限定はされず、一般に二
重結合を有する化合物をヒドロシリル化する公知の方法
が採用される。ヒドロシリル化反応には、触媒を用いる
ことが好ましい。触媒としては公知のものが何ら制限な
く使用することができ、具体的には過酸化ジベンゾイ
ル,過酸化ジブチル,過酸化ジクミル,過安息香酸ブチ
ル,過酢酸ブチル,アゾビスイソブチロニトリル等の有
機過酸化物;塩化白金酸,塩化イリジウム,塩化ルテニ
ウム,白金黒等の遷移金属化合物;テトラメチルエチレ
ンジアミン,トリブチルアミン等の塩基が挙げられる。
該反応において使用する触媒量は、一般的には前記一般
式〔II〕で示される化合物中に存在する二重結合に対
し、10-8〜0.3当量、好ましくは10-6〜0.2当量の範囲か
ら選ばれる。前記一般式〔III〕で示される化合物は、
前記一般式〔II〕で示される化合物中の二重結合に対
し、1〜3倍当量の範囲で用いる事が好ましい。また、
該反応は、前記一般式〔II〕及び前記一般式〔III〕で
示される化合物並びに触媒に対して実質的に不活性な溶
媒中でおこなう事もできるし、無溶媒でおこなう事もで
きる。さらに、該反応における反応温度は一般には50〜
300℃、好ましくは80〜200℃の範囲から選ばれる。ま
た、反応時間は、1分〜2日、好ましくは5分〜24時間
である。
The hydrosilylation method is not particularly limited, and a known method of hydrosilylating a compound having a double bond is generally used. A catalyst is preferably used for the hydrosilylation reaction. Any known catalyst can be used without any limitation, and specifically, organic compounds such as dibenzoyl peroxide, dibutyl peroxide, dicumyl peroxide, butyl perbenzoate, butyl peracetate, and azobisisobutyronitrile can be used. Peroxides; transition metal compounds such as chloroplatinic acid, iridium chloride, ruthenium chloride, platinum black; and bases such as tetramethylethylenediamine and tributylamine.
The amount of the catalyst used in the reaction is generally in the range of 10 −8 to 0.3 equivalent, preferably 10 −6 to 0.2 equivalent with respect to the double bond present in the compound represented by the general formula [II]. Chosen from. The compound represented by the general formula [III] is
It is preferably used in the range of 1 to 3 equivalents relative to the double bond in the compound represented by the general formula [II]. Also,
The reaction can be carried out in a solvent which is substantially inert to the compounds represented by the general formula [II] and the general formula [III] and the catalyst, or can be carried out without a solvent. Furthermore, the reaction temperature in the reaction is generally 50 to
It is selected from the range of 300 ° C, preferably 80 to 200 ° C. The reaction time is 1 minute to 2 days, preferably 5 minutes to 24 hours.

本発明の含フッ素シリル化合物のうち、ケイ素原子の
置換基の少くとも1つが水酸基である化合物は、該ケイ
素原子の置換基の少くとも1つがハロゲン原子又はアル
コキシ基である化合物を加水分解することによって得る
ことができる。
Among the fluorine-containing silyl compounds of the present invention, a compound in which at least one of the substituents on the silicon atom is a hydroxyl group is obtained by hydrolyzing a compound in which at least one of the substituents on the silicon atom is a halogen atom or an alkoxy group. Can be obtained by

また、本発明の含フッ素シリル化合物は、既述の方法
によって製造した後、ケイ素原子の置換基を変換するこ
とによっても得ることができる。ケイ素原子の置換基の
変換は、何ら制限なく公知の方法を採用することができ
る。例えば、ケイ素原子に結合しているハロゲン原子
は、アルコールとの反応によりアルコキシ基に、また、
水素化リチウムアルミニウム等の還元剤によって水素原
子に置換できる。またケイ素原子に結合しているハロゲ
ン原子はグリニヤール試薬等の炭素求核剤との反応によ
りアルキル基に置換し得る。更に、ケイ素原子に結合し
ている水素原子はハロゲン又はハロゲン化水素との反応
によって、対応するハロゲン原子に置換される。
Further, the fluorinated silyl compound of the present invention can also be obtained by converting the substituent of a silicon atom after being produced by the method described above. For the conversion of the substituent of the silicon atom, a known method can be adopted without any limitation. For example, a halogen atom bonded to a silicon atom becomes an alkoxy group by reaction with an alcohol,
A hydrogen atom can be substituted with a reducing agent such as lithium aluminum hydride. Further, the halogen atom bonded to the silicon atom can be substituted with an alkyl group by a reaction with a carbon nucleophile such as a Grignard reagent. Further, the hydrogen atom bonded to the silicon atom is replaced with the corresponding halogen atom by the reaction with halogen or hydrogen halide.

(効 果) 前記一般式〔I〕で示される本発明の含フッ素シリル
化合物のうち、ケイ素原子にハロゲン原子,水酸基又は
アルコキシ基を有する化合物は公知の方法によって高分
子量の化合物に誘導する事ができる。この高分子量の化
合物は、通常のシリコン系高分子とは異なり、フッ素含
量が高く、かつ高度に架橋されているため、耐熱性,低
温特性及び機械的特性が良好で、かつ電気的特性が良好
である等の数々の特徴を有している。
(Effects) Of the fluorine-containing silyl compounds of the present invention represented by the above general formula [I], a compound having a halogen atom, a hydroxyl group or an alkoxy group in a silicon atom can be converted into a high molecular weight compound by a known method. it can. Unlike ordinary silicone polymers, this high molecular weight compound has a high fluorine content and is highly crosslinked, so it has good heat resistance, low temperature characteristics and mechanical characteristics, as well as good electrical characteristics. It has various characteristics such as

また、前記一般式〔I〕で示される本発明の含フッ素
シリル化合物を用い、公知の方法により繊維,樹脂,ガ
ラス等の表面を処理すると、通常のフルオロシリコン系
処理剤とは異なり、反応点が多い為、基材に強固に装着
し、また含フッ素シリル化合物どうしも高度に架橋して
いるため、フッ素原子に由来する撥水撥油性、あるいは
低屈折率といった特性が長期間維持されるといった特徴
を有している。
Further, when the surface of the fiber, resin, glass or the like is treated by the known method using the fluorine-containing silyl compound of the present invention represented by the general formula [I], the reaction point is different from the usual fluorosilicone treating agent. Since it is often used, it is firmly attached to the base material, and since the fluorine-containing silyl compounds are highly crosslinked, the properties such as water and oil repellency derived from the fluorine atom or low refractive index can be maintained for a long time. It has features.

さらに、前記一般式〔I〕で示される本発明の含フッ
素シリル化合物は、他の有用な化合物の合成原料となり
うる。例えばケイ素原子に水素原子を有する含フッ素シ
リル化合物は、新規なフドロシリル化剤として用いる事
ができる。
Further, the fluorine-containing silyl compound of the present invention represented by the above general formula [I] can be a raw material for synthesizing other useful compounds. For example, a fluorinated silyl compound having a hydrogen atom in a silicon atom can be used as a novel fudorosilylating agent.

(実施例) 本発明を更に具体的に説明するため、以下に実施例を
挙げて説明するが、本発明はこれらの実施例に限定され
るものではない。
(Examples) In order to more specifically describe the present invention, examples will be described below, but the present invention is not limited to these examples.

実施例 1 (a) 100mlのオートクレーブに無水KF11.6g,乾燥ジ
グライム60ml,アリルブロマイド12.2g及びパーフルオロ
グルタリルフルオライド12.3gを入れたのち、撹拌しつ
つ67時間,100℃で加熱した。反応終了後、反応液を濾過
し、濾液を蒸留して、121〜123℃/10mmHgの留分を10.7g
得た。該留分の化合物の構造は、IR,19F−NMR,1H−NMR,
MR及び元素分析により CH2=CHCH2OCF2CF2CF2CF2CF2OCH2CH=CH2 である事が確認された。
Example 1 (a) An autoclave of 100 ml was charged with 11.6 g of anhydrous KF, 60 ml of dried diglyme, 12.2 g of allyl bromide and 12.3 g of perfluoroglutaryl fluoride, and heated at 100 ° C. for 67 hours while stirring. After completion of the reaction, the reaction solution is filtered, and the filtrate is distilled to obtain 10.7 g of a fraction of 121 to 123 ° C / 10 mmHg.
Obtained. The structure of the compound of the fraction is IR, 19 F-NMR, 1 H-NMR,
It was confirmed by MR and elemental analysis that CH 2 = CHCH 2 OCF 2 CF 2 CF 2 CF 2 CF 2 OCH 2 CH = CH 2 .

(イ) IR 1660cm-1(−CH2CH=CH2) 1050〜1400cm-1(−CF2−) (ロ) 19F−NMR,1H−NMR ケミカルシフト (e),(f) 89.6 ppm (f),(h) 123.8 ppm (g) 121.0 ppm (a),(l) 5.21ppm (b),(m) 5.36ppm (c),(k) 5.90ppm (d),(j) 4.46ppm (ハ) MS M/e 364M+(分子イオンピーク) M/e 323M+−(CH2CH=CH2) M/e 41+CH2CH=CH2 (b) 内径25mmのパイレックス管に、上記(a)で得
たCH2=CHCH2O(CF25OCH2CH=CH212.8g,メチルジクロ
ロシラン8.2g及び塩化白金酸の0.1Mイソプロピルアルコ
ール溶液70μを入れた。これを封じ、油浴につけ、10
0℃で18時間加熱した。冷却したのち開封し、内容物を
蒸留したところ、沸点128〜130℃/0.25mmHgの留分が17.
1g得られた。該留分の化合物の構造は、IR,19F−NMR,1H
−NMR,MS及び元素分析により、 である事が確認された。
(A) IR 1660cm -1 (-CH 2 CH = CH 2 ) 1050 to 1400cm -1 (-CF 2- ) (b) 19 F-NMR, 1 H-NMR Chemical shift (e), (f) 89.6 ppm (f), (h) 123.8 ppm (g) 121.0 ppm (a), (l) 5.21 ppm (b), (m) 5.36 ppm (c), (k) 5.90ppm (d), (j) 4.46ppm (C) MS M / e 364M + (Molecular ion peak) M / e 323M + -(CH 2 CH = CH 2 ) M / e 41 + CH 2 CH = CH 2 (B) In a Pyrex tube having an inner diameter of 25 mm, CH 2 = CHCH 2 O (CF 2 ) 5 OCH 2 CH = CH 2 12.8 g obtained in the above (a), methyldichlorosilane 8.2 g, and 0.1 M isopropyl chloroplatinic acid were added. 70 μl of alcohol solution was added. Seal it, put it in an oil bath, 10
Heated at 0 ° C. for 18 hours. After cooling, it was opened and the contents were distilled to find a fraction with a boiling point of 128-130 ° C / 0.25 mmHg of 17.
1 g was obtained. The structure of the compound of the fraction is IR, 19 F-NMR, 1 H
-By NMR, MS and elemental analysis, It was confirmed that

(イ) IR 2930,2990cm-1(−CH2−) 1100〜1300cm-1(−CF2−) (ロ) 19F−NMR,1H−NMR ケミカルシフト (e),(i) 84.7 ppm (f),(h) 123.8 ppm (g) 121.2 ppm (a),(m) 0.77ppm (b),(l) 0.9〜 1.4 ppm (c),(k) 1.5〜 2.2 ppm (d),(j) 4.04ppm (ハ) MS M/e 592M+(分子イオンピーク) 実施例 2 (a) コンデンサー,滴下ロート,撹拌機を取り付け
た100mlフラスコに、無水KF11.5g及び乾燥テトラグライ
ム60mlを入れたのち、反応器を0℃に冷却し、 21.4gを滴下した。滴下終了後、室温で30分間撹拌し
たのち、アリルブロマイド20.5gを滴下した。次に反応
器を油浴につけ、100℃に昇温し、66時間反応を続け
た。反応終了後、反応液を氷水中に注ぎ、下層を分離し
たのち、水洗し、MgSO4で乾燥した。次に、この有機層
を濾過し、濾液を蒸留したところ、沸点86℃/4mmHgで が20.3g得られた。該化合物の構造は、IR,19F−NMR,1H
−NMR,MS及び元素分析で確認した。
(A) IR 2930,2990 cm -1 (-CH 2- ) 1100 to 1300 cm -1 (-CF 2- ) (b) 19 F-NMR, 1 H-NMR Chemical shift (e), (i) 84.7 ppm (f), (h) 123.8 ppm (g) 121.2 ppm (a), (m) 0.77 ppm (b), (l) 0.9 to 1.4 ppm (c), ( k) 1.5 to 2.2 ppm (d), (j) 4.04 ppm (c) MS M / e 592M + (molecular ion peak) Example 2 (a) In a 100 ml flask equipped with a condenser, a dropping funnel and a stirrer, 11.5 g of anhydrous KF and 60 ml of dry tetraglyme were placed, and then the reactor was cooled to 0 ° C. 21.4 g was added dropwise. After completion of the dropping, the mixture was stirred at room temperature for 30 minutes, and then 20.5 g of allyl bromide was added dropwise. Next, the reactor was placed in an oil bath, the temperature was raised to 100 ° C., and the reaction was continued for 66 hours. After completion of the reaction, the reaction solution was poured into ice water, the lower layer was separated, washed with water, and dried with MgSO 4 . Next, this organic layer was filtered, and the filtrate was distilled, with a boiling point of 86 ° C / 4 mmHg. 20.3g was obtained. The structure of the compound is IR, 19 F-NMR, 1 H
-Confirmed by NMR, MS and elemental analysis.

(イ) IR 1655cm-1(−CH2CH=CH2) 1050〜1400cm-1(−CF2−) (ロ) 19F−NMR1 H−NMR ケミカルシフト (e),(l) 85.1 ppm (f),(j) 79.4 ppm (g),(k) 142.2 ppm (h),(i) 84.3 ppm (a),(o) 5.23ppm (b),(p) 5.38ppm (c),(n) 5.92ppm (d),(m) 4.47ppm (ハ) MS M/e 546 M+(分子イオンピーク) M/e 41 −CH2CH=CH2 (b) 内径25mmのパイレックス管に上記(a)で得た 20.3g,メチルジクロロシラン9.3g及び塩化白金酸の0.
1Mイソプロピルアルコール溶液100μを入れ、これを
封じた。油溶中で6時間,110℃に加熱したのち開封し、
内容物を蒸留したところ、沸点134〜137℃/0.2mmHgの留
分が24.8g得られた。該留分の化合物の構造は、IR,19F
−NMR,1H−NMR,MS及び元素分析により である事が確認された。
(A) IR 1655cm -1 (-CH 2 CH = CH 2 ) 1050 to 1400cm -1 (-CF 2- ) (b) 19 F-NMR 1 H-NMR Chemical shift (e), (l) 85.1 ppm (f), (j) 79.4 ppm (g), (k) 142.2 ppm (h), (i) 84.3 ppm (a), (o) 5.23 ppm (b) , (P) 5.38ppm (c), (n) 5.92ppm (d), (m) 4.47ppm (c) MS M / e 546 M + (molecular ion peak) M / e 41 −CH 2 CH = CH 2 (B) Obtained in (a) above in a Pyrex tube with an inner diameter of 25 mm 20.3 g, methyldichlorosilane 9.3 g and chloroplatinic acid 0.
100 μl of 1M isopropyl alcohol solution was added and sealed. After heating to 110 ° C for 6 hours in oil, open the bottle,
When the contents were distilled, 24.8 g of a fraction having a boiling point of 134 to 137 ° C / 0.2 mmHg was obtained. The structure of the compound of the fraction is IR, 19 F
-NMR, 1 H-NMR, MS and elemental analysis It was confirmed that

(イ) IR(第1図にチヤートを示した。) 1920,1990cm-1(−CH2−) 1100〜1300cm-1(−CF2−) (ロ) 19F−NMR,1H−NMR(第2,第3図にチヤートを示
した。) ケミカルシフト (e) 85.1ppm (f) 142.4ppm (g) 79.6ppm (h) 84.3ppm (a) 0.76ppm (b) 0.9〜 1.3 ppm (c) 1.6〜 2.2 ppm (d) 4.03ppm (ハ) MS 実施例 3 実施例2−(b)と同様にして 10.2g及びジメチルクロロシラン3.9gから を8.4g得た。該化合物の構造はIR,19F−NMR,1H−NMR,MS
及び元素分析により確認した。
(A) IR (chart is shown in Fig. 1 ) 1920,1990cm -1 (-CH 2- ) 1100-1300cm -1 (-CF 2- ) (b) 19 F-NMR, 1 H-NMR ( Charts are shown in Figs. 2 and 3.) Chemical shift (e) 85.1ppm (f) 142.4ppm (g) 79.6ppm (h) 84.3ppm (a) 0.76ppm (b) 0.9 to 1.3ppm (c) 1.6 to 2.2ppm (d) 4.03ppm (c) MS Example 3 In the same manner as in Example 2- (b) From 10.2g and 3.9g dimethylchlorosilane 8.4g was obtained. The structure of the compound is IR, 19 F-NMR, 1 H-NMR, MS
And confirmed by elemental analysis.

(イ) IR 2920,3000cm-1(−CH2−) 1100〜1300cm-1(−CF2−) (ロ) 19F−NMR,1H−NMR ケミカルシフト (f) 85.0 ppm (g) 142.3 ppm (h) 79.4 ppm (i) 84.3 ppm (a),(b) 0.40ppm (c) 0.7〜 0.8 ppm (d) 1.6〜 2.0 ppm (e) 4.00ppm (ハ) MS 実施例 4 実施例2−(b)と同様にして 18.59g及びトリクロロシラン9.7gから 18.0gを得た。該化合物の構造はIR,19F−NMR,1H−NM
R,MR,及び元素分析により確認した。
(B) IR 2920, 3000 cm -1 (-CH 2- ) 1100 to 1300 cm -1 (-CF 2- ) (b) 19 F-NMR, 1 H-NMR Chemical shift (f) 85.0 ppm (g) 142.3 ppm (h) 79.4 ppm (i) 84.3 ppm (a), (b) 0.40 ppm (c) 0.7 to 0.8 ppm (d) 1.6 to 2.0 ppm (e) 4.00 ppm (C) MS Example 4 Same as Example 2- (b) From 18.59g and 9.7g trichlorosilane 18.0g was obtained. The structure of the compound is IR, 19 F-NMR, 1 H-NM.
Confirmed by R, MR, and elemental analysis.

(イ) IR 2920,2990cm-1(C−H) 1100〜1350cm-1(−CF2−) (ロ) 19F−NMR,1H−NMR ケミカルシフト (d) 85.0 ppm (e) 142.2 ppm (f) 79.6 ppm (g) 84.6 ppm (a) 1.1〜 1.7 ppm (b) 1.7〜 2.3 ppm (c) 4.07ppm 実施例 5 (a) 200mlのオートクレーブに無水CsF48.5g,乾燥テ
トラグライム70ml,アリルブロマイド32.9gを入れたの
ち、ボンベよりオギザリルフルオライド11.0gを35℃で
導入し、50℃で4時間撹拌を続けた。反応終了後、濾液
を氷水にあけ、下層を分離したのち、蒸留によって73〜
74℃/40mmHgの留分を17.7g得た。該留分の化合物の構造
は、IR,19F−NMR,1H−NR,MS及び元素分析により CH2=CHCH2OCF2CF2OCH2CH=CH2 である事が確認された。
(A) IR 2920,2990 cm -1 (C-H) 1100 to 1350 cm -1 (-CF 2- ) (b) 19 F-NMR, 1 H-NMR Chemical shift (d) 85.0 ppm (e) 142.2 ppm (f) 79.6 ppm (g) 84.6 ppm (a) 1.1 to 1.7 ppm (b) 1.7 to 2.3 ppm (c) 4.07 ppm Example 5 (a) 200 ml autoclave After adding 48.5 g of anhydrous CsF, 70 ml of dry tetraglyme and 32.9 g of allyl bromide, 11.0 g of oxalyl fluoride was introduced from a cylinder at 35 ° C, and stirring was continued at 50 ° C for 4 hours. After the reaction was completed, the filtrate was poured into ice water, the lower layer was separated, and then distilled to remove 73 ~
17.7 g of a fraction of 74 ° C./40 mmHg was obtained. The structure of the compound of the fraction was confirmed by IR, 19 F-NMR, 1 H-NR, MS and elemental analysis to be CH 2 = CHCH 2 OCF 2 CF 2 OCH 2 CH = CH 2 .

(イ) IR 1655cm-1(−CH2CH=CH2) 1080〜1300cm-1(−CF2−) (ロ) 19F−NMR,1H−NMR ケミカルシフト (e),(f) 89.3ppm (a),(i) 5.21ppm (b),(j) 5.35ppm (c),(h) 5.90ppm (d),(g) 4.43ppm (ハ) MS M/e 214 M+(分子イオンピーク) M/e 41 +CH2CH=CH2 (b) 内径25mmのパイレックス管に上記(a)で得た
(CH2=CHCH2OCF2 212.7g,メチルジクロロシラン14.32
g及びRuCl3を0.4gを入た。これを封じたのち、120℃で2
4時間加熱したのち開封し、内容物を蒸留したところ、
沸点124〜127℃/0.3mmHgの留分が19.9g得られた。該留
分の化合物の構造はIR,19F−NMR,1H−NMR,MS及び元素分
析により である事が確認された。
(A) IR 1655cm -1 (-CH 2 CH = CH 2 ) 1080 to 1300cm -1 (-CF 2- ) (b) 19 F-NMR, 1 H-NMR Chemical shift (e), (f) 89.3ppm (a), (i) 5.21ppm (b), (j) 5.35ppm (c), (h) 5.90ppm (d), (g) 4.43ppm (c) MS M / e 214 M + (Molecular ion peak) M / e 41 + CH 2 CH = CH 2 (b) Obtained in (a) above in a Pyrex tube with an inner diameter of 25 mm (CH 2 = CHCH 2 OCF 2 2 12.7 g , Methyldichlorosilane 14.32
g and 0.4 g of RuCl 3 were added. After sealing this, 120 ° C for 2
After heating for 4 hours, opening the bag and distilling the contents,
19.9 g of a fraction having a boiling point of 124 to 127 ° C./0.3 mmHg was obtained. The structure of the compound of the fraction was determined by IR, 19 F-NMR, 1 H-NMR, MS and elemental analysis. It was confirmed that

(イ) IR 2910,2990cm-1(−CH2−) 1100〜1250cm-1(−CF2−) (ロ) 19F−NMR,1H−NMR ケミカルシフト (e) 89.7 ppm (a) 0.76ppm (b) 0.9〜 1.4 ppm (c) 1.6〜 2.1 ppm (d) 3.92ppm (ハ) MS M/e 407 M+(分子イオンピーク)−Cl 実施例 6 (a) 撹拌機,−20℃の温度の還流コンデンサー及び
滴下ロートを取り付けた500ml三ッ口フラスコに乾燥テ
トラグライム200mlと無水KF1.6gを入れた。反応器を5
℃に冷却し、 90.0gを30分かけて滴下したのち、16時間撹拌を続け
た。
(A) IR 2910,2990 cm -1 (-CH 2- ) 1100 to 1250 cm -1 (-CF 2- ) (b) 19 F-NMR, 1 H-NMR Chemical shift (e) 89.7 ppm (a) 0.76 ppm (b) 0.9 to 1.4 ppm (c) 1.6 to 2.1 ppm (d) 3.92 ppm (c) MS M / e 407 M + (molecular ion peak) -Cl Example 6 (a) 200 ml of dried tetraglyme and 1.6 g of anhydrous KF were placed in a 500 ml three-necked flask equipped with a stirrer, a reflux condenser at a temperature of -20 ° C and a dropping funnel. 5 reactors
Cooled to ℃, After 90.0 g was added dropwise over 30 minutes, stirring was continued for 16 hours.

反応器のコンデンサーを取りはずし、蒸留装置を取り
付け、蒸留により沸点79℃/26mmHgの留分を得た。該留
分の構造はIR,19F−NMR,1H−NMR,MS,元素分析により であることが確認された。
The condenser of the reactor was removed, a distillation apparatus was attached, and a fraction having a boiling point of 79 ° C / 26 mmHg was obtained by distillation. The structure of the fraction was determined by IR, 19 F-NMR, 1 H-NMR, MS and elemental analysis. Was confirmed.

(イ) IR 2900,3000,3030cm-1(−CH3) 1890cm-1(−COF) (ロ) MS M/e 181 CH3OCF2CF2CF2 + M/e 81 +CF2OCH3 (b) コンデンサー,滴下ロート,撹拌機を取り付け
た200ml三ッ口フラスコにSbF55.0gとクライトックスAZ
(商品名:デユポン社製)を70ml入れたのち、反応器を
0℃に冷却し、 76.0gを20分かけて滴下した。滴下終了後、徐々に温
度を上げてゆき、80℃まで昇温した。60℃で反応液から
ガスが発生しだした。分析の結果、このガスはCH3Fであ
った。100℃で4時間撹拌を続けたのち、反応器より直
接蒸留により を得た。該化合物の構造は、IR,19F−NMR,MS及び元素分
析により確認した。
(A) IR 2900,3000,3030cm -1 (-CH 3 ) 1890cm -1 (-COF) (b) MS M / e 181 CH 3 OCF 2 CF 2 CF 2 + M / e 81 + CF 2 OCH 3 (B) In a 200 ml three-necked flask equipped with a condenser, dropping funnel and stirrer, 5.0 g of SbF 5 and Krytox AZ
After adding 70 ml (trade name: manufactured by Dyupon), cool the reactor to 0 ° C, 76.0 g was added dropwise over 20 minutes. After the dropping was completed, the temperature was gradually raised to 80 ° C. Gas started to be generated from the reaction solution at 60 ° C. As a result of analysis, this gas was CH 3 F. Continue stirring at 100 ° C for 4 hours, then by direct distillation from the reactor. I got The structure of the compound was confirmed by IR, 19 F-NMR, MS and elemental analysis.

(イ) IR 1885cm-1(−COF) (ロ) 19F−NMR ケミカルシフト (a) −23.7ppm (b) 118.9ppm (c) 82.9ppm (d) 117.4ppm (e),(f) −21.3ppm (ハ) MS M/e 241 (c) 200mlのオートクレーブに、無水KF32.0g,乾燥
ジグライム80ml,アリルブロマイド80.0g及び 39.6gを入れ、120℃で24時間反応をおこない、 を33.2gを得た。該化合物の構造はIR,19F−NMR,1H−NM
R,MS,元素分析で確認した。
(A) IR 1885cm -1 (-COF) (b) 19 F-NMR Chemical shift (a) -23.7ppm (b) 118.9ppm (c) 82.9ppm (d) 117.4ppm (e), (f) -21.3ppm (c) MS M / e 241 (C) In a 200 ml autoclave, anhydrous KF3 2.0 g, dried diglyme 80 ml, allyl bromide 80.0 g and Put 39.6g, react at 120 ℃ for 24 hours, 33.2g was obtained. The structure of the compound is IR, 19 F-NMR, 1 H-NM.
It was confirmed by R, MS and elemental analysis.

(イ) IR 1660cm-1(−CH2CH=CH2) 1050〜1400cm-1(−CF2−) (ロ) 19F−NMR,1H−NMR ケミカルシフト (e) 88.5 ppm (f) 126.9 ppm (g) 78.8 ppm (h) 141.7 ppm (i) 88.6 ppm (a),(l) 5.35ppm (b),(m) 5.21ppm (c),(k) 5.92ppm (d),(j) 4.48ppm (ハ) MS M/e 468 M+(分子イオンピーク) M/e 41 +CH2CH=CH2 (d) 実施例1−(b),2−(b)において詳細に説
明したのと同様な方法で CH2=CHCH2O(CF23OCF(CF2OCH2CH=CH2とHSi(C
H3)Cl2から を得た。該化合物の構造はIR,19R−NMR,1H−NMR,MS及び
元素分析によって確認した。
(A) IR 1660cm -1 (-CH 2 CH = CH 2 ) 1050 to 1400cm -1 (-CF 2- ) (b) 19 F-NMR, 1 H-NMR Chemical shift (e) 88.5 ppm (f) 126.9 ppm (g) 78.8 ppm (h) 141.7 ppm (i) 88.6 ppm (a), (l) 5.35 ppm (b), (m) 5.21 ppm (c), ( k) 5.92 ppm (d), (j) 4.48 ppm (c) MS M / e 468 M + (molecular ion peak) M / e 41 + CH 2 CH = CH 2 (d) Example 1- (b), In the same manner as described in detail in 2- (b), CH 2 = CHCH 2 O (CF 2 ) 3 OCF (CF 2 OCH 2 CH = CH 2 ) 2 and HSi (C
H 3 ) From Cl 2 I got The structure of the compound was confirmed by IR, 19 R-NMR, 1 H-NMR, MS and elemental analysis.

(イ) IR 2920,2990cm-1(−CH2−) 1050〜1400cm-1(−CF2−) (ロ) 19F−NMR,1H−NMR ケミカルシフト (e) 88.7 ppm (f) 126.9 ppm (g) 78.8 ppm (h) 141.6 ppm (i) 88.7 ppm (a),(m) 0.76ppm (b),(l) 0.9〜 1.4 ppm (c),(k) 1.5〜 2.2 ppm (d),(j) 4.00ppm (ハ) MS 実施例 7 (a) 撹拌機,−20℃の温度の還流コンデンサー及び
滴下ロートを取り付けた300mlの三ッ口フラスコに乾燥
テトラグライム150mlと無水KF12.0gを入れた。反応器を
0℃に冷却し、パーフルオログルタリルフルオライド3
0.0gを10分間で滴下した後、更に1時間撹拌し、アルコ
キシドを十分生成させた。
(A) IR 2920,2990 cm -1 (-CH 2- ) 1050 to 1400 cm -1 (-CF 2- ) (b) 19 F-NMR, 1 H-NMR Chemical shift (e) 88.7 ppm (f) 126.9 ppm (g) 78.8 ppm (h) 141.6 ppm (i) 88.7 ppm (a), (m) 0.76 ppm (b), (l) 0.9 to 1.4 ppm (c) , (K) 1.5 to 2.2 ppm (d), (j) 4.00 ppm (c) MS Example 7 (a) 150 ml of dried tetraglyme and 12.0 g of anhydrous KF were placed in a 300 ml three-necked flask equipped with a stirrer, a reflux condenser at a temperature of -20 ° C and a dropping funnel. Cool the reactor to 0 ° C and perfluoroglutaryl fluoride 3
After 0.0 g was added dropwise over 10 minutes, the mixture was further stirred for 1 hour to sufficiently generate alkoxide.

反応器を0℃に保ちながら 44.2gを30分かけて徐々に滴下した。滴下終了後、2
時間撹拌し、反応器の温度を室温に上昇させ、更に6時
間撹拌した。
While keeping the reactor at 0 ° C 44.2 g was gradually added dropwise over 30 minutes. 2 after the dropping
After stirring for an hour, the temperature of the reactor was raised to room temperature and stirring was continued for another 6 hours.

反応器のコンデンサーをはずし、蒸留装置を取り付
け、蒸留により を38.6g得た。該化合物の構造は、IR,19F−NMR,1H−NM
R,MS,元素分析により確認した。
Remove the condenser of the reactor, attach the distillation device, and 38.6 g was obtained. The structure of the compound is IR, 19 F-NMR, 1 H-NM.
It was confirmed by R, MS and elemental analysis.

(イ) IR 3030,3000,2900cm-1(−CH3) 1880cm-1(−COF) (ロ) MS M/e 81 +CF2OCH3 (b) 実施例6−(b)で詳細に説明したのと同様な
方法を用いて、 から を得た。該化合物の構造は、IR,19F−NMR,MS,元素分析
により確認した。
(A) IR 3030,3000,2900cm -1 (-CH 3 ) 1880cm -1 (-COF) (b) MS M / e 81 + CF 2 OCH 3 (B) Using a method similar to that described in detail in Example 6- (b), From I got The structure of the compound was confirmed by IR, 19 F-NMR, MS and elemental analysis.

(イ) IR 1890cm-1(−COF) (ロ) 19F−NMR ケミカルシフト (a),(b),(j),(k) −21.5ppm (c),(i) 117.0ppm (d),(h) 80.2ppm (e),(g) 123.0ppm (f) 121.1ppm (ハ) MS (c) 実施例1−(a),2−(a)及び6−(c)に
おいて詳細に説明したのと同様な方法を用いて、 から、 を得た。該化合物の構造は、IR,19F−NMR,1H−NMR,MS及
び元素分析で確認した。
(A) IR 1890cm -1 (-COF) (b) 19 F-NMR Chemical shift (a), (b), (j), (k) -21.5ppm (c), (i) 117.0ppm (d), (h) 80.2ppm (e), (g) 123.0ppm (f) 121.1ppm (C) MS (C) Using a method similar to that described in detail in Examples 1- (a), 2- (a) and 6- (c), From I got The structure of the compound was confirmed by IR, 19 F-NMR, 1 H-NMR, MS and elemental analysis.

(イ) IR 1660,990,915cm-1(−CH2CH=CH2) 1050〜1400cm-1(−CF2−) (ロ) MS M/e 511 (CF25OCF(CF2OCH2CH=CH2 M/e 245 +CF(CF2OCH2CH=CH2 (d) 実施例1−(b),2−(b)において詳細に説
明したのと同様な方法で (CH2=CHCH2OCF)2CFO(CF25OCF(CF2OCH2CH=CH)
とHSi(CH3)Cl2から を得た。該化合物の構造はIR,19F−NMR,1H−NMR,MS及び
元素分析で確認した。
(A) IR 1660,990,915cm -1 (-CH 2 CH = CH 2 ) 1050 to 1400cm -1 (-CF 2- ) (b) MS M / e 511 + (CF 2 ) 5 OCF (CF 2 OCH 2 in CH = CH 2) 2 M / e 245 + CF (CF 2 OCH 2 CH = CH 2) 2 (d) example 1- (b), similar to that described in detail in 2-(b) mETHOD (CH 2 = CHCH 2 OCF) 2 CFO (CF 2 ) 5 OCF (CF 2 OCH 2 CH = CH)
From 2 and HSi (CH 3 ) Cl 2 I got The structure of the compound was confirmed by IR, 19 F-NMR, 1 H-NMR, MS and elemental analysis.

(イ) IR 2930,2990cm-1(−CH2−) 1050〜1400cm-1(−CF2−) (ロ) MS 実施例 8 (a) 実施例1−(a)において、アリルブロマイド
のかわりにメタリルクロライド12.5gを用い、無水KF10.
0g,パーフルオログルタリルフルオライド10.5gを用いた
他は、実施例1−(a)と同様にして反応をおこない を得た。該化合物の構造は、IR,19F−NMR,1H−NMR,MS及
び元素分析で確認した。
(A) IR 2930,2990cm -1 (-CH 2- ) 1050 to 1400cm -1 (-CF 2- ) (b) MS Example 8 (a) In Example 1- (a), 12.5 g of methallyl chloride was used instead of allyl bromide, and anhydrous KF10.
Reaction was carried out in the same manner as in Example 1- (a) except that 0 g and 10.5 g of perfluoroglutaryl fluoride were used. I got The structure of the compound was confirmed by IR, 19 F-NMR, 1 H-NMR, MS and elemental analysis.

(イ) IR 1100〜1400cm-1(−CF2−) (ロ) MS M/e 392 M+(分子イオンピーク) (b) 実施例1−(b),2−(b)において詳細に説
明したのと同様な方法で とHSi(CH3)Cl2から を得た。該化合物の構造は、IR,19F−NMR,1H−NMR,MS及
び元素分析により確認した。
(A) IR 1100 to 1400 cm -1 (-CF 2- ) (b) MS M / e 392 M + (Molecular ion peak) (B) By the same method as described in detail in Example 1- (b), 2- (b). From HSi (CH 3 ) Cl 2 I got The structure of the compound was confirmed by IR, 19 F-NMR, 1 H-NMR, MS and elemental analysis.

(イ) IR 2910,2990cm-1(−CH2−) 1100〜1350cm-1(−CF2−) (ロ) MS M/e 620 M+(分子イオンピーク) 実施例 9 磁気撹拌子を入れた100mlフラスコに、ヘキサン25ml
を入れ0℃に冷却した。撹拌しながらメタノール2.6g,
ピリジン6.4gを加えたのち、実施例2で得られた 15.0gを徐々に滴下していった。20分間撹拌したの
ち、ろ過してピリジン塩酸塩を除去し、減圧下溶媒を留
去した。残査を蒸留したところ、143〜144℃/0.2mmHgの
留分が10.3g得られた。該留分の化合物はIR,19F−NMR,1
H−NMR,MS及び元素分析により である事が確認された。
(B) IR 2910,2990cm -1 (-CH 2- ) 1100 to 1350cm -1 (-CF 2- ) (b) MS M / e 620 M + (Molecular ion peak) Example 9 25 ml of hexane was added to a 100 ml flask containing a magnetic stir bar.
And cooled to 0 ° C. 2.6 g of methanol with stirring,
Obtained in Example 2 after adding 6.4 g of pyridine 15.0 g was gradually added dropwise. After stirring for 20 minutes, the pyridine hydrochloride was removed by filtration, and the solvent was evaporated under reduced pressure. When the residue was distilled, 10.3 g of a fraction of 143-144 ° C / 0.2 mmHg was obtained. The compound of the fraction is IR, 19 F-NMR, 1
By H-NMR, MS and elemental analysis It was confirmed that

(イ) IR 2850,2950,2990cm-1(−CH2−) 1150〜1350cm-1(−CF2−) (ロ) 19F−NMR,1H−NMR ケミカルシフト (f) 84.1 ppm (g) 142.4 ppm (h) 79.5 ppm (i) 85.0 ppm (a) 0.05ppm (b) 3.46ppm (c) 0.3〜 0.8 ppm (d) 1.5〜 2.1 ppm (e) 4.00ppm (ハ) MS M/e 758 M-(分子イオンピーク) M/e 105 +Si(OCH32CH3 実施例10 回転子を入れた側管付100mlフラスコに水35ml,エーテ
ル15ml及びNaHCO34.0gを入れ、激しく撹拌しながら、実
施例3で得られた 7.4gを滴下した。6時間反応したのち、有機層を分離
し、飽和食塩水で洗い、CaSO2で乾燥後、溶媒を留去し
た。残査を90℃で減圧乾燥した後、IRを測定すると3350
cm-1付近にSiOH基に由来する吸収が観測された事によ
り、 に変換されている事がわかった。
(A) IR 2850, 2950, 2990 cm -1 (-CH 2- ) 1150 to 1350 cm -1 (-CF 2- ) (b) 19 F-NMR, 1 H-NMR Chemical shift (f) 84.1 ppm (g) 142.4 ppm (h) 79.5 ppm (i) 85.0 ppm (a) 0.05 ppm (b) 3.46 ppm (c) 0.3 to 0.8 ppm (d) 1.5 to 2.1 ppm (e) 4.00 ppm (c) MS M / e 758 M - ( molecular ion peak) M / e 105 + Si ( OCH 3) 2 CH 3 example 10 water 35ml to 100ml flask with a bypass line containing the rotor, ether 15ml and NaHCO 3 4.0 g was added and obtained in Example 3 with vigorous stirring 7.4 g was added dropwise. After reacting for 6 hours, the organic layer was separated, washed with saturated brine, dried over CaSO 2 , and the solvent was distilled off. After drying the residue at 90 ° C under reduced pressure, the IR was measured to be 3350.
Since the absorption derived from the SiOH group was observed near cm -1 , It turned out that it was converted to.

実施例11 撹拌機及び還流コンデンサーを取り付けた100mlフラ
スコにエーテル20ml,LiAlH40.35gを入れた。激しく撹拌
しつつ実施例1〜5で詳細に説明したのと同様な方法で
合成した、 6.9gのエーテル溶液をエーテルがおだやかに還流する
様に滴下した。滴下終了後更に6時間還流したのち、ソ
ックスレー抽出器を用いて無機塩類を除去した。エーテ
ルを留去したのち分留して を3.1g得た。該化合物の構造は、IR,19F−NMR,1H−NMR
及びMSで確認した。
Example 11 20 ml of ether and 0.35 g of LiAlH 4 were placed in a 100 ml flask equipped with a stirrer and a reflux condenser. Synthesized in a similar manner as described in detail in Examples 1-5 with vigorous stirring, A solution of 6.9 g of ether was added dropwise with gentle reflux of ether. After the addition was completed, the mixture was refluxed for 6 hours, and then inorganic salts were removed using a Soxhlet extractor. After distilling off the ether, fractional distillation Was obtained in an amount of 3.1 g. The structure of the compound is IR, 19 F-NMR, 1 H-NMR.
And MS confirmed.

実施例12 回転子の入った100mlフラスコにエーテル20ml及び実
施例1〜8で詳細に説明したのと同様な方法で合成した 6.2gを入れ、これに予め調製しておいたCH3MgBrのエ
ーテル溶液を加えた。反応終了後、氷水に注ぎ有機層を
分離し、乾燥したのち溶媒を留去した。この化合物の1H
−NMRを測定したところ0.02ppmに−SiCH3に相当する吸
収があり が得られている事がわかった。
Example 12 20 ml ether in a 100 ml flask containing a rotor and was synthesized in a similar manner as described in detail in Examples 1-8. 6.2 g was added, and a CH 3 MgBr ether solution prepared in advance was added thereto. After completion of the reaction, the mixture was poured into ice water to separate the organic layer, which was dried and the solvent was distilled off. 1 H of this compound
There is a corresponding absorption in -SiCH 3 to 0.02ppm was measured -NMR It was found that

実施例13 実施例1〜11で詳細に説明したのと同様な方法によ
り、第1表に示した含フッ素シリル化合物を合成した。
なお、第1表には合成した含フッ素シリル化合物のMSの
結果も併せて略記した。
Example 13 The fluorine-containing silyl compounds shown in Table 1 were synthesized by the same method as described in detail in Examples 1 to 11.
The results of MS of the synthesized fluorinated silyl compound are also summarized in Table 1.

用途例 実施例9で得られた 5重量部をメタノール100重量部に溶解し、さらに0.1
N−塩酸0.2重量部を加えた処理液に、予めアルカリ処理
したジエチレングリコールビスアリルオーボネート重合
体の板を浸漬したのち、100℃で2時間加熱硬化させ
た。得られたサンプルを沸騰水中に1時間浸漬したのち
乾燥させた。このサンプルの表面にナイフで1mm間隔で
縦横に各11本の平行線を入れて100個のマス目をクロス
カットし、その上にセロフアンテープを付着させた後テ
ープを剥離した(クロスカットテープテスト)ところ、
100個のマス目中、剥離したマス目は無かった。
Application Example Obtained in Example 9 Dissolve 5 parts by weight in 100 parts by weight of methanol, then add 0.1
A plate of diethylene glycol bisallyl abonate polymer which had been previously alkali-treated was immersed in a treatment solution containing 0.2 part by weight of N-hydrochloric acid, and then heat-cured at 100 ° C. for 2 hours. The obtained sample was immersed in boiling water for 1 hour and then dried. 11 parallel lines were put on the surface of this sample with a knife at 1 mm intervals vertically and horizontally, and 100 squares were cross-cut. After the cellophane tape was attached to the square, the tape was peeled off (cross-cut tape Test)
None of the 100 squares peeled off.

比較としてCF3CH2CH2Si(OCH32CH310重量部,メタ
ノール100重量部及び0.1N−塩酸0.2重量部より処理液を
調製し、用途剤と同様にして予めアルカリ処理したジエ
チレングリコールビスアリルカーボネート重合体の板を
用途例と同様にして処理し、クロスカットテープテスト
をおこなったところ、100後のマス目中、剥離したもの
が38個あった。
As a comparison, CF 3 CH 2 CH 2 Si (OCH 3 ) 2 CH 3 10 parts by weight, 100 parts by weight of methanol and 0.2 parts by weight of 0.1N hydrochloric acid were used to prepare a treatment liquid, and diethylene glycol was preliminarily alkali-treated in the same manner as the application agent. When a plate of the bisallyl carbonate polymer was treated in the same manner as in the application example and a cross-cut tape test was conducted, 38 pieces were peeled off in 100 squares.

【図面の簡単な説明】[Brief description of drawings]

第1図,第2図及び第3図は、それぞれ実施例2で得ら
れた化合物の赤外吸収スペクトル,19F−核磁気共鳴スペ
クトル及び1H−核磁気共鳴スペクトルである。
1, 2 and 3 are the infrared absorption spectrum, 19 F-nuclear magnetic resonance spectrum and 1 H-nuclear magnetic resonance spectrum of the compound obtained in Example 2, respectively.

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】一般式 RfO−R−SiR1R2R3 で示される含フッ素シリル化合物。1. A general formula R f O—R—SiR 1 R 2 R 3 ) n A fluorine-containing silyl compound represented by. 【請求項2】一般式 RfOR′) で示される含フッ素アルケニルエーテル化合物と下記式 H−SiR1R2R3 で示されるシラン化合物とを反応させ、必要により加水
分解することを特徴とする下記式 RfO−R−SiR1R2R3 で示される含フッ素シリル化合物の製造方法。
2. The general formula R f OR ′) n And a fluorine-containing alkenyl ether compound represented by the following formula H-SiR 1 R 2 R 3 With a silane compound represented by the formula: R f O—R—SiR 1 R 2 R 3 ) n A method for producing a fluorinated silyl compound represented by:
JP63032883A 1988-02-17 1988-02-17 Fluorine-containing silyl compound and method for producing the same Expired - Lifetime JP2505519B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63032883A JP2505519B2 (en) 1988-02-17 1988-02-17 Fluorine-containing silyl compound and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63032883A JP2505519B2 (en) 1988-02-17 1988-02-17 Fluorine-containing silyl compound and method for producing the same

Publications (2)

Publication Number Publication Date
JPH01211593A JPH01211593A (en) 1989-08-24
JP2505519B2 true JP2505519B2 (en) 1996-06-12

Family

ID=12371271

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63032883A Expired - Lifetime JP2505519B2 (en) 1988-02-17 1988-02-17 Fluorine-containing silyl compound and method for producing the same

Country Status (1)

Country Link
JP (1) JP2505519B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0751583B2 (en) * 1991-05-15 1995-06-05 信越化学工業株式会社 Organic silicon compound
JP2701109B2 (en) * 1992-05-21 1998-01-21 信越化学工業株式会社 Fluorine-containing organosilicon compound
JP4759952B2 (en) * 2004-08-06 2011-08-31 旭硝子株式会社 Fluorinated ethers and their uses
EP4008740B1 (en) 2015-09-01 2023-05-10 AGC Inc. Fluorinated ether compound, fluorinated ether composition, coating liquid and article
CN115340459B (en) * 2021-05-13 2023-12-26 中昊晨光化工研究院有限公司 Industrial method for removing impurities in trifluoromethyl fluoacid ester

Also Published As

Publication number Publication date
JPH01211593A (en) 1989-08-24

Similar Documents

Publication Publication Date Title
JP2563960B2 (en) Fluorine-containing ether compound and method for producing the same
US5262557A (en) Fluorine-containing organosilicon compound and process for producing the same
JP2505519B2 (en) Fluorine-containing silyl compound and method for producing the same
JP4282099B2 (en) Surface treatment composition
JP4370831B2 (en) Silsesquioxane derivatives having functional groups
US5453528A (en) Optimized process for inert fluorinated silanes
EP1220860B1 (en) Novel fluoroalkylsubstituted cyclotrisiloxanes, their use for preparation of new polymers and novel polymers
JPH0366641A (en) Fluorine-containing carboxylic acid derivative and production thereof
JP3292072B2 (en) Method for polymerizing hexafluoropropene oxide
JP2701103B2 (en) Fluorine-containing organosilicon compound and method for producing the same
JPH0428273B2 (en)
US4997899A (en) Process for preparing organometallic high polymer
JP2716346B2 (en) Alpha, omega-phenylethynylsiloxane monomers, oligomers and polymers thereof
JP3915883B2 (en) Organosilicon compound
JPH04338397A (en) Organosilicone compound
JPH0822828B2 (en) Fluorine-containing alkenyl ether compound
US5117026A (en) Fluorine-containing organic silicon compounds
JP4061132B2 (en) Fluorine-containing polysilane compound
US5684111A (en) Silylated dioxolane polymers and monomeric compounds
JP2575858B2 (en) Terminal perfluoroalkylsilane compound, method for producing the same, and coating agent using the compound
JPH06248085A (en) Fluorinated polysiloxanes
JPH0317088A (en) Organosilicon compound
JPH0776227B2 (en) Fluorine-containing cyclotrisiloxane and method for producing the same
WO2022059623A1 (en) Composition, substrate with surface layer, method for producing substrate with surface layer, compound, and method for producing compound
JPH066543B2 (en) Fluorinated diallyl ether