JP2504474B2 - Initially loaded core of boiling water reactor - Google Patents

Initially loaded core of boiling water reactor

Info

Publication number
JP2504474B2
JP2504474B2 JP62177122A JP17712287A JP2504474B2 JP 2504474 B2 JP2504474 B2 JP 2504474B2 JP 62177122 A JP62177122 A JP 62177122A JP 17712287 A JP17712287 A JP 17712287A JP 2504474 B2 JP2504474 B2 JP 2504474B2
Authority
JP
Japan
Prior art keywords
type
fuel
fuel assembly
enrichment
boundary
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP62177122A
Other languages
Japanese (ja)
Other versions
JPS6421389A (en
Inventor
俊亮 扇谷
勇 豊吉
通裕 小沢
貴顕 持田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Hitachi Ltd
Original Assignee
Toshiba Corp
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp, Hitachi Ltd filed Critical Toshiba Corp
Priority to JP62177122A priority Critical patent/JP2504474B2/en
Publication of JPS6421389A publication Critical patent/JPS6421389A/en
Application granted granted Critical
Publication of JP2504474B2 publication Critical patent/JP2504474B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors

Landscapes

  • Monitoring And Testing Of Nuclear Reactors (AREA)

Description

【発明の詳細な説明】 〔発明の目的〕 (産業上の利用分野) 本発明は沸騰水型原子炉の初装荷炉心に関する。DETAILED DESCRIPTION OF THE INVENTION [Object of the Invention] (Field of Industrial Application) The present invention relates to an initial-loaded core of a boiling water reactor.

(従来の技術) 沸騰水型原子炉の初装荷炉心は、燃料集合体平均濃縮
度が約2.2重量%の1種類の燃料を使用して来た。(以
後これを一様炉心と呼ぶ。) しかし、最近は燃料サイクルの効率の向上のため、燃
料集合体平均濃縮度の異なる3種類以上の燃料集合体を
使用した複数濃縮度炉心が考えられている。
(Prior Art) An initially loaded core of a boiling water reactor has used one type of fuel having an average fuel assembly enrichment of about 2.2% by weight. (Hereinafter, this is referred to as a uniform core.) However, in recent years, in order to improve the efficiency of the fuel cycle, a multi-enrichment core using three or more types of fuel assemblies with different average enrichment of fuel assemblies has been considered. There is.

この様な濃縮度の異なる燃料集合体からなる炉心で
は、第1サイクル後に低濃縮燃料を、第2サイクル後に
中濃縮燃料、第3サイクル後に高濃縮燃料の燃料集合体
を取出す事によって、初装荷取出燃料集合体中の残留U
235量を従来の一様炉心より格段に低減でき、燃料サイ
クルの効率が大幅に改善される。
In such a core composed of fuel assemblies having different enrichments, a fuel assembly of a low enriched fuel after the first cycle, a medium enriched fuel after the second cycle, and a highly enriched fuel after the third cycle is taken out, and the initial loading is performed. Residual U in the extracted fuel assembly
The amount of 235 can be remarkably reduced compared to the conventional uniform core, and the efficiency of the fuel cycle is greatly improved.

ところで、このような燃料集合体の軸方向設計につい
ては、従来の一様炉心の燃料集合体の設計概念がそのま
ま提案されている。すなわち、各タイプの初装荷燃料集
合体の軸方向設計において、濃縮度分布がある場合、各
タイプの燃料集合体とも同一軸方向高さの位置に濃縮度
区分の境界がある。
By the way, as for the axial design of such a fuel assembly, the conventional design concept of the fuel assembly of the uniform core has been proposed as it is. That is, in the axial design of the initially loaded fuel assemblies of each type, when there is a distribution of enrichment, each fuel assembly of each type has a boundary of enrichment classification at the same axial height position.

又、炉心径方向の燃料集合体配置としては、第1サイ
クル中の中性子の炉心からの洩れを小さくして中性子経
済性を向上するため、炉心最外周には各タイプのうち最
も濃縮度の低い燃料集合体を配している。
Further, regarding the fuel assembly arrangement in the radial direction of the core, in order to reduce the leakage of neutrons from the core during the first cycle and improve the neutron economy, the outermost core of the core has the lowest enrichment of each type. Fuel assemblies are arranged.

たとえば3種類の燃料集合体からなる炉心の場合につ
いて述べる。燃料集合体平均濃縮度の高い順に各々タイ
プI,タイプII,タイプIII燃料集合体と呼ぶ。すると、一
様炉心の場合に比較して、炉心中央部に配置されたタイ
プI燃料集合体の集合体平均出力(径方向出力分布)は
大きくなる。従って、一様炉心の場合と同じ軸方向設計
による軸方向の濃縮度差により、すなわち上部の濃縮度
を高く、下部の濃縮度を低くすることによりタイプI,II
燃料集合体の軸方向出力分布制御を行っても、タイプI
燃料集合体の下部出力は径方向出力ピーキング係数の大
きくなる分、一様炉心より大きくなる傾向になる。つま
り線出力密度(kw/ft)が運転の制限値(例えば13.4kw/
ft)に対して余裕がなくなる傾向にある。ところでタイ
プIII燃料集合体は、濃縮度が低いので、線出力密度は
運転の制限値に対して充分余裕がある。また設計の簡略
化のため、出力分布制御のための軸方向濃縮度分布を有
せず、可燃性毒物も有しないので、運転の制限値に対し
て余裕がある。
For example, a case of a core composed of three types of fuel assemblies will be described. The fuel assemblies are referred to as Type I, Type II, and Type III fuel assemblies in descending order of average enrichment. Then, as compared with the case of the uniform core, the average power (radial power distribution) of the type I fuel assemblies arranged in the central part of the core becomes larger. Therefore, due to the difference in enrichment in the axial direction due to the same axial design as in the case of the uniform core, that is, by increasing the enrichment in the upper part and lowering the enrichment in the lower part, type I and II
Even if the axial power distribution control of the fuel assembly is performed, type I
The lower output of the fuel assembly tends to be larger than that of the uniform core as the radial power peaking coefficient increases. In other words, the linear power density (kw / ft) is the limit value for driving (for example, 13.4kw / ft).
ft) tends to run out of room. By the way, since the type III fuel assembly has a low enrichment, the linear power density has a sufficient margin with respect to the operation limit value. Further, for simplification of the design, there is no axial enrichment distribution for power distribution control and no combustible poisons, so there is a margin for the operation limit value.

(発明が解決しようとする問題点) 上記運転の制限値に対する余裕を改善するため、タイ
プI,タイプII燃料集合体の上下濃縮度差を拡大したり、
可燃性毒物量の上下差をつける(下部の可燃性毒物濃度
をより高めるか、可燃性毒物の添加された燃料棒本数を
下部の方で多くする)方法がとられる。このようにする
と、軸方向の領域区分境界上下での反応度差が増すため
この境界のすぐ上の部分が出力ピークとなり、炉心軸方
向分布が中央ピークの形となる。よってこの部分の線出
力密度が厳しくなってしまう。
(Problems to be solved by the invention) In order to improve the margin for the above-mentioned limit value of operation, the difference in vertical enrichment between the type I and type II fuel assemblies is increased,
The difference in the amount of combustible poisons is made higher or lower (increasing the concentration of combustible poisons at the bottom, or increasing the number of fuel rods with burnable poisons added at the bottom). By doing so, the reactivity difference above and below the axial zone division boundary increases, so that the portion immediately above this boundary becomes the power peak, and the core axial distribution becomes the shape of the central peak. Therefore, the linear output density of this portion becomes severe.

又、第1サイクルの大半の期間、タイプI燃料集合体
が中央ピークの軸方向出力分布状態で燃焼し、更にサイ
クル末期で最大反応度の燃料集合体がタイプI燃料集合
体であることにより、燃焼度分布は第7図の実線Lに示
すものとなり、この結果サイクル末期の出力分布は第8
図の実線Mの分布となる。またボイドが炉心下部から発
生するため炉心平均ボイド率が大きくなり、サイクル末
期の反応度がその分損失する。
Further, during most of the first cycle, the type I fuel assembly burns in the axial peak power distribution state of the central peak, and the fuel assembly with the maximum reactivity at the end of the cycle is the type I fuel assembly, The burnup distribution is shown by the solid line L in FIG. 7, and as a result, the output distribution at the end of the cycle is 8th.
The distribution is the solid line M in the figure. In addition, since voids are generated from the lower part of the core, the average void fraction in the core becomes large, and the reactivity at the end of the cycle is lost accordingly.

更に、燃料経済性向上のためタイプI,II,III燃料集合
体の燃料有効長部の上下端部に、天然ウラン又は劣化ウ
ランのブランケット部を設け、ブランケット部の間の領
域の濃縮度を上げる。この設計により燃料集合体平均濃
縮度が同じでも高反応度の燃料集合体となる。ところが
その設計では、従来より軸方向中央部の線出力密度が厳
しくなる。また前述のような軸方向濃縮度設計の軸方向
区分の境界を同一とする設計ではタイプI燃料集合体の
線出力密度が厳しくなる。さらに、初装荷炉心の最外周
に最低濃縮度のタイプIII燃料集合体を配し、2層目
(最外周燃料の一つ内側)から内側には、それより濃縮
度の高いタイプI,II燃料集合体を混在して配すると、初
装荷炉心の最外周及び2層目の出力が従来の一様炉心に
比して一段と小さくなる。このため最外周燃料の第1サ
イクルにおける燃焼量が小さく、第1サイクル後にこの
再外周の最低濃縮度燃料を取り出すと、発電量の少ない
燃料に、他の発電量の多い燃料と同じ最処理コストをか
けることになり、核燃料サイクル効率上は不利となる。
Furthermore, in order to improve fuel economy, a blanket part of natural uranium or depleted uranium is provided at the upper and lower ends of the active fuel length part of the type I, II, and III fuel assemblies to increase the enrichment of the region between the blanket parts. . With this design, even if the average enrichment of the fuel assembly is the same, the fuel assembly has a high reactivity. However, with that design, the line output density at the central portion in the axial direction becomes stricter than in the past. Further, the linear power density of the type I fuel assembly becomes strict in the design in which the boundaries of the axial sections of the axial enrichment design are the same as described above. In addition, a type III fuel assembly with the lowest enrichment is placed in the outermost periphery of the initially loaded core, and type I and II fuels with higher enrichment are provided from the second layer (one inside the outermost periphery fuel) to the inside. When the aggregates are mixedly arranged, the outputs of the outermost periphery and the second layer of the initially loaded core are further reduced as compared with the conventional uniform core. Therefore, the combustion amount of the outermost peripheral fuel in the first cycle is small, and if the lowest enrichment fuel in the re-outer periphery is taken out after the first cycle, the fuel with a small amount of power generation has the same maximum processing cost as the fuel with a large amount of power generation. This is a disadvantage in terms of nuclear fuel cycle efficiency.

本発明の目的は、濃縮度の異なる複数の燃料集合体を
使用する初装荷炉心に於いて、前述のように軸方向出力
分布の設計に於ける燃料集合体の軸方向濃縮度分布の区
分の境界が同一であることに起因する問題点を解決し、
更に炉心の径方向の燃料配置を改良して、線出力密度,M
CPR,炉停止余裕等の炉心特性の要求量を充分満足し、か
つ燃料の有効利用度の高い炉心を提供することにある。
It is an object of the present invention, in an initially loaded core using a plurality of fuel assemblies having different enrichments, to determine the axial enrichment distribution division of the fuel assemblies in the axial power distribution design as described above. Solve the problem caused by the same boundary,
Furthermore, by improving the fuel arrangement in the radial direction of the core, the linear power density, M
The object is to provide a core that fully satisfies the requirements for core characteristics such as CPR and reactor shutdown margin and has a high degree of effective fuel utilization.

〔発明の構成〕[Structure of Invention]

(問題点を解決するための手段) 本発明は、平均濃縮度の高い順にタイプI燃料集合
体,タイプII燃料集合体及びタイプIII燃料集合体とす
ると、タイプI燃料集合体の上下濃縮度差の境界とタイ
プII燃料集合体の上下濃縮度差の境界をずらし、タイプ
II燃料集合体の境界を燃料有効長の1/12〜1/6の長さだ
けタイプI燃料集合体のそれより上に設定する。さら
に、タイプI,II燃料集合体の濃縮領域の上部に1/12〜1/
6の長さの低可燃性毒物領域を設ける。又、タイプI燃
料集合体の低可燃性毒物領域の濃縮度はそのすぐ下の領
域の濃縮度より小さくし、タイプII燃料集合体の低可燃
性毒物領域の濃縮度はそのすぐ下の濃縮度と同一とす
る。このようなタイプI,II,III燃料集合体を有する初装
荷炉心は、最外周にタイプIII燃料集合体を、最外周か
ら2層目にタイプI燃料集合体を、運転中の反応度補
償,出力分布制御のために挿入する制御棒まわりの4体
の燃料集合体の位置(コントロールセル)にはタイプII
I燃料集合体を、他の位置には規則的にタイプI,II,III
燃料集合体をタイプI,II,III燃料集合体の順に規則的に
配置するのが好ましい。
(Means for Solving Problems) In the present invention, assuming that a type I fuel assembly, a type II fuel assembly, and a type III fuel assembly are arranged in descending order of average enrichment, a difference in vertical enrichment between the type I fuel assemblies. Of the type II fuel assembly
The boundary of the II fuel assembly is set 1/12 to 1/6 of the active fuel length above that of the type I fuel assembly. In addition, 1/12 to 1/1 above the enrichment region of type I and II fuel assemblies.
Provide a low flammable poison zone of length 6. In addition, the enrichment of the low combustible poison region of the type I fuel assembly is made smaller than that of the region immediately below it, and the enrichment of the low combustible poison region of the type II fuel assembly is set immediately below it. Same as. An initially loaded core having such type I, II, and III fuel assemblies has a type III fuel assembly on the outermost periphery, a type I fuel assembly on the second layer from the outermost periphery, reactivity compensation during operation, Type II is used for the positions (control cells) of the four fuel assemblies around the control rod that are inserted to control the power distribution.
I fuel assembly, type I, II, III in other positions regularly
Preferably, the fuel assemblies are regularly arranged in the order of Type I, II, III fuel assemblies.

(作用) タイプI燃料集合体とタイプII燃料集合体の境界をず
らすことにより、タイプI燃料集合体の軸方向中央部に
出力ピークが出るのを防げる。
(Operation) By shifting the boundary between the type I fuel assembly and the type II fuel assembly, it is possible to prevent an output peak from appearing at the central portion in the axial direction of the type I fuel assembly.

更に、燃料集合体上部の可燃性毒物の量を低減する事
により、上部の出力ピークを高めて、タイプI燃料集合
体を比較的平坦な下方ピーク出力分布の状態で第1サイ
クルの前・中期を燃焼させることが出来る。またタイプ
I燃料集合体の低可燃性毒物領域の濃縮度をそれより下
部の濃縮度より小さくすることにより、冷温時に極端な
上部ピークの出力分布となることを抑え、炉停止余裕が
厳しくなる取替炉心においても炉停止余裕の改善がはか
れる。
Furthermore, by reducing the amount of combustible poisons on the upper part of the fuel assembly, the output peak of the upper part is increased, and the type I fuel assembly is provided with a relatively flat lower peak power distribution. Can be burned. In addition, by making the enrichment of the low burnable poison region of the type I fuel assembly smaller than that of the lower portion thereof, it is possible to suppress the output distribution of the extreme upper peak at the cold temperature, and to make the reactor shutdown margin stricter. Even in the replacement core, the reactor shutdown margin can be improved.

最外周に低濃縮度のタイプIII燃料集合体を配したた
めに中央領域のタイプI燃料集合体の径方向出力(集合
体平均出力)が大きくなり過ぎる傾向を持つが、これを
最外周から2層目にタイプI燃料集合体を配して炉心周
辺の出力を高くすることにより改善出来る。又、最外周
のタイプIII燃料集合体は第1、第2サイクルと同じ位
置にそのまま配することにより、取り出し燃焼度が進
み、最外周のタイプIII燃料集合体の核燃料サイクル効
率が改善される。
Since the low enrichment type III fuel assemblies are arranged on the outermost circumference, the radial output (average assembly output) of the type I fuel assemblies in the central region tends to be too large. This can be improved by placing a type I fuel assembly in the eye and increasing the power around the core. Further, by arranging the outermost type III fuel assembly at the same position as in the first and second cycles, the take-out burnup is promoted and the nuclear fuel cycle efficiency of the outermost type III fuel assembly is improved.

(実施例) 第1図に本発明にかかる炉心の燃料装荷配置例を示
す。燃流集合体平均濃縮度が異なる3種類の燃料集合体
(高濃縮度燃料のタイプI燃料集合体1、中濃縮度燃料
のタイプII燃料集合体2、低濃縮度燃料のタイプIII燃
料集合体3)を用いている。
(Embodiment) FIG. 1 shows an example of fuel loading arrangement of a core according to the present invention. Fuel flow assembly Three types of fuel assemblies with different average enrichment (type I fuel assembly 1 for high enrichment fuel, type II fuel assembly 2 for medium enrichment fuel, type III fuel assembly for low enrichment fuel) 3) is used.

上記炉心配置例では、最外周にタイプIII燃料集合体
3を配し、又炉心中央領域には、制御棒周囲4体をすべ
てタイプIII燃料集合体3で構成されたコントロールセ
ルC(出力運転中、反応度制御及び出力分布制御を行う
ための専用の制御棒セルで、制御棒周囲の燃料は低反応
度の燃料集合体を配する。)を配してある。
In the above-mentioned core arrangement example, the type III fuel assembly 3 is arranged on the outermost periphery, and the control cell C (the output of the control cell C is composed of the type III fuel assembly 3 around the four control rods in the central area of the core). , A dedicated control rod cell for controlling the reactivity control and the output distribution control, and the fuel around the control rod is a fuel assembly having a low reactivity.

最外周から第2層目には最高濃縮度のタイプI燃料集
合体1を配し、他の残りの位置にはタイプI,II,III燃料
集合体1,2,3を原則的にI,II,IIIの順に規則的に配して
ある。
The type I fuel assembly 1 having the highest enrichment is arranged on the second layer from the outermost circumference, and the type I, II, and III fuel assemblies 1, 2, and 3 are basically I, I, III at the remaining positions. It is arranged regularly in the order of II and III.

第2図にタイプI,タイプII,タイプIII燃料集合体の軸
方向濃縮度分布、可燃性毒物軸方向分布の例を示す。タ
イプI燃料集合体1とタイプII燃料集合体2は、濃縮度
の軸方向分布を有し、タイプIII燃料集合体3の濃縮度
は軸方向に一様である。タイプI燃料集合体1は燃料有
効長Lの下方から約1/3〜1/2の位置に濃縮度の区分境界
Iを有し、境界Iの上下で上部の濃縮度の方が高
い。タイプII燃料集合体2の境界IIはタイプI燃料集
合体1のそれより有効長の1/12以上上方で有効長の下方
より約2/3までにある。タイプI,II燃料集合体1,2は可燃
性毒物入り燃料棒を有している。可燃性毒物の例として
はここではGd2O3を考えるが、他の可燃性毒物でもよ
い。可燃性毒物の軸方向分布設計は、燃料有効長Lの内
の濃縮領域に可燃性毒物があり、その領域内で一様か
又は濃縮度区分の境界I,IIと同じ位置で可燃性毒物
量の差があり、上が小さく、下が大きくなっている。更
に、タイプI,II燃料集合体1,2のいずれか又は両方とも
が、境界I,IIより上方の濃縮領域の上端から燃料
有効長Lの約1/12〜1/6の長さの可燃性毒物量の少ない
低可燃性毒物領域を有する。可燃性毒物量を少なくす
る手段は、タイプI燃料集合体1については、Gd2O3
濃度を低可燃性毒物領域のすぐ下の領域より小さくす
る。例えば1.5〜3%程度の低い濃度とする。又は、Gd2
O3添加燃料棒を一本減ずる。又はその両方とする等の手
段がある。
Fig. 2 shows examples of axial enrichment distributions and burnable poison axial distributions of Type I, Type II, and Type III fuel assemblies. The type I fuel assembly 1 and the type II fuel assembly 2 have an axial distribution of enrichment, and the enrichment of the type III fuel assembly 3 is uniform in the axial direction. The type I fuel assembly 1 has a partition boundary I of enrichment at a position of about 1/3 to 1/2 from below the active fuel length L, and the enrichment above and below the boundary I is higher. The boundary II of the type II fuel assembly 2 is 1/12 or more above the effective length of the type I fuel assembly 1 and about 2/3 below the effective length. Type I and II fuel assemblies 1 and 2 have burnable poisoned fuel rods. Gd 2 O 3 is considered here as an example of a burnable poison, but other burnable poisons may be used. The design of the axial distribution of burnable poison is such that the burnable poison exists in the concentrated area within the active fuel length L, and the burnable poison amount is uniform within that area or at the same position as the boundary I, II of the enrichment classification. The difference is that the top is small and the bottom is large. Furthermore, either or both of the type I and II fuel assemblies 1 and 2 are combustible with a length of about 1/12 to 1/6 of the active fuel length L from the upper end of the enrichment region above the boundaries I and II. It has a low-flammability toxicant area with a low amount of toxicant. As a means for reducing the amount of combustible poison, the concentration of Gd 2 O 3 for the type I fuel assembly 1 is made smaller than that of the region immediately below the low combustible poison region. For example, the concentration is set as low as about 1.5 to 3%. Or Gd 2
Reduce one O 3 fuel rod. Or, there are means such as both.

タイプII燃料集合体2は低可燃性毒物領域のGd2O3
添加燃料棒を2〜3本減じ、同時にGd2O3濃度を1.5〜3
%程度の低い濃度とする。
Type II fuel assembly 2 is Gd 2 O 3 in the low flammable poison range
Reduce the number of added fuel rods by 2 to 3, and simultaneously increase the Gd 2 O 3 concentration to 1.5 to 3
Use a low concentration of about%.

ここで低可燃性毒物領域のGd2O3濃度とGd2O3添加燃
料棒本数は軸方向出力分布による最大線出力密度が制限
値を満たすかどうかと、炉停止余裕が設計目標値以上
(通常1%Δk以上)あるかどうかによって決まる。こ
れが満たされれば、Gd2O3添加燃料棒の本数は更に減じ
ても良いし、Gd2O3濃度はもっと低く例えば1〜1.5%で
も良い。タイプI燃料集合体の低可燃性毒物領域の濃
縮度はそのすぐ下方の領域より小さくする。製造の合理
化のためタイプI燃料集合体1の境界Iの下方の濃縮
度と同一としてもよいし、これより更に低い濃縮度とし
てもよい。
Here, the Gd 2 O 3 concentration and the number of Gd 2 O 3 -added fuel rods in the low-burnable poison area are whether the maximum linear power density due to the axial power distribution satisfies the limit value, and the reactor shutdown margin exceeds the design target value ( Usually 1% Δk or more). If this is satisfied, the number of Gd 2 O 3 -added fuel rods may be further reduced, and the Gd 2 O 3 concentration may be lower, for example 1 to 1.5%. The enrichment of the low burnable poison region of the Type I fuel assembly should be less than that of the region immediately below. The enrichment may be the same as the enrichment below the boundary I of the type I fuel assembly 1 for the purpose of streamlining the production, or may be even lower than this.

第2図の実施例による初装荷炉心の、第1サイクル燃
焼初期に於ける各タイプの燃料集合体の軸方向出力分布
は、第3図に示す分布となる。すなわち、タイプI燃料
集合体1は平坦な出力分布でやや下方ピークの実線2−
a,タイプII燃料集合体2はタイプI燃料集合体1の境界
Iを上にずらし長さに対応した分と低可燃性毒物領域
の効果によりピーク位置が上方にずれ上方ピークの破
線2−b,更にタイプIII燃料集合体3は下方ピークの曲
線であるが、低濃縮度で出力が低いためボイドの曲線で
あるが、低濃縮度で出力が低いためボイド発生による軸
方向出力分布の下方ピークの度合は弱い一点鎖線2−c
となる。炉心全体の軸方向出力分布は第4図の曲線Hと
なる。
The axial power distribution of each type of fuel assembly at the initial stage of the first cycle combustion in the initially loaded core according to the embodiment of FIG. 2 is the distribution shown in FIG. That is, the type I fuel assembly 1 has a flat power distribution and has a slightly lower peak solid line 2-
a, the type II fuel assembly 2 shifts the boundary I of the type I fuel assembly 1 upward, and the peak position shifts upward due to the effect of the low combustible poison region and the broken line 2-b of the upper peak. Furthermore, the type III fuel assembly 3 has a lower peak curve, but it is a void curve because the output is low at low enrichment, but the output is lower peak at the axial direction due to voiding because the output is low at low enrichment. Is weaker than the one-dot chain line 2-c
Becomes The axial power distribution of the entire core is the curve H in FIG.

ところで、もしタイプI,II燃料集合体1,2とも境界
I,IIが同じ高さ位置にあるとタイプI燃料の出力分布
は、隣接するタイプI,タイプII燃料の軸方向反応度分布
の相乗効果により破線2−abのように境界Iの上方で
出力ピークが顕著となり線出力密度の運転制限値に対し
て余裕が小さくなる。
By the way, if both Type I and II fuel assemblies 1 and 2
When I and II are at the same height, the output distribution of the type I fuel is output above the boundary I as indicated by the broken line 2-ab due to the synergistic effect of the axial reactivity distributions of the adjacent type I and type II fuels. The peak becomes prominent, and the margin becomes smaller than the operation limit value of the line power density.

又、低可燃性毒物領域を設けたため、上端部の出力
が大きくなり、相対的に中央部のピークが低くなり、タ
イプI,II燃料集合体1、2ともピーク部の線出力密度が
下がるため運転制限値に対する余裕が確保できる。
Further, since the low-combustible poison region is provided, the output at the upper end becomes large, the peak at the center becomes relatively low, and the linear power density at the peak of both type I and II fuel assemblies 1 and 2 decreases. A margin for the operation limit value can be secured.

計算によると、境界Iと境界IIの間隔は約30cm以
上ずらさないと、軸方向出力分布のピークを小さくする
効果が大きくならないことがわかっている。約45cmずら
した設計例では約0.5kw/ft(約5%)最大線出力密度を
低減する効果がある。
According to the calculation, it is known that the effect of reducing the peak of the axial power distribution does not become large unless the distance between the boundary I and the boundary II is shifted by about 30 cm or more. The design example shifted by about 45 cm is effective in reducing the maximum line power density of about 0.5 kw / ft (about 5%).

ところで、第2図の実施例において、低可燃性毒物領
域を設けないで境界の上下におけるウランの濃縮度
差をあまり大きくとると、例えば0.3〜0.5重量%とする
と、第1サイクルの初期から末期にかけてのタイプI燃
料集合体1、タイプII燃料集合体2の軸方向出力分布が
第5図の曲線Jで示した分布となる。この様な出力分布
ではサイクル末期の出力分布は第6図の曲線Kで示した
分布となる。これはタイプI,II燃料集合体1,2がサイク
ルの大半の期間、中央にピークを持つ出力分布で燃焼す
るため、燃料の下端部近傍の燃焼が進まないこととな
り、サイクル末期においてもタイプI,II燃料集合体1,2
の下端部近傍の反応度がまだ高く軸方向出力分布は下方
ピーク気味となる。すると、炉心の下部からボイドが発
生して炉心のボイド量が増し、ボイドによる反応度損失
を生じサイクル燃焼度が減少する。この欠点を改善する
ためには、境界の上下の濃縮度差を余り大きくせず、
約0.2重量%におさえることである。しかし、こうする
と、サイクル初期に下部に出力ピークを生じる。そこ
で、タイプI,II燃料集合体とも低可燃性毒物領域を設
けると、燃料集合体上部の反応度が増加するため、下方
の出力ピークを減じられ、サイクル初期における出力分
布の悪化が改善できる。
By the way, in the example of FIG. 2, if the difference in enrichment of uranium above and below the boundary is set to be too large without providing the low-combustible poison region, for example, if it is 0.3 to 0.5% by weight, the first cycle to the final stage of the first cycle The axial output distributions of the type I fuel assembly 1 and the type II fuel assembly 2 over the course of time are the distributions shown by the curve J in FIG. With such an output distribution, the output distribution at the end of the cycle is the distribution shown by the curve K in FIG. This is because the Type I and II fuel assemblies 1 and 2 burn with the power distribution having a peak in the center during most of the cycle, so combustion near the lower end of the fuel does not proceed, and even at the end of the cycle, Type I , II Fuel assembly 1,2
The reactivity in the vicinity of the lower end is still high and the axial power distribution has a downward peak. Then, voids are generated from the lower part of the core, the void amount of the core is increased, the reactivity is lost due to the voids, and the cycle burnup is reduced. In order to improve this defect, the difference in enrichment above and below the boundary is not made too large,
It should be about 0.2% by weight. However, this causes a lower output peak at the beginning of the cycle. Therefore, if both the type I and II fuel assemblies are provided with the low-combustible poison region, the reactivity at the upper part of the fuel assembly is increased, so that the lower output peak can be reduced and the deterioration of the output distribution at the beginning of the cycle can be improved.

タイプI燃料集合体1の低可燃性毒物領域は、タイ
プI燃料集合体1が高濃縮度であり、炉停止余裕がそれ
程大きくないことから、Gd2O3添加燃料棒本数を低可燃
性毒物領域のすぐ下の部分より1本少なくして、Gd2O
3濃度を1.5〜3.0程度に薄くするか、Gd2O3燃料棒本数は
減じないでGd2O3濃度だけ減じたものとする。
In the low combustible poison region of the type I fuel assembly 1, since the type I fuel assembly 1 has a high enrichment and the reactor shutdown margin is not so large, the number of Gd 2 O 3 added fuel rods is set to be a low combustible poison. One less than the area just below the area, Gd 2 O
3 Decrease the concentration to around 1.5 to 3.0, or reduce the number of Gd 2 O 3 fuel rods and reduce the Gd 2 O 3 concentration.

一方、タイプII燃料集合体2の低可燃性毒物領域
は、タイプII燃料集合体2が中濃縮度で炉停止余裕が大
きいゆえGd2O3添加燃料棒本数を、低可燃性毒物域の
すぐ下の部分より2〜3本減じ、Gd2O3濃度も1.5〜3.0
%と低濃度にする。
On the other hand, the low burnable poison region of the type II fuel assembly 2, the Gd 2 O 3 added number of fuel rods because a large reactor shutdown margin at medium enrichment type II fuel assembly 2, the low burnable poison region immediately Reduced 2-3 from the lower part, and the Gd 2 O 3 concentration is 1.5 to 3.0.
% To a low concentration.

タイプI燃料集合体1は高濃縮燃料であり、第3サイ
クル以降で取り出される燃料である。従って燃料平均濃
縮度を高くし、第1サイクルの初期から中期にかけて下
方ピークの出力分布とすることにより、タイプI燃料集
合体1のボイド率を高くすることができ、タイプI燃料
集合体1の中央部から上方におけるPuの蓄積量を増し、
サイクル末期及び第2サイクルに於ける反応度向上に寄
与することができる。この点からタイプI燃料集合体の
境界は軸方向出力分布上許せる範囲で下方に位置する
ことが望ましい。すなわち境界をできる限り下方にす
ることにより、高濃縮度部分の領域が広くなるので、タ
イプI燃料集合体の平均濃縮度を増加でき、タイプI燃
料集合体の取出燃焼度を向上できる。
The type I fuel assembly 1 is a highly concentrated fuel and is a fuel extracted in the third and subsequent cycles. Therefore, the void fraction of the type I fuel assembly 1 can be increased by increasing the average fuel enrichment and setting the output distribution of the lower peak from the early stage to the middle stage of the first cycle. Increase the amount of Pu accumulated from the central part to the upper part,
It can contribute to the improvement of reactivity at the end of the cycle and the second cycle. From this point of view, it is desirable that the boundary of the type I fuel assembly be located below the axial power distribution in a permissible range. That is, by making the boundary as low as possible, the region of the high enrichment portion becomes wider, so that the average enrichment of the type I fuel assembly can be increased and the ejection burnup of the type I fuel assembly can be improved.

又、タイプI燃料集合体の上部の低可燃性毒物領域
とそのすぐ下部の濃縮度差を余り小さくしても効果は少
なく、約0.2重量%以上、低可燃性毒物領域の濃縮度
を下げることにより、タイプI燃料集合体の低可燃性毒
物領域の線出力密度が上がりすぎるのを防止でき、か
つ取替炉心における炉停止余裕を改善する効果が大きい
ことがわかった。つまり、取替炉心の炉停止余裕は、制
御棒周囲に隣接する4体の燃料の、上部1/6程度の領域
の低温時に於ける反応度に大きく依存し、反応度が高い
ほど炉停止余裕が少ない。上部の低可燃性毒物領域の
Gdは第1サイクルないし、第2サイクルでほとんど燃焼
し、第3サイクルには残留していない。よってこの領域
の濃縮度が高い場合、取替燃料の上部のGd2O3濃度を高
めて反応度を下げ、取替炉心における炉停止余裕を確保
する必要がある。これは、炉心のサイクル末期における
残留Gdの量が多くなり、中性子経済上不利である。従っ
て本発明のように、初装荷燃料のタイプI燃料集合体1
の低可燃性毒物領域の濃縮度を下げることは炉停止余
裕を改善でき、かつ中性子経済性上有利である。
Also, if the difference in enrichment between the low burnable poison region in the upper part of the type I fuel assembly and the region immediately below it is made too small, there is little effect, and the enrichment in the low burnable poison region is reduced by about 0.2% by weight or more. As a result, it was found that the linear power density in the low burnable poison region of the type I fuel assembly could be prevented from increasing too much, and that the effect of improving the reactor shutdown margin in the replacement core was great. In other words, the core shutdown margin of the replacement core largely depends on the reactivity of the four fuels adjacent to the control rods at low temperature in the upper 1/6 region, and the higher the reactivity, the core shutdown margin. Less is. Of the lower flammable poison area
Gd almost burned in the first and second cycles and did not remain in the third cycle. Therefore, if the enrichment in this region is high, it is necessary to increase the Gd 2 O 3 concentration in the upper part of the replacement fuel to reduce the reactivity and secure a reactor shutdown margin in the replacement core. This is disadvantageous in terms of neutron economy because the amount of residual Gd at the end of the core cycle becomes large. Therefore, as in the present invention, the type I fuel assembly 1 of the initially loaded fuel is
Reducing the concentration of the low-burnable poisonous substance region in the can improve the reactor shutdown margin and is advantageous in neutron economy.

更にこのようなタイプI,II,III燃料集合体1,2,3を第
1図のように炉心に配置し、最外周のタイプIII燃料集
合体3を第1及び,第2サイクルと2サイクルそのまま
配置すると、最外周のタイプIII燃料集合体の燃焼度が
第1サイクルで取出される中央領域に配置されたタイプ
III燃料集合体3の程度にまで伸び、核燃料サイクルの
効率上有利となる。又、最外周から2層目に出力の高い
タイプI燃料集合体1を配してあるため、中央領域のタ
イプI燃料集合体1の径方向ピークが最外周から2層目
に各タイプを混合装荷した場合よりも小さくできる。
Further, such type I, II, III fuel assemblies 1, 2, 3 are arranged in the core as shown in FIG. 1, and the outermost type III fuel assembly 3 is used for the first, second and second cycles. If left as it is, the burnup of the outermost type III fuel assembly will be taken in the central region where the burnup is taken out in the first cycle.
It extends to the level of the III fuel assembly 3, which is advantageous in terms of the efficiency of the nuclear fuel cycle. Further, since the type I fuel assembly 1 having high output is arranged on the second layer from the outermost periphery, the radial peak of the type I fuel assembly 1 in the central region is mixed with each type on the second layer from the outermost periphery. Can be smaller than when loaded.

上記実施例は3種類の平均濃縮度の燃料集合体からな
る炉心の例で説明したが、この例に於けるタイプII燃料
集合体とタイプIII燃料集合体の中間にもう一種の燃料
集合体を用意し、それをタイプIIIA燃料集合体3Aとし、
最低の濃縮度の燃料集合体をタイプIV燃料集合体4と呼
びかえ、これまでの説明のタイプIII燃料集合体3と同
じ濃縮度か、更に低濃縮度(天然ウラン又は劣化ウラン
としてもよい)の燃料とした炉心でもよい。その場合タ
イプIIIA、IV燃料集合体3A,4は可燃性毒物を含まず、タ
イプI,II燃料集合体1,2は上記説明のタイプI,II燃料集
合体1,2の軸方向濃縮度、可燃性毒物分布設計とし、タ
イプIIIA燃料集合体3Aの濃縮度はタイプII燃料集合体2
と同じ考え方の軸方向設計、タイプIV燃料集合体4は軸
方向一様濃縮設計とする。
The above embodiment has been described with reference to an example of a core composed of fuel assemblies having three types of average enrichment. In this example, another fuel assembly is provided between the type II fuel assembly and the type III fuel assembly. Prepare and use it as a Type IIIA fuel assembly 3A,
The fuel assembly with the lowest enrichment is called the type IV fuel assembly 4, and it has the same enrichment as the type III fuel assembly 3 described above, or a lower enrichment (may be natural uranium or depleted uranium). It may be the core used as fuel. In that case, the type IIIA, IV fuel assemblies 3A, 4 do not contain burnable poisons, the type I, II fuel assemblies 1, 2 are the axial enrichment of the type I, II fuel assemblies 1, 2 described above, Combustible poison distribution design, type IIIA fuel assembly 3A enrichment is type II fuel assembly 2
The axial design of the same idea as the type IV fuel assembly 4 is designed to be uniform in the axial direction.

このような4つのタイプの燃料集合体を使用する炉心
は約25%取替の平衡炉心を模擬した初装荷炉心の場合
に、取出燃焼度の向上に都合のよい設計である。
The core using these four types of fuel assemblies is a design which is convenient for improving the take-out burnup in the case of an initially loaded core simulating an equilibrium core with about 25% replacement.

〔発明の効果〕〔The invention's effect〕

以上のように本発明によれば、複数の濃縮度の異なる
燃料集合体を使用した沸騰水型原子炉の初装荷炉心にお
いて、サイクル初期から中期にかけて、最大線出力密度
の運転制限を安定に守りながら、下方ピークの出力分布
を維持して燃焼度を増加させ、また取替炉心の炉停止余
裕を改善しつつ、燃料の有効利用を図ることができる。
As described above, according to the present invention, in the initially loaded core of the boiling water reactor using a plurality of fuel assemblies having different enrichments, the operation limit of the maximum line power density is stably protected from the initial cycle to the middle cycle. However, it is possible to effectively use the fuel while maintaining the output distribution of the lower peak to increase the burnup and improve the shutdown margin of the replacement core.

【図面の簡単な説明】[Brief description of drawings]

第1図は本発明に係る実施例の第1サイクルでの燃料装
荷パターンを示す図、第2図は本発明のタイプI,II,III
燃焼集合体の軸方向可燃性毒物及び濃縮度設計を示す
図、第3図は本発明にかかる燃料集合体軸方向出力分布
を示す図、第4図は本発明にかかる炉心平均軸方向出力
分布を示す図、第5図は本発明にかかる境界の上下濃
縮度差を大きくした場合のタイプI燃料集合体の第1サ
イクル末期での出力分布を示す図、第6図は本発明にか
かるタイプI燃料集合体のサイクル末期軸方向出力分布
を示す図、第7図は従来の軸方向燃焼度分布を示す図、
第8図は従来の軸方向出力分布を示す図である。 1…タイプI燃料集合体 2…タイプII燃料集合体 3…タイプIII燃料集合体 C…コントロールセル、L…燃料有効長 …濃縮領域、…低可燃性毒物領域 I,II…境界
FIG. 1 is a diagram showing a fuel loading pattern in the first cycle of the embodiment according to the present invention, and FIG. 2 is a type I, II, III of the present invention.
FIG. 3 is a diagram showing an axial burnable poison and enrichment design of a combustion assembly, FIG. 3 is a diagram showing an axial power distribution of a fuel assembly according to the present invention, and FIG. 4 is a core average axial power distribution according to the present invention. FIG. 5 is a diagram showing the output distribution at the end of the first cycle of the type I fuel assembly when the difference in vertical enrichment of the boundary according to the present invention is large, and FIG. 6 is a type according to the present invention. FIG. 7 is a diagram showing the axial end-cycle axial power distribution of the I fuel assembly, FIG. 7 is a diagram showing a conventional axial burnup distribution,
FIG. 8 is a diagram showing a conventional axial output distribution. DESCRIPTION OF SYMBOLS 1 ... Type I fuel assembly 2 ... Type II fuel assembly 3 ... Type III fuel assembly C ... Control cell, L ... Active fuel length ... Enrichment area ... Low combustible poison area I, II ... Boundary

───────────────────────────────────────────────────── フロントページの続き (72)発明者 小沢 通裕 茨城県日立市幸町3丁目1番1号 株式 会社日立製作所日立工場内 (72)発明者 持田 貴顕 茨城県日立市幸町3丁目1番1号 株式 会社日立製作所日立工場内 (56)参考文献 特開 昭62−80586(JP,A) ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Michihiro Ozawa 3-1, 1-1 Saiwaicho, Hitachi City, Ibaraki Hitachi Ltd. Hitachi Factory (72) Inventor Takaaki Mochida 3-chome, Saiwaicho, Hitachi, Ibaraki No. 1 in Hitachi factory, Hitachi, Ltd. (56) References JP-A-62-80586 (JP, A)

Claims (3)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】異なる平均濃縮度の燃料集合体を複数種類
使用する沸騰水型原子炉の初装荷炉心において、燃料集
合体を平均濃縮度の高い方から各々タイプI燃料集合
体,タイプII燃料集合体,タイプIII燃料集合体とする
と、これらの燃料集合体は燃料有効長の内側に濃縮領域
を有し、タイプI燃料集合体とタイプII燃料集合体は濃
縮領域に軸方向濃縮度分布を有し、その濃縮度分布の軸
方向区分の境界を燃料有効長の下方から約1/3〜2/3の位
置に有し、しかもこの境界の上下で上部が下部より濃縮
度が高く構成され、タイプII燃料集合体とタイプIII燃
料集合体のうち少なくともタイプII燃料集合体の当該区
分の境界がタイプI燃料集合体の当該区分の境界より燃
料有効長の1/12以上上方にあり、タイプI燃料集合体と
タイプII燃料集合体が濃縮領域に可燃性毒物を有し、し
かも上記境界より上方の濃縮領域の上端部に軸方向有効
長の1/12〜1/6の長さの低可燃性毒物領域を有し、タイ
プI燃料集合体の低可燃性毒物領域の濃縮度がそのすぐ
下部の濃縮度より小さく、タイプII燃料集合体の低可燃
性毒物度の濃縮度はそのすぐ下部の濃縮度と同一である
ことを特徴とする沸騰水型原子炉の初装荷炉心。
1. In an initially loaded core of a boiling water reactor that uses a plurality of types of fuel assemblies having different average enrichments, the fuel assemblies are type I fuel assemblies and type II fuels in order of increasing average enrichment, respectively. Assuming an assembly and a type III fuel assembly, these fuel assemblies have an enrichment region inside the active fuel length, and the type I fuel assembly and the type II fuel assembly have an axial enrichment distribution in the enrichment region. It has a boundary of the axial section of its enrichment distribution at a position of about 1/3 to 2/3 from the lower part of the active fuel length, and the upper part above and below this boundary has a higher enrichment than the lower part. , The type II fuel assembly and the type III fuel assembly, at least the boundary of the section of the type II fuel assembly is at least 1/12 of the active fuel length above the boundary of the section of the type I fuel assembly, I fuel assemblies and type II fuel assemblies are enriched regions Of a type I fuel assembly having a burnable poisonous substance and a low burnable poisonous substance region having an axial effective length of 1/12 to 1/6 at the upper end of the concentration region above the boundary. Boiling water, characterized in that the enrichment in the low burnable poison region is less than that immediately below it, and the enrichment in the low burnable poison in the type II fuel assembly is the same as that immediately below it. -Type reactor core for the first reactor.
【請求項2】炉心の最外周にタイプIII燃料集合体を、
最外周から2層目にタイプI燃料集合体を、コントロー
ルセルにはタイプIII燃料集合体を、他の位置には原則
的にタイプI燃料集合体,タイプII燃料集合体,タイプ
III燃料集合体の順に規則的に配する事を特徴とする特
許請求の範囲第1項に記載の沸騰水型原子炉の初装荷炉
心。
2. A type III fuel assembly at the outermost periphery of the core,
The type I fuel assembly is located in the second layer from the outermost circumference, the type III fuel assembly is located in the control cell, and the type I fuel assembly, the type II fuel assembly, and the type are located at other positions in principle.
III. Initially loaded core of a boiling water reactor according to claim 1, characterized in that fuel assemblies are regularly arranged in this order.
【請求項3】タイプI燃料集合体とタイプII燃料集合体
は境界の上下で上部が下部より濃縮度が約0.2重量%高
く、タイプII燃料集合体の境界がタイプI燃料集合体の
境界より燃料有効長の1/12以上上部にあり、タイプI燃
料集合体の低可燃性毒物領域の濃縮度がそのすぐ下部の
濃縮度より約0.2重量%以上小さくしてなることを特徴
とする特許請求の範囲第1項または第2項記載の沸騰水
型原子炉の初装荷炉心。
3. The type I fuel assembly and the type II fuel assembly have an enrichment of about 0.2 wt% above and below the boundary above and below the boundary, and the boundary of the type II fuel assembly is above the boundary of the type I fuel assembly. Claims characterized by being above 1/12 of the active fuel length and having a enrichment in the region of low burnable poisons of the type I fuel assembly less than about 0.2% by weight less than the enrichment immediately below. Initially loaded core of a boiling water reactor according to claim 1 or 2.
JP62177122A 1987-07-17 1987-07-17 Initially loaded core of boiling water reactor Expired - Lifetime JP2504474B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62177122A JP2504474B2 (en) 1987-07-17 1987-07-17 Initially loaded core of boiling water reactor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62177122A JP2504474B2 (en) 1987-07-17 1987-07-17 Initially loaded core of boiling water reactor

Publications (2)

Publication Number Publication Date
JPS6421389A JPS6421389A (en) 1989-01-24
JP2504474B2 true JP2504474B2 (en) 1996-06-05

Family

ID=16025551

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62177122A Expired - Lifetime JP2504474B2 (en) 1987-07-17 1987-07-17 Initially loaded core of boiling water reactor

Country Status (1)

Country Link
JP (1) JP2504474B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SE470485B (en) * 1992-09-30 1994-05-24 Asea Atom Ab Reactor core for a boiler water type nuclear reactor
US5272736A (en) * 1992-11-05 1993-12-21 General Electric Company Core loading strategy for reload of a plurality of different fuel bundle fuel designs

Also Published As

Publication number Publication date
JPS6421389A (en) 1989-01-24

Similar Documents

Publication Publication Date Title
US9984779B2 (en) Advanced first core fuel assembly configuration
JP2915200B2 (en) Fuel loading method and reactor core
US5781604A (en) Initial core and fuel assembly
JP2564383B2 (en) Reactor core, reactor fuel loading method, and reactor operation method
JP2504474B2 (en) Initially loaded core of boiling water reactor
JP3651522B2 (en) Nuclear reactor core
US4574069A (en) In-core fuel management for nuclear reactor
JPH05249270A (en) Core of nuclear reactor
JP2972917B2 (en) Fuel assembly
JP3080663B2 (en) Operation method of the first loading core
JP3960572B2 (en) Reactor core and its operating method
JPH0644055B2 (en) Boiling Water Reactor Core Structure and Fuel Loading Method
JP2003107183A (en) Mox fuel assembly for thermal neutron reactor
JPH11202070A (en) Initial loading core or reactor
JP2627952B2 (en) Reactor core
JP3614965B2 (en) Nuclear reactor core
JP2563287B2 (en) Fuel assembly for nuclear reactor
JPH06273558A (en) Fuel rod
JPS6335440Y2 (en)
JP3596831B2 (en) Boiling water reactor core
JP3355758B2 (en) Reactor core
JPH0432355B2 (en)
JPH0557557B2 (en)
JPH03251794A (en) Initially charged core of nuclear reactor
JPH058398B2 (en)

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080402

Year of fee payment: 12