JP2505343B2 - Tantalum powder and method for producing the same - Google Patents

Tantalum powder and method for producing the same

Info

Publication number
JP2505343B2
JP2505343B2 JP4060615A JP6061592A JP2505343B2 JP 2505343 B2 JP2505343 B2 JP 2505343B2 JP 4060615 A JP4060615 A JP 4060615A JP 6061592 A JP6061592 A JP 6061592A JP 2505343 B2 JP2505343 B2 JP 2505343B2
Authority
JP
Japan
Prior art keywords
powder
tantalum
oxygen
tantalum powder
fluorine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP4060615A
Other languages
Japanese (ja)
Other versions
JPH05263101A (en
Inventor
雄二郎 水崎
賢次郎 松野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SHOWA KYABOTSUTO SUUPAA METARU KK
Original Assignee
SHOWA KYABOTSUTO SUUPAA METARU KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by SHOWA KYABOTSUTO SUUPAA METARU KK filed Critical SHOWA KYABOTSUTO SUUPAA METARU KK
Priority to JP4060615A priority Critical patent/JP2505343B2/en
Publication of JPH05263101A publication Critical patent/JPH05263101A/en
Application granted granted Critical
Publication of JP2505343B2 publication Critical patent/JP2505343B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】電解コンデンサ用の陽極材料とし
て用いるタンタル粉末に関する。
TECHNICAL FIELD This invention relates to tantalum powder used as an anode material for electrolytic capacitors.

【0002】[0002]

【従来の技術】金属タンタルの電解酸化皮膜は誘電率が
高いことからコンデンサ用電極として多用されている。
2. Description of the Related Art Electrolytic oxide films of metallic tantalum are widely used as capacitor electrodes because of their high dielectric constant.

【0003】金属タンタルは通常フッ化タンタルカリウ
ム(K2TaF7)をナトリウム還元する方法で製造し、
数段の化学処理及び熱処理を経て粉末を得ている。得ら
れたタンタル粉末は圧縮成型してペレットとし、高真空
中で高温で熱処理して多孔質の焼結体となし、さらに化
成処理により酸化皮膜を形成してコンデンサ陽極として
いる。
Metal tantalum is usually produced by a method of reducing potassium tantalum fluoride (K 2 TaF 7 ) with sodium.
The powder is obtained through several steps of chemical treatment and heat treatment. The obtained tantalum powder is compression molded into pellets, heat-treated at high temperature in a high vacuum to form a porous sintered body, and an oxide film is formed by chemical conversion treatment to form a capacitor anode.

【0004】タンタル粉末は個々の粒子が凹凸に富んだ
複雑な外形を有し、極めて多孔質な海綿状を呈してお
り、実効表面積は外見よりもはるかに大きい。この大き
な表面積を利用して、表面に酸化皮膜を形成して単位容
積あたりの静電容量を大きくしている。このようにタン
タルコンデンサの容量はタンタル表面に形成される誘電
体である酸化皮膜の面積に比例する。従って単位容積あ
たりの容量を増大させるには、さらに大きな重量あたり
の表面積(比表面積)が要求されることから、粉末粒径は
細かい方が良いとされている。しかし、タンタルは活性
な金属であり、空気中で安定に存在するためには表面に
極く薄い表面酸化膜を有する必要がある。この表面酸化
膜は誘電体としては不適当であり、化成処理により表面
皮膜を形成している。この際タンタル中の酸素含有量が
高いと良質の皮膜が形成できなくなる。従ってタンタル
粉末粒度があまり細か過ぎると酸素含有量が過剰にな
り、得られるコンデンサの性能が低くなる。タンタル中
の酸素濃度が4,000ppmを超えると、コンデンサの電
気特性、特に洩れ電流が悪化することが知られている。
そこで適当な粉末粒度が要求される。たとえば特開昭5
3−147664公報には、粉末粒径を3.8〜4.5μ
(FSSS:フィッシャー・サブシーブ寸法)が適当であ
る旨開示されている。しかし、近年の高容量化の要求に
伴い、タンタル粉末の粒度が細かくなり比表面積が格段
に大きくなったため、表面酸化膜として含まれる酸素の
量も多くなり、このようなタンタル粉末を焼結して陽極
としたコンデンサは、満足できる電気特性を有するもの
は得られない。
[0004] Tantalum powder has a complicated outer shape in which individual particles are rich in irregularities, and has an extremely porous sponge-like shape, and its effective surface area is much larger than it looks. By utilizing this large surface area, an oxide film is formed on the surface to increase the capacitance per unit volume. As described above, the capacitance of the tantalum capacitor is proportional to the area of the oxide film which is a dielectric formed on the tantalum surface. Therefore, in order to increase the capacity per unit volume, a larger surface area per unit weight (specific surface area) is required. Therefore, it is said that the powder particle size should be small. However, tantalum is an active metal, and it is necessary to have an extremely thin surface oxide film on the surface in order to stably exist in air. This surface oxide film is unsuitable as a dielectric and forms a surface film by chemical conversion treatment. At this time, if the oxygen content in tantalum is high, a good quality film cannot be formed. Therefore, if the particle size of the tantalum powder is too fine, the oxygen content becomes excessive, and the performance of the obtained capacitor deteriorates. It is known that when the oxygen concentration in tantalum exceeds 4,000 ppm, the electrical characteristics of the capacitor, particularly the leakage current, deteriorates.
Therefore, an appropriate powder particle size is required. For example, JP-A-5
In JP-A-3-147664, the powder particle size is 3.8 to 4.5 μm.
It is disclosed that (FSSS: Fisher sub-sieve size) is appropriate. However, with the recent demand for higher capacity, the particle size of the tantalum powder has become finer and the specific surface area has become remarkably large, so the amount of oxygen contained as a surface oxide film also increases, and such tantalum powder is sintered. No capacitor having satisfactory electric characteristics can be obtained as a positive electrode.

【0005】タンタル粉末中の酸素を低減させる方法と
しては、Mgを添加して還元する方法(特開昭58−2
7903,特開昭61−284501等)、pH値が
2.5〜5.0に保持された水で処理する方法(特開昭
52−107212)、アルカリ金属ハロゲン化物を接
触させて減圧下で熱処理する方法(特開昭60−217
622)等がある。これらの方法によって酸素量を大幅
に低下することが可能である。特開平2−310301
には粉末粒度と酸素量との関係が開示してある。
As a method for reducing oxygen in the tantalum powder, a method of adding Mg for reduction (Japanese Patent Laid-Open No. 58-2)
7903, JP-A-61-284501, etc.), a method of treating with water whose pH value is maintained at 2.5 to 5.0 (JP-A-52-107212), and contacting with an alkali metal halide under reduced pressure. Method of heat treatment (JP-A-60-217)
622) and the like. It is possible to significantly reduce the amount of oxygen by these methods. JP-A-2-310301
Discloses the relationship between powder particle size and oxygen content.

【0006】[0006]

【発明が解決しようとする課題】表面積の大きな粉末の
酸素を少くするためには、表面酸化膜をできるかぎり薄
くするのが効果的である。
In order to reduce the amount of oxygen in powder having a large surface area, it is effective to make the surface oxide film as thin as possible.

【0007】ところでタンタル中の酸素成分は、通常ナ
トリウム還元により得たタンタル粉末を洗浄して乾燥処
理後、熱処理をして、粉末の微粉化特性や成形性を向上
させる際に増加すると考えられる。さらにはタンタル粉
末を輸送したり保存する際にも増加する。
By the way, it is considered that the oxygen component in tantalum usually increases when the tantalum powder obtained by sodium reduction is washed, dried, and then heat-treated to improve the pulverization property and moldability of the powder. It also increases when transporting and storing tantalum powder.

【0008】本発明は従来の方法で酸素量の低いタンタ
ル粉末を得たのち、輸送並びに保存中の酸素の増加を防
ぐと同時に、粉末を圧縮成形して電極に加工する際の酸
素の増加を防止する手段を提供することを目的とするも
のである。これにより表面積の大きな微細な粉末であっ
ても、粉末取得後の酸素増加を抑制することができる。
According to the present invention, after obtaining a tantalum powder having a low oxygen content by a conventional method, it is possible to prevent the increase of oxygen during transportation and storage, and at the same time, to increase the oxygen when the powder is compression-molded and processed into an electrode. It is intended to provide a means for preventing. As a result, even with fine powder having a large surface area, it is possible to suppress an increase in oxygen after the powder is obtained.

【0009】[0009]

【課題を解決するための手段】本発明ではタンタル粉末
をフッ素イオンを含む水溶液中に浸漬しフッ素の被覆を
作って酸素との接触を断ち酸素の増加を防止する手段を
採用した。
In the present invention, a means for preventing the increase of oxygen by immersing the tantalum powder in an aqueous solution containing fluorine ions to form a coating of fluorine to prevent contact with oxygen and prevent an increase in oxygen is adopted.

【0010】フッ素添加処理を行うのは還元生成後洗
浄、脱ガスを終了した後で良い。すなわち、一般にタン
タル粉末はフッ化タンタルカリウムをナトリウムで還元
した後解砕し、酸洗と水洗をしてアルカリ金属を除去
し、真空中で1,400〜1,550℃で熱処理して脱水
素ガスし、次いでマグネシウムを加えて850℃以上に
加熱して脱酸し、過剰のマグネシウム及びMgO等の反
応生成物を除去するため無機酸洗と水洗を経て目的とす
るタンタル粉末を得ている。
Fluorine addition treatment may be carried out after completion of cleaning and degassing after reduction formation. That is, generally, tantalum powder is obtained by reducing potassium tantalum fluoride with sodium, then crushing, pickling and washing with water to remove alkali metal, and heat-treating in vacuum at 1,400 to 1,550 ° C. for dehydrogenation. It is gasified, and then magnesium is added and heated to 850 ° C. or higher for deoxidation, and the desired tantalum powder is obtained through inorganic pickling and water washing in order to remove excess reaction products such as magnesium and MgO.

【0011】本発明はこの後さらにフッ素イオンを含む
水溶液中に浸漬及び純水にて洗浄し、乾燥して目的とす
る粉末とする。
In the present invention, after that, the powder is further immersed in an aqueous solution containing fluorine ions, washed with pure water, and dried to obtain the desired powder.

【0012】このような処理をしておけば表面積の大き
な微細粒でも輸送保管中やその後の陽極ペレットへの加
工中での酸素の増加を防ぐことができる。
By carrying out such a treatment, even fine particles having a large surface area can be prevented from increasing in oxygen during transportation and storage and subsequent processing into anode pellets.

【0013】またタンタルのフッ化物は沸点が低い特徴
があり、ペレットに加工する焼結過程で完全に除去でき
るので、コンデンサの性能に悪影響を及ぼすことはな
い。
Further, the fluoride of tantalum has a characteristic that it has a low boiling point and can be completely removed during the sintering process of processing into pellets, so that it does not adversely affect the performance of the capacitor.

【0014】本発明で使用するフッ素イオン源としては
フッ化水素酸の水溶液を使用するのが確実な方法であ
る。濃度としては0.005%〜5%(重量)程度が使用
可能であるが、HNO3 と共用してNOFを共存させた
方がTaの水素吸蔵を防止する上で有効である。HNO
3 は20〜70%が好ましい。
A reliable method is to use an aqueous solution of hydrofluoric acid as the fluorine ion source used in the present invention. A concentration of about 0.005% to 5% (by weight) can be used, but coexistence of NOF with HNO 3 is more effective in preventing hydrogen storage of Ta. HNO
3 is preferably 20 to 70%.

【0015】Ta粉をフッ素イオンを含む水溶液に浸漬
させた後、純水で酸を除去して乾燥すると粉末表面にフ
ッ素が残留する。フッ素はTaに吸着しており水洗によ
って完全に流れ去ることはなく、Ta中にフッ素濃度で
50ppm 〜1,000ppm 程度の含有量を得ることがで
きる。50ppm 以下では酸化防止の効果があがらず、
1,000ppm以上では酸化防止の効果も飽和し、かえっ
て真空焼成工程に支障をきたす。従来のタンタル粉末は
還元生成後の脱ガス、脱酸工程で原料から入るフッ素は
ほとんど揮散してしまい、タンタル中のフッ素濃度は5
ppm 以下である。
After the Ta powder is dipped in an aqueous solution containing fluorine ions, the acid is removed with pure water and dried to leave fluorine on the powder surface. Fluorine is adsorbed on Ta and does not completely flow off by washing with water, and it is possible to obtain a content of fluorine in Ta of about 50 ppm to 1,000 ppm. If it is less than 50 ppm, the effect of preventing oxidation will not be improved,
If it is more than 1,000 ppm, the effect of preventing oxidation will be saturated and the vacuum firing process will be adversely affected. In the conventional tantalum powder, most of the fluorine that enters from the raw material is volatilized in the degassing and deoxidizing steps after reduction formation, and the concentration of fluorine in tantalum is 5
It is below ppm.

【0016】[0016]

【作用】本発明はタンタル粉末の表面にタンタルフッ化
物の皮膜を形成し酸素とTaの接触を断ち、酸素がTa
と化合する機会を減らす効果を利用したものである。
The present invention forms a film of tantalum fluoride on the surface of tantalum powder to interrupt the contact between oxygen and Ta, so that the oxygen is Ta.
It utilizes the effect of reducing the opportunity to combine with.

【0017】[0017]

【実施例】フッ化タンタルカリウムをナトリウム還元し
て得られたタンタル粉末を解砕し水及び酸によって塩類
を除去したのち10-4Torrの真空下で1,400℃で3
0分熱処理して凝集体とした。これを解砕して粉末とし
たものを粉末Aとした。Aの酸素量は3,400ppm、比
表面積は4,300cm2/g(BET法)であった。
EXAMPLE Tantalum powder obtained by reducing potassium tantalum fluoride with sodium was disintegrated, salts were removed with water and an acid, and then the mixture was heated at 1,400 ° C. under a vacuum of 10 −4 Torr for 3 times.
It was heat-treated for 0 minutes to form an aggregate. This was crushed into powder to give powder A. The oxygen content of A was 3,400 ppm, and the specific surface area was 4,300 cm 2 / g (BET method).

【0018】粉末Aをさらにマグネシウムと共に800
℃で1時間加熱して酸素を除去し、30%硝酸で洗浄
し、水で酸の除去を行った後乾燥した。この粉末をBと
した。Bの酸素量は1,600ppm、比表面積は4,60
0cm2/g(BET法)であった。
Powder A was further added with magnesium to 800
The mixture was heated at ℃ for 1 hour to remove oxygen, washed with 30% nitric acid, acid removed with water, and then dried. This powder was designated as B. B has an oxygen content of 1,600ppm and a specific surface area of 4,60
It was 0 cm 2 / g (BET method).

【0019】粉末Aと粉末Bをそれぞれ2分し、1つを
硝酸30%(重量)、フッ化水素酸0.5%(重量)、
残部水よりなる混酸にて15分洗浄した。さらに粉末重
量の10倍の水を用いて酸の除去を行ったのち乾燥し
た。これらの粉末を粉末C及び粉末Dとした。このよう
にして得たA〜Dの4種の粉末をそれぞれ2分し、一方
の4種類の粉末を空気中で220℃で3時間曝露試験を
し、Ta粉の酸素含有量の増加量を測定した。この試験
は粉末の長期保存における酸素量変化の加速テストとし
ての意味をもつものである。これらの粉末をそれぞれ
E,F,D,Hとした。それぞれについて酸素、比表面
積、フッ素含有量を測定した。さらにこれら8種類のタ
ンタル粉末を用いて電極ペレットを作り、電気特性を測
定した。各粉末0.15gをプレス密度5.0g/ccに圧縮
し真空中で1,500℃で30分間焼結した。このペレ
ットを0.02wt%H3PO4液中で印加電圧50Vで陽
極酸化処理し誘電体皮膜を形成した。このようにして作
った電極につき静電容量(CV値)と洩れ電流(LC
値、測定電圧35V)を測定した。
Powder A and powder B are each divided into 2 parts, one of which is 30% (by weight) of nitric acid, and 0.5% (by weight) of hydrofluoric acid.
It was washed for 15 minutes with a mixed acid consisting of the balance water. Furthermore, the acid was removed using 10 times the weight of the powder of water and then dried. These powders were designated as powder C and powder D. The four kinds of powders A to D thus obtained were each divided into 2 minutes, and one of the four kinds of powders was subjected to an exposure test in air at 220 ° C. for 3 hours to increase the oxygen content of Ta powder. It was measured. This test has a meaning as an accelerated test of changes in oxygen content during long-term storage of powder. These powders were designated as E, F, D and H, respectively. Oxygen, specific surface area, and fluorine content were measured for each. Furthermore, electrode pellets were made using these eight kinds of tantalum powders, and the electrical characteristics were measured. 0.15 g of each powder was compressed to a press density of 5.0 g / cc and sintered in vacuum at 1,500 ° C. for 30 minutes. The pellets were anodized in a 0.02 wt% H 3 PO 4 solution at an applied voltage of 50 V to form a dielectric film. The capacitance (CV value) and the leakage current (LC
The value and the measurement voltage of 35 V) were measured.

【0020】以上の結果を一括して表1に示した。The above results are collectively shown in Table 1.

【0021】尚、焼結体のF含有量はすべて10ppm 以
下であった。表1よりわかるように、フッ化処理を行う
ことによって保存中及び使用中における空気に対する曝
露に対してフッ化処理を行った粉末(G,H)は、フッ化
処理を行わない粉末(E,F)と比べて酸素の増加が約1
/5に減少しており、本発明による処理が顕著な効果を
もつことが実証されている。
The F content of all the sintered bodies was 10 ppm or less. As can be seen from Table 1, the powders (G, H) that have been fluoridated by exposure to air during storage and during use by being fluorinated are powders (E, Increase in oxygen is about 1 compared to F)
/ 5, demonstrating that the treatment according to the invention has a significant effect.

【0022】[0022]

【表1】 [Table 1]

【0023】[0023]

【発明の効果】高温酸化による酸素の増加が少ないこと
から以下の特性が期待できる。 長時間の保存による酸素の増加が起きなくなる。 高温でのバインダー添加及び除去の操作による酸素の
増加が少なくなる。 コンデンサ用陽極体とした時の酸素が低下することに
より洩れ電流を大幅に改善できる。 粉末取り扱い中の着火等の危険性が減少する。
The following characteristics can be expected because the increase in oxygen due to high temperature oxidation is small. Long-term storage prevents oxygen from increasing. Oxygen increase due to binder addition and removal operations at high temperature is reduced. Leakage current can be greatly improved by reducing oxygen when used as a capacitor anode body. The risk of ignition etc. during powder handling is reduced.

【0024】その他以下の効果がある。Other effects are as follows.

【0025】カーボンを含まないため電気特性上問題
が無い。このため、あらゆる有機被覆と比較して、有利
である。 フッ素は真空中約1,100℃で完全に除去されるた
め焼結陽極中に残留する心配は皆無である。
Since carbon is not contained, there is no problem in electrical characteristics. This is an advantage compared to any organic coating. Fluorine is completely removed at about 1,100 ° C. in a vacuum, so there is no concern that it will remain in the sintered anode.

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 フッ素を50〜1,000ppm含有するこ
とを特徴とするコンデンサ電極用タンタル粉末。
1. A tantalum powder for a capacitor electrode, which contains 50 to 1,000 ppm of fluorine.
【請求項2】 フッ素イオンを含む水溶液中にタンタル
粉末を浸漬処理した後、水洗浄して乾燥することを特徴
とするコンデンサ電極用タンタル粉末の製造方法。
2. A method for producing tantalum powder for capacitor electrodes, which comprises immersing tantalum powder in an aqueous solution containing fluorine ions, washing with water and drying.
JP4060615A 1992-03-17 1992-03-17 Tantalum powder and method for producing the same Expired - Lifetime JP2505343B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4060615A JP2505343B2 (en) 1992-03-17 1992-03-17 Tantalum powder and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4060615A JP2505343B2 (en) 1992-03-17 1992-03-17 Tantalum powder and method for producing the same

Publications (2)

Publication Number Publication Date
JPH05263101A JPH05263101A (en) 1993-10-12
JP2505343B2 true JP2505343B2 (en) 1996-06-05

Family

ID=13147362

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4060615A Expired - Lifetime JP2505343B2 (en) 1992-03-17 1992-03-17 Tantalum powder and method for producing the same

Country Status (1)

Country Link
JP (1) JP2505343B2 (en)

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4508563A (en) * 1984-03-19 1985-04-02 Sprague Electric Company Reducing the oxygen content of tantalum

Also Published As

Publication number Publication date
JPH05263101A (en) 1993-10-12

Similar Documents

Publication Publication Date Title
US5605561A (en) Tantalum powder and electrolytic capacitor using same
US5448447A (en) Process for making an improved tantalum powder and high capacitance low leakage electrode made therefrom
EP1402079B1 (en) Niobium sintered body and capacitor using the sintered body
US20020050185A1 (en) Tantalum powder for capacitors
JP2549193B2 (en) Method for controlling oxygen content of tantalum materials
JPH0236641B2 (en)
JPS59214218A (en) Method of producing bulb metal anode for electrolytic condenser
US3445731A (en) Solid capacitor with a porous aluminum anode containing up to 8% magnesium
US4645533A (en) Tantalum powder and method of making
JP2003512531A (en) Method of anodizing tantalum powder
JP2022508052A (en) Porous metal leaf or wire, capacitor anode manufactured from it, and its manufacturing method
JP4828016B2 (en) Tantalum powder manufacturing method, tantalum powder and tantalum electrolytic capacitor
JPH0449773B2 (en)
US9607770B2 (en) Method for producing capacitor
KR20220006079A (en) Ti-Zr alloy powder and anode containing same
JP2002030301A (en) Nitrogen-containing metal powder, its production method porous sintered body using the same and solid electrolytic capacitor
JPH02310301A (en) Tantalum powder and manufacture thereof
JP2505343B2 (en) Tantalum powder and method for producing the same
US4335192A (en) Method of preparing a sintered iron electrode
JP2024515196A (en) Method for producing tantalum powder for capacitors by reducing tantalum oxide with alkaline earth metals
EP1328952B1 (en) Powder for capacitor, sintered body and capacitor using the sintered body
JP2505324B2 (en) Method for producing tantalum powder
US3232752A (en) Method of producing sintered tantalum anode bodies for electrolytic capacitors
US20080011124A1 (en) Deoxidation of Valve Metal Powders
WO2004037470A1 (en) Niobium powder, process for producing the same and solid electrolytic capacitor therefrom

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080402

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080402

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080402

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090402

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090402

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090402

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090402

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100402

Year of fee payment: 14

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100402

Year of fee payment: 14

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100402

Year of fee payment: 14

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100402

Year of fee payment: 14

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100402

Year of fee payment: 14

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110402

Year of fee payment: 15

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110402

Year of fee payment: 15

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110402

Year of fee payment: 15

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110402

Year of fee payment: 15

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120402

Year of fee payment: 16

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120402

Year of fee payment: 16

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120402

Year of fee payment: 16

EXPY Cancellation because of completion of term