JP2504379B2 - Fault location device - Google Patents

Fault location device

Info

Publication number
JP2504379B2
JP2504379B2 JP27171893A JP27171893A JP2504379B2 JP 2504379 B2 JP2504379 B2 JP 2504379B2 JP 27171893 A JP27171893 A JP 27171893A JP 27171893 A JP27171893 A JP 27171893A JP 2504379 B2 JP2504379 B2 JP 2504379B2
Authority
JP
Japan
Prior art keywords
waveform
point
wave
electric
accident
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP27171893A
Other languages
Japanese (ja)
Other versions
JPH07128389A (en
Inventor
憶人 斎藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asia Electronics Co
Original Assignee
Asia Electronics Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asia Electronics Co filed Critical Asia Electronics Co
Priority to JP27171893A priority Critical patent/JP2504379B2/en
Publication of JPH07128389A publication Critical patent/JPH07128389A/en
Application granted granted Critical
Publication of JP2504379B2 publication Critical patent/JP2504379B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Locating Faults (AREA)

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、分岐点を有しかつ複数
の電気所にわたる送電線を監視する故障点標定装置に関
するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a fault point locating device having a branch point and monitoring a transmission line extending over a plurality of electric stations.

【0002】[0002]

【従来の技術】近年、電力需要の増大、複雑化に伴い、
電力供給送電線の多分岐化が進んでいる。従来のパルス
レーダ波による故障点標定装置においては、パルスレー
ダ波(標定波)を被標定送電線に送出する送出端から、
反射波による事故点弁別を行っているが、上記のごとき
送電線の多分岐化によって、反射波形の重畳による事故
点の誤差が増大するなどの理由で、限界にきている。
2. Description of the Related Art In recent years, with the increase in power demand and the increase in complexity,
Multi-branching of power supply and transmission lines is progressing. In the conventional fault point locating device using pulse radar waves, from the sending end that sends the pulse radar waves (locating waves) to the target transmission line,
Although accident points are discriminated by reflected waves, the number of branching of the transmission line as described above increases the error at the accident points due to superposition of reflected waveforms, which is at the limit.

【0003】図3は、従来の送電線の故障点標定システ
ム構成を示す。ここで41〜43は、それぞれ電気所
(変電所など)、44は送電線、45はその分岐線、4
6は分岐点、47は事故点、48は標定波送出、受信装
置である。
FIG. 3 shows a conventional fault point locating system configuration of a transmission line. Here, 41 to 43 are electric power stations (substations, etc.), 44 is a power transmission line, 45 is its branch line, 4
6 is a branch point, 47 is an accident point, and 48 is a standardized wave transmitting / receiving device.

【0004】図4(a)、(b)は標定波形図で、図4
(a)は平常時の標定波形図、図4(b)は事故時の標
定波形図である。これら図において、51は送出波、5
2は分岐反射波(分岐点56からの反射波)、53は分
岐終端反射波(電気所43における終端からの反射
波)、54は終端反射波(電気所42における終端から
の反射波)、55は事故点反射波である。
4 (a) and 4 (b) are orientation waveform diagrams.
FIG. 4A is an orientation waveform diagram for normal times, and FIG. 4B is an orientation waveform diagram for an accident. In these figures, 51 is a transmitted wave and 5
2 is a branched reflected wave (reflected wave from the branch point 56), 53 is a branched end reflected wave (reflected wave from the terminal at the electric station 43), 54 is a terminal reflected wave (reflected wave from the terminal at the electric station 42), 55 is a reflected wave at the accident point.

【0005】上記のものは、電気所41から電気所42
にわたる送電線44と、その送電線から分岐して電気所
43にわたる分岐線45と、分岐点46に、電気所41
から標定波を送出し、また受信する装置48での受信波
形は、事故がない平常時の受信波として、図4(a)に
示すように、送出波分岐点46などのインピーダンス変
位点から反射された状態を表し(パルスレーダ波はAC
波形であるが、ここでは簡略化して、半波の波形とし
た)、また図4(b)に示すように、故障点発生時の波
形を示している。
The above-mentioned items are from the electric power station 41 to the electric power station 42.
To the electric power station 41, at the branch point 46, and at the branch point 46.
As shown in FIG. 4A, the received waveform at the device 48 that sends and receives the standardized wave from the reflected wave is reflected from the impedance displacement point such as the outgoing wave branch point 46 as shown in FIG. 4A. The pulsed radar wave is AC
Although it is a waveform, here, it is simplified to be a half-wave waveform. Further, as shown in FIG. 4B, the waveform at the time of occurrence of a failure point is shown.

【0006】しかしながら上記のものは、送電線44の
事故点47の地点で、事故(地絡など)が発生すると、
装置48の受信波形は、図4(b)のように変化し、分
岐終端波形53と事故点反射波形55が重畳し、事故地
点があいまいになる欠点がある。また、分岐終端に重な
る事故(分岐終端付近の事故)の場合に、従来の方法で
は、反射波形の位置は変わらず、その反射レベルにわず
かの変化があるが、その判別は困難である。
However, in the above-mentioned one, when an accident (ground fault etc.) occurs at the accident point 47 of the power transmission line 44,
The received waveform of the device 48 changes as shown in FIG. 4B, and the branch end waveform 53 and the accident point reflection waveform 55 are superposed, which has a drawback that the accident point is ambiguous. Further, in the case of an accident that overlaps with the end of the branch (an accident near the end of the branch), the position of the reflected waveform does not change and there is a slight change in the reflected level by the conventional method, but it is difficult to distinguish it.

【0007】[0007]

【発明が解決しようとする課題】本発明は上記実情に鑑
みてなされたもので、事故点の検出精度が向上し、また
電気所付近で生じた事故についても容易に判別が行える
故障点標定装置を提供しようとするものである。
SUMMARY OF THE INVENTION The present invention has been made in view of the above circumstances, and has a fault point locating device which improves the accuracy of detecting an accident point and can easily discriminate an accident occurring near an electric station. Is to provide.

【0008】[0008]

【課題を解決するための手段と作用】本発明は、分岐点
を有しかつ複数の電気所にわたる送電線を監視する故障
点標定装置において、前記送電線につながる各々の電気
所に設けられるパルスレーダ波の受信装置と、前記電気
所に選択的に設けられるパルスレーダ波の送出装置と、
前記送電線に前記送出装置より送出されたパルスレーダ
波とその反射波につき、前記受信装置で受信した結果に
応じて、前記送電線の事故点を判別する判別手段とを具
備したことを特徴とする故障点標定装置である。
DISCLOSURE OF THE INVENTION The present invention relates to a fault point locating device having a branch point and monitoring a transmission line extending over a plurality of electric stations, and a pulse provided at each electric station connected to the transmission line. A radar wave receiving device, and a pulse radar wave transmitting device selectively provided at the electric station,
A pulse radar wave transmitted from the transmission device to the power transmission line and a reflected wave thereof, the determination device determining a fault point of the power transmission line according to a result received by the reception device. It is a fault point locating device.

【0009】すなわち本発明は、従来のもののごとく、
監視される送電線の一端から標定波を送出し、標定波の
反射波を受信することによって起きる欠点を解消すべく
なされたもので、標定波を受信する受信装置を、送電線
の各端部にある電気所にそれぞれ設けて、標定波を受信
することにより、送出端から送られる送出波(透過波と
する)と、送電線のインピーダンス変位点から反射され
る反射波とを検出することにより、事故点の標定精度が
向上できるようにしたものである。
That is, the present invention, like the conventional one,
It is designed to eliminate the drawbacks that occur when the standard wave is sent from one end of the monitored power line and the reflected wave of the standard wave is received.A receiving device that receives the standard wave is provided at each end of the power line. By detecting the standardized wave at each of the electric power stations located in, the transmitted wave (transmitted wave) sent from the sending end and the reflected wave reflected from the impedance displacement point of the transmission line are detected. , The location accuracy of the accident point can be improved.

【0010】[0010]

【実施例】以下図面を参照して、本発明の一実施例を説
明する。図1は、同実施例の構成図である。なお本実施
例は、前記従来のものと対応させた場合の例であるか
ら、対応箇所には同一符号を用いる。すなわち図1に示
される如く、電気所41と電気所42にわたる送電線4
4と、電気所43を結ぶ分岐線45があり、またこの送
電線を監視するシステムとして、標定波の送出、受信及
びデータの処理を行う親装置(標定波送受信端処理装
置)61を設置した電気所41、標定波の受信装置6
2、63を設置した電気所42、43があり、また親装
置と各受信装置62、63間を結ぶデータ伝送路64、
65で構成される。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the present invention will be described below with reference to the drawings. FIG. 1 is a block diagram of the embodiment. Since the present embodiment is an example of a case corresponding to the above-mentioned conventional one, the same reference numerals are used for corresponding portions. That is, as shown in FIG. 1, the transmission line 4 extending from the electric station 41 to the electric station 42.
4 and a branch line 45 connecting the electric station 43, and as a system for monitoring this power transmission line, a parent device (standard wave transmitting / receiving end processing device) 61 for transmitting and receiving standard waves and processing data is installed. Electrical station 41, receiver 6 for standardized wave
There are electric stations 42 and 43 in which 2, 63 are installed, and a data transmission path 64 connecting the parent device and each receiving device 62, 63,
It is composed of 65.

【0011】図2は、図1の動作波形図で、図2(a)
は電気所41の送出標定波71及び受信標定波72〜7
4であり、図2(b)は電気所42の受信標定波75、
73であり、図2(c)は電気所43の受信標定波7
6、74である。これら図2(a)〜図2(c)は、事
故がない正常時の波形である。事故発生時の標定波は図
(d)〜(f)であり、図2(d)は電気所41の波
形、図2(e)は電気所42の波形、図2(f)は電気
所43の波形である。
FIG. 2 is an operation waveform diagram of FIG. 1 and is shown in FIG.
Is the transmission standard wave 71 and the reception standard waves 72 to 7 of the electric station 41.
2 is shown in FIG. 2 (b).
73, and FIG. 2 (c) shows the reception standard wave 7 of the electric station 43.
6, 74. These FIG. 2 (a) to FIG. 2 (c) are waveforms at the time of normality without an accident. The orientation waves at the time of the accident are as shown in FIGS. 2 (d) to 2 (f). FIG. 2 (d) shows the waveform of the electric station 41, FIG. 2 (e) shows the waveform of the electric station 42, and FIG. 2 (f) shows the electric station. 43 is a waveform.

【0012】ここで波形72は分岐点反射波形、波形7
3は分岐終端反射波形、波形74は電気所42からの終
端反射波形、波形75は電気所42で受信した透過波、
波形76は電気所43で受信した透過波、波形77は事
故点反射波形、78は電気所42と事故点47との間の
距離、79は標定波の進行方向を示す。
Here, the waveform 72 is a branch point reflection waveform, and the waveform 7
3 is a branch end reflection waveform, waveform 74 is a termination reflection waveform from the electric station 42, waveform 75 is a transmitted wave received at the electric station 42,
A waveform 76 indicates a transmitted wave received at the electric station 43, a waveform 77 indicates an accident point reflection waveform, 78 indicates a distance between the electric station 42 and the accident point 47, and 79 indicates a traveling direction of the orientation wave.

【0013】次に適宜図2を参照して、図1の動作を説
明する。まず送電線44、45が正常時(事故点47が
無いとき)には、電気所41の親装置61から、標定波
71を送出すると、これが送電線44を進行し、最初に
分岐点46に到着し、ここでは送電線44が分岐してイ
ンピーダンスが異なるため、進行方向79のように、一
部が反射して分岐点反射となる。又一部は、電気所4
2、43に向かって透過進行し、電気所42、43で透
過して受信装置62、63に受信されると共に、一部は
反射して、さらに分岐点46で先に述べたように透過反
射されて、一部は親装置61で受信され、また電気所4
2、43でも受信される。
Next, the operation of FIG. 1 will be described with reference to FIG. 2 as needed. First, when the power transmission lines 44 and 45 are normal (when there is no accident point 47), when the standard wave 71 is transmitted from the parent device 61 of the electric station 41, this advances along the power transmission line 44 and first reaches the branch point 46. Upon arrival, the transmission line 44 branches here and the impedances are different. Therefore, as in the traveling direction 79, a part is reflected to be a branch point reflection. In addition, a part of the power station 4
2 and 43 are transmitted to the electric power stations 42 and 43 and are received by the receivers 62 and 63, and a part of them are reflected, and further transmitted and reflected at the branch point 46 as described above. Part of the data is received by the parent device 61, and the electric station 4
It is also received at 2, 43.

【0014】図2(a)は電気所41で受信される反射
波形であるが、図2(b)、(c)は電気所42、43
で受信される波形であって、これは、従来のシステムに
はなかった波形である。ここで波形75、76は、電気
所41から直接電気所42、43に到着した標定波で、
これを透過波と呼び、分岐点あるいは終端(電気所)、
事故点で反射される波形を反射波と呼び、区別すること
にする。
2A shows the reflected waveform received at the electric station 41, while FIGS. 2B and 2C show the electric stations 42 and 43.
, Which is a waveform that is not received in the conventional system. Here, the waveforms 75 and 76 are orientation waves that have arrived directly from the power station 41 to the power stations 42 and 43,
This is called a transmitted wave, and it is a branch point or terminal (electric station),
The waveform reflected at the accident point is called a reflected wave and will be distinguished.

【0015】図2(b)、(c)に対応する電気所4
2、43の受信波形で見ると、透過波75、76の後
に、他の電気所の反射波形がある。また、分岐点46の
反射波形72が無い点(実際には少しはあるが、電気所
と分岐点で透過と反射を繰り返すため、レベルが小さく
て見えない)が、電気所41の受信波形と異なる点であ
る。また、電気所42、43間で波形の位置が異なるの
は(例えば、透過波形75と76間とか、反射波形73
と74間)、電気所41、42間、電気所41、42間
の距離が互いに違っているからである。透過波形75と
76で見ると、電気所43は電気所42よりも電気所4
1に近いところにあることを示している。また反射波形
の位置が異なるのは、電気所42と43の間の距離は一
定であるが、電気所41と電気所42、43との距離が
互いに違っているのが、波形の位置の違いとして表され
ている。
An electric station 4 corresponding to FIGS. 2 (b) and 2 (c)
In the received waveforms of Nos. 2 and 43, there are reflected waveforms of other electric stations after the transmitted waves 75 and 76. Further, the point where there is no reflected waveform 72 at the branch point 46 (actually, although there is a little, because the transmission and reflection are repeated at the electrical station and the branch point, the level is too small to be seen) is the received waveform at the electrical station 41. It is a different point. Further, the waveform positions are different between the electric stations 42 and 43 (for example, between the transmission waveforms 75 and 76, or the reflection waveform 73).
This is because the distance between the electric stations 41 and 42 and the distance between the electric stations 41 and 42 are different from each other. In terms of the transmitted waveforms 75 and 76, the power station 43 is more
It shows that it is close to 1. Further, the position of the reflected waveform is different because the distance between the electric stations 42 and 43 is constant, but the distance between the electric station 41 and the electric stations 42 and 43 is different from each other. Is represented as.

【0016】すなわち透過波は、電気所1(送出端)と
受信する電気所間の距離で位置が決まり、反射派は、反
射波形の発生する反射点(電気所、事故点など)と送出
端との距離、及び反射点と受信端との距離によって、位
置が決まるのである。
That is, the position of the transmitted wave is determined by the distance between the electric station 1 (transmission end) and the receiving electric station, and the reflection wave is the reflection point (electrical station, accident point, etc.) where the reflected waveform occurs and the transmission end. The position is determined by the distance between and and the distance between the reflection point and the receiving end.

【0017】今、送電線44の47の地点に事故が発生
したとすると、各電気所41〜43の受信波形は、図2
(d)〜図2(f)に変化し、図2(d)で示される電
気所41の受信波形では、分岐終端の波形73と事故点
47の反射波形77とが重畳して、事故発生点があいま
いになっている。
Assuming now that an accident has occurred at point 47 on the power transmission line 44, the received waveforms at each of the electric stations 41 to 43 are as shown in FIG.
(D) to FIG. 2 (f), and in the received waveform of the electric station 41 shown in FIG. 2 (d), the branch end waveform 73 and the reflected waveform 77 of the accident point 47 are superposed, and an accident occurs. The dots are vague.

【0018】これに対し、図2(e)に示される電気所
42の受信波形は、透過波75がわずかに他相誘導など
で受信されているが、図(a)〜図(c)で示される正
常時に比べて、直接受信されていないことを示してい
る。これは、電気所41からの送出波が、事故点47で
吸収されてしまうような作用をしているからである。
On the other hand, in the received waveform of the electric station 42 shown in FIG. 2E, the transmitted wave 75 is slightly received by other-phase induction, but in FIGS. Compared to the normal time shown, it indicates that it is not directly received. This is because the wave transmitted from the electric station 41 is absorbed at the accident point 47.

【0019】このことから、電気所41と42の間の送
電線44に事故が発生していることが分かる。そして、
図2(f)で示される電気所43の受信波形を、図2
(c)で示される正常時の受信波形と比較すると、反射
波形(77)の位置が異なり、あたかも電気所42が移
動したようになり、その位置ずれは、符号78で示すよ
うになり、電気所42の反射波形地点より近いところに
事故点47があることを示している。しかも図2(d)
の事故点波形77が波形73と重畳しているのに対し、
図2(f)で示される電気所43の受信波形では、事故
点波形77が単独で存在していることにより、事故点位
置47を容易に判別できることが分かる。つまり波形7
7と74間の距離78は、事故点47と電気所42間距
離に対応するから、距離78を、処理装置61で算出す
ることにより、事故が、電気所42からどのくらい離れ
た箇所で発生しているかが分かるものである。
From this, it can be seen that an accident has occurred in the power transmission line 44 between the electric power stations 41 and 42. And
The received waveform of the electric station 43 shown in FIG.
As compared with the received waveform at the normal time shown in (c), the position of the reflected waveform (77) is different, and it is as if the electric station 42 has moved. It shows that there is an accident point 47 near the reflection waveform point at the place 42. Moreover, FIG. 2 (d)
While the accident point waveform 77 of is superimposed on the waveform 73,
In the received waveform of the electric station 43 shown in FIG. 2 (f), it can be seen that the accident point position 47 can be easily determined because the accident point waveform 77 exists independently. That is, waveform 7
Since the distance 78 between 7 and 74 corresponds to the distance between the accident point 47 and the electric station 42, the distance 78 from the electric station 42 is calculated by calculating the distance 78 by the processing device 61. You can see if it is.

【0020】上記のように、(イ)各電気所で受信され
る透過波によって、健全区間と事故区間を分離する。
(ロ)事故を発生している部分がある区間に最も近い健
全な区間にある電気所の受信波形によって、事故点の距
離を割り出す。
As described above, (a) the sound section and the accident section are separated by the transmitted wave received at each electric station.
(B) The distance of the accident point is determined by the received waveform of the electric station in the sound section closest to the section where the accident is occurring.

【0021】このようにすれば、電気所の近傍に事故点
があるとき、波形のレベル変化が微小でも、透過波によ
って事故区間を特定できるため、事故点の判別が行える
ようになるものである。
In this way, when there is an accident point near the electric station, the accident section can be specified by the transmitted wave even if the level change of the waveform is minute, so that the accident point can be identified. .

【0022】なお本発明は上記実施例に限られることな
く、種々の応用が可能である。例えば、実施例では、標
定波の送出を電気所41から行ったが、監視する送電線
によって標定波の送出点を決めるようにしてもよい。ま
た複数の標定波を送出する点を設けて構成することによ
り、さらに複雑な送電線の事故点を判別することも可能
である。
The present invention is not limited to the above embodiment, but various applications are possible. For example, in the embodiment, the location wave is transmitted from the electric station 41, but the location where the location wave is transmitted may be determined by the power transmission line to be monitored. Further, it is possible to discriminate a more complicated fault point of the transmission line by providing a plurality of points for transmitting the orientation waves.

【0023】[0023]

【発明の効果】以上説明したごとく本発明によれば、従
来方法では波形の重畳しやすい多分岐送電線の事故点検
出が、波形の重畳を生じることなく、容易に行える。ま
た、電気所の付近で生じた事故をも、容易に判別できる
ものである。
As described above, according to the present invention, it is possible to easily detect a fault point of a multi-branch transmission line in which waveforms are easily superposed by the conventional method without causing superposition of waveforms. In addition, an accident that occurs near the electric station can be easily identified.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例の構成図。FIG. 1 is a configuration diagram of an embodiment of the present invention.

【図2】同構成の動作を示すタイミング波形図。FIG. 2 is a timing waveform chart showing the operation of the same configuration.

【図3】従来の故障点標定装置を示す構成図。FIG. 3 is a configuration diagram showing a conventional fault point locating device.

【図4】同構成の動作を示すタイミング波形図。FIG. 4 is a timing waveform chart showing the operation of the same configuration.

【符号の説明】[Explanation of symbols]

41〜43…電気所、44、45…送電線、46…分岐
点、47…故障(地絡)点、61…親装置(標定波送
出、受信端処理装置)、62、63…標定波受信装置、
64、65…伝送ライン。
41 to 43 ... Electric power station, 44, 45 ... Power transmission line, 46 ... Branch point, 47 ... Failure (ground fault) point, 61 ... Parent device (standard wave transmission, receiving end processing device), 62, 63 ... Standard wave reception apparatus,
64, 65 ... Transmission lines.

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】分岐点を有しかつ複数の電気所にわたる送
電線を監視する故障点標定装置において、前記送電線に
つながる各々の電気所に設けられるパルスレーダ波の受
信装置と、前記電気所に選択的に設けられるパルスレー
ダ波の送出装置と、前記送電線に前記送出装置より送出
されたパルスレーダ波とその反射波につき、前記受信装
置で受信した結果に応じて、前記送電線の事故点を判別
する判別手段とを具備したことを特徴とする故障点標定
装置。
1. A fault point locating device having a branch point and monitoring a transmission line extending over a plurality of electric stations, and a pulse radar wave receiving device provided at each electric station connected to the transmission line, and the electric station. A pulse radar wave transmission device selectively provided in the transmission line, a pulse radar wave transmitted from the transmission device to the power transmission line and a reflected wave thereof, depending on the result received by the reception device, A fault point locating device comprising: a discriminating means for discriminating points.
JP27171893A 1993-10-29 1993-10-29 Fault location device Expired - Lifetime JP2504379B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP27171893A JP2504379B2 (en) 1993-10-29 1993-10-29 Fault location device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP27171893A JP2504379B2 (en) 1993-10-29 1993-10-29 Fault location device

Publications (2)

Publication Number Publication Date
JPH07128389A JPH07128389A (en) 1995-05-19
JP2504379B2 true JP2504379B2 (en) 1996-06-05

Family

ID=17503876

Family Applications (1)

Application Number Title Priority Date Filing Date
JP27171893A Expired - Lifetime JP2504379B2 (en) 1993-10-29 1993-10-29 Fault location device

Country Status (1)

Country Link
JP (1) JP2504379B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2474831C1 (en) * 2011-10-07 2013-02-10 Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Саратовский государственный технический университет" (СГТУ) Method to detect area of power transmission and communication lines damage and device for its realisation

Also Published As

Publication number Publication date
JPH07128389A (en) 1995-05-19

Similar Documents

Publication Publication Date Title
AU658100B2 (en) Advanced cable fault locator
US5903155A (en) Method of measurement for fault-distance determination on a HVDC power transmission line having at least two lines connected in parallel
US4499417A (en) Determining location of faults in power transmission lines
CA2177691A1 (en) Differential multi-cell intrusion locating cable
WO2015070942A1 (en) A method of single-ended fault location in hvdc transmission lines
WO1994017429A1 (en) Apparatus for locating buried conductors
US5130711A (en) Subsurface target identification radar
CN102331549A (en) Electrical fault location determination
EP0272784A1 (en) Perimeter intrusion detection system with block ranging capability
JPH1127218A (en) Antenna abnormality detection system
CN111065932A (en) Traveling wave identification using distortion for power system protection
JP2504379B2 (en) Fault location device
US5734326A (en) Recognition tag for use in a system for identifying distant items
JPH11133097A (en) Confirmation method for position of short circuit or cable failure in bus system and circuit device
Lee Development of an Accurate Transmission Line Fault Locator Using the Global Positioning System Satellites
JPS60100073A (en) Reference range finding station for measuring distance
US11982983B2 (en) Radar systems and diagnostic methods thereof
CA1274298A (en) Apparatus and method for locating towed siesmic floats
US20020053914A1 (en) Arc location
JPH0862277A (en) Apparatus for locating fault point of transmission line
JPS59172839A (en) System for detecting bus failure position in bus network
JPS62105058A (en) Fault point detection system for optical submarine cable
SU1104447A1 (en) Device for determination of distance to aerial power line damage
JPH09152461A (en) Fault point locating apparatus and method
JPS6031242B2 (en) Mobile object position detection method