JP2505138Y2 - Ventilation system for vehicles - Google Patents

Ventilation system for vehicles

Info

Publication number
JP2505138Y2
JP2505138Y2 JP1991113384U JP11338491U JP2505138Y2 JP 2505138 Y2 JP2505138 Y2 JP 2505138Y2 JP 1991113384 U JP1991113384 U JP 1991113384U JP 11338491 U JP11338491 U JP 11338491U JP 2505138 Y2 JP2505138 Y2 JP 2505138Y2
Authority
JP
Japan
Prior art keywords
air
blower
exhaust
vehicle
passage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP1991113384U
Other languages
Japanese (ja)
Other versions
JPH0672707U (en
Inventor
宗 鹿嶌
一 山田
史仁 木村
勝治 桑澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kawasaki Motors Ltd
Original Assignee
Kawasaki Jukogyo KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Jukogyo KK filed Critical Kawasaki Jukogyo KK
Priority to JP1991113384U priority Critical patent/JP2505138Y2/en
Publication of JPH0672707U publication Critical patent/JPH0672707U/en
Application granted granted Critical
Publication of JP2505138Y2 publication Critical patent/JP2505138Y2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Air-Conditioning For Vehicles (AREA)

Description

【考案の詳細な説明】[Detailed description of the device]

【0001】[0001]

【産業上の利用分野】この考案は、特に高速度で走行す
る鉄道車両に適合した車両用換気装置に関するものであ
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a vehicle ventilation device particularly suitable for a railway vehicle traveling at high speed.

【0002】[0002]

【従来の技術】高速度で走行する鉄道車両がトンネルに
進入する際、その衝撃波にもとづく車外の急激な圧力変
動が車内圧力に伝播して、それが許容範囲を超えると、
乗客の聴覚に不快感を与える。
2. Description of the Related Art When a railway vehicle traveling at high speed enters a tunnel, a sudden pressure fluctuation outside the vehicle due to the shock wave propagates to the pressure inside the vehicle, and when it exceeds an allowable range,
It makes passengers uncomfortable.

【0003】従来、これを改善するための換気装置とし
て各種のものが提案されている。図7は、この種の換気
装置の基本的な構成を示す概略線図である。同図で示す
ように、車両Dには、換気装置として車内外の空気を給
排気する給気装置1と排気装置2がそれぞれ組み込まれ
ている。上記給気装置1は、主通風路E1に上流側から
絞り機構EV1および送風機F1を、排気装置2は、主
通風路E2に上流側から絞り機構EV2および送風機F
2をそれぞれ接続して構成されている。なお、R1,R
2は各主通風路E1,E2の風路抵抗を示す。SK1,
SK2は各主通風路E1,E2に設けられた消音器であ
る。
Conventionally, various types of ventilation devices have been proposed to improve this. FIG. 7 is a schematic diagram showing the basic configuration of this type of ventilation device. As shown in the figure, the vehicle D is equipped with an air supply device 1 and an exhaust device 2 for supplying and exhausting air inside and outside the vehicle, respectively, as ventilation devices. The air supply device 1 has the throttle mechanism EV1 and the blower F1 from the upstream side to the main ventilation passage E1, and the exhaust device 2 has the throttle mechanism EV2 and the blower F1 from the upstream side to the main ventilation passage E2.
2 are connected to each other. In addition, R1, R
Reference numeral 2 indicates the air passage resistance of each of the main air passages E1 and E2. SK1,
SK2 is a silencer provided in each of the main ventilation passages E1 and E2.

【0004】通常、上記給気装置1の送風機F1は、図
8で示すように、送風機特性曲線M1と主通風路の全風
路抵抗を示す風路抵抗曲線R12との交点a12で運転
され、その給気流量Q1はQ12となる。この状態で、
絞り機構EV1を閉方向へ作動させると、風路抵抗曲線
はR12からR11へ移り、送風機F1は、送風機特性
曲線M1との交点a11で運転され、その給気流量Q1
はQ12からQ11に減少する。
Normally, the blower F1 of the air supply device 1 is operated at the intersection a12 of the blower characteristic curve M1 and the wind passage resistance curve R12 showing the total wind passage resistance of the main air passage, as shown in FIG. The supply air flow rate Q1 becomes Q12. In this state,
When the throttle mechanism EV1 is operated in the closing direction, the airflow resistance curve shifts from R12 to R11, the blower F1 is operated at the intersection a11 with the blower characteristic curve M1, and the supply air flow rate Q1 thereof.
Decreases from Q12 to Q11.

【0005】他方、上記排気装置2の送風機F2は、同
図の仮想線で示すように、送風機特性曲線M2と主通風
路の全風路抵抗を示す風路抵抗曲線R22との交点a2
2で運転され、その排気流量Q2はQ22となる。この
状態で、絞り機構EV2を閉方向へ作動させると、風路
抵抗曲線はR22からR21へ移り、送風機F2は、送
風機特性曲線M2との交点a21で運転され、その排気
流量Q2はQ22からQ21に減少する。ところで、ト
ンネル内における車外圧の変動で車内圧が変化する理由
は、例え車両Dが気密構造であっても、多少の隙間が存
在するために、車両Dに漏れ流量Q3が存在すること
と、上記給気流量Q1と排気流量Q2とのバランスが崩
れることのためである。
On the other hand, the blower F2 of the exhaust device 2 has an intersection a2 between the blower characteristic curve M2 and the wind passage resistance curve R22 indicating the total wind passage resistance of the main air passage, as indicated by the phantom line in the figure.
The exhaust flow rate Q2 is Q22. When the throttle mechanism EV2 is operated in the closing direction in this state, the airflow resistance curve shifts from R22 to R21, the blower F2 is operated at the intersection a21 with the blower characteristic curve M2, and the exhaust flow rate Q2 thereof is from Q22 to Q21. Decrease to. By the way, the reason why the vehicle interior pressure changes due to the fluctuation of the vehicle exterior pressure in the tunnel is that even if the vehicle D has an airtight structure, there is a slight gap, and therefore the vehicle D has a leakage flow rate Q3. This is because the balance between the supply air flow rate Q1 and the exhaust flow rate Q2 is lost.

【0006】換言すれば、上記車両Dに流入出する単位
時間当たりの空気量が、 (Q2+Q3)−Q1=0 …(1) となるように、上記車両Dの内部への流出入する空気量
を車外圧の変動に応じて変化させ、車内圧を常に一定に
保持する構成にすると、乗客の聴覚に不快感を与えるこ
ともない。
In other words, the amount of air flowing into and out of the vehicle D such that the amount of air flowing into and out of the vehicle D per unit time is (Q2 + Q3) -Q1 = 0 (1). If the vehicle interior pressure is constantly kept constant by changing the vehicle pressure according to the fluctuation of the vehicle exterior pressure, the passenger's hearing will not be uncomfortable.

【0007】そこで、従来、車両Dに流入出する単位時
間当たりの空気量が(1)式を満足するように構成した
ものとして、例えば特開昭63−199170号,特開
平1−168560号および特開平3−104770号
の各公報には、上記絞り機構EV1,V2に相当する圧
力緩和器を設け、車外圧力の変動にともなって、上記圧
力緩和器で通風路E1,E2の断面積を可変にし、上記
各送風機F1,F2の給排気流量Q1,Q2を制御する
ものが開示されている。
In view of this, there is a conventional structure in which the amount of air flowing into and out of the vehicle D per unit time satisfies the formula (1), for example, Japanese Patent Laid-Open Nos. 63-199170 and 1-168560. In each of Japanese Patent Application Laid-Open No. 3-104770, a pressure relief device corresponding to the throttle mechanisms EV1 and V2 is provided, and the cross-sectional area of the ventilation passages E1 and E2 is changed by the pressure relief device according to the fluctuation of the pressure outside the vehicle. In addition, it is disclosed that the supply / exhaust flow rates Q1, Q2 of the blowers F1, F2 are controlled.

【0008】また、特開昭63−315365号公報に
は、車外圧力を検出し、その圧力変動にともなって、上
記各送風機F1,F2の回転数を可変にし、上記各送風
機F1,F2の給排気流量Q1,Q2を制御するものが
開示されている。
Further, in Japanese Patent Laid-Open No. 63-315365, the outside pressure of a vehicle is detected, and the rotation speed of each of the blowers F1 and F2 is made variable according to the pressure fluctuation, and the supply of each of the blowers F1 and F2 is changed. What controls the exhaust flow rates Q1 and Q2 is disclosed.

【0009】さらに、特開昭64−18766号公報に
は、上記各送風機F1,F2として、まゆ形や三葉の1
対のロ−タを噛合させた容積式送風機を用い、上記車外
圧力の変動を上記ロ−タの噛合で遮断して車内の圧力に
伝播するのを抑制するものが開示されている。
Further, in Japanese Patent Application Laid-Open No. 64-18766, as each of the above-mentioned blowers F1 and F2, one of eyebrow type and Mitsuba type is used.
It is disclosed that a positive displacement fan in which a pair of rotors are meshed with each other is used, and the fluctuation of the vehicle exterior pressure is blocked by the meshing of the rotors to suppress propagation to the pressure in the vehicle.

【0010】[0010]

【考案が解決しようとする課題】ところで、今後、車両
をさらに高速度化しようとする場合、トンネル内の圧力
変動はほぼ速度の自乗に比例して増大することから、車
外圧力の変動を送風機の部分で遮断し、その圧力変動が
車内の圧力に伝播するのを抑制することが要望されてい
る。このような観点にもとづけば、特開昭64−187
66号公報に開示されている容積式送風機を用いること
が望ましいけれども、この容積式送風機は大型かつ大重
量であるなどの課題がある。
By the way, when the vehicle speed is further increased in the future, the pressure fluctuation in the tunnel increases almost in proportion to the square of the speed. It is desired to cut off at a part and suppress the pressure fluctuation from propagating to the pressure inside the vehicle. Based on this point of view, JP-A-64-187
Although it is desirable to use the positive displacement blower disclosed in Japanese Patent Publication No. 66, there is a problem that this positive displacement blower is large and heavy.

【0011】そこで、従来、小型かつ軽量の遠心式送風
機が採用されているけれども、この遠心式送風機は、図
8に示す最大静圧h1max,h2maxが低く、ま
た、静圧hの変化に対して流量Q1,Q2の変化が大き
く、上記車内外圧力の遮断特性が悪いから、車両の超高
速度化にともなって、トンネル内を通過する際に発生す
る高い圧力変動が車内に伝播するのを有効に遮断するこ
とができない。
Therefore, although a small and lightweight centrifugal blower has been conventionally used, this centrifugal blower has low maximum static pressures h1max and h2max shown in FIG. Since the changes in the flow rates Q1 and Q2 are large and the cutoff characteristics of the pressure inside and outside the vehicle are bad, it is effective that the high pressure fluctuations that occur when passing through the tunnel are propagated inside the vehicle as the vehicle speed increases. Can not be shut off.

【0012】また、特開昭63−199170号公報で
も指摘のとおり、車内外の圧力差が送風機特性曲線M
1,M2のh1max,h2maxを超えてhxとなっ
たとき、例えば給気用送風機F1の流量は−Q13とな
って、給気動作をすべき送風機F1の空気流量が逆流
し、排気用送風機F2とともに排気動作を行ない、前述
した(1)式が成立しないばかりでなく、車内の圧力は
急激に低下することとなる。
Further, as pointed out in Japanese Patent Laid-Open No. 63-199170, the pressure difference between the inside and outside of the vehicle is determined by the blower characteristic curve M.
When hx exceeds 1 and M2 h1max and h2max, for example, the flow rate of the air supply blower F1 becomes -Q13, and the air flow rate of the air blower F1 that should perform the air supply operation flows backward, and the exhaust air blower F2. At the same time, the exhaust operation is performed, and not only the above-mentioned formula (1) is not satisfied, but also the pressure inside the vehicle is rapidly lowered.

【0013】さらに、特開昭63−199170号など
のように、絞り機構EV1,V2によって、上記各送風
機F1,F2の給排気流量Q1,Q2を制御する場合、
例えば絞り機構EV1を絞りすぎると、送風機F1の流
量Q1が不安定な動作を繰り返して、送風機F1に振動
や騒音が発生して、正常な運転ができないサージング現
象となる。したがって、上記送風機F1,F2の送風流
量Q1,Q2を小さく絞め切ることができず、前述した
(1)式を成立させることがきわめて困難である。
Further, as in Japanese Patent Laid-Open No. 63-199170, when the supply / exhaust flow rates Q1, Q2 of the blowers F1, F2 are controlled by the throttle mechanisms EV1, V2,
For example, if the throttling mechanism EV1 is excessively throttled, the flow rate Q1 of the blower F1 repeats unstable operation, vibration and noise occur in the blower F1, and a surging phenomenon occurs in which normal operation cannot be performed. Therefore, the blower flow rates Q1 and Q2 of the blowers F1 and F2 cannot be narrowed down to a small extent, and it is extremely difficult to satisfy the above-mentioned expression (1).

【0014】このような主通風路に設けた絞り機構EV
1,EV2による給排気流量の制御に伴う課題を解消す
るために、給気装置の送風機の吐出側に補助通風路を設
けて給気流量の一部を分岐させて車外へ放出し、もしく
は排気装置の送風機の吸入側に補助通風路を設けて車外
空気の一部を混合させることを、本件考案者等は同日付
けで別途に特許出願をしている。しかるに、このように
補助通風路を設けて給気流量の一部を車外へ放出し、も
しくは車外空気の一部を排気流量に混入させる場合に
は、空気の流入もしくは流出に伴う騒音の発生を防止す
るために、補助通風路にも主通風路と同様に消音器を設
ける必要があり、結果的に消音器の数量が増加すること
となり、消音器重量ならびに搭載スペースの増加が課題
となっている。
A diaphragm mechanism EV provided in such a main ventilation passage
In order to solve the problems associated with the control of the supply / exhaust flow rate by the EV1 and EV2, an auxiliary ventilation passage is provided on the discharge side of the blower of the air supply device so that a part of the supply air flow is branched and discharged outside the vehicle. The inventors of the present invention separately filed a patent on the same date that an auxiliary ventilation passage is provided on the suction side of the blower of the device to mix a part of the air outside the vehicle. However, when a part of the air supply flow rate is discharged outside the vehicle or a part of the air outside the vehicle is mixed into the exhaust gas flow rate by providing the auxiliary ventilation passage in this way, the generation of noise due to the inflow or outflow of air is prevented. In order to prevent it, it is necessary to install a silencer in the auxiliary ventilation duct as well as in the main ventilation duct, and as a result, the number of silencers will increase, and the increase in the weight of the silencers and the installation space will be an issue. There is.

【0015】[0015]

【課題を解決するための手段】この考案による車両用換
気装置は、車両に対する給気装置および排気装置を備
え、各給排気装置が消音器を介して給排気を行なう車両
用換気装置において、給気用主通風路に組み込まれた送
風機と、この送風機の吸込側における上記給気用主通風
路に組み込まれた給気用消音器と、排気用主通風路に組
み込まれた送風機と、この送風機の排気側における上記
排気用主通風路に組み込まれた排気用消音器と、給気用
送風機の吐出側に一端部が接続されかつ他端部が排気
消音器に接続された給気用補助通風路と、排気用送風機
の吸込側に一端部が接続されかつ他端部が給気消音器
に接続された排気用補助通風路とを具備したことを特徴
とする。
A vehicle ventilator according to the present invention comprises an air supply device and an exhaust device for a vehicle, wherein each air supply / exhaust device supplies and exhausts air through a muffler. A blower incorporated in the main air passage for the air, and the main air blow for the air supply on the suction side of the blower
Combined with the silencer for air supply built into the passage and the main ventilation passage for exhaust
Incorporated blower and above on the exhaust side of this blower
And exhaust muffler incorporated in the exhaust main air passage, one end connected to the discharge side of the air supply <br/> blower and feeding the other end of which is connected to the exhaust <br/> silencer a gas auxiliary air passage, wherein the suction end is connected to the side and the other end portion of the exhaust blower is provided with a connecting exhaust auxiliary air passage to supply air silencer.

【0016】[0016]

【課題を解決するための手段】この考案による車両用換
気装置は、車両に対する給気装置と排気装置の少なくと
も一方は、主通風路に組み込まれた送風機と、この送風
機の吐出側もしくは吸込側に一端部が接続されかつ他端
部が他方の給排気装置の消音器に接続された補助通風路
と、この補助通風路に組み込まれた絞り調整可能な絞り
機構とから構成されることを特徴とする。
In a vehicle ventilation system according to the present invention, at least one of an air supply system and an exhaust system for a vehicle is provided with a blower incorporated in a main ventilation passage and a discharge side or a suction side of the blower. It is characterized by comprising an auxiliary ventilation passage having one end connected and the other end connected to the silencer of the other air supply / exhaust device, and an adjustable throttle mechanism incorporated in the auxiliary ventilation passage. To do.

【0017】[0017]

【作用】この考案によれば、車内外に圧力差が発生する
と、絞り機構を制御して、送風機の流量を変え、車体に
流入出する空気量を調節して、車内圧力の変動がなくな
るように制御する。
According to the present invention, when a pressure difference is generated inside and outside the vehicle, the throttle mechanism is controlled to change the flow rate of the blower and adjust the amount of air flowing into and out of the vehicle body so that the pressure inside the vehicle does not fluctuate. To control.

【0018】上記各送風機として、渦流送風機のような
高い静圧を発生する送風機を用い、上記静圧の変化に対
して流量の変化を小さくすることができる。したがっ
て、上記車外圧力の遮断特性がよく、車外圧力の変動が
車内の圧力に伝播するのを有効に抑制することができ
る。
As each of the above-mentioned blowers, a blower which generates a high static pressure such as a vortex blower is used, and the change in the flow rate can be reduced with respect to the change in the static pressure. Therefore, the cutoff characteristic of the vehicle exterior pressure is good, and it is possible to effectively suppress the fluctuation of the vehicle exterior pressure from propagating to the vehicle interior pressure.

【0019】また、元来、この種の送風機は、主通風路
に組み込まれた送風機に絞り機構を直列接続した場合、
送風機流量が減少するのにともなって、その動力は増大
し、これがエネルギロスとなる。ところが、送風機が組
み込まれた主通風路に補助通風路を並列接続し、補助風
路絞り機構を全開状態から全閉状態まで絞り込んでゆく
と、その動力は順次増大し、これは車内への給気流量が
増大する方向であるから、エネルギを有効に活用するこ
とができる。
Originally, this type of blower has a structure in which a throttle mechanism is connected in series to a blower incorporated in a main ventilation passage.
As the blower flow rate decreases, its power increases, which results in energy loss. However, when the auxiliary air duct is connected in parallel to the main air duct with the blower installed and the auxiliary air duct throttling mechanism is narrowed down from the fully open state to the fully closed state, its power gradually increases, and this power is supplied to the inside of the vehicle. Since the air flow rate is increasing, the energy can be effectively used.

【0020】さらに、上記主風路絞り機構Aを全閉に絞
り込んでも、補助風路絞り機構を開放すれば、送風機の
流量が小となる近傍のサージング領域に達しないから、
上記送風機が不安定な動作を繰り返して振動や騒音が発
生するのを有効に防止し、正常な運転ができる。しか
も、上記補助通風路は主通風路の消音器を兼用すること
ができるから、小型かつ軽量となり、かつ、送風機から
の振動や騒音が外部に漏洩するのを有効に防止できる。
Further, even if the main airflow restricting mechanism A is fully closed, if the auxiliary airflow restricting mechanism is opened, it will not reach the surging area in the vicinity where the flow rate of the blower becomes small.
It is possible to effectively prevent the blower from repeating unstable operation to generate vibration and noise, and to perform normal operation. In addition, since the auxiliary ventilation passage can also serve as a muffler for the main ventilation passage, the auxiliary ventilation passage can be made small and lightweight, and the vibration and noise from the blower can be effectively prevented from leaking to the outside.

【0021】この考案の換気装置は、給気装置から排気
装置へ通じる補助通風路もしくは排気装置から給気装置
へ通じる補助通風路を有するため、給気装置と排気装置
とを一体化した換気装置の場合、補助通風路を短くする
ことができ経済的に有利である。特に、給気送風機およ
び排気送風機を1台の電動機で駆動する形式の換気装置
において著しい経済効果を有する。
Since the ventilator of the present invention has an auxiliary ventilation passage communicating from the air supply device to the exhaust device or an auxiliary ventilation passage communicating from the exhaust device to the air supply device, the ventilation device integrated with the air supply device and the exhaust device. In this case, the auxiliary ventilation passage can be shortened, which is economically advantageous. In particular, the ventilation device of the type in which the air supply blower and the exhaust air blower are driven by a single electric motor has a significant economic effect.

【0022】[0022]

【実施例】実施例1. 図1は、この考案による車両用換気装置の基本構成を示
す概略線図である。同図で示すように、給気装置1は、
車両Dに給気する主通風路E1と、この主通風路E1に
組み込まれた給気用送風機F1と、この給気用送風機F
1の吐出側に一端部が接続されかつ他端部が排気装置2
の消音器SK2に接続された補助通風路S1と、主通風
路E1に組み込まれた主風路絞り機構(以下、「給気風
路絞り」と称す。)EV1と、上記補助通風路S1に組
み込まれた抽気用の補助風路絞り機構(以下、「抽気用
絞り」と称す。)SV1とから構成されている。他方、
排気装置2は、車両Dから排気する主通風路E2と、こ
の主通風路E2に組み込まれた排気用送風機F2と、こ
の排気用送風機F2の吸込側に一端部が接続されかつ他
端部が給気装置1の消音器SK1に接続された補助通風
路S2と、上記主通風路E2に組み込まれた主風路絞り
機構(以下、「排気風路絞り」と称す。)EV2と、上
記補助通風路S2に組み込まれた混気用の補助風路絞り
機構(以下、「混気用絞り」と称す。)SV2とから構
成されている。
EXAMPLES Example 1. FIG. 1 is a schematic diagram showing a basic configuration of a vehicle ventilation device according to the present invention. As shown in the figure, the air supply device 1 is
A main air passage E1 for supplying air to the vehicle D, an air supply fan F1 incorporated in the main air passage E1, and an air supply fan F for this air supply.
1 has one end connected to the discharge side and the other end connected to the exhaust device 2
Auxiliary air passage S1 connected to the muffler SK2, a main air passage restricting mechanism (hereinafter referred to as "air supply air passage restrictor") EV1 incorporated in the main air passage E1, and an auxiliary air passage S1. The auxiliary air passage throttle mechanism for bleed air (hereinafter, referred to as “bleed air throttle”) SV1. On the other hand,
The exhaust device 2 has a main air passage E2 exhausted from the vehicle D, an exhaust blower F2 incorporated in the main air passage E2, one end connected to the suction side of the exhaust blower F2, and the other end An auxiliary air passage S2 connected to the muffler SK1 of the air supply device 1, a main air passage throttle mechanism (hereinafter referred to as "exhaust air passage throttle") EV2 incorporated in the main air passage E2, and the above-mentioned auxiliary. It is composed of an auxiliary airflow throttle mechanism for air-fuel mixture (hereinafter referred to as “air-fuel mixture throttle”) SV2 incorporated in the air passage S2.

【0023】上記構成において、通常の換気状態で抽気
用絞りSV1を全閉とし、給気風路絞りEV1を全開に
すると、上記給気装置1の送風機F1は、図2(A)で
示すように、送風機特性曲線M1と風路抵抗曲線R1a
との交点a1で運転され、車内への給気流量Q11は送
風機流量Q1aとなる。このとき、上記送風機F1の静
圧hはh1a、その動力Lは同図(B)で示すようにL
1aとなる。
In the above structure, when the bleeding throttle SV1 is fully closed and the air supply air passage throttle EV1 is fully opened in the normal ventilation state, the blower F1 of the air supply device 1 is as shown in FIG. 2 (A). , Blower characteristic curve M1 and airway resistance curve R1a
The vehicle is operated at the intersection a1 with the air supply flow rate Q11 into the vehicle becomes the blower flow rate Q1a. At this time, the static pressure h of the blower F1 is h1a and its power L is L as shown in FIG.
1a.

【0024】この状態で、抽気用絞りSV1を開方向へ
作動させると、上記送風機流量Q1の1部分Q12が補
助通風路S1および消音器SK2を通って外部に放出さ
れ、風路抵抗が減少して、合成風路抵抗曲線R1bとな
り、給気用送風機F1は送風機特性曲線M1上をa1点
からb1点へ移動して運転される。つまり、上記送風機
F1の流量Q1はQ1aからQ1bに増加し、他方、静
圧hはh1aからh1bに、動力LはL1aからL1b
にそれぞれ減少する。そのため、車両Dに供給される風
量Q11は、給気用送風機F1の直列風路抵抗である抵
抗曲線R1a上の運転点b11となって、Q1aからQ
11bに減少する。
When the extraction throttle SV1 is operated in the opening direction in this state, one portion Q12 of the blower flow rate Q1 is discharged to the outside through the auxiliary ventilation passage S1 and the silencer SK2, and the air passage resistance is reduced. As a result, the combined air duct resistance curve R1b is obtained, and the air supply fan F1 is operated by moving from the a1 point to the b1 point on the fan characteristic curve M1. That is, the flow rate Q1 of the blower F1 increases from Q1a to Q1b, while the static pressure h changes from h1a to h1b and the power L changes from L1a to L1b.
To decrease respectively. Therefore, the air volume Q11 supplied to the vehicle D becomes the operating point b11 on the resistance curve R1a which is the series air passage resistance of the air supply fan F1, and changes from Q1a to Q1.
11b.

【0025】さらに、抽気用絞りSV1を開方向へ作動
させると、合成風路抵抗曲線R1cとなり、給気用送風
機F1は送風機特性曲線M1上をb1点からc1点へ移
動して運転され、上記送風機F1の流量Q1はQ1bか
らQ1cに増加し、他方、静圧hはh1bからh1c
に、動力LはL1bからL1cにそれぞれ減少する。そ
のため、車両Dに供給される風量Q11は、同様の理由
により、直列風路抵抗曲線R1a上の運転点c11とな
って、Q11bからQ11cに減少する。
Further, when the bleeding throttle SV1 is operated in the opening direction, a combined air passage resistance curve R1c is obtained, and the air supply blower F1 is operated by moving from the b1 point to the c1 point on the blower characteristic curve M1. The flow rate Q1 of the blower F1 increases from Q1b to Q1c, while the static pressure h changes from h1b to h1c.
In addition, the power L decreases from L1b to L1c, respectively. Therefore, for the same reason, the air volume Q11 supplied to the vehicle D becomes the operating point c11 on the series air passage resistance curve R1a and decreases from Q11b to Q11c.

【0026】他方、上記排気装置2の送風機F2は、通
常の換気状態で混気用絞りSV2を全閉とし、排気通風
絞りEV2を全開にすると、図3(A)で示すように、
送風機特性曲線M2と風路抵抗曲線R2aとの交点a2
で運転され、車外への排気流量Q21は送風機流量Q2
aとなる。このとき、上記送風機F2の静圧hはh2
a、その動力Lは同図(B)で示すようにL2aとな
る。
On the other hand, in the blower F2 of the exhaust device 2, when the air-mixing throttle SV2 is fully closed and the exhaust ventilation throttle EV2 is fully opened in a normal ventilation state, as shown in FIG.
Intersection a2 of the blower characteristic curve M2 and the airway resistance curve R2a
The exhaust flow rate Q21 to the outside of the vehicle is the blower flow rate Q2
a. At this time, the static pressure h of the blower F2 is h2.
a, and the power L thereof is L2a as shown in FIG.

【0027】この状態で、混気用絞りSV2を開方向へ
作動させると、流量Q22の外気が消音器SK1および
補助通風路S2を通って送風機F2に吸込まれたのち、
外部に放出され、風路抵抗が減少して、合成風路抵抗曲
線R2bとなり、排気用送風機F2は送風機特性曲線M
2上をa2点からb2点へ移動して運転される。つま
り、上記送風機F2の流量Q2はQ2aからQ2bに増
加し、他方、静圧hはh2aからh2bに、動力LはL
2aからL2bにそれぞれ減少する。そのため、車両D
から排気される風量Q21は、排気用送風機F2の直列
風路抵抗曲線R2a上の運転点b21となって、Q2a
からQ21bに減少する。
In this state, when the air-mixing throttle SV2 is operated in the opening direction, the outside air having a flow rate Q22 is sucked into the blower F2 through the silencer SK1 and the auxiliary ventilation passage S2,
The airflow resistance is released to the outside, resulting in a combined airflow resistance curve R2b, and the exhaust blower F2 has a blower characteristic curve M.
2 is moved from point a2 to point b2. That is, the flow rate Q2 of the blower F2 is increased from Q2a to Q2b, while the static pressure h is changed from h2a to h2b and the power L is changed to L.
2a to L2b respectively. Therefore, vehicle D
The air volume Q21 exhausted from the exhaust air blower becomes the operating point b21 on the series air passage resistance curve R2a of the exhaust blower F2 and becomes Q2a.
To Q21b.

【0028】さらに、混気用絞りSV2を開方向へ作動
させると、風路抵抗曲線R2cとなり、排気用送風機F
2は送風機特性曲線M2上をb2点からc2点へ移動し
て運転され、上記送風機F2の流量Q2はQ2bからQ
2cに増加し、他方、静圧hはh2bからh2cに、動
力LはL2bからL2cにそれぞれ減少する。そのた
め、車両Dに供給される風量Q21は、上記直列風路抵
抗曲線R2a上の運転点c21となって、Q2bからQ
21cに減少する。
Further, when the air-mixing throttle SV2 is operated in the opening direction, an air-path resistance curve R2c is obtained, and the exhaust blower F
2 is operated by moving from the b2 point to the c2 point on the blower characteristic curve M2, and the flow rate Q2 of the blower F2 is Q2b to Q2.
2c, while the static pressure h decreases from h2b to h2c and the power L decreases from L2b to L2c. Therefore, the air volume Q21 supplied to the vehicle D becomes the operating point c21 on the series air passage resistance curve R2a, and the air volume Q21 changes from Q2b to Q2b.
21c.

【0029】ところで、各送風機F1,F2は、絞りE
V1,EV2を図4で示すように直列接続した場合、流
量Q1,Q2が、例えばQ1b(Q2b)からQ1a
(Q2a)に減少するのにともなって、その動力LはL
1b(L2b)からL1a(L2a)にそれぞれ増大
し、これがエネルギロスとなる。しかるに、上記各給排
気装置1,2は、絞りSV1,SV2を図1で示すよう
に主通風路E1,E2に並列接続したから、例えば、図
2(A)で示すように、絞りSV1を全開状態(交点c
1)から全閉状態(交点a1)まで絞り込んでゆくと、
その動力Lは同図(B)で示すようにL1cからL1a
に順次増大し、これは車内への給気流量Q11がQ11
c,Q11bおよびQ1aへと増大する方向であるか
ら、エネルギを有効に活用することができる。このこと
は、図3で示すように、排気装置2についても同様の効
果を奏することができる。
By the way, each of the blowers F1 and F2 has a diaphragm E.
When V1 and EV2 are connected in series as shown in FIG. 4, the flow rates Q1 and Q2 are, for example, from Q1b (Q2b) to Q1a.
As it decreases to (Q2a), its power L is L
1b (L2b) to L1a (L2a), respectively, and this becomes energy loss. However, in each of the air supply / exhaust devices 1 and 2, the throttles SV1 and SV2 are connected in parallel to the main air passages E1 and E2 as shown in FIG. 1, so that, for example, as shown in FIG. Fully open state (intersection c
When narrowing down from 1) to the fully closed state (intersection a1),
The power L is from L1c to L1a as shown in FIG.
The air supply flow rate into the vehicle Q11 is Q11.
Since it is in the direction of increasing to c, Q11b, and Q1a, energy can be effectively utilized. As a result, as shown in FIG. 3, the exhaust device 2 can have the same effect.

【0030】さらに、上記絞りSV1,SV2を全閉に
絞り込んでも、図2および図3から明らかなように、送
風機F1,F2の流量Q1,Q2が零となる近傍のサー
ジング領域SJに達しないから、上記各送風機F1,F
2が不安定な動作を繰り返して振動や騒音が発生するの
を有効に防止して、正常な運転ができる。しかも、上記
各補助通風路S1,S2は主通風路E1,E2の消音器
SK1,SK2を兼用することができるから、小型かつ
軽量となり、かつ、送風機F1,F2からの振動や騒音
が外部に漏洩するのを有効に防止できる。
Further, even if the throttles SV1 and SV2 are fully closed, as is apparent from FIGS. 2 and 3, the surging regions SJ in the vicinity where the flow rates Q1 and Q2 of the blowers F1 and F2 are zero are not reached. , The above blowers F1 and F
It is possible to effectively prevent the vibration and noise from being generated by repeating the unstable operation of No. 2 and perform normal operation. Moreover, since each of the auxiliary ventilation passages S1 and S2 can also serve as the mufflers SK1 and SK2 of the main ventilation passages E1 and E2, the auxiliary ventilation passages S1 and S2 are small and lightweight, and vibrations and noises from the blowers F1 and F2 are externally transmitted. It can effectively prevent leakage.

【0031】実施例2. 図5は、この考案による車両用換気装置の一例を鉄道車
両に適用して示す概略線図である。同図において、図1
と同一または相当部分には同一の符号を付して、その詳
しい説明を省略する。
Embodiment 2 FIG. FIG. 5 is a schematic diagram showing an example of a vehicle ventilation device according to the present invention applied to a railway vehicle. In FIG.
The same or corresponding parts are designated by the same reference numerals, and detailed description thereof will be omitted.

【0032】同図で示すように、給気および排気装置
1,2は、車両D内の客室Kを構成する床下に収納さ
れ、給気用送風機F1の吐出側における主通風路E1
は、上記客室Kの外周に形成された給気ダクトKDに接
続され、排気用送風機F2の吸込側における主通風路E
2は、上記客室Kの外周に形成された排気ダクトHDに
接続されている。上記給気用送風機F1で吸い込まれた
新鮮な空気Q1は、主通風路E1と抽気用補助通風路S
1へ風量Q11とQ12にそれぞれ分岐され、この主通
風路E1を通って、風量Q11の空気がその吹き出し口
FKから客室Kに供給される。上記客室K内の汚染空気
Q21は、客室Kの下部に形成された排気口HKから主
通風路E2を通って、補助通風路S2からの流量Q22
の流入空気とともに、排気用送風機F2により、流量Q
2の空気が車外に排出される。
As shown in the figure, the air supply / exhaust devices 1, 2 are housed under the floor forming the passenger compartment K in the vehicle D, and the main air passage E1 on the discharge side of the air supply blower F1.
Is connected to the air supply duct KD formed on the outer periphery of the passenger compartment K, and the main air passage E on the suction side of the exhaust blower F2.
2 is connected to an exhaust duct HD formed on the outer periphery of the passenger compartment K. The fresh air Q1 sucked by the air supply fan F1 is supplied with the main air passage E1 and the auxiliary air passage S for extraction air.
The air quantity Q11 and Q12 are respectively branched to 1, and the air of the air quantity Q11 is supplied to the passenger compartment K from the air outlet FK through the main air passage E1. The polluted air Q21 in the passenger compartment K passes through the main ventilation passage E2 from the exhaust port HK formed in the lower portion of the passenger compartment K, and the flow rate Q22 from the auxiliary ventilation passage S2.
Along with the inflowing air of
The air of 2 is discharged outside the vehicle.

【0033】実施例3. 図6は、この考案による車両用換気装置の具体例を示す
概略線図である。同図において、図1と同一または相当
部分には同一の符号を付して、その詳しい説明を省略す
る。同図で示すように、給気装置1における抽気用絞り
SV1は、給気用送風機F1の吐出側における主通風路
E1および補助通風路S1にSV11,SV12を並列
接続して設けられている。また、排気装置2における混
気用絞りSV2は、給気用送風機F2の吸込側における
補助通風路S2に電磁バルブSV21,SV22を並列
接続して設けられている。
Example 3. FIG. 6 is a schematic diagram showing a concrete example of a vehicle ventilation device according to the present invention. In the figure, parts that are the same as or equivalent to those in FIG. As shown in the figure, the bleeding throttle SV1 in the air supply device 1 is provided with SV11 and SV12 connected in parallel to the main air passage E1 and the auxiliary air passage S1 on the discharge side of the air supply fan F1. Further, the air-fuel mixture throttle SV2 in the exhaust device 2 is provided by connecting the electromagnetic valves SV21 and SV22 in parallel to the auxiliary air passage S2 on the suction side of the air supply fan F2.

【0034】上記車両Dの内部には車内圧力センサC1
が、車両Dの外部には車外圧力センサC2が設定され、
制御装置SSにその検出信号が入力されるとともに、所
定の上記各電磁バルブを開閉動作させる。なお、この実
施例においては、給気通風絞りEV1と排気通風絞りE
V2を設けない場合について開示している。
An internal pressure sensor C1 is provided inside the vehicle D.
However, the outside pressure sensor C2 is set outside the vehicle D,
The detection signal is input to the control device SS, and the predetermined electromagnetic valves are opened and closed. In this embodiment, the supply air ventilation throttle EV1 and the exhaust ventilation throttle E
The case where V2 is not provided is disclosed.

【0035】いま、車内および車外圧力センサC1,C
2の検出信号を制御装置SSに入力し、この制御装置S
Sにおいて、例えば、車内圧力の変化速度を所定の範囲
に抑制して、乗客の聴覚に不快感を与えないような給気
流量Q11と、排気流量Q21とを演算し、それに相当
する給排気流量となるように、上記各電磁バルブを順次
励磁して開閉動作させる。
Now, the pressure sensors C1 and C inside and outside the vehicle
The detection signal of 2 is input to the control device SS, and the control device S
In S, for example, the supply air flow rate Q11 and the exhaust gas flow rate Q21 that suppress the change speed of the vehicle interior pressure within a predetermined range and do not make the passenger's hearing uncomfortable are calculated, and the supply and exhaust flow rate corresponding thereto are calculated. In this way, the above electromagnetic valves are sequentially excited to open and close.

【0036】例えば、車内圧力が上昇しようとする際、
上記制御装置SSが抽気用電磁バルブSV11,SV1
2を上記車内圧力の上昇速度に応じて順次開放して、給
気流量Q11を減少させ、最終的に車内圧力の上昇を抑
制する。他方、車内圧力が下降しようとする際、上記制
御装置SSが混気用電磁バルブSV21,SV22を上
記車内圧力の下降速度に応じて順次開放して、排気流量
Q21を減少させ、最終的に車内圧力の下降を抑制す
る。なお、給気および排気装置1,2の主通風路E1,
E2には、その各流入出口に消音器SKがそれぞれ設定
され、騒音の低減を図っている。
For example, when the pressure inside the vehicle is about to rise,
The control device SS is the extraction electromagnetic valves SV11, SV1.
2 is sequentially opened according to the increasing speed of the vehicle interior pressure to reduce the supply air flow rate Q11 and finally suppress the increase of the vehicle interior pressure. On the other hand, when the vehicle interior pressure is about to decrease, the control device SS sequentially opens the air-fuel mixture electromagnetic valves SV21 and SV22 according to the rate of decrease of the vehicle interior pressure to reduce the exhaust flow rate Q21 and finally the vehicle interior. Suppress pressure drop. The main air passages E1 of the air supply and exhaust devices 1 and 2 are
A silencer SK is set at each of the inlets and outlets of the E2 to reduce noise.

【0037】また、抽気用電磁バルブSV11,SV1
2を通して放出された空気は補助通風路S1を経由して
排気側の消音器SK2に導かれて車外へ放出される。混
気用電磁バルブSV21,SV22を通して混合される
空気は給気側の消音器SK2ならびに補助通風路S2を
経由して導かれる。かくして、抽気および混気に伴う補
助通風路S1,S2を経由する空気についても、消音器
SK2,SK1にて騒音の低減を図ることができる。
Further, electromagnetic valves for extraction air SV11, SV1
The air discharged through 2 is guided to the muffler SK2 on the exhaust side via the auxiliary ventilation passage S1 and discharged outside the vehicle. The air mixed through the air-mixing electromagnetic valves SV21 and SV22 is guided through the muffler SK2 on the air supply side and the auxiliary ventilation passage S2. In this way, noise of the air passing through the auxiliary ventilation passages S1 and S2 associated with the extracted air and the mixed air can be reduced by the silencers SK2 and SK1.

【0038】実施例4. 図6において、電磁バルブに代えて、ダンパ,ゲート弁
および玉形弁などを電動,空気圧力および油圧によって
駆動してもよい。また、サーボ系で構成してもよい。
Embodiment 4 FIG. In FIG. 6, instead of the electromagnetic valve, a damper, a gate valve, a sphere valve, etc. may be driven electrically, pneumatically and hydraulically. Also, it may be configured by a servo system.

【0039】実施例5. 図1ないし図6において、給気装置1と排気装置2のう
ちの一方は、上述した各構成とし、他方は公知の構成と
してもよい。
Example 5. 1 to 6, one of the air supply device 1 and the exhaust device 2 may have the above-described configuration, and the other may have a known configuration.

【0040】[0040]

【考案の効果】この考案は以上詳述したように、列車の
超高速度化にともなって、トンネル内を通過する際に発
生する高い圧力変動が車内に伝播するのを有効に遮断す
るとともに、安定した給排気動作をエネルギロスなく達
成するとともに、小型で軽量な低騒音の換気装置が提供
できる。
As described in detail above, the present invention effectively blocks the propagation of high pressure fluctuations that occur when passing through a tunnel inside a train as the train speed increases, and A stable air supply / exhaust operation can be achieved without energy loss, and a small, lightweight, low noise ventilation device can be provided.

【図面の簡単な説明】[Brief description of drawings]

【図1】実施例1における車両用換気装置の基本構成を
示す概略線図である。
FIG. 1 is a schematic diagram illustrating a basic configuration of a vehicle ventilation device according to a first exemplary embodiment.

【図2】実施例1における給気側の動作を説明するため
の特性図である。
FIG. 2 is a characteristic diagram for explaining the operation on the air supply side in the first embodiment.

【図3】実施例1における排気側の動作を説明するため
の特性図である。
FIG. 3 is a characteristic diagram for explaining the operation on the exhaust side in the first embodiment.

【図4】実施例1における車両用換気装置の理解を助け
るための基本構成を示す概略線図である。
FIG. 4 is a schematic diagram showing a basic configuration for helping understanding of the vehicle ventilation device in the first embodiment.

【図5】実施例2における車両用換気装置を示す概略線
図である。
FIG. 5 is a schematic diagram showing a vehicle ventilation device according to a second embodiment.

【図6】実施例3ないし5における車両用換気装置の概
略線図である。
FIG. 6 is a schematic diagram of a vehicle ventilation device according to Examples 3 to 5.

【図7】従来の車両用換気装置の基本構成を示す概略線
図である。
FIG. 7 is a schematic diagram showing a basic configuration of a conventional vehicle ventilation device.

【図8】従来の換気装置の動作を説明するための特性図
である。
FIG. 8 is a characteristic diagram for explaining the operation of the conventional ventilation device.

【符号の説明】[Explanation of symbols]

1 給気装置 2 排気装置 D 車両 E1 給気用主通風路 F1 給気用送風機 S1 抽気用補助通風路 SV1 抽気用補助風路絞り機構 SK1 給気用消音器 E2 排気用主通風路 F2 排気用送風機 S2 混気用補助通風路 SV2 混気用補助風路絞り機構 SK2 排気用消音器 1 Air supply device 2 Exhaust device D Vehicle E1 Main air passage for air supply F1 Air blower for air supply S1 Auxiliary air passage for bleed air SV1 Auxiliary air passage throttle mechanism for bleed air SK1 Muffler for air supply E2 Main air passage for exhaust F2 For exhaust air Blower S2 Auxiliary ventilation passage for air mixture SV2 Auxiliary air passage throttle mechanism for air mixture SK2 Exhaust silencer

───────────────────────────────────────────────────── フロントページの続き (72)考案者 木村 史仁 兵庫県神戸市中央区東川崎町3丁目1番 1号 川崎重 工業株式会社 神戸工場 内 (72)考案者 桑澤 勝治 兵庫県神戸市中央区東川崎町3丁目1番 1号 川崎重 工業株式会社 神戸工場 内 (56)参考文献 特開 平2−63960(JP,A) 実開 昭51−634(JP,U) 実開 平1−142365(JP,U) ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Fumihito Kimura Inventor Fumihito Kimura 3-1, 1-1 Higashikawasaki-cho, Chuo-ku, Kobe-shi, Hyogo Kawasaki Heavy Industries, Ltd. Kobe factory (72) Katsuji Kuwazawa Higashi-kawasaki, Chuo-ku, Kobe-shi, Hyogo Machi 3-chome 1-1 Kawasaki Shigekogyo Co., Ltd. Kobe factory (56) Reference JP-A-2-63960 (JP, A) Actual development Sho-51-634 (JP, U) Actual development 1-142365 (JP , U)

Claims (1)

(57)【実用新案登録請求の範囲】(57) [Scope of utility model registration request] 【請求項1】 車両に対する給気装置および排気装置を
備え、各給排気装置が消音器を介して給排気を行なう車
両用換気装置において、給気用主通風路に組み込まれた
送風機と、この送風機の吸込側における上記給気用主通
風路に組み込まれた給気用消音器と、排気用主通風路に
組み込まれた送風機と、この送風機の排気側における上
記排気用主通風路に組み込まれた排気用消音器と、給気
送風機の吐出側に一端部が接続されかつ他端部が排気
消音器に接続された給気用補助通風路と、排気用送風
機の吸込側に一端部が接続されかつ他端部が給気消音
器に接続された排気用補助通風路とを具備したことを特
徴とする車両用換気装置。
[Claim 1, further comprising a supply device and an exhaust device for a vehicle, and each of the supply and exhaust device for a vehicle ventilation system which performs supply and exhaust through the muffler, built into the air supply main air passage blower, this The air supply main passage on the suction side of the blower
For the silencer for air supply incorporated in the air passage and the main air passage for exhaust
Built-in blower and top on the exhaust side of this blower
Exhaust silencer installed in the main ventilation duct for exhaust and air supply
One end connected to the discharge side of the use the blower and the other end portion the exhaust
And air supply auxiliary air passage connected to the use muffler, the suction end is connected to the side and the other end portion of the exhaust blower is provided with a connecting exhaust auxiliary air passage to the air supply muffler A vehicle ventilation device characterized by the above.
JP1991113384U 1991-12-31 1991-12-31 Ventilation system for vehicles Expired - Lifetime JP2505138Y2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1991113384U JP2505138Y2 (en) 1991-12-31 1991-12-31 Ventilation system for vehicles

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1991113384U JP2505138Y2 (en) 1991-12-31 1991-12-31 Ventilation system for vehicles

Publications (2)

Publication Number Publication Date
JPH0672707U JPH0672707U (en) 1994-10-11
JP2505138Y2 true JP2505138Y2 (en) 1996-07-24

Family

ID=14610941

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1991113384U Expired - Lifetime JP2505138Y2 (en) 1991-12-31 1991-12-31 Ventilation system for vehicles

Country Status (1)

Country Link
JP (1) JP2505138Y2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5980705B2 (en) * 2013-03-19 2016-08-31 株式会社日立製作所 Elevator pressure control device

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS51634U (en) * 1974-06-19 1976-01-06
JPH01142365U (en) * 1988-03-25 1989-09-29
JPH0263960A (en) * 1988-08-31 1990-03-05 Hitachi Ltd Ventilator for vehicle

Also Published As

Publication number Publication date
JPH0672707U (en) 1994-10-11

Similar Documents

Publication Publication Date Title
JP3645864B2 (en) Equipment for noise configuration in motor vehicles
KR101390542B1 (en) Supercharging system for internal combustion engine
EP1067511B1 (en) Apparatus for actively controlling exhaust noise
JP3621030B2 (en) Silencer with variable attenuation characteristics
JP2014505633A (en) Vehicle HVAC system with ram pressure control
WO2019058350A1 (en) Silencer for a heating, ventilation, and air conditioning system
JP2505138Y2 (en) Ventilation system for vehicles
JP2784510B2 (en) Vehicle ventilation system
JP2784509B2 (en) Vehicle ventilation system
US6883506B2 (en) Apparatus for inducing air for an engine
JPH082410A (en) Air conditioning ventilation device for vehicle
JPH09228819A (en) Control type exhaust system
JPH0413614B2 (en)
US20210317769A1 (en) Exhaust system for an internal combustion engine
JP2002122052A (en) Intake device for on-vehicle engine
JP2006111154A (en) Air conditioner for automobile
JPH077531Y2 (en) Variable muffler
KR100680372B1 (en) Variable intake device
JP3022173U (en) Muffler device for internal combustion engine
JPH0263960A (en) Ventilator for vehicle
JPH0350016A (en) Air conditioner for automobile
JP2002089272A (en) Intake device for on-vehicle engine
JPH04136984U (en) Throttle mechanism of vehicle ventilation system
WO2020137272A1 (en) Dust detection device
JPH0754605Y2 (en) Silencer

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees