JP2503969B2 - Ceramic bearing and method of manufacturing the same - Google Patents

Ceramic bearing and method of manufacturing the same

Info

Publication number
JP2503969B2
JP2503969B2 JP61107880A JP10788086A JP2503969B2 JP 2503969 B2 JP2503969 B2 JP 2503969B2 JP 61107880 A JP61107880 A JP 61107880A JP 10788086 A JP10788086 A JP 10788086A JP 2503969 B2 JP2503969 B2 JP 2503969B2
Authority
JP
Japan
Prior art keywords
inner member
ceramics
ceramic bearing
ceramic
outer member
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP61107880A
Other languages
Japanese (ja)
Other versions
JPS62266216A (en
Inventor
寿夫 小林
新二 新穂
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nagano Keiki Seisakusho KK
Original Assignee
Nagano Keiki Seisakusho KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nagano Keiki Seisakusho KK filed Critical Nagano Keiki Seisakusho KK
Priority to JP61107880A priority Critical patent/JP2503969B2/en
Publication of JPS62266216A publication Critical patent/JPS62266216A/en
Application granted granted Critical
Publication of JP2503969B2 publication Critical patent/JP2503969B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Sliding-Contact Bearings (AREA)

Description

【発明の詳細な説明】Detailed Description of the Invention

【産業上の利用分野】 本発明は、セラミックスで構成される、すべり軸受に
関する。本発明は、そのようなセラミックス軸受の製造
方法をも包含する。
TECHNICAL FIELD The present invention relates to a plain bearing made of ceramics. The present invention also includes a method of manufacturing such a ceramic bearing.

【従来の技術】[Prior art]

近年のファイン・セラミックス技術の進歩につれて入
手できるようになった新しいセラミックス材料は、耐熱
性、耐薬品性などの従来のセラミックスの特性に加え
て、耐摩耗性と摩擦係数が小さいという利点を生かし
て、加熱炉内のスキッドレールなどに利用されている。 一方、各種産業および民生機械の小型化、高性能化に
伴って、回転軸を支えるベアリングはいっそう小型軽量
で、高荷重、高回転に耐えることが要求される。軸受用
材料とする特殊鋼の改良と加工技術の進歩が、この要求
にこたえる努力を続けているが、なお十分に満足できる
ものではない。
The new ceramic materials, which have become available with the progress of fine ceramics technology in recent years, take advantage of the characteristics of conventional ceramics such as heat resistance and chemical resistance as well as the advantages of low wear resistance and small friction coefficient. It is used for skid rails in heating furnaces. On the other hand, with the miniaturization and high performance of various industries and consumer machinery, it is required that the bearings that support the rotating shaft be smaller and lighter and endure high load and high rotation. Improvements in special steels used as bearing materials and advances in processing technology continue to meet these demands, but they are still not fully satisfactory.

【発明が解決しようとする課題】[Problems to be Solved by the Invention]

本発明の目的は、上記のような技術の現状を一歩進め
て、セラミックスを材料とする、従来の鋼製のものより
性能がすぐれた軸受を提供することにある。そのような
セラミックス軸受の製造方法を提供することもまた、本
発明の目的に含まれる。
It is an object of the present invention to take the current state of the art one step further and provide a bearing made of ceramics and having better performance than conventional steel bearings. Providing a method for manufacturing such a ceramic bearing is also included in the object of the present invention.

【課題を解決するための手段】[Means for Solving the Problems]

図面を参照して説明すれば、本発明のセラミックス軸
受は、外に向って凸または凹の断面、図示した例ではV
字形に凹な断面を軸Aのまわりに回転させて得た形状を
有し、一体に形成されたセラミックス製の内側部材1
と、それを囲んで、内側部材1の外面形状に対応する、
図示した例では曲線、それもほぼ円弧の一部を回転させ
て得た内面形状を有し、焼結セラミックスで一体に形成
されたセラミックス製の外側部材2とからなり、内側部
材の最大径DIを焼結により形成された外側部材の最小径
D0より大きくしたことを特徴とする。 内側部材の最大径DIと外側部材の最小径D0との差は、
両者が軸方向の推力に対してベアリングとしての構成を
保ち得る限界以上であればよい。通常、少なくとも2μ
mあれば足り、10μmまたはそれ以上あれば安全であ
る。 このセラミックス軸受は、一般に注油不要であるが、
用途によってはもちろん注油してもよく、その場合にそ
なえて、外側部材に第1図に示したように、注油孔5を
設けておくとよい。 本発明のセラミックス軸受には種々の態様があり得
る。たとえば、第1図に示した例は内側部材の外面が凹
であって外側部材の内面が凸であるが、第2図に示すよ
うに、これと逆な関係であってもよい。また、シャフト
3も、第1図の例ではスチールなどの、内側部材とは異
なる材料を用いて、圧入、冷しばめ、接着などの手段で
一体化しているが、第2図に示すように、内側部材1と
シャフト3とをもともと一体に製造することもできる。 本発明のセラミックス軸受の製造方法は、第3図に示
すように、外に向って凸または凹の断面、図示した例で
はV字形に凹な断面を軸Aのまわりに回転させて得た形
状を有するセラミックス製の内側部材を用意し、その周
囲を、内側部材の外面形状に対応する内面形状を有する
が最小径d0が内側部材の最大径DIより大きい、焼成によ
りセラミックスを形成する素材2A、たとえば粉末をバイ
ンダーととも成形したもので囲み、全体を所要温度に所
要時間保持して焼成することにより、外側部材の素材2A
をセラミックス化するとともに、第4図に示すようにそ
の最小径を内側部材の最大径より小さくすることを特徴
とする。セラミックスとしては、アルミナ、ジルコニ
ア、窒化ケイ素その他のファイン・セラミックスが好適
であって、製品である軸受の用途に応じて選択すればよ
い。 内側部材は、その外面を研摩して、芯を出すとともに
平滑にしておくことが好ましい。
Referring to the drawings, the ceramic bearing of the present invention has an outwardly convex or concave cross section, that is, V in the illustrated example.
An integrally formed ceramic inner member 1 having a shape obtained by rotating a V-shaped concave cross section around an axis A.
And surrounding it, corresponding to the outer surface shape of the inner member 1,
In the illustrated example, a curved line, which also has an inner surface shape obtained by rotating a part of a substantially circular arc, is composed of a ceramic outer member 2 integrally formed of sintered ceramics, and has a maximum diameter D of the inner member. The minimum diameter of the outer member formed by sintering I
It is characterized in that it is larger than D 0 . The difference between the maximum diameter D I of the inner member and the minimum diameter D 0 of the outer member is
It suffices that both are above the limit capable of maintaining the structure as a bearing against the thrust in the axial direction. Usually at least 2μ
m is sufficient, and 10 μm or more is safe. This ceramic bearing generally does not require lubrication,
It is of course possible to lubricate depending on the application, and in that case, it is advisable to provide the outer member with the lubrication hole 5 as shown in FIG. The ceramic bearing of the present invention can have various modes. For example, in the example shown in FIG. 1, the outer surface of the inner member is concave and the inner surface of the outer member is convex, but as shown in FIG. 2, the relationship may be reversed. The shaft 3 is also made of a material different from that of the inner member, such as steel in the example of FIG. 1, and is integrated by means such as press fitting, cold fitting, and adhesion, but as shown in FIG. In addition, the inner member 1 and the shaft 3 can be originally manufactured integrally. As shown in FIG. 3, the method for manufacturing a ceramic bearing according to the present invention has a shape obtained by rotating an outwardly convex or concave cross section, in the illustrated example, a V-shaped concave cross section around the axis A. Preparing an inner member made of ceramics having an inner surface shape corresponding to the outer surface shape of the inner member, but having a minimum diameter d 0 larger than the maximum diameter D I of the inner member, forming a ceramic material by firing. 2A, for example, by surrounding the powder with a binder and molding it and holding the whole at the required temperature for the required time and firing,
Is made into ceramics, and its minimum diameter is made smaller than the maximum diameter of the inner member as shown in FIG. As ceramics, fine ceramics such as alumina, zirconia, silicon nitride and the like are suitable, and may be selected according to the use of the bearing as a product. It is preferable to polish the outer surface of the inner member so that the core is exposed and smoothed.

【作 用】[Work]

焼結によるセラミックスの形成には収縮が伴うから、
外側部材の素材2Aは最小径が小さくなって容易に内側部
材の最大径より小さくなる。その結果、内外二つの部材
は、もはや軸方向に抜けることがなくなる。収縮の度合
を、外側部材が内側部材を締めつけるに至る限界に止め
ておけば、回転は自在である。 よく焼き締まった、ち密なセラミックスの平滑な表面
どうしは、驚くほど摩擦係数が低く、軸受として高性能
を示す。従って、すべり軸受の一種であるが、スラスト
軸受にも、ラジアル軸受にも使用できる。いうまでもな
く耐摩耗性はすぐれているから、長時間の使用にも耐え
る。
Since the formation of ceramics by sintering involves shrinkage,
The material 2A of the outer member has a smaller minimum diameter and is easily smaller than the maximum diameter of the inner member. As a result, the two members, the inner and outer members, no longer come off in the axial direction. If the degree of contraction is limited to the extent that the outer member tightens the inner member, the rotation is free. Well-tightened and dense ceramic smooth surfaces have surprisingly low friction coefficient and high performance as a bearing. Therefore, although it is a kind of slide bearing, it can be used for both thrust bearings and radial bearings. Needless to say, it has excellent wear resistance and can withstand long-term use.

【実施例】【Example】

第3図に示す形状を有する最大径DI=7mmの内側部材
を、アルミナ粉末の成形および焼結によって製作し、そ
の表面を研摩した。 同じアルミナ粉末を成形し、やはり第3図に示す形状
を有し、最小径d0=8mmの外側部材の素材を用意した。 素材2Aの中に内側部材1を入れた状態で炉に入れ、焼
結することにより、第4図に示す断面形状のセラミック
ス軸受を得た。素材の焼結に伴う収縮は、外側の径の縮
少の径の縮少の度合からみて、約22%である。 このセラミックス軸受に鋼製のシャフトを圧入し、外
側部材を固定しベアリングに300gの荷重をかけた状態
で、シャフトの一端を回転速度約6000rpmで駆動した。
連続210日間の使用後も、軸受はその性能を維持してい
た。比較のために同じ条件で試験したほぼ同じ大きさの
鋼製ミニチュアベアリングは、150日間の運転で摩耗し
て機能を失うに至った。
An inner member having the maximum diameter D I = 7 mm having the shape shown in FIG. 3 was manufactured by molding and sintering alumina powder, and the surface thereof was polished. The same alumina powder was molded, and a material for the outer member having a shape shown in FIG. 3 and a minimum diameter d 0 = 8 mm was prepared. A ceramic bearing having a cross-sectional shape shown in FIG. 4 was obtained by placing the inner member 1 in the material 2A in a furnace and sintering it. The shrinkage due to sintering of the material is about 22% in view of the degree of reduction of the outside diameter. A steel shaft was press-fitted into the ceramic bearing, the outer member was fixed, and a load of 300 g was applied to the bearing, and one end of the shaft was driven at a rotation speed of about 6000 rpm.
The bearing maintained its performance after 210 consecutive days of use. Steel miniature bearings of approximately the same size, tested under the same conditions for comparison, were worn and lost function after 150 days of operation.

【発明の効果】【The invention's effect】

本発明のセラミックス軸受は、在来の鋼製軸受より著
しく耐久性が高い。従って、長期間にわたる連続運転を
要する機器や、メンテナンスに困難の伴うような用途に
適している。セラミックスに固有の、耐薬品性、耐酸
性、耐塩水性などの特性もあるから、各種化学プラント
や船舶用にも役立つ。また耐熱性があることはいうまで
もないから、潤滑油が使えない温度や、さらに高い温度
で用いる軸受として有用である。摩耗が少ないという利
点は、たとえばIC製造のためのクリーンルーム内で使用
するキャスターなどの用途にも向けられることを意味す
る。 軸受を構成する内側部材、外側部材とも一体に形成さ
れたセラミックス製であり、簡単な構造でありながら、
両者の内外径の差により軸方向に抜けることなく、スラ
スト軸受、ラジアル軸受のいずれにもそのまま使用でき
る。
The ceramic bearings of the present invention are significantly more durable than conventional steel bearings. Therefore, it is suitable for equipment that requires continuous operation for a long period of time and for applications where maintenance is difficult. It also has properties such as chemical resistance, acid resistance, and salt water resistance that are unique to ceramics, making it useful for various chemical plants and ships. Needless to say, it has heat resistance, so it is useful as a bearing used at a temperature at which lubricating oil cannot be used or at a higher temperature. The advantage of low wear means that it can also be used for applications such as casters for use in clean rooms for IC manufacturing. The inner member and the outer member that make up the bearing are made of ceramics that are integrally formed, and have a simple structure,
It can be used as it is for both thrust bearings and radial bearings without slipping out in the axial direction due to the difference in inner and outer diameters of both.

【図面の簡単な説明】[Brief description of drawings]

第1図および第2図は、ともに本発明のセラミックス軸
受の例を示す断面図である。 第3図および第4図は、本発明のセラミックス軸受の製
造方法を説明するための模式的な断面図であって、第3
図は焼結前の状態を、また第4図は焼結後の状態を、そ
れぞれ示す。 1……内側部材 2……外側部材、2A……外側部材の素材 3……シャフト DI……内側部材の最大径 D0……外側部材の最小径 d0……素材の最小径
1 and 2 are sectional views showing examples of the ceramic bearing of the present invention. 3 and 4 are schematic cross-sectional views for explaining the method for manufacturing a ceramic bearing according to the present invention.
The figure shows the state before sintering, and FIG. 4 shows the state after sintering. 1 …… Inner member 2 …… Outer member, 2A …… Outer member material 3 …… Shaft D I …… Maximum diameter of inner member D 0 …… Minimum diameter of outer member d 0 …… Minimum diameter of material

Claims (6)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】外に向って凸または凹の断面を軸のまわり
に回転させて得た形状を有し、一体に形成されたセラミ
ックス製の内側部材と、それを囲んで、内側部材の外面
形状に対応する内面形状を有し、焼結セラミックスで一
体に形成された外側部材とからなり、内側部材の最大径
を外側部材の焼結により形成された最小径より大きくし
たことを特徴とするセラミックス軸受。
1. An inner member made of ceramics, which is integrally formed and has a shape obtained by rotating a cross section of a convex or concave toward the outside around an axis, and an outer surface of the inner member surrounding the inner member. It has an inner surface shape corresponding to the shape and is composed of an outer member integrally formed of sintered ceramics, wherein the maximum diameter of the inner member is larger than the minimum diameter formed by sintering of the outer member. Ceramic bearing.
【請求項2】内側部材の最大径と外側部材の最小径との
差が2μm以上である特許請求の範囲第1項のセラミッ
クス軸受。
2. The ceramic bearing according to claim 1, wherein the difference between the maximum diameter of the inner member and the minimum diameter of the outer member is 2 μm or more.
【請求項3】外側部材に半径方向の注油孔を設けた特許
請求の範囲第1項のセラミックス軸受。
3. The ceramic bearing according to claim 1, wherein the outer member is provided with a radial oil filling hole.
【請求項4】セラミックスがアルミナ、ジルコニア、窒
化ケイ素その他のファイン・セラミックスからえらんだ
ものである特許請求の範囲第1項のセラミックス軸受。
4. A ceramic bearing according to claim 1, wherein the ceramic is selected from fine ceramics such as alumina, zirconia, silicon nitride and the like.
【請求項5】外に向って凸または凹の断面を軸のまわり
に回転させて得た形状を有するセラミックス製の内側部
材を用意し、その周囲を、内側部材の外面形状に対応す
る内面形状を有するが最小径が内側部材の最大径より大
きい、焼成によりセラミックスを形成する素材で囲み、
焼成することにより外側部材の素材をセラミックス化す
るとともに、その最小径を内側部材の最大径より小さく
して内側部材が外側部材から抜けなくすることを特徴と
するセラミックス軸受の製造方法。
5. An inner member made of ceramics having a shape obtained by rotating a convex or concave cross section toward the outside around an axis is prepared, and the periphery thereof is an inner surface shape corresponding to the outer surface shape of the inner member. But has a minimum diameter larger than the maximum diameter of the inner member, surrounded by a material that forms ceramics by firing,
A method of manufacturing a ceramic bearing, characterized in that the material of the outer member is made into ceramic by firing and the minimum diameter is made smaller than the maximum diameter of the inner member so that the inner member does not come off from the outer member.
【請求項6】あらかじめ内側部材の表面を研摩しておい
て実施する特許請求の範囲第5項のセラミックス軸受の
製造方法。
6. The method of manufacturing a ceramic bearing according to claim 5, which is carried out by polishing the surface of the inner member in advance.
JP61107880A 1986-05-12 1986-05-12 Ceramic bearing and method of manufacturing the same Expired - Fee Related JP2503969B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61107880A JP2503969B2 (en) 1986-05-12 1986-05-12 Ceramic bearing and method of manufacturing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61107880A JP2503969B2 (en) 1986-05-12 1986-05-12 Ceramic bearing and method of manufacturing the same

Publications (2)

Publication Number Publication Date
JPS62266216A JPS62266216A (en) 1987-11-19
JP2503969B2 true JP2503969B2 (en) 1996-06-05

Family

ID=14470424

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61107880A Expired - Fee Related JP2503969B2 (en) 1986-05-12 1986-05-12 Ceramic bearing and method of manufacturing the same

Country Status (1)

Country Link
JP (1) JP2503969B2 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63308217A (en) * 1987-06-05 1988-12-15 Toto Ltd Bearing made of ceramics and its manufacture
JPH0810013B2 (en) * 1988-12-26 1996-01-31 株式会社ウイング・ハイセラ Ceramic bearing
JPH02173417A (en) * 1988-12-26 1990-07-04 Uingu Haisera:Kk Ceramic bearing
JPH02173415A (en) * 1988-12-26 1990-07-04 Uingu Haisera:Kk Ceramic bearing and its manufacture
JPH03149415A (en) * 1989-10-12 1991-06-26 Uingu Haisera:Kk Ceramic bearing
CN102223005A (en) * 2010-04-13 2011-10-19 德昌电机(深圳)有限公司 Rotor bearing arrangement
JP7181718B2 (en) * 2018-07-26 2022-12-01 日本特殊陶業株式会社 CERAMIC COMPOSITE AND MANUFACTURING METHOD THEREOF

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS51133649A (en) * 1975-05-16 1976-11-19 Toyohiko Naono Sliding mechanism
JPS5738926U (en) * 1980-08-14 1982-03-02
JPS60494Y2 (en) * 1981-09-16 1985-01-09 オリジン電気株式会社 plain bearing
JPS60200902A (en) * 1984-03-26 1985-10-11 Canon Inc Production of bearing

Also Published As

Publication number Publication date
JPS62266216A (en) 1987-11-19

Similar Documents

Publication Publication Date Title
KR950011538B1 (en) Seramic bearing and product method
KR960000986B1 (en) Ceramic bearing
US3428374A (en) Self-lubricating bearing
EP0381336B1 (en) Ceramic bearing
WO1989012760A1 (en) Crankshaft and connecting rod connecting structure
EP0887516A3 (en) Supercharger thrust bearing
JP2503969B2 (en) Ceramic bearing and method of manufacturing the same
EP0258845A2 (en) Ceramics bearing
JPH1047357A (en) Rolling bearing
KR950008331B1 (en) Ceramic bearing
US5176456A (en) Rolling bearing
JP2538182B2 (en) Bearing assembly
KR950008332B1 (en) Ceramic bearing
US3942847A (en) Temperature compensating ceramic metal bearing systems
JPH0320115A (en) Ceramic bearing
JPS6184413A (en) Radial bearing
JPS59208219A (en) Solid lubricating bearing
JPH0293115A (en) Ceramic rotating shaft
JPH0535767B2 (en)
JP2553676Y2 (en) Ceramic spherical plain bearings
JPH07102913A (en) Roller
JPH0244088Y2 (en)
JPH02173415A (en) Ceramic bearing and its manufacture
JPS6128844B2 (en)
JPS645129Y2 (en)

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees