JP2504840B2 - Bonding glass ring for forming sodium-sulfur battery and bonding method using the bonding glass ring - Google Patents

Bonding glass ring for forming sodium-sulfur battery and bonding method using the bonding glass ring

Info

Publication number
JP2504840B2
JP2504840B2 JP1214461A JP21446189A JP2504840B2 JP 2504840 B2 JP2504840 B2 JP 2504840B2 JP 1214461 A JP1214461 A JP 1214461A JP 21446189 A JP21446189 A JP 21446189A JP 2504840 B2 JP2504840 B2 JP 2504840B2
Authority
JP
Japan
Prior art keywords
ring
solid electrolyte
glass
cylindrical solid
bottomed cylindrical
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP1214461A
Other languages
Japanese (ja)
Other versions
JPH0378975A (en
Inventor
宏 根本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NGK Insulators Ltd
Original Assignee
NGK Insulators Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NGK Insulators Ltd filed Critical NGK Insulators Ltd
Priority to JP1214461A priority Critical patent/JP2504840B2/en
Publication of JPH0378975A publication Critical patent/JPH0378975A/en
Application granted granted Critical
Publication of JP2504840B2 publication Critical patent/JP2504840B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Secondary Cells (AREA)

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明はナトリウム−硫黄電池形成用接合ガラスリン
グおよび当該接合ガラスリングを用いた接合方法に係
り、さらに詳しくは、ナトリウム−硫黄電池の有底円筒
状固体電解質と絶縁体リングとの接合作業効率を向上さ
せ、しかも接合ガラス中の残留気泡のほとんどないナト
リウム−硫黄電池形成用接合ガラスリングを低コスト且
つ高精度で製造することができる接合ガラスリングと、
そのガラスリングを用いた接合方法に関する。
Description: TECHNICAL FIELD The present invention relates to a bonded glass ring for forming a sodium-sulfur battery and a bonding method using the bonded glass ring, and more specifically to a bottomed sodium-sulfur battery. Bonding glass capable of improving bonding work efficiency between a cylindrical solid electrolyte and an insulator ring, and manufacturing a bonding glass ring for forming a sodium-sulfur battery having almost no residual bubbles in the bonding glass at low cost and with high accuracy. A ring,
The present invention relates to a joining method using the glass ring.

[従来の技術] ナトリウム−硫黄電池は、一方に陰極活性物質である
溶融金属ナトリウム、他方には陽極活物質である溶融硫
黄を配し、両者をナトリウムイオンに対して選択的な透
過性を有するベータアルミナ固体電解質で隔離し、300
〜350℃で作動させる高温二次電池である。
[Prior Art] A sodium-sulfur battery has molten metal sodium that is a cathode active material on one side and molten sulfur that is an anode active material on the other side, and both have a selective permeability to sodium ions. Isolate with beta-alumina solid electrolyte, 300
It is a high temperature secondary battery operated at ~ 350 ° C.

このようなナトリウム−硫黄電池の構成は、例えば第
6図に示すように、陽極活物質である溶融硫黄Sを含浸
したカーボンフェルト等の陽極用導電材1を収容する円
筒状の陽極容器2と、該陽極容器2の上端部と例えばア
ルファアルミナ製の絶縁体リング3を介して連結され、
且つ溶融金属ナトリウムNaを貯蓄する陰極容器4と、前
記絶縁体リング3の内周部に接合され、且つナトリウム
イオンNa+を選択的に透過させる機能を有する有底円筒
状のベータアルミナ管5とからなっている。また、前記
陰極容器4の上蓋6の中央部には、陰極容器4を通して
下方向にベータアルミナ管の底部付近まで延びた陰極管
7が貫通支持されている。
The structure of such a sodium-sulfur battery is, for example, as shown in FIG. 6, a cylindrical anode container 2 for accommodating a conductive material 1 for anode such as carbon felt impregnated with molten sulfur S as an anode active material. , Is connected to the upper end of the anode container 2 via an insulator ring 3 made of, for example, alpha alumina,
Also, a cathode container 4 for storing molten metal sodium Na, and a bottomed cylindrical beta-alumina tube 5 joined to the inner peripheral portion of the insulator ring 3 and having a function of selectively transmitting sodium ions Na +. It consists of A cathode tube 7 extending downward through the cathode container 4 to near the bottom of the beta-alumina tube is penetratingly supported in the central portion of the upper lid 6 of the cathode container 4.

以上の構成を有するナトリウム−硫黄電池において、
放電時には溶融金属ナトリウムは電子を放出してナトリ
ウムイオンとなり、これがベータアルミナ固体電解質中
を透過して陽極側に移動し、陽極の硫黄と外部回路を通
ってきた電子と反応して多硫化ナトリウムを生成し、2V
程度の電圧を発生する。充電時には放電とは逆にナトリ
ウム及び硫黄の生成反応が起こる。
In the sodium-sulfur battery having the above configuration,
During discharge, molten metal sodium emits electrons to become sodium ions, which pass through the beta alumina solid electrolyte and move to the anode side, reacting with the anode sulfur and the electrons that have passed through the external circuit to form sodium polysulfide. Generates 2V
Generates a voltage of the order of magnitude. On the contrary to discharging, during charging, a reaction of producing sodium and sulfur occurs.

従来より、ベータアルミナ等からなる有底円筒状固体
電解質とアルファアルミナなどからなる絶縁体リングを
接合するに際しては、ガラス粉末にバインダー及び水あ
るいは有機溶媒等を混合したペーストを固体電解質の開
口端外表面または絶縁体リングの内腔面上に塗布した後
両者を嵌合して加熱接合する方法のほか、接合ガラスを
リング状に形成した接合ガラスリングを作製し、該接合
ガラスリングを固体電解質と絶縁体リング間に装入した
後熱処理することにより両者を接合することが行なわれ
ている。
Conventionally, when joining a bottomed cylindrical solid electrolyte made of beta alumina or the like and an insulator ring made of alpha alumina or the like, a paste prepared by mixing glass powder with a binder and water or an organic solvent is used outside the open end of the solid electrolyte. In addition to the method of applying both on the surface or on the inner surface of the insulator ring and fitting them together by heating, a bonded glass ring in which bonded glass is formed in a ring shape is prepared, and the bonded glass ring is used as a solid electrolyte. It has been practiced to join the two by heat-treating them after inserting them between the insulating rings.

このうち後者の方法にあっては、接合ガラスリングを
製造するための各種の方法が考えられる。従来より知ら
れている接合ガラスリングの製造方法として、原料ガラ
ス粉末にバインダーを加えて混合・造粒した後、リング
状に成形し、次いで焼結して焼結体リングを製造する方
法がある。
Among these, in the latter method, various methods for producing a bonded glass ring can be considered. As a conventionally known method for producing a bonded glass ring, there is a method in which a binder is added to raw material glass powder, mixed and granulated, shaped into a ring, and then sintered to produce a sintered ring. .

[発明が解決しようとする課題] しかしながら、上記の焼結体リングは、得られた焼結
体ガラスの中に多量の気泡が残留し、それを用いる場合
には接合強度が低下するという問題があった。
[Problems to be Solved by the Invention] However, in the above sintered body ring, a large amount of bubbles remain in the obtained sintered body glass, and when it is used, the bonding strength is lowered. there were.

又、焼結体リングのほかに、溶融ガラスから糸状物を
作製し、これを丸めて切断することによりガラスリング
を得る方法、さらに、溶融ガラスから板を作製し、これ
を切断して丸めることによりガラスリングを得る方法も
考えられる。しかしながら、両方法とも寸法精度に問題
があり、コストも高くなるという欠点があるほか、接合
に必要なガラス量に対して1個のガラスリングではその
量が不足するという問題もあった。
In addition to the sintered body ring, a method of producing a filamentous material from molten glass and rolling and cutting it to obtain a glass ring. Further, producing a plate from molten glass and cutting and rolling it. A method of obtaining a glass ring is also considered. However, both methods have drawbacks in that there is a problem in dimensional accuracy and the cost is high, and there is also a problem in that the amount of one glass ring is insufficient with respect to the amount of glass required for joining.

[課題を解決するための手段] そこで、本発明者らは、上記従来の問題を解決すべ
く、種々検討を重ねた結果、本発明を完成したものであ
る。
[Means for Solving the Problems] Therefore, the present inventors have completed the present invention as a result of various studies in order to solve the above conventional problems.

即ち、本発明によれば、有底円筒状固体電解質の開口
端外周部に絶縁体リングを固着接合するために用いるナ
トリウム−硫黄電池形成用接合ガラスリングであって、
該接合ガラスリングは、ガラス原料を溶融してガラスフ
リットを作成し、このガラスフリットを再溶融して管状
に成形し、この管状成形体を切断して、前記円筒状固体
電解質と前記絶縁リングの接合部に嵌合できるリング形
状に形成したものであることを特徴とするナトリウム−
硫黄電池形成用接合ガラスリング、が提供される。
That is, according to the present invention, a sodium-sulfur battery forming bonding glass ring used for firmly bonding the insulator ring to the outer peripheral portion of the open end of the bottomed cylindrical solid electrolyte,
The bonded glass ring is prepared by melting a glass raw material to form a glass frit, re-melting the glass frit to form a tube, and cutting the tube-shaped formed body to separate the cylindrical solid electrolyte and the insulating ring. Sodium characterized by being formed in a ring shape that can be fitted to the joint
A bonded glass ring for forming a sulfur battery is provided.

また本発明によれば、有底円筒状固体電解質の開口端
外周部に絶縁体リングを固着接合するにあたり、該有底
円筒状固体電解質の開口端部を下向きにして治具上に立
設するとともに、前記有底円筒状固体電解質の開口端外
周部に絶縁体リングを配置し、次いで上記のリング形状
に形成した接合ガラスリングを前記有底円筒状固体電解
質の開口端外周部と前記絶縁体リングとの間に装入した
後、熱処理することにより有底円筒状固体電解質の開口
端外周部に絶縁体リングを接合することを特徴とする有
底円筒状固体電解質と絶縁体リングの接合方法が、提供
される。
Further, according to the present invention, when the insulator ring is fixedly joined to the outer peripheral portion of the open end of the bottomed cylindrical solid electrolyte, the bottom end of the cylindrical solid electrolyte is erected on the jig with the open end portion facing downward. In addition, an insulator ring is arranged on the outer peripheral portion of the open end of the bottomed cylindrical solid electrolyte, and the bonded glass ring formed in the ring shape is then attached to the outer peripheral portion of the open end of the bottomed cylindrical solid electrolyte and the insulator. A method for joining a bottomed cylindrical solid electrolyte and an insulator ring, characterized by joining an insulator ring to the outer peripheral portion of the open end of the bottomed cylindrical solid electrolyte by charging it between the ring and the ring. Will be provided.

[作用] 本発明では、有底円筒状固体電解質の開口端外周部に
絶縁体リングを固着接合するに際して用いる接合ガラス
リングであって、この接合ガラスリングは、原料ガラス
を溶融してガラスフリットを作成し、このガラスフリッ
トを再溶融して得られるものである。
[Operation] According to the present invention, a bonded glass ring is used for firmly bonding an insulator ring to the outer peripheral portion of the open end of a bottomed cylindrical solid electrolyte. The bonded glass ring melts raw material glass to form a glass frit. It is obtained by making and remelting this glass frit.

このように、ガラスフリットを再溶融して接合ガラス
リングを作成したので、ガラスの粘度が低下して気泡が
抜け、その結果、気泡のほとんどない寸法精度のよいガ
ラスリングが提供できる。
In this way, the glass frit is remelted to form the bonded glass ring, so that the viscosity of the glass is reduced and bubbles are removed, and as a result, a glass ring having almost no bubbles and good dimensional accuracy can be provided.

この接合ガラスリングは、好ましくはその体積が固体
電解質と絶縁体リングとの接合に必要とするガラス量と
同等かあるいはそれより大きな体積となるように形成す
ることにより、一定量のガラス量で接合が可能となり、
またガラスリングを何個も使用する必要がなく、作業効
率が向上する。
This bonded glass ring is preferably formed so that its volume is equal to or larger than the glass amount required for bonding the solid electrolyte and the insulator ring, and thus bonded with a fixed amount of glass. Is possible,
Further, it is not necessary to use a number of glass rings, which improves working efficiency.

又、本発明では、熱膨張係数が固体電解質と同等かも
しくは小さい原料ガラスフリットを用いることが好まし
い。有底円筒状固体電解質と絶縁体リングとの接合体
は、ナトリウム−硫黄電池に用いられる際には、金属容
器と絶縁体リングが接合されることになり、電池作動温
度の約350℃において電池内部の硫黄、金属ナトリウ
ム、多硫化ナトリウム、カーボンマット等の膨張により
絶縁体リングと有底円筒状固体電解質の接合部に曲げ応
力が作用する。そのため、有底円筒状固体電解質と絶縁
体リングの接合後のガラス中にはクラック等の欠陥がな
いことが重要となる。
Further, in the present invention, it is preferable to use a raw material glass frit having a thermal expansion coefficient equal to or smaller than that of the solid electrolyte. When used in a sodium-sulfur battery, the joined body of the bottomed cylindrical solid electrolyte and the insulator ring means that the metal container and the insulator ring are joined together, and the battery is operated at a battery operating temperature of about 350 ° C. Bending stress acts on the joint between the insulator ring and the bottomed cylindrical solid electrolyte due to expansion of internal sulfur, sodium metal, sodium polysulfide, carbon mat, and the like. Therefore, it is important that the glass after joining the bottomed cylindrical solid electrolyte and the insulator ring does not have defects such as cracks.

そこで、本発明では、次のように有底円筒状固体電解
質と絶縁体リングとを接合する。すなわち、まず、有底
円筒状固体電解質の開口端側を下向きにして治具上に立
設する。次いで、有底円筒状固体電解質の開口端外周部
に絶縁体リングを配置した後、本発明の接合ガラスリン
グを有底円筒状固体電解質の開口端外周部と絶縁体リン
グとの間に装入し、約1050℃の温度で熱処理することに
より、有底円筒状固体電解質の開口端外周部に絶縁体リ
ングを接合する。このことにより、接合部における残留
応力の引張応力が小さくなり、片持ち曲げ強度も大きく
なり、クラックの発生が抑制される。
Therefore, in the present invention, the bottomed cylindrical solid electrolyte and the insulator ring are joined as follows. That is, first, the bottomed cylindrical solid electrolyte is erected on the jig with the open end side facing downward. Next, after arranging the insulator ring on the outer peripheral portion of the open end of the bottomed cylindrical solid electrolyte, the bonded glass ring of the present invention is charged between the outer peripheral portion of the open end of the bottomed cylindrical solid electrolyte and the insulator ring. Then, heat treatment is performed at a temperature of about 1050 ° C. to bond the insulator ring to the outer peripheral portion of the open end of the bottomed cylindrical solid electrolyte. As a result, the tensile stress of the residual stress in the joint is reduced, the cantilever bending strength is increased, and the occurrence of cracks is suppressed.

[実施例] 以下、本発明を実施例に基き、更に詳細に説明する
が、本発明はこれらの実施例に限られるものではない。
[Examples] Hereinafter, the present invention will be described in more detail based on Examples, but the present invention is not limited to these Examples.

(実施例1) 純度が99%以上、粒度が平均粒子径で1μm以下の珪
砂、アルミナ、炭酸ナトリウム、硼酸の各原料を用い、
ガラス組成がSiO263重量%、Al2O37.5重量%、Na2O9.5
重量%、B2O320重量%から成る硼珪酸系ガラスのフリッ
トを以下の手順で作製した。まず、上記ガラス組成とな
るよう各々の原料を全体で5kgになるよう秤量し、磁製
ポットミルにて30分間、乾式混合した。この混合物をシ
ャモット製ルツボに500gづつ投入して、エレマ電気炉に
て1450℃の温度で1時間熱処理することにより溶融し
て、溶液状とした後、エレマ電気炉からルツボごと取出
し、水を満たしたステンレス製バットに投入、急冷し
て、フリットを作成した。
Example 1 Using silica sand, alumina, sodium carbonate, and boric acid raw materials having a purity of 99% or more and a particle size of 1 μm or less in average particle size,
Glass composition is SiO 2 63 wt%, Al 2 O 3 7.5 wt%, Na 2 O9.5
A borosilicate glass frit composed of 20% by weight of B 2 O 3 was prepared by the following procedure. First, each raw material was weighed so as to have a total weight of 5 kg so as to have the above glass composition, and dry-mixed in a porcelain pot mill for 30 minutes. Each 500 g of this mixture was put into a chamotte crucible and melted by heat treatment in an Elema electric furnace at a temperature of 1450 ° C for 1 hour to form a solution. Then, the crucible was taken out from the Elema electric furnace and filled with water. It was put into a stainless steel vat and rapidly cooled to form a frit.

次いで、作成したフリットをロールクラッシャーで粗
粉砕し、内容積200mlの白金ルツボに2/3程度投入して、
エレマ電気炉にて1500℃の温度で2時間、加熱し、再溶
融した。この高温熱処理により再溶融することによっ
て、ガラスの粘度が低下し、溶融ガラス中の気泡が自然
脱泡した。再溶融後、内型を使用して、外径27mm、肉厚
1mmのパイプを引き抜き、冷却後ダイヤモンドカッター
で切断し、高さ2mm、縦方向の断面が矩形状で、内部に
気泡のほとんどないガラスリングを作成した。
Then, the created frit is roughly crushed with a roll crusher and put into a platinum crucible with an internal volume of 200 ml about 2/3,
It was re-melted by heating at a temperature of 1500 ° C. for 2 hours in an electric electric furnace. Remelting by this high-temperature heat treatment reduced the viscosity of the glass, and the bubbles in the molten glass spontaneously defoamed. After remelting, using the inner mold, outer diameter 27 mm, wall thickness
A 1 mm pipe was pulled out, cooled, and cut with a diamond cutter to form a glass ring having a height of 2 mm, a rectangular cross section in the longitudinal direction, and almost no bubbles inside.

(実施例2) 有底円筒状固体電解質とアルファアルミナよりなる絶
縁体リングとの接合を実施例1にて作製したガラスリン
グを用い、まず第1図に示すように最初に接合用アルミ
ナセッター11を置き、その上に絶縁体リング12をテーパ
ー部を上にしてセットし、更に有底円筒状固体電解質13
の開口端側を下向きにしてセットした。次に、第2図
(a)(b)のように接合ガラスリング14を有底円筒状
固体電解質13の上方から装入し、絶縁体リング12のテー
パー部にセットし、エレマ電気炉にて第4図に示す接合
用ヒートカーブに従い1050℃で熱処理した。熱処理後の
接合断面は第3図に示す通りであり、接合ガラス14′
は、有底円筒状固体電解質13と絶縁体リング12の接合面
および絶縁体リング12のテーパー部に埋まっていた。
(Example 2) Using the glass ring produced in Example 1 to join the bottomed cylindrical solid electrolyte and the insulator ring made of alpha alumina, first, as shown in FIG. 1, the alumina setter 11 for joining was used. , And set the insulator ring 12 on top of it with the taper part facing upward, and further, the bottomed cylindrical solid electrolyte 13
Was set so that the open end side thereof faced downward. Next, as shown in FIGS. 2 (a) and 2 (b), the bonded glass ring 14 is charged from above the bottomed cylindrical solid electrolyte 13 and set on the taper portion of the insulator ring 12, and the electric furnace is used. It heat-processed at 1050 degreeC according to the heat curve for joining shown in FIG. The cross section of the joint after heat treatment is shown in Fig. 3, and the joint glass 14 '
Was buried in the joint surface between the bottomed cylindrical solid electrolyte 13 and the insulator ring 12 and the taper portion of the insulator ring 12.

上述した操作により有底円筒状固体電解質と絶縁体リ
ングを接合した後、接合断面を光学顕微鏡にて観察した
ところ、第5図に示すように接合後、ガラス中には殆ど
気泡が残留しておらず、本発明の接合ガラスリングは性
能のよいことが証明された。
After the bottomed cylindrical solid electrolyte and the insulator ring were joined by the above-mentioned operation, the joint cross section was observed with an optical microscope. As a result, as shown in FIG. 5, almost all bubbles remained in the glass after joining. In fact, the bonded glass ring of the present invention was proved to have good performance.

[発明の効果] 以上説明したように、本発明によれば、寸法精度が良
く気泡のほとんどないガラスリングが提供でき、そのた
め、接合部にガラスを均一に溶融し流し込むことがで
き、気泡のない強度の高い接合を実現することができ
る。
[Effects of the Invention] As described above, according to the present invention, it is possible to provide a glass ring having good dimensional accuracy and almost no bubbles, and therefore, it is possible to uniformly melt and pour glass into a joint portion, and there is no bubbles. Bonding with high strength can be realized.

【図面の簡単な説明】[Brief description of drawings]

第1図〜第3図は本発明のガラスリングを用いた接合方
法の操作手順を順次示す説明図で、第2図(b)は第2
図(a)の部分拡大図である。第4図は接合用ヒートカ
ーブを示すグラフ、第5図は本発明のガラスリングを用
いた接合ガラスの状態を示す説明図、第6図はナトリウ
ム−硫黄電池の構成を示す概略断面図である。 11……アルミナセッター、12……絶縁体リング、13……
有底円筒状固体電解質、14……接合ガラスリング。
1 to 3 are explanatory views sequentially showing the operation procedure of the joining method using the glass ring of the present invention, and FIG.
It is a partially expanded view of FIG. FIG. 4 is a graph showing a heat curve for joining, FIG. 5 is an explanatory view showing a state of a joined glass using the glass ring of the present invention, and FIG. 6 is a schematic sectional view showing a constitution of a sodium-sulfur battery. . 11 …… Alumina setter, 12 …… Insulator ring, 13 ……
Bottomed cylindrical solid electrolyte, 14 …… Bonded glass ring.

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】有底円筒状固体電解質の開口端外周部に絶
縁体リングを固着接合するために用いるナトリウム−硫
黄電池形成用接合ガラスリングであって、該接合ガラス
リングは、ガラス原料を溶融してガラスフリットを作成
し、このガラスフリットを再溶融して管状に成形し、こ
の管状成形体を切断して、前記円筒状固体電解質と前記
絶縁リングの接合部に嵌合できるリング形状に形成した
ものであることを特徴とするナトリウム−硫黄電池形成
用接合ガラスリング。
1. A bonded glass ring for forming a sodium-sulfur battery, which is used for firmly bonding an insulator ring to an outer peripheral portion of an open end of a bottomed cylindrical solid electrolyte, wherein the bonded glass ring melts a glass raw material. To form a glass frit, re-melt the glass frit to form a tube, and cut the tubular formed body to form a ring shape that can be fitted to the joint between the cylindrical solid electrolyte and the insulating ring. A bonded glass ring for forming a sodium-sulfur battery, characterized in that
【請求項2】有底円筒状固体電解質の開口端外周部に絶
縁体リングを固着接合するにあたり、該有底円筒状固体
電解質の開口端部を下向きにして治具上に立設するとと
もに、前記有底円筒状固体電解質の開口端外周部に絶縁
体リングを配置し、次いで請求項1記載の接合ガラスリ
ングを前記有底円筒状固体電解質の開口端外周部と前記
絶縁体リングとの間に装入した後、熱処理することによ
り有底円筒状固体電解質の開口端外周部に絶縁体リング
を接合することを特徴とする有底円筒状固体電解質と絶
縁体リングの接合方法。
2. When the insulator ring is fixedly joined to the outer peripheral portion of the open end of the bottomed cylindrical solid electrolyte, the open end of the bottomed cylindrical solid electrolyte faces downward and is erected on a jig. An insulator ring is disposed on the outer peripheral portion of the open end of the bottomed cylindrical solid electrolyte, and the bonded glass ring according to claim 1 is provided between the outer peripheral portion of the open end of the cylindrical solid electrolyte with the bottom end and the insulator ring. A method for joining a bottomed cylindrical solid electrolyte and an insulator ring, characterized in that the insulator ring is joined to the outer peripheral portion of the open end of the bottomed cylindrical solid electrolyte after being charged into the.
JP1214461A 1989-08-21 1989-08-21 Bonding glass ring for forming sodium-sulfur battery and bonding method using the bonding glass ring Expired - Lifetime JP2504840B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1214461A JP2504840B2 (en) 1989-08-21 1989-08-21 Bonding glass ring for forming sodium-sulfur battery and bonding method using the bonding glass ring

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1214461A JP2504840B2 (en) 1989-08-21 1989-08-21 Bonding glass ring for forming sodium-sulfur battery and bonding method using the bonding glass ring

Publications (2)

Publication Number Publication Date
JPH0378975A JPH0378975A (en) 1991-04-04
JP2504840B2 true JP2504840B2 (en) 1996-06-05

Family

ID=16656122

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1214461A Expired - Lifetime JP2504840B2 (en) 1989-08-21 1989-08-21 Bonding glass ring for forming sodium-sulfur battery and bonding method using the bonding glass ring

Country Status (1)

Country Link
JP (1) JP2504840B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101615034B1 (en) 2014-11-06 2016-04-25 한국세라믹기술원 Manufacturing method of sodium-sulfur rechargeable battery

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10029523A1 (en) * 2000-06-21 2002-01-10 Messer Griesheim Gmbh Method and device for cleaning a PVD or CVD reactor and exhaust pipes of the same

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5884144A (en) * 1981-11-12 1983-05-20 コ−ニング・グラス・ワ−クス Electrochemical, electric, electronic and optical seal glass and seal formation

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1344565A (en) * 1971-06-01 1974-01-23 Gen Electric Method of forming a metallic battery casing

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5884144A (en) * 1981-11-12 1983-05-20 コ−ニング・グラス・ワ−クス Electrochemical, electric, electronic and optical seal glass and seal formation

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101615034B1 (en) 2014-11-06 2016-04-25 한국세라믹기술원 Manufacturing method of sodium-sulfur rechargeable battery

Also Published As

Publication number Publication date
JPH0378975A (en) 1991-04-04

Similar Documents

Publication Publication Date Title
US5380596A (en) Glass joint body and method of manufacturing the same
US4002807A (en) Alkali metal, sulfur battery or cell with single phase sulfur electrode
CN105088274B (en) A kind of device for processing and reclaiming aluminium electroloysis solid waste
US3985576A (en) Seal for energy conversion devices
US5134044A (en) Glass-graphite bonding system for sodium-sulphur batteries and batteries made therefrom
EP0503776B1 (en) Glass sealing materials for sodium-sulfur batteries and batteries made therewith
JP2504840B2 (en) Bonding glass ring for forming sodium-sulfur battery and bonding method using the bonding glass ring
US4574019A (en) Process for attaching anode blocks to an anode suspension means
JP2527844B2 (en) Glass bonded body and manufacturing method thereof
US4335064A (en) Process for packing electrolysis cells for the production of aluminum
JP2619061B2 (en) Bonding glass for forming sodium-sulfur battery and method for bonding bottomed cylindrical solid electrolyte and insulator ring using the bonding glass
JP2545153B2 (en) Glass bonded body and manufacturing method thereof
US3053748A (en) Novel type electrode for electrolytic cells
US4211570A (en) Method of manufacturing beta alkaline alumina parts
US5076902A (en) Electrolysis apparatus
JPH02236970A (en) Bonding glass beads for forming sodium-sulfur battery and bonding method using the same
JPH02123669A (en) Connecting glass ring for forming sodium-sulfur battery and connecting method using it
US4491471A (en) Composite pellet for use as a carbothermic reduction feed
JPH0631647Y2 (en) Solid electrolyte tube for sodium-sulfur battery
US11624119B2 (en) Centrifugal molten electrolysis reactor for oxygen, volatiles, and metals extraction from extraterrestrial regolith
US3305357A (en) Method of making a ai-si-mn-li anode for high temperature galvanic cell
JP3079581B2 (en) Sealing glass
JPH09326261A (en) Glass material for high temperature secondary battery and glass junction body
JPH04175271A (en) Glass joining body and production thereof
JPS6116601Y2 (en)

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090402

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100402

Year of fee payment: 14

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100402

Year of fee payment: 14