JP2024517746A - エンドエフェクタ機能及び治療エネルギーの適用を協調的に制御するように構成されている外科用システム - Google Patents

エンドエフェクタ機能及び治療エネルギーの適用を協調的に制御するように構成されている外科用システム Download PDF

Info

Publication number
JP2024517746A
JP2024517746A JP2023566615A JP2023566615A JP2024517746A JP 2024517746 A JP2024517746 A JP 2024517746A JP 2023566615 A JP2023566615 A JP 2023566615A JP 2023566615 A JP2023566615 A JP 2023566615A JP 2024517746 A JP2024517746 A JP 2024517746A
Authority
JP
Japan
Prior art keywords
staple
patent application
end effector
entitled
tissue
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2023566615A
Other languages
English (en)
Inventor
シェルトン・ザ・フォース・フレデリック・イー
アダムス・シェーン・アール
アロンホルト・テイラー・ダブリュ
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Cilag GmbH International
Original Assignee
Cilag GmbH International
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Cilag GmbH International filed Critical Cilag GmbH International
Publication of JP2024517746A publication Critical patent/JP2024517746A/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B18/04Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating
    • A61B18/12Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating by passing a current through the tissue to be heated, e.g. high-frequency current
    • A61B18/14Probes or electrodes therefor
    • A61B18/1442Probes having pivoting end effectors, e.g. forceps
    • A61B18/1445Probes having pivoting end effectors, e.g. forceps at the distal end of a shaft, e.g. forceps or scissors at the end of a rigid rod
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/064Surgical staples, i.e. penetrating the tissue
    • A61B17/0644Surgical staples, i.e. penetrating the tissue penetrating the tissue, deformable to closed position
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/068Surgical staplers, e.g. containing multiple staples or clamps
    • A61B17/072Surgical staplers, e.g. containing multiple staples or clamps for applying a row of staples in a single action, e.g. the staples being applied simultaneously
    • A61B17/07207Surgical staplers, e.g. containing multiple staples or clamps for applying a row of staples in a single action, e.g. the staples being applied simultaneously the staples being applied sequentially
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B18/04Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating
    • A61B18/12Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating by passing a current through the tissue to be heated, e.g. high-frequency current
    • A61B18/1206Generators therefor
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B2017/00017Electrical control of surgical instruments
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B2017/00017Electrical control of surgical instruments
    • A61B2017/00022Sensing or detecting at the treatment site
    • A61B2017/00026Conductivity or impedance, e.g. of tissue
    • A61B2017/0003Conductivity or impedance, e.g. of tissue of parts of the instruments
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B2017/00017Electrical control of surgical instruments
    • A61B2017/00115Electrical control of surgical instruments with audible or visual output
    • A61B2017/00119Electrical control of surgical instruments with audible or visual output alarm; indicating an abnormal situation
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/00234Surgical instruments, devices or methods, e.g. tourniquets for minimally invasive surgery
    • A61B2017/00292Surgical instruments, devices or methods, e.g. tourniquets for minimally invasive surgery mounted on or guided by flexible, e.g. catheter-like, means
    • A61B2017/003Steerable
    • A61B2017/00305Constructional details of the flexible means
    • A61B2017/00309Cut-outs or slits
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/00234Surgical instruments, devices or methods, e.g. tourniquets for minimally invasive surgery
    • A61B2017/00292Surgical instruments, devices or methods, e.g. tourniquets for minimally invasive surgery mounted on or guided by flexible, e.g. catheter-like, means
    • A61B2017/003Steerable
    • A61B2017/00305Constructional details of the flexible means
    • A61B2017/00314Separate linked members
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/00234Surgical instruments, devices or methods, e.g. tourniquets for minimally invasive surgery
    • A61B2017/00292Surgical instruments, devices or methods, e.g. tourniquets for minimally invasive surgery mounted on or guided by flexible, e.g. catheter-like, means
    • A61B2017/003Steerable
    • A61B2017/00318Steering mechanisms
    • A61B2017/00323Cables or rods
    • A61B2017/00327Cables or rods with actuating members moving in opposite directions
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B2017/00367Details of actuation of instruments, e.g. relations between pushing buttons, or the like, and activation of the tool, working tip, or the like
    • A61B2017/00398Details of actuation of instruments, e.g. relations between pushing buttons, or the like, and activation of the tool, working tip, or the like using powered actuators, e.g. stepper motors, solenoids
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B2017/0046Surgical instruments, devices or methods, e.g. tourniquets with a releasable handle; with handle and operating part separable
    • A61B2017/00473Distal part, e.g. tip or head
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B2017/00681Aspects not otherwise provided for
    • A61B2017/00734Aspects not otherwise provided for battery operated
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B2017/00831Material properties
    • A61B2017/00867Material properties shape memory effect
    • A61B2017/00871Material properties shape memory effect polymeric
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B2017/00831Material properties
    • A61B2017/00929Material properties isolating electrical current
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/068Surgical staplers, e.g. containing multiple staples or clamps
    • A61B17/072Surgical staplers, e.g. containing multiple staples or clamps for applying a row of staples in a single action, e.g. the staples being applied simultaneously
    • A61B2017/07214Stapler heads
    • A61B2017/07228Arrangement of the staples
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/068Surgical staplers, e.g. containing multiple staples or clamps
    • A61B17/072Surgical staplers, e.g. containing multiple staples or clamps for applying a row of staples in a single action, e.g. the staples being applied simultaneously
    • A61B2017/07214Stapler heads
    • A61B2017/07257Stapler heads characterised by its anvil
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/068Surgical staplers, e.g. containing multiple staples or clamps
    • A61B17/072Surgical staplers, e.g. containing multiple staples or clamps for applying a row of staples in a single action, e.g. the staples being applied simultaneously
    • A61B2017/07214Stapler heads
    • A61B2017/07257Stapler heads characterised by its anvil
    • A61B2017/07264Stapler heads characterised by its anvil characterised by its staple forming cavities, e.g. geometry or material
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/068Surgical staplers, e.g. containing multiple staples or clamps
    • A61B17/072Surgical staplers, e.g. containing multiple staples or clamps for applying a row of staples in a single action, e.g. the staples being applied simultaneously
    • A61B2017/07214Stapler heads
    • A61B2017/07271Stapler heads characterised by its cartridge
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/068Surgical staplers, e.g. containing multiple staples or clamps
    • A61B17/072Surgical staplers, e.g. containing multiple staples or clamps for applying a row of staples in a single action, e.g. the staples being applied simultaneously
    • A61B2017/07214Stapler heads
    • A61B2017/07278Stapler heads characterised by its sled or its staple holder
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/068Surgical staplers, e.g. containing multiple staples or clamps
    • A61B17/072Surgical staplers, e.g. containing multiple staples or clamps for applying a row of staples in a single action, e.g. the staples being applied simultaneously
    • A61B2017/07214Stapler heads
    • A61B2017/07285Stapler heads characterised by its cutter
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/28Surgical forceps
    • A61B17/29Forceps for use in minimally invasive surgery
    • A61B2017/2926Details of heads or jaws
    • A61B2017/2927Details of heads or jaws the angular position of the head being adjustable with respect to the shaft
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B2018/00571Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body for achieving a particular surgical effect
    • A61B2018/0063Sealing
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B2018/00636Sensing and controlling the application of energy
    • A61B2018/00642Sensing and controlling the application of energy with feedback, i.e. closed loop control
    • A61B2018/00648Sensing and controlling the application of energy with feedback, i.e. closed loop control using more than one sensed parameter
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B2018/00636Sensing and controlling the application of energy
    • A61B2018/00642Sensing and controlling the application of energy with feedback, i.e. closed loop control
    • A61B2018/00654Sensing and controlling the application of energy with feedback, i.e. closed loop control with individual control of each of a plurality of energy emitting elements
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B2018/00636Sensing and controlling the application of energy
    • A61B2018/00666Sensing and controlling the application of energy using a threshold value
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B2018/00636Sensing and controlling the application of energy
    • A61B2018/00696Controlled or regulated parameters
    • A61B2018/00702Power or energy
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B2018/00636Sensing and controlling the application of energy
    • A61B2018/00696Controlled or regulated parameters
    • A61B2018/00702Power or energy
    • A61B2018/00708Power or energy switching the power on or off
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B2018/00636Sensing and controlling the application of energy
    • A61B2018/00696Controlled or regulated parameters
    • A61B2018/00767Voltage
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B2018/00636Sensing and controlling the application of energy
    • A61B2018/00773Sensed parameters
    • A61B2018/00779Power or energy
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B2018/00636Sensing and controlling the application of energy
    • A61B2018/00773Sensed parameters
    • A61B2018/00791Temperature
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B2018/00636Sensing and controlling the application of energy
    • A61B2018/00773Sensed parameters
    • A61B2018/00875Resistance or impedance
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B2018/0091Handpieces of the surgical instrument or device
    • A61B2018/00916Handpieces of the surgical instrument or device with means for switching or controlling the main function of the instrument or device
    • A61B2018/00922Handpieces of the surgical instrument or device with means for switching or controlling the main function of the instrument or device by switching or controlling the treatment energy directly within the hand-piece
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B2018/00994Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body combining two or more different kinds of non-mechanical energy or combining one or more non-mechanical energies with ultrasound
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B18/04Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating
    • A61B18/12Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating by passing a current through the tissue to be heated, e.g. high-frequency current
    • A61B18/1206Generators therefor
    • A61B2018/1226Generators therefor powered by a battery
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B18/04Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating
    • A61B18/12Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating by passing a current through the tissue to be heated, e.g. high-frequency current
    • A61B18/14Probes or electrodes therefor
    • A61B18/1442Probes having pivoting end effectors, e.g. forceps
    • A61B2018/1452Probes having pivoting end effectors, e.g. forceps including means for cutting
    • A61B2018/1455Probes having pivoting end effectors, e.g. forceps including means for cutting having a moving blade for cutting tissue grasped by the jaws
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B90/00Instruments, implements or accessories specially adapted for surgery or diagnosis and not covered by any of the groups A61B1/00 - A61B50/00, e.g. for luxation treatment or for protecting wound edges
    • A61B90/03Automatic limiting or abutting means, e.g. for safety
    • A61B2090/033Abutting means, stops, e.g. abutting on tissue or skin
    • A61B2090/034Abutting means, stops, e.g. abutting on tissue or skin abutting on parts of the device itself
    • A61B2090/035Abutting means, stops, e.g. abutting on tissue or skin abutting on parts of the device itself preventing further rotation
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B90/00Instruments, implements or accessories specially adapted for surgery or diagnosis and not covered by any of the groups A61B1/00 - A61B50/00, e.g. for luxation treatment or for protecting wound edges
    • A61B90/06Measuring instruments not otherwise provided for
    • A61B2090/067Measuring instruments not otherwise provided for for measuring angles

Landscapes

  • Health & Medical Sciences (AREA)
  • Surgery (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Molecular Biology (AREA)
  • Biomedical Technology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Medical Informatics (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Physics & Mathematics (AREA)
  • Plasma & Fusion (AREA)
  • Otolaryngology (AREA)
  • Surgical Instruments (AREA)

Abstract

治療エネルギー及びステープル留めを使用する組織治療のための外科手術システムが開示される。

Description

本発明は、外科用器具に関し、かつ様々な構成において、組織をステープル留めして切断するよう設計されている、外科用ステープル留め器具及び外科用切断器具、並びにそれらとともに使用するためのステープルカートリッジに関する。
本明細書に記載する実施形態の様々な特徴は、それらの利点とともに、以下の添付図面と併せて以下の発明を実施するための形態に従って理解することができる。
少なくとも1つの実施形態による、外科用器具の斜視図である。 図1の外科用器具のシャフトの斜視図である。 図1の外科用器具のエンドエフェクタの斜視図である。 図2のシャフトの部分分解図である。 図3のエンドエフェクタの部分分解図である。 図3のエンドエフェクタの分解図である。 開放構成のエンドエフェクタを示す、図3のエンドエフェクタの立面図である。 閉鎖構成のエンドエフェクタを示す、図3のエンドエフェクタの立面図である。 非関節運動位置にあるエンドエフェクタを示す、図1の外科用器具の関節運動継手の平面図である。 関節運動位置にあるエンドエフェクタを示す、図1の外科用器具の関節運動継手の平面図である。 閉鎖未発射構成で示した、図3のエンドエフェクタの断面図である。 閉鎖発射構成で示した、図3のエンドエフェクタの断面図である。 開放構成で示した、図3のエンドエフェクタの断面図である。 いくつかの構成要素を取り外して示した、図1の外科用器具のハンドルの斜視図である。 少なくとも1つの実施形態による、外科用器具の部分断面図である。 部分発射状態で示した、図14の外科用器具の部分断面図である。 少なくとも一実施形態による、外科用器具のエンドエフェクタの断面図である。 図16のエンドエフェクタのアンビルの斜視図である。 図17のアンビルの分解図である。 少なくとも1つの実施形態による、閉鎖駆動部及び発射駆動部の部分断面図である。 図19の閉鎖駆動部及び発射駆動部の別の部分断面図であり、その長手方向長さに沿った異なる場所又は遠位の場所で取られている。 少なくとも一実施形態による、外科用器具のエンドエフェクタの断面図である。 少なくとも1つの実施形態による、ステープルキャビティ内に位置付けられたステープルを含むステープルカートリッジのステープルキャビティの詳細図である。 未発射位置にあるステープルを示す、図22のステープルカートリッジの部分断面図である。 部分発射位置にあるステープルを示す、図22のステープルカートリッジの部分断面図である。 少なくとも1つの実施形態による、ステープルキャビティ内に位置付けられたステープルを含むステープルカートリッジのステープルキャビティの詳細図である。 未発射位置にあるステープルを示す、図25のステープルカートリッジの部分断面図である。 部分発射位置にあるステープルを示す、図25のステープルカートリッジの部分断面図である。 未発射位置でステープルキャビティ内に位置付けられたステープルを示す、少なくとも1つの実施形態による、ステープルカートリッジの部分断面図である。 部分発射位置にあるステープルを示す、図28のステープルカートリッジの部分断面図である。 少なくとも1つの実施形態による、ステープルキャビティ内に位置付けられたステープルを含むステープルカートリッジのステープルキャビティの詳細図である。 未発射位置にあるステープルを示す、図30のステープルカートリッジの部分断面図である。 部分発射位置にあるステープルを示す、図30のステープルカートリッジの部分断面図である。 少なくとも1つの実施形態による、外科用ステープルの斜視図である。 少なくとも1つの実施形態による、ステープルカートリッジの斜視図である。 図34のステープルカートリッジの底面斜視図である。 図34のステープルカートリッジの端面図である。 部分発射構成で示した、図34のステープルカートリッジの部分断面図である。 図34のステープルカートリッジの断面斜視図である。 少なくとも1つの実施形態による、ステープルカートリッジの断面斜視図である。 未発射構成で示される、図39のステープルカートリッジの断面立面図である。 発射構成で示される、図39のステープルカートリッジの断面立面図である。 少なくとも1つの実施形態による、ステープルカートリッジの部分斜視図である。 図42のステープルカートリッジのステープルドライバの斜視図である。 図43のステープルドライバの平面図である。 少なくとも1つの実施形態による、ステープルカートリッジの部分底面図である。 図45のステープルカートリッジのステープルドライバの上面図である。 図46のステープルドライバの斜視図である。 図46のステープルドライバの立面図である。 図45のステープルカートリッジを含むエンドエフェクタの部分断面斜視図である。 図48Aのエンドエフェクタの部分断面斜視図である。 少なくとも1つの実施形態による、ステープルカートリッジの部分断面斜視図である。 図49のステープルカートリッジのステープルドライバの斜視図である。 少なくとも1つの実施形態による、ステープルドライバの斜視図である。 図51のステープルドライバの上面図である。 少なくとも1つの実施形態による、ステープルカートリッジの部分斜視図である。 図53のステープルカートリッジの分解図である。 少なくとも1つの実施形態による、ステープルカートリッジの部分断面斜視図である。 発射状態にある図55のステープルカートリッジを示す。 図55のステープルカートリッジの部分立面図である。 図55のステープルカートリッジのステープルドライバの斜視図である。 未発射状態で示される、図55のステープルカートリッジの部分断面図である。 発射状態で示される、図55のステープルカートリッジの部分断面図である。 未発射状態で示される、少なくとも1つの実施形態による、ステープルカートリッジの部分断面斜視図である。 発射状態にある図61のステープルカートリッジを示す。 図62のステープルカートリッジのステープルドライバの斜視図である。 少なくとも1つの実施形態による、ステープルカートリッジの斜視図である。 図64のステープルカートリッジの断面斜視図である。 少なくとも1つの実施形態による、ステープルカートリッジの端面図である。 少なくとも1つの実施形態による、スレッドである。 図64のステープルカートリッジのスレッドの斜視図である。 図64のステープルカートリッジの断面斜視図である。 少なくとも1つの実施形態による、ステープルカートリッジの部分断面斜視図である。 図70のステープルカートリッジの支持体の斜視図である。 少なくとも1つの実施形態による、ステープルカートリッジのステープルドライバ及びステープルの斜視図である。 図72のステープルドライバの斜視図である。 図72のステープルドライバ及びステープルの部分立面図である。 少なくとも1つの実施形態による、スレッドの上面図である。 図75のスレッドと、ステープルドライバとの斜視図である。 図75のスレッド及び図76のドライバを含む、ステープルカートリッジの部分断面図である。 ステープルドライバと係合されたスレッドを示す、図77のステープルカートリッジの部分斜視図である。 発射位置にあるステープルドライバを示す、図77のステープルカートリッジの部分斜視図である。 外科用器具とともに使用するための駆動システムの斜視図である。 図80の駆動システムの分解組立図である。 図80の駆動システムの端面立面図である。 第1の構成にある図80の駆動システムの側面図である。 第2の構成にある図80の駆動システムの側面図である。 第3の構成にある図80の駆動システムの側面図である。 外科用器具とともに使用するための別の駆動システムの斜視図である。 簡潔にするためにカムの一部分が取り外されている、図86の駆動システムの別の斜視図である。 図86の駆動システムの分解組立図である。 図86の駆動システムの端面立面図である。 第1の構成にある図86の駆動システムの斜視図である。 第2の構成にある図86の駆動システムの斜視図である。 第3の構成にある図86の駆動システムの斜視図である。 外科用器具とともに使用するための関節運動継手の立面図であり、関節運動継手は、関節運動支持ピボットを備える。 非関節運動構成で示した、図93の関節運動継手の立面図である。 図93の線95-95に沿って取られた図93の関節運動継手の断面図である。 関節運動構成で示した、図93の関節運動継手の立面図である。 外科用器具とともに使用するための関節運動継手の断面図である。 エンドエフェクタカートリッジ、発射部材、及び複数の可撓性アクチュエータを備える、外科用器具アセンブリの斜視図である。 図98の外科用器具アセンブリの立面図である。 外科用器具アセンブリとともに使用するための関節運動システムの立面図であり、関節運動システムは、関節運動継手と、関節運動作動システムと、関節運動継手を非関節運動構成に付勢するように構成されている付勢システムと、を備え、関節運動継手は、非関節運動構成で示されている。 関節運動継手が関節運動構成で示された、図100の関節運動システムの立面図である。 スパインと、関節運動継手と、スパイン内に位置付けられたコアインサートと、を備える、外科用器具シャフトアセンブリの斜視図である。 図102のスパイン及びコアインサートの斜視図であり、コアインサートは、スパイン内に位置付けられた近位コア部材及び遠位コア部材を含む。 図102の外科用器具アセンブリの近位コア部材及び遠位コア部材の部分立面図である。 圧電アクチュエータが外側圧電層及び内側基板層を備える、外科用器具とともに使用するための圧電アクチュエータの立面図である。 圧電アクチュエータが非通電状態で示された、外科用器具とともに使用するための圧電アクチュエータの立面図である。 圧電アクチュエータが通電状態で示された、図106の圧電アクチュエータの立面図である。 圧電アクチュエータが通電状態で示された、外科用器具とともに使用するための圧電アクチュエータの斜視図である。 圧電アクチュエータが通電状態で示された、図108の圧電アクチュエータの立面図である。 外科用器具とともに使用するための圧電アクチュエータの力発生対変位を表すチャートである。 外科用器具とともに使用するための電気活性ポリマーアクチュエータの斜視図である。 外側シャフトと、スパイン部分と、外側シャフトに対してスパイン部分を回転させるように構成されている回転作動システムと、を備える、シャフトアセンブリの断面図であり、回転作動システムは、回転駆動シャフトと、回転駆動シャフトとスパイン部分との間の摩擦境界面と、を備える。 外側シャフトと、スパイン部分と、外側シャフトに対してスパイン部分を回転させるように構成されている回転作動システムと、を備える、シャフトアセンブリの断面図であり、回転作動システムは、協働して、外側シャフトに対してスパイン部分を回転させるように構成されている、複数の巻線及び磁石を備える。 外側シャフトと、スパインと、スパインを回転させるように構成されている圧電回転アクチュエータと、を備える、外科用器具アセンブリの斜視断面図である。 閾値位置に到達すると回転駆動部の回転作動を制限するように構成されている外科用器具アセンブリとともに使用するためのリミッタシステムの立面図であり、リミッタシステムは、非制限構成で示されている。 リミッタシステムが部分的に制限された状態で回転駆動部と係合されている、図115のリミッタシステムの立面図である。 ブラッドハウンドシステムが完全に制限された状態で回転駆動部と係合されている、図115のリミッタシステムの立面図である。 外科用器具とともに使用するための回転作動システムの立面図であり、回転作動システムは、構成要素の更なる過回転を防止するように構成されている制限特徴部を備え、回転作動システムは、ホーム位置で示されている。 回転作動システムが第1の閾値状態で示された、図118の回転作動システムの立面図である。 回転作動システムが第2の閾値状態で示された、図118の回転作動システムの立面図である。 外科用器具アセンブリとともに使用するためのセグメント化リング接点システムの斜視図である。 第1のシャフトと、第2シャフトと、第1シャフト上に位置付けられた接点と第2シャフト上に位置付けられた接点との間で電気信号を送信するように構成されている電気送信装置と、を備える、外科用器具アセンブリの立面図である。 図122の第1のシャフトと、第2のシャフトと、電気送信装置と、を備える、外科用器具アセンブリの立面図であり、外科用器具アセンブリは、電気送信装置内に位置付けられたグロメットを更に備える。 図122の第1のシャフトと、第2のシャフトと、電気送信装置と、を備える、外科用器具アセンブリの立面図であり、外科用器具アセンブリは、電気送信装置に向かう流体の進入を防止するように位置付けられたグロメットを更に備える。 第1のシャフトと、第2シャフトと、第1シャフト上に位置付けられた接点と第2シャフト上に位置付けられた接点との間で電気信号を送信するように構成されている電気送信装置と、を備える、外科用器具アセンブリの立面図である。 第1のシャフトと、第2シャフトと、第1シャフト上に位置付けられた接点と第2シャフト上に位置付けられた接点との間で電気信号を送信するように構成されている電気送信装置と、を備える、外科用器具アセンブリの立面図である。 第1のシャフトと、第2シャフトと、第1シャフト上に位置付けられた接点と第2シャフト上に位置付けられた接点との間で電気信号を送信するように構成されている電気送信装置と、を備える、外科用器具アセンブリの立面図である。 送信コイル及び受信器コイルを備える外科用器具アセンブリとともに使用するための誘導コイルアセンブリの模式図である。 送信コイル及び受信器コイルを備える外科用器具アセンブリとともに使用するための誘導コイルアセンブリの模式図である。 電気活性ポリマーが非通電状態で示された、外科用器具アセンブリとともに使用するための電気活性ポリマーの模式図である。 電気活性ポリマーが通電状態で示された、図129の電気活性ポリマーの模式図である。 本開示の少なくとも1つの態様による、チャネル及び交換可能なアセンブリを有するエンドエフェクタの斜視図である。 交換可能なアセンブリがチャネル内に着座される前の、図132のエンドエフェクタの斜視図である。 ステープルカートリッジ及びアンビルを有する、図132の交換可能なアセンブリの斜視図である。 交換可能なアセンブリがチャネル内に着座される前の、図132のエンドエフェクタの立面図である。 交換可能なアセンブリをチャネル内に着座させる第1段階中の、図132のエンドエフェクタの立面図である。 交換可能なアセンブリをチャネル内に着座させる第2段階中の、図132のエンドエフェクタの立面図である。 交換可能なアセンブリがチャネル内に完全に着座している、図132のエンドエフェクタの立面図である。 本開示の少なくとも1つの態様による、細長いシャフトに取り付けられた使い捨てエンドエフェクタの斜視図である。 エンドエフェクタから外された、図139の使い捨てエンドエフェクタの部分斜視図である。 図139の使い捨てエンドエフェクタ内に位置付けられたフレックス回路の部分斜視図である。 エンドエフェクタが細長いシャフトに交換可能に取り付けられる前の、図139の使い捨てエンドエフェクタと細長いシャフトとの間の取り付けインターフェースの部分斜視図である。 エンドエフェクタを細長いシャフトに取り付ける第1段階中の、図139の使い捨てエンドエフェクタ及び細長いシャフトの部分斜視図である。 エンドエフェクタを細長いシャフトに取り付ける第2段階の間の、図139の使い捨てエンドエフェクタ及び細長いシャフトの部分斜視図である。 細長いシャフトに完全に取り付けられた使い捨てエンドエフェクタの部分斜視図である。 細長いシャフトに完全に取り付けられた使い捨てエンドエフェクタの部分断面図である。 本開示の少なくとも1つの態様による、発射部材及び駆動シャフトが仮想線で示された、外された状態のシャフト及びエンドエフェクタの斜視図である。 発射部材及び駆動シャフトが仮想線で示された、取り付けられた状態の図147のシャフト及びエンドエフェクタの斜視図である。 外された状態の図147の発射部材及び駆動シャフトの斜視図である。 取り付け状態の図148の発射部材及び駆動シャフトの部分断面図である。 本開示の少なくとも1つの態様による、補強されたアンビルの斜視図である。 アンビル及びそれに溶接されたアンビルプレートを有する、図151の補強されたアンビルの斜視図である。 図151の補強されたアンビルを有するエンドエフェクタの立面図である。 本開示の少なくとも1つの態様による、カートリッジ保持特徴部を有するチャネルと、その中に着座しているカートリッジとの部分断面図である。 本開示の少なくとも1つの態様による、外科的処置において使用するためのエンドエフェクタを含む外科用器具の斜視図である。 図155の外科用器具の遠位部分の部分斜視図である。 図155の外科用器具のエンドエフェクタの分解図である。 図155の外科用器具のエンドエフェクタの断面図である。 本開示の少なくとも1つの態様による、カートリッジの分解図である。 図159のカートリッジの斜視図の拡大図である。 図159のカートリッジの断面図である。 本開示の少なくとも1つの態様による、アンビルの斜視図である。 無線周波数(radio frequency、RF)エネルギー源に接続された外科用器具の構成要素を図示する模式図である。 本開示の少なくとも1つの態様による、制御回路を図示する回路図である。 本開示の少なくとも一態様による、発生器の模式図である。 本開示の少なくとも一態様による、発生器の模式図である。 本開示の少なくとも1つの態様による、エンドエフェクタによって把持された組織を封止するための制御プログラム又は論理構成を図示するプロセス60160の論理フロー図である。 本開示の少なくとも1つの態様による、カートリッジの分解図である。 図168のカートリッジの断面図である。 図168のカートリッジの断面図である。 図162のアンビルの断面図である。 図155の外科用器具の代替のアンビルの底面図である。 図155の外科用器具の電極アセンブリの簡略化された電気的レイアウトを示す電気図である。 図155の外科用器具の代替の電極アセンブリの電気的レイアウトを示す電気図である。 図155の外科用器具の代替のエンドエフェクタの断面図である。 本開示の少なくとも1つの態様による、温度(℃)の変化に応答したPTCセグメントの抵抗(Ω)の変化を示すグラフである。 本開示の少なくとも1つの態様による、温度(℃)の変化に応答したPTCセグメントの抵抗(Ω)の変化を示す別のグラフである。 本開示の少なくとも1つの態様による、電極アセンブリ間の組織部分を通る電流の受動的かつ独立した制御を図示するグラフである。 本開示の少なくとも1つの態様による、異なる温度におけるPTCセグメントのトリップ応答を示すグラフである。 本開示の少なくとも1つの態様による、エンドエフェクタによって把持された組織に適用された組織治療サイクル中に短絡を検出して対処するための制御プログラム又は論理構成を図示するプロセスの論理フロー図である。 本開示の少なくとも1つの態様による、エンドエフェクタによって把持された組織に適用された組織治療サイクルのための制御プログラム又は論理構成を図示するプロセスの論理フロー図である。 本開示の少なくとも1つの態様による、組織治療サイクルのための電力スキーム及び対応する組織インピーダンスを表すグラフである。 本開示の少なくとも1つの実施形態による、代替のアンビルの断面図である。 図183のアンビルの別の断面図である。 本開示の少なくとも1つの実施形態による、代替のアンビルの断面図である。 図185のアンビルの別の断面図である。 図183のアンビルの電極キャリアの斜視図である。 本開示の少なくとも1つの実施形態による、代替のアンビルの断面図である。 図155の外科用器具の代替のエンドエフェクタの模式図である。 図189のエンドエフェクタの電極アセンブリの電気的レイアウトを示す電気図である。 図189のエンドエフェクタの電極アセンブリの電気的レイアウトを示す電気図である。 本開示の少なくとも1つの態様による、制御プログラム又は論理構成を示すプロセスの論理フロー図である。 本開示の少なくとも1つの態様による、制御プログラム又は論理構成を示すプロセスの論理フロー図である。 本開示の少なくとも1つの態様による、制御プログラム又は論理構成を示すプロセスの論理フロー図である。 本開示の少なくとも1つの態様による、制御プログラム又は論理構成を示すプロセスの論理フロー図である。 図195のプロセスによる、第1の組織部分の呼掛けを表すグラフである。 本開示の少なくとも1つの態様による、エネルギープロファイル又は治療信号を示すグラフであり、グラフは、エンドエフェクタによって把持された組織への治療信号の印加に関連付けられた組織インピーダンス、電圧、電力、及び電流曲線を示す。 本開示の少なくとも1つの態様による、エネルギープロファイル又は治療信号を示すグラフであり、グラフは、エンドエフェクタによって把持された組織への治療信号の印加に関連付けられた組織インピーダンス、電圧、電力、及び電流曲線を示す。 本開示の少なくとも1つの態様による、エネルギープロファイル又は治療信号を示すグラフであり、グラフは、エンドエフェクタによって把持された組織への治療信号の印加に関連付けられた組織インピーダンス、電圧、電力、及び電流曲線を示す。 本開示の少なくとも1つの態様による、エネルギープロファイル又は治療信号を示すグラフであり、グラフは、エンドエフェクタによって把持された組織への治療信号の印加に関連付けられた組織インピーダンス、電圧、電力、及び電流曲線を示す。 本開示の少なくとも1つの態様による、エネルギープロファイル又は治療信号を示すグラフであり、グラフは、エンドエフェクタによって把持された組織への治療信号の印加に関連付けられた組織インピーダンス、電圧、電力、及び電流曲線を示す。 本開示の少なくとも1つの態様による、エネルギープロファイル又は治療信号を示すグラフであり、グラフは、エンドエフェクタによって把持された組織への治療信号の印加に関連付けられた組織インピーダンス、電圧、電力、及び電流曲線を示す。 本開示の少なくとも1つの態様による、エネルギープロファイル又は治療信号を示すグラフであり、グラフは、エンドエフェクタによって把持された組織への治療信号の印加に関連付けられた組織インピーダンス、電圧、電力、及び電流曲線を示す。 本開示の少なくとも1つの態様による、制御プログラム又は論理構成を示すプロセスの論理フロー図である。 本開示の少なくとも1つの態様による、制御プログラム又は論理構成を示すプロセスの論理フロー図である。 本開示の少なくとも1つの態様による、制御プログラム又は論理構成を示すプロセスの論理フロー図である。 本開示の少なくとも1つの態様による、制御プログラム又は論理構成を示すプロセスの論理フロー図である。 本開示の少なくとも1つの態様による、エンドエフェクタの部分斜視図である。 図208のエンドエフェクタの断面図である。 図208の断面図の拡大図である。 本開示の少なくとも1つの態様による、制御プログラム又は論理構成を示すプロセスの論理フロー図である。 本開示の少なくとも1つの態様による、制御プログラム又は論理構成を示すプロセスの論理フロー図である。 本開示の少なくとも1つの態様による、様々な機能を行うためにアクティブ化され得る複数のモータを備える外科用器具のための制御システムを示す。 本開示の少なくとも1つの態様による、図6に示される電極が、ジョーの下面(すなわち、動作中に組織に面するジョーの表面)上の回路基板又は他のタイプの好適な基板上に配置された複数対のセグメント化RF電極で構成されている、図1~図13に記載される外科用器具のためのエンドエフェクタのジョーを示す。 本開示の少なくとも1つの態様による、多層回路基板を示す。 本開示の少なくとも1つの態様による、異なる長さを有する、ジョー内のナイフスロットの両側のセグメント化電極を示す。 本開示の少なくとも1つの態様による、複数のセグメント化電極を備えるエンドエフェクタの断面図である。 本開示の少なくとも1つの態様による、RF電極の複数の対が、各電極のためのエンドエフェクタの遠位部分内に直列電流制限要素Zを含む、図1~図13及び図214に記載される外科用器具のためのエンドエフェクタのジョーを示す。 本開示の少なくとも1つの態様による、電極及び戻り経路電極を短絡させる金属物体を検出するために、コントローラの制御下でRF発生器によって電極に印加される探査パルス波形のグラフ表現である。 本開示の少なくとも1つの態様による、短絡事象中に電極に印加された探査パルス波形の詳細図である。 本開示の少なくとも1つの態様による、エンドエフェクタのジョーの間に把持された組織を封止するために治療用RFエネルギーを発射又は送達する前に電極に印加される探査パルス波形のグラフ表示である。 本開示の少なくとも1つの態様による、約2Ωのインピーダンスを有する組織に印加されるパルスインピーダンス波形を図示する詳細図である。 本開示の少なくとも1つの態様による、電極と戻り経路電極との間の短絡を引き起こすフィールドに位置する金属ステープルを含む、肝臓組織内のRF封止エネルギーを発射又はアクティブ化する前の、低電力探査パルス波形の第1の例の印加を図示する。 本開示の少なくとも1つの態様による、電極と戻り経路電極との間の短絡への遷移中の探査パルス波形のインピーダンス波形成分の詳細図である。 本開示の少なくとも1つの態様による、電極と戻り経路電極との間の短絡への遷移中の探査パルス波形の電力波形成分の詳細図である。 本開示の少なくとも1つの態様による、電極と戻り経路電極との間の短絡への遷移中の探査パルス波形の電圧波形成分の詳細図である。 本開示の少なくとも1つの態様による、電極と戻り経路電極との間の短絡への遷移中の探査パルス波形の電流波形成分の詳細図である。 本開示の少なくとも1つの態様による、電極と戻り経路電極との間の短絡を引き起こすフィールドに位置する金属ステープルを含む、肝臓組織内のRF封止エネルギーを発射又はアクティブ化する前の、低電力探査パルス波形の第2の例の印加を図示する。 本開示の少なくとも1つの態様による、電極と戻り経路電極との間の短絡への遷移中の探査パルス波形のインピーダンス波形成分の詳細図である。 本開示の少なくとも1つの態様による、電極と戻り経路電極との間の短絡への遷移中の探査パルス波形の電力波形成分の詳細図である。 本開示の少なくとも1つの態様による、電極と戻り経路電極との間の短絡への遷移中の探査パルス波形の電圧波形成分の詳細図である。 本開示の少なくとも1つの態様による、電極と戻り経路電極との間の短絡への遷移中の探査パルス波形の電流波形成分の詳細図である。 本開示の少なくとも1つの態様による、電極と戻り経路電極との間の短絡を引き起こすフィールドに位置する金属ステープルを含む、肝臓組織内のRF封止エネルギーを発射又はアクティブ化する前の、低電力探査パルス波形の第2の例の印加を図示する。 本開示の少なくとも1つの態様による、電極と戻り経路電極との間の短絡への遷移中の探査パルス波形のインピーダンス波形成分の詳細図である。 本開示の少なくとも1つの態様による、電極と戻り経路電極との間の短絡への遷移中の探査パルス波形の電力波形成分の詳細図である。 本開示の少なくとも1つの態様による、電極と戻り経路電極との間の短絡への遷移中の探査パルス波形の電圧波形成分の詳細図である。 本開示の少なくとも1つの態様による、電極と戻り経路電極との間の短絡への遷移中の探査パルス波形の電流波形成分の詳細図である。 本開示の少なくとも1つの態様による、インピーダンス、電圧、及び電流対時間(t)のグラフ図示である。 本開示の少なくとも1つの態様による、電流及び電圧波形に対する、0.8cm面積内の1.8cm間隙にわたる電気アーク放電電荷のグラフ図示である。 本開示の少なくとも1つの態様による、電流(アンペア)が水平軸に沿っており、かつ電圧(ボルト)が垂直軸に沿っている、電圧対電流の関数としての放電レジームのグラフ図示である。 本開示の少なくとも1つの態様による、様々な組織タイプのインピーダンス(オーム)の関数としての電力(ワット)のグラフ図示である。 本開示の少なくとも1つの態様による、外科用器具(図1~図6及び図213~図218参照)のエンドエフェクタのジョー内の短絡を検出する方法の論理フロー図である。 本開示の少なくとも1つの態様による、外科用器具(図1~図6及び図213~図218参照)のエンドエフェクタのジョー内の短絡を検出する方法の論理フロー図である。 本開示の少なくとも態様による、分極(polarization、P)が外部電場(external electric field、E)の線形関数である誘電分極プロットを示す。 本開示の少なくとも態様による、分極(P)が外部電場(E)の非線形関数であり、原点において負から正の分極への鋭い遷移を呈する、常誘電分極プロットを示す。 本開示の少なくとも態様による、分極(P)が原点の周りでヒステリシスを呈する外部電界(E)の非線形関数である強誘電分極プロットを示す。 本開示の少なくとも1つの態様による、外科用器具のエンドエフェクタのジョー中における短絡又はジョーに把持された組織タイプに起因してエネルギーモダリティを適合させる方法の論理フロー図である。 本開示の少なくとも1つの態様による、基部を画定するクラウンと、基部の各端部から延在する変形可能な脚部と、を備える、ステープルを示す。
複数の図面を通して、対応する参照符号は対応する部分を示す。本明細書に記載される例示は、本発明の様々な実施形態を1つの形態で例示するものであり、かかる例示は、いかなる方法によっても本発明の範囲を限定するものとして解釈されるべきではない。
本出願の出願人はまた、本出願と同日に出願された以下の米国特許出願を所有しており、これらは各々、それらの個々の全体が参照により本明細書に組み込まれる:
-「METHOD FOR OPERATING A SURGICAL INSTRUMENT INCLUDING SEGMENTED ELECTRODES」と題された米国特許出願、代理人整理番号END9297USNP1/200845-1M、
-「STAPLE CARTRIDGE COMPRISING STAPLE DRIVERS AND STABILITY SUPPORTS」と題された米国特許出願、代理人整理番号END9297USNP2/200845-2、
-「STAPLE CARTRIDGE COMPRISING FORMATION SUPPORT FEATURES」と題する、米国特許出願;代理人整理番号END9297USNP3/200845-3、
-「INTERCHANGEABLE END EFFECTOR RELOADS」と題された米国特許出願、代理人整理番号END9297USNP4/200845-4、
-「SURGICAL INSTRUMENT COMPRISING A ROTATION-DRIVEN AND TRANSLATION-DRIVEN TISSUE CUTTING KNIFE」と題された米国特許出願、代理人整理番号END9297USNP5/200845-5、
「SURGICAL INSTRUMENT COMPRISING A CLOSURE BAR AND A FIRING BAR」と題された米国特許出願、代理人整理番号END9297USNP6/200845-6、
-「SURGICAL INSTRUMENT COMPRISING END EFFECTOR WITH LONGITUDINAL SEALING STEP」と題される米国特許出願、代理人整理番号END9297USNP7/200845-7、
-「SURGICAL INSTRUMENT COMPRISING END EFFECTOR WITH ENERGY SENSITIVE RESISTANCE ELEMENTS」と題された米国特許出願、代理人整理番号END9297USNP8/200845-8、
-「SURGICAL INSTRUMENT COMPRISING INDEPENDENTLY ACTIVATABLE SEGMENTED ELECTRODES」と題された米国特許出願、代理人整理番号END9297USNP9/200845-9、
-「SURGICAL SYSTEMS CONFIGURED TO CONTROL THERAPEUTIC ENERGY APPLICATION TO TISSUE BASED ON CARTRIDGE AND TISSUE PARAMETERS」と題された米国特許出願、代理人整理番号END9297USNP10/200845-10、
-「ELECTROSURGICAL TECHNIQUES FOR SEALING,SHORT CIRCUIT DETECTION,AND SYSTEM DETERMINATION OF POWER LEVEL」と題された米国特許出願、代理人整理番号END9297USNP11/200845-11、
-「ELECTROSURGICAL ADAPTATION TECHNIQUES OF ENERGY MODALITY FOR COMBINATION ELECTROSURGICAL INSTRUMENTS BASED ON SHORTING OR TISSUE IMPEDANCE IRREGULARITY」と題された米国特許出願、代理人整理番号END9297USNP12/200845-12、
-「SURGICAL STAPLE FOR USE WITH COMBINATION ELECTROSURGICAL INSTRUMENTS」と題された米国特許出願、代理人整理番号END9297USNP13/200845-13、

-「ARTICULATION SYSTEM FOR SURGICAL INSTRUMENT」と題された米国特許出願、代理人整理番号END9297USNP15/200845-15、及び
-「SHAFT SYSTEM FOR SURGICAL INSTRUMENT」と題された米国特許出願、代理人整理番号END9297USNP16/200845-16。
本願の出願人はまた、2021年2月26日に出願された以下の米国特許出願を所有しており、これらは各々、それらの全体が参照により本明細書に組み込まれる。
-米国特許出願第17/186,269号、発明の名称「METHOD OF POWERING AND COMMUNICATING WITH A STAPLE CARTRIDGE」、
-米国特許出願第17/186,273号、発明の名称「METHOD OF POWERING AND COMMUNICATING WITH A STAPLE CARTRIDGE」、
-米国特許出願第17/186,276号、発明の名称「ADJUSTABLE COMMUNICATION BASED ON AVAILABLE BANDWIDTH AND POWER CAPACITY」、
-米国特許出願第17/186,283号、発明の名称「ADJUSTMENT TO TRANSFER PARAMETERS TO IMPROVE AVAILABLE POWER」、
-米国特許出願第17/186,345号、発明の名称「MONITORING OF MANUFACTURING LIFE-CYCLE」、
-米国特許出願第17/186,350号、発明の名称「MONITORING OF MULTIPLE SENSORS OVER TIME TO DETECT MOVING CHARACTERISTICS OF TISSUE」、
-米国特許出願第17/186,353号、発明の名称「MONITORING OF INTERNAL SYSTEMS TO DETECT AND TRACK CARTRIDGE MOTION STATUS」、
-米国特許出願第17/186,357号、発明の名称「DISTAL COMMUNICATION ARRAY TO TUNE FREQUENCY OF RF SYSTEMS」、
-米国特許出願第17/186,364号、発明の名称「STAPLE CARTRIDGE COMPRISING A SENSOR ARRAY」、
-米国特許出願第17/186,373号、発明の名称「STAPLE CARTRIDGE COMPRISING A SENSING ARRAY AND A TEMPERATURE CONTROL SYSTEM」、
-米国特許出願第17/186,378号、発明の名称「STAPLE CARTRIDGE COMPRISING AN INFORMATION ACCESS CONTROL SYSTEM」、
-米国特許出願第17/186,407号、発明の名称「STAPLE CARTRIDGE COMPRISING A POWER MANAGEMENT CIRCUIT」、
-米国特許出願第17/186,421号、発明の名称「STAPLING INSTRUMENT COMPRISING A SEPARATE POWER ANTENNA AND A DATA TRANSFER ANTENNA」、
-米国特許出願第17/186,438号、発明の名称「SURGICAL INSTRUMENT SYSTEM COMPRISING A POWER TRANSFER COIL」、及び
米国特許出願第17/186,451号、発明の名称「STAPLING INSTRUMENT COMPRISING A SIGNAL ANTENNA」。
本願の出願人はまた、2020年10月29日に出願された以下の米国特許出願を所有しており、これらは各々、それらの全体が参照により本明細書に組み込まれる。
-米国特許出願第17/084,179号、発明の名称「SURGICAL INSTRUMENT COMPRISING A RELEASABLE CLOSURE DRIVE LOCK」、
-米国特許出願第17/084,190号、発明の名称「SURGICAL INSTRUMENT COMPRISING A STOWED CLOSURE ACTUATOR STOP」、
-米国特許出願第17/084,198号、発明の名称「SURGICAL INSTRUMENT COMPRISING AN INDICATOR WHICH INDICATES THAT AN ARTICULATION DRIVE IS ACTUATABLE」、
-米国特許出願第17/084,205号、発明の名称「SURGICAL INSTRUMENT COMPRISING AN ARTICULATION INDICATOR」、
-米国特許出願第17/084,258号、発明の名称「METHOD FOR OPERATING A SURGICAL INSTRUMENT」、
-米国特許出願第17/084,206号、発明の名称「SURGICAL INSTRUMENT COMPRISING AN ARTICULATION LOCK」、
-米国特許出願第17/084,215号、発明の名称「SURGICAL INSTRUMENT COMPRISING A JAW ALIGNMENT SYSTEM」、
-米国特許出願第17/084,229号、発明の名称「SURGICAL INSTRUMENT COMPRISING SEALABLE INTERFACE」、
-米国特許出願第17/084,180号、発明の名称「SURGICAL INSTRUMENT COMPRISING A LIMITED TRAVEL SWITCH」、
-米国意匠特許出願第29/756,615号、発明の名称「SURGICAL STAPLING ASSEMBLY」、
-米国意匠特許出願第29/756,620号、発明の名称「SURGICAL STAPLING ASSEMBLY」、
-米国特許出願第17/084,188号、発明の名称「SURGICAL INSTRUMENT COMPRISING A STAGED VOLTAGE REGULATION START-UP SYSTEM」、及び
-米国特許出願第17/084,193号、発明の名称「SURGICAL INSTRUMENT COMPRISING A SENSOR CONFIGURED TO SENSE WHETHER AN ARTICULATION DRIVE OF THE SURGICAL INSTRUMENT IS ACTUATABLE」。
本願の出願人はまた、2020年4月11日に出願された以下の米国特許出願を所有しており、これらは各々、それらの全体が参照により本明細書に組み込まれる。
-米国特許出願第16/846,303号、発明の名称「METHODS FOR STAPLING TISSUE USING A SURGICAL INSTRUMENT」(現在は、米国特許出願公開第2020/0345353号)。
-米国特許出願第16/846,304号、発明の名称「ARTICULATION ACTUATORS FOR A SURGICAL INSTRUMENT」(現在は、米国特許出願公開第2020/0345354号)、
-米国特許出願第16/846,305号、発明の名称「ARTICULATION DIRECTIONAL LIGHTS ON A SURGICAL INSTRUMENT」(現在は、米国特許出願公開第2020/0345446号)、
-米国特許出願第16/846,307号、発明の名称「SHAFT ROTATION ACTUATOR ON A SURGICAL INSTRUMENT」(現在は、米国特許出願公開第2020/03453549号)、
-米国特許出願第16/846,308号、発明の名称「ARTICULATION CONTROL MAPPING FOR A SURGICAL INSTRUMENT」(現在は、米国特許出願公開第2020/0345355号)、
-米国特許出願第16/846,309号、発明の名称「INTELLIGENT FIRING ASSOCIATED WITH A SURGICAL INSTRUMENT」(現在は、米国特許出願公開第2020/0345356号)、
-米国特許出願第16/846,310号、発明の名称「INTELLIGENT FIRING ASSOCIATED WITH A SURGICAL INSTRUMENT」(現在は、米国特許出願公開第2020/0345357号)、
-米国特許出願第16/846,311号、発明の名称「ROTATABLE JAW TIP FOR A SURGICAL INSTRUMENT」(現在は、米国特許出願公開第2020/0345358号)、
-米国特許出願第16/846,312号、発明の名称「TISSUE STOP FOR A SURGICAL INSTRUMENT」(現在は、米国特許出願公開第2020/0345359号)、及び
-米国特許出願第16/846,313号、発明の名称「ARTICULATION PIN FOR A SURGICAL INSTRUMENT」(現在は、米国特許出願公開第2020/0345360号)。
2019年4月30日に出願された米国仮特許出願第62/840,715号、発明の名称「SURGICAL INSTRUMENT COMPRISING AN ADAPTIVE CONTROL SYSTEM」の開示全体が、参照により本明細書に組み込まれる。
本願の出願人は、2019年2月21日に出願された以下の米国特許出願を所有しており、これらは各々、それらの全体が参照により本明細書に組み込まれる。
-米国特許出願第16/281,658号、発明の名称「METHODS FOR CONTROLLING A POWERED SURGICAL STAPLER THAT HAS SEPARATE ROTARY CLOSURE AND FIRING SYSTEMS」(現在は、米国特許出願公開第2019/0298350号)、
-米国特許出願第16/281,670号、発明の名称「STAPLE CARTRIDGE COMPRISING A LOCKOUT KEY CONFIGURED TO LIFT A FIRING MEMBER」(現在は、米国特許出願公開第2019/0298340号)、
-米国特許出願第16/281,675号、発明の名称「surgical staplers with arrangements for maintaining a firing member thereof in a locked configuration unless a compatible cartridge has been installed therein」(現在は、米国特許出願公開第2019/0298354号)、
-米国特許出願第16/281,685号、発明の名称「SURGICAL INSTRUMENT COMPRISING CO-OPERATING LOCKOUT FEATURES」(現在は、米国特許出願公開第2019/0298341号)、
-米国特許出願第16/281,693号、発明の名称「SURGICAL STAPLING ASSEMBLY COMPRISING A LOCKOUT AND AN EXTERIOR ACCESS ORIFICE TO PERMIT ARTIFICIAL UNLOCKING OF THE LOCKOUT」(現在は、米国特許出願公開第2019/0298342号)、
-米国特許出願第16/281,704号、発明の名称「SURGICAL STAPLING DEVICES WITH FEATURES FOR BLOCKING ADVANCEMENT OF A CAMMING ASSEMBLY OF AN INCOMPATIBLE CARTRIDGE INSTALLED THEREIN」(現在は、米国特許出願公開第2019/0298356号)、
-米国特許出願第16/281,707号、発明の名称「STAPLING INSTRUMENT COMPRISING A DEACTIVATABLE LOCKOUT」(現在は、米国特許出願公開第2019/0298347号)、
-米国特許出願第16/281,741号、発明の名称「SURGICAL INSTRUMENT COMPRISING A JAW CLOSURE LOCKOUT」(現在は、米国特許出願公開第2019/0298357号)、
-米国特許出願第16/281,762号、発明の名称「SURGICAL STAPLING DEVICES WITH CARTRIDGE COMPATIBLE CLOSURE AND FIRING LOCKOUT ARRANGEMENTS」(現在は、米国特許出願公開第2019/0298343号)、
-米国特許出願第16/281,666号、発明の名称「SURGICAL STAPLING DEVICES WITH IMPROVED ROTARY DRIVEN CLOSURE SYSTEMS」(現在は、米国特許出願公開第2019/0298352号)、
-米国特許出願第16/281,672号、発明の名称「SURGICAL STAPLING DEVICES WITH ASYMMETRIC CLOSURE FEATURES」(現在は、米国特許出願公開第2019/0298353号)、
-米国特許出願第16/281,678号、発明の名称「ROTARY DRIVEN FIRING MEMBERS WITH DIFFERENT ANVIL AND CHANNEL ENGAGEMENT FEATURES」(現在は、米国特許出願公開第2019/0298355号)、及び
-米国特許出願第16/281,682号、発明の名称「SURGICAL STAPLING DEVICE WITH SEPARATE ROTARY DRIVEN CLOSURE AND FIRING SYSTEMS AND FIRING MEMBER THAT ENGAGES BOTH JAWS WHILE FIRING」(現在は、米国特許出願公開第2019/0298346号)。
本願の出願人は、2019年2月19日に出願された以下の米国仮特許出願を所有しており、これらは各々、それらの全体が参照により本明細書に組み込まれる。
-米国仮特許出願第62/807,310号、発明の名称「METHODS FOR CONTROLLING A POWERED SURGICAL STAPLER THAT HAS SEPARATE ROTARY CLOSURE AND FIRING SYSTEMS」、
-米国仮特許出願第62/807,319号、発明の名称「SURGICAL STAPLING DEVICES WITH IMPROVED LOCKOUT SYSTEMS」、
-米国仮特許出願第62/807,309号、発明の名称「SURGICAL STAPLING DEVICES WITH IMPROVED ROTARY DRIVEN CLOSURE SYSTEMS」。
本願の出願人は、2018年3月28日に出願された以下の米国仮特許出願を所有しており、これらの各々の全体が、参照により本明細書に組み込まれる。
-米国仮特許出願第62/649,302号、発明の名称「INTERACTIVE SURGICAL SYSTEMS WITH encrypted COMMUNICATION CAPABILITIES」、
-米国仮特許出願第62/649,294号、発明の名称「DATA STRIPPING METHOD TO INTERROGATE PATIENT RECORDS AND CREATE ANONYMIZED RECORD」、
-米国仮特許出願第62/649,300号、発明の名称「SURGICAL HUB SITUATIONAL AWARENESS」、
-米国仮特許出願第62/649,309号、発明の名称「SURGICAL HUB SPATIAL AWARENESS TO DETERMINE DEVICES IN OPERATING THEATER」、
-米国仮特許出願第62/649,310号、発明の名称「COMPUTER IMPLEMENTED INTERACTIVE SURGICAL SYSTEMS」、
-米国仮特許出願第62/649,291号、発明の名称「USE OF LASER LIGHT AND RED-GREEN-BLUE COLORATION TO DETERMINE PROPERTIES OF BACK SCATTERED LIGHT」、
-米国仮特許出願第62/649,296号、発明の名称「ADAPTIVE CONTROL PROGRAM UPDATES FOR SURGICAL DEVICES」、
-米国仮特許出願第62/649,333号、発明の名称「CLOUD-BASED MEDICAL ANALYTICS FOR CUSTOMIZATION AND RECOMMENDATIONS TO A USER」、
-米国仮特許出願第62/649,327号、発明の名称「CLOUD-BASED MEDICAL ANALYTICS FOR SECURITY AND AUTHENTICATION TRENDS AND REACTIVE MEASURES」、
-米国仮特許出願第62/649,315号、発明の名称「DATA HANDLING AND PRIORITIZATION IN A CLOUD ANALYTICS NETWORK」、
-米国仮特許出願第62/649,313号、発明の名称「CLOUD INTERFACE FOR COUPLED SURGICAL DEVICES」、
-米国仮特許出願第62/649,320号、発明の名称「DRIVE ARRANGEMENTS FOR ROBOT-ASSISTED SURGICAL PLATFORMS」、
-米国仮特許出願第62/649,307号、発明の名称「AUTOMATIC TOOL ADJUSTMENTS FOR ROBOT-ASSISTED SURGICAL PLATFORMS」、及び
-米国仮特許出願第62/649,323号、発明の名称「SENSING ARRANGEMENTS FOR Robot-Assisted Surgical PlatformS」。
本願の出願人は、2018年3月30日に出願された以下の米国仮特許出願を所有しており、この全体が、参照により本明細書に組み込まれる。
-米国仮特許出願第62/650,887号、発明の名称「SURGICAL SYSTEMS WITH OPTIMIZED SENSING CAPABILITIES」。
本願の出願人は、2018年12月4日に出願された以下の米国特許出願を所有しており、この全体が、参照により本明細書に組み込まれる。
-米国特許出願第16/209,423号、発明の名称「METHOD OF COMPRESSING TISSUE WITHIN A STAPLING DEVICE AND SIMULTANEOUSLY DISPLAYING THE LOCATION OF THE TISSUE WITHIN THE JAWS」(現在は、米国特許出願公開第2019/0200981号)。
本願の出願人は、2018年8月20日に出願された以下の米国特許出願を所有しており、これらは各々、それらの全体が参照により本明細書に組み込まれる。
-米国特許出願第16/105,101号、発明の名称「METHOD FOR FAbricating SURGICAL STAPLER ANVILS」(現在は、米国特許出願公開第2020/0054323号)、
-米国特許出願第16/105,183号、発明の名称「REINFORCED DEFORMABLE ANVIL TIP FOR SURGICAL STAPLER ANVIL」(現在は、米国特許第10,912,559号)、
-米国特許出願第16/105,150号、発明の名称「SURGICAL STAPLER ANVILS WITH STAPLE DIRECTING PROTRUSIONS AND TISSUE STABILITY FEATURES」(現在は、米国特許出願公開第2020/0054326号)、
-米国特許出願第16/105,098号、発明の名称「FABRICATING TECHNIQUES FOR SURGICAL STAPLER ANVILS」(現在は、米国特許出願公開第2020/0054322号)、
-米国特許出願第16/105,140号、発明の名称「SURGICAL STAPLER ANVILS WITH TISSUE STOP FEATURES CONFIGURED TO AVOID TISSUE PINCH」(現在は、米国特許第10,779,821号)、
-米国特許出願第16/105,081号、発明の名称「METHOD FOR OPERATING A POWERED ARTICULATABLE SURGICAL INSTRUMENT」(現在は、米国特許出願公開第2020/0054320号)、
-米国特許出願第16/105,094号、発明の名称「SURGICAL INSTRUMENTS WITH PROGRESSIVE JAW CLOSURE ARRANGEMENTS」(現在は、米国特許出願公開第2020/0054321号)、
-米国特許出願第16/105,097号、発明の名称「POWERED SURGICAL INSTRUMENTS WITH CLUTCHING ARRANGEMENTS TO CONVERT LINEAR DRIVE MOTIONS TO ROTARY DRIVE MOTIONS」現在は、米国特許出願公開第2020/0054328号)、
-米国特許出願第16/105,104号、発明の名称「POWERED ARTICULATABLE SURGICAL INSTRUMENTS WITH CLUTCHING AND LOCKING ARRANGEMENTS FOR LINKING AN ARTICULATION DRIVE SYSTEM TO A FIRING DRIVE SYSTEM」(現在は、米国特許第10,842,492号)、
-米国特許出願第16/105,119号、発明の名称「ARTICULATABLE MOTOR POWERED SURGICAL INSTRUMENTS WITH DEDICATED ARTICULATION MOTOR ARRANGEMENTS」(現在は、米国特許出願公開第2020/0054330号)、
-米国特許出願第16/105,160号、発明の名称「SWITCHING ARRANGEMENTS FOR MOTOR POWERED ARTICULATABLE SURGICAL INSTRUMENTS」(現在は、米国特許第10,856,870号)、及び
-米国意匠特許出願第29/660,252号、発明の名称「SURGICAL STAPLER ANVILS」。
本願の出願人は、以下の米国特許出願及び米国特許を所有しており、これらは各々、それらの全体が参照により本明細書に組み込まれる。
-米国特許出願第15/386,185号、発明の名称「SURGICAL STAPLING INSTRUMENTS AND REPLACEABLE TOOL ASSEMBLIES THEREOF」(現在は、米国特許第10,639,035号)、
-米国特許出願第15/386,230号、発明の名称「ARTICULATABLE SURGICAL STAPLING INSTRUMENTS」(現在は、米国特許出願公開第2018/0168649号)、
-米国特許出願第15/386,221号、発明の名称「LOCKOUT ARRANGEMENTS FOR SURGICAL END EFFECTORS」(現在は、米国特許第10,835,247号)、
-米国特許出願第15/386,209号、発明の名称「SURGICAL END EFFECTORS AND FIRING MEMBERS THEREOF」(現在は、米国特許第10,588,632号)、
-米国特許出願第15/386,198号、発明の名称「LOCKOUT ARRANGEMENTS FOR SURGICAL END EFFECTORS AND REPLACEABLE TOOL ASSEMBLIES」(現在は、米国特許第10,610,224号)、
-米国特許出願第15/386,240号、発明の名称「SURGICAL END EFFECTORS AND ADAPTABLE FIRING MEMBERS THEREFOR」(現在は、米国特許出願公開第2018/0168651号)、
-米国特許出願第15/385,939号、発明の名称「STAPLE CARTRIDGES AND ARRANGEMENTS OF STAPLES AND STAPLE CAVITIES THEREIN」(現在は、米国特許第10,835,246号)、
-米国特許出願第15/385,941号、発明の名称「SURGICAL TOOL ASSEMBLIES WITH CLUTCHING ARRANGEMENTS FOR SHIFTING BETWEEN CLOSURE SYSTEMS WITH CLOSURE STROKE REDUCTION FEATURES AND ARTICULATION AND FIRING SYSTEMS」(現在は、米国特許第10,736,629号)、
-米国特許出願第15/385,943号、発明の名称「SURGICAL STAPLING INSTRUMENTS AND STAPLE-FORMING ANVILS」(現在は、米国特許第10,667,811号)、
-米国特許出願第15/385,950号、発明の名称「SURGICAL TOOL ASSEMBLIES WITH CLOSURE STROKE REDUCTION FEATURES」(現在は、米国特許第10,588,630号)、
-米国特許出願第15/385,945号、発明の名称「STAPLE CARTRIDGES AND ARRANGEMENTS OF STAPLES AND STAPLE CAVITIES THEREIN」(現在は、米国特許第10,893,864号)、
-米国特許出願第15/385,946号、発明の名称「SURGICAL STAPLING INSTRUMENTS AND STAPLE-FORMING ANVILS」(現在は、米国特許出願公開第2018/0168633号)、
-米国特許出願第15/385,951号、発明の名称「SURGICAL INSTRUMENTS WITH JAW OPENING FEATURES FOR INCREASING A JAW OPENING DISTANCE」(現在は、米国特許第10,568,626号)、
-米国特許出願第15/385,953号、発明の名称「METHODS OF STAPLING TISSUE」(現在は、米国特許第10,675,026号)、
-米国特許出願第15/385,954号、発明の名称「FIRING MEMBERS WITH NON-PARALLEL JAW ENGAGEMENT FEATURES FOR SURGICAL END EFFECTORS」(現在は、米国特許第10,624,635号)、
-米国特許出願第15/385,955号、発明の名称「SURGICAL END EFFECTORS WITH EXPANDABLE TISSUE STOP ARRANGEMENTS」(現在は、米国特許第10,813,638号)、
-米国特許出願第15/385,948号、発明の名称「SURGICAL STAPLING INSTRUMENTS AND STAPLE-FORMING ANVILS」(現在は、米国特許出願公開第2018/0168584号)、
-米国特許出願第15/385,956号、発明の名称「SURGICAL INSTRUMENTS WITH POSITIVE JAW OPENING FEATURES」(現在は、米国特許第10,588,631号)、
-米国特許出願第15/385,958号、発明の名称「SURGICAL INSTRUMENTS WITH LOCKOUT ARRANGEMENTS FOR PREVENTING FIRING SYSTEM ACTUATION UNLESS AN UNSPENT STAPLE CARTRIDGE IS PRESENT」(現在は、米国特許第10,639,034号)、
-米国特許出願第15/385,947号、発明の名称「STAPLE CARTRIDGES AND ARRANGEMENTS OF STAPLES AND STAPLE CAVITIES THEREIN」(現在は、米国特許第10,568,625号)、
-米国特許出願第15/385,896号、発明の名称「METHOD FOR RESETTING A FUSE OF A SURGICAL INSTRUMENT SHAFT」(現在は、米国特許出願公開第2018/0168597号)、
-米国特許出願第15/385,898号、発明の名称「STAPLE-FORMING POCKET ARRANGEMENT TO ACCOMMODATE DIFFERENT TYPES OF STAPLES」(現在は、米国特許第10,537,325号)、
-米国特許出願第15/385,899号、発明の名称「SURGICAL INSTRUMENT COMPRISING IMPROVED JAW CONTROL」(現在は、米国特許第10,758,229号)、
-米国特許出願第15/385,901号、発明の名称「STAPLE CARTRIDGE AND STAPLE CARTRIDGE CHANNEL COMPRISING WINDOWS DEFINED THEREIN」(現在は、米国特許第10,667,809号)、
-米国特許出願第15/385,902号、発明の名称「SURGICAL INSTRUMENT COMPRISING A CUTTING MEMBER」(現在は、米国特許第10,888,322号)。
-米国特許出願第15/385,904号、発明の名称「STAPLE FIRING MEMBER COMPRISING A MISSING CARTRIDGE AND/OR SPENT CARTRIDGE LOCKOUT」(現在は、米国特許第10,881,401号)、
-米国特許出願第15/385,905号、発明の名称「FIRING ASSEMBLY COMPRISING A LOCKOUT」(現在は、米国特許第10,695,055号)、
-米国特許出願第15/385,907号、発明の名称「SURGICAL INSTRUMENT SYSTEM COMPRISING AN END EFFECTOR LOCKOUT AND A FIRING ASSEMBLY LOCKOUT」(現在は、米国特許出願公開第2018/0168608号)、
-米国特許出願第15/385,908号、発明の名称「FIRING ASSEMBLY COMPRISING A FUSE」(現在は、米国特許出願公開第2018/0168609号)、
-米国特許出願第15/385,909号、発明の名称「FIRING ASSEMBLY COMPRISING A MULTIPLE FAILED-STATE FUSE」(現在は、米国特許出願公開第2018/0168610号)、
-米国特許出願第15/385,920号、発明の名称「STAPLE-FORMING POCKET ARRANGEMENTS」(現在は、米国特許第10,499,914号)、
-米国特許出願第15/385,913号、発明の名称「ANVIL ARRANGEMENTS FOR SURGICAL STAPLERS」(現在は、米国特許出願公開第2018/0168614号)、
-米国特許出願第15/385,914号、発明の名称「METHOD OF DEFORMING STAPLES FROM TWO DIFFERENT TYPES OF STAPLE CARTRIDGES WITH THE SAME SURGICAL STAPLING INSTRUMENT」(現在は、米国特許出願公開第2018/0168615号)、
-米国特許出願第15/385,893号、発明の名称「BILATERALLY ASYMMETRIC STAPLE-FORMING POCKET PAIRS」(現在は、米国特許第10,682,138号)、
-米国特許出願第15/385,929号、発明の名称「CLOSURE MEMBERS WITH CAM SURFACE ARRANGEMENTS FOR SURGICAL INSTRUMENTS WITH SEPARATE AND DISTINCT CLOSURE AND FIRING SYSTEMS」(現在は、米国特許第10,667,810号)、
-米国特許出願第15/385,911号、発明の名称「SURGICAL STAPLERS WITH INDEPENDENTLY ACTUATABLE CLOSING AND FIRING SYSTEMS」(現在は、米国特許第10,448,950号)、
-米国特許出願第15/385,927号、発明の名称「SURGICAL STAPLING INSTRUMENTS WITH SMART STAPLE CARTRIDGES」(現在は、米国特許出願公開第2018/0168625号)、
-米国特許出願第15/385,917号、発明の名称「STAPLE CARTRIDGE COMPRISING STAPLES WITH DIFFERENT CLAMPING BREADTHS」(現在は、米国特許出願公開第2018/0168617号)、
-米国特許出願第15/385,900号、発明の名称「STAPLE-FORMING POCKET ARRANGEMENTS COMPRISING PRIMARY SIDEWALLS AND POCKET SIDEWALLS」(現在は、米国特許第10,898,186号)、
-米国特許出願第15/385,931号、発明の名称「NO-CARTRIDGE AND SPENT CARTRIDGE LOCKOUT ARRANGEMENTS FOR SURGICAL STAPLERS」(現在は、米国特許出願公開第2018/0168627号)、
-米国特許出願第15/385,915号、発明の名称「FIRING MEMBER PIN ANGLE」(現在は、米国特許第 10,779,823号)、
-米国特許出願第15/385,897号、発明の名称「STAPLE-FORMING POCKET ARRANGEMENTS COMPRISING ZONED FORMING SURFACE GROOVES」(現在は、米国特許出願公開第2018/0168598号)、
-米国特許出願第15/385,922号、発明の名称「SURGICAL INSTRUMENT WITH MULTIPLE FAILURE RESPONSE MODES」(現在は、米国特許第10,426,471号)、
-米国特許出願第15/385,924号、発明の名称「SURGICAL INSTRUMENT WITH PRIMARY AND SAFETY PROCESSORS」(現在は、米国特許第10,758,230号)、
-米国特許出願第15/385,910号、発明の名称「ANVIL HAVING A KNIFE SLOT WIDTH」(現在は、米国特許第10,485,543号)、
-米国特許出願第15/385,903号、発明の名称「CLOSURE MEMBER ARRANGEMENTS FOR SURGICAL INSTRUMENTS」(現在は、米国特許第10,617,414号)、
-米国特許出願第15/385,906号、発明の名称「FIRING MEMBER PIN CONFIGURATIONS」(現在は、米国特許第10,856,868号)、
-米国特許出願第15/386,188号、発明の名称「STEPPED STAPLE CARTRIDGE WITH ASYMMETRICAL STAPLES」(現在は、米国特許第10,537,324号)、
-米国特許出願第15/386,192号、発明の名称「STEPPED STAPLE CARTRIDGE WITH TISSUE RETENTION AND GAP SETTING FEATURES」(現在は、米国特許第10,687,810号)、
-米国特許出願第15/386,206号、発明の名称「STAPLE CARTRIDGE WITH DEFORMABLE DRIVER RETENTION FEATURES」(現在は、米国特許出願公開第2018/0168586号)、
-米国特許出願第15/386,226号、発明の名称「DURABILITY FEATURES FOR END EFFECTORS AND FIRING ASSEMBLIES OF SURGICAL STAPLING INSTRUMENTS」(現在は、米国特許出願公開第2018/0168648号)、
-米国特許出願第15/386,222号、発明の名称「SURGICAL STAPLING INSTRUMENTS HAVING END EFFECTORS WITH POSITIVE OPENING FEATURES」(現在は、米国特許出願公開第2018/0168647号)、
-米国特許出願第15/386,236号、発明の名称「CONNECTION PORTIONS FOR DEPOSABLE LOADING UNITS FOR SURGICAL STAPLING INSTRUMENTS」(現在は、米国特許出願公開第2018/0168650号)、
-米国特許出願第15/385,887号、発明の名称「METHOD FOR ATTACHING A SHAFT ASSEMBLY TO A SURGICAL INSTRUMENT AND,ALTERNATIVELY,TO A SURGICAL ROBOT」(現在は、米国特許第10,835,245号)、
-米国特許出願第15/385,889号、発明の名称「SHAFT ASSEMBLY COMPRISING A MANUALLY-OPERABLE RETRACTION SYSTEM FOR USE WITH A MOTORIZED SURGICAL INSTRUMENT SYSTEM」(現在は、米国特許出願公開第2018/0168590号)、
-米国特許出願第15/385,890号、発明の名称「SHAFT ASSEMBLY COMPRISING SEPARATELY ACTUATABLE AND RETRACTABLE SYSTEMS」(現在は、米国特許第10,675,025号)、
-米国特許出願第15/385,891号、発明の名称「SHAFT ASSEMBLY COMPRISING A CLUTCH CONFIGURED TO ADAPT THE OUTPUT OF A ROTARY FIRING MEMBER TO TWO DIFFERENT SYSTEMS」(現在は、米国特許出願公開第2018/0168592号)、
-米国特許出願第15/385,892号、発明の名称「SURGICAL SYSTEM COMPRISING A FIRING MEMBER ROTATABLE INTO AN ARTICULATION STATE TO ARTICULATE AN END EFFECTOR OF THE SURGICAL SYSTEM」(現在は、米国特許第10,918,385号)、
-米国特許出願第15/385,894号、発明の名称「SHAFT ASSEMBLY COMPRISING A LOCKOUT」(現在は、米国特許第10,492,785号)、
-米国特許出願第15/385,895号、発明の名称「SHAFT ASSEMBLY COMPRISING FIRST AND SECOND ARTICULATION LOCKOUTS」(現在は、米国特許第10,542,982号)、
-米国特許出願第15/385,916号、発明の名称「SURGICAL STAPLING SYSTEMS」(現在は、米国特許出願公開第2018/0168575号)、
-米国特許出願第15/385,918号、発明の名称「SURGICAL STAPLING SYSTEMS」(現在は、米国特許出願公開第2018/0168618号)、
-米国特許出願第15/385,919号、発明の名称「SURGICAL STAPLING SYSTEMS」(現在は、米国特許出願公開第2018/0168619号)、
-米国特許出願第15/385,921号、発明の名称「SURGICAL STAPLE CARTRIDGE WITH MOVABLE CAMMING MEMBER CONFIGURED TO DISENGAGE FIRING MEMBER LOCKOUT FEATURES」(現在は、米国特許第10,687,809号)、
-米国特許出願第15/385,923号、発明の名称「SURGICAL STAPLING SYSTEMS」(現在は、米国特許出願公開第2018/0168623号)、
-米国特許出願第15/385,925号、発明の名称「JAW ACTUATED LOCK ARRANGEMENTS FOR PREVENTING ADVANCEMENT OF A FIRING MEMBER IN A SURGICAL END EFFECTOR UNLESS AN UNFIRED CARTRIDGE IS INSTALLED IN THE END EFFECTOR」(現在は、米国特許第10,517,595号)、
-米国特許出願第15/385,926号、発明の名称「AXIALLY MOVABLE CLOSURE SYSTEM ARRANGEMENTS FOR APPLYING CLOSURE MOTIONS TO JAWS OF SURGICAL INSTRUMENTS」(現在は、米国特許出願公開第2018/0168577号)、
-米国特許出願第15/385,928号、発明の名称「PROTECTIVE COVER ARRANGEMENTS FOR A JOINT INTERFACE BETWEEN A MOVABLE JAW AND ACTUATOR SHAFT OF A SURGICAL INSTRUMENT」(現在は、米国特許出願公開第2018/0168578号)、
-米国特許出願第15/385,930号、発明の名称「SURGICAL END EFFECTOR WITH TWO SEPARATE COOPERATING OPENING FEATURES FOR OPENING AND CLOSING END EFFECTOR JAWS」(現在は、米国特許出願公開第2018/0168579号)、
-米国特許出願第15/385,932号、発明の名称「ARTICULATABLE SURGICAL END EFFECTOR WITH ASYMMETRIC SHAFT ARRANGEMENT」(現在は、米国特許出願公開第2018/0168628号)、
-米国特許出願第15/385,933号、発明の名称「ARTICULATABLE SURGICAL INSTRUMENT WITH INDEPENDENT PIVOTABLE LINKAGE DISTAL OF AN ARTICULATION LOCK」(現在は、米国特許第10,603,036号)、
-米国特許出願第15/385,934号、発明の名称「ARTICULATION LOCK ARRANGEMENTS FOR LOCKING AN END EFFECTOR IN AN ARTICULATED POSITION IN RESPONSE TO ACTUATION OF A JAW CLOSURE SYSTEM」(現在は、米国特許第10,582,928号)、
-米国特許出願第15/385,935号、発明の名称「LATERALLY ACTUATABLE ARTICULATION LOCK ARRANGEMENTS FOR LOCKING AN END EFFECTOR OF A SURGICAL INSTRUMENT IN AN ARTICULATED CONFIGURATION」(現在は、米国特許第10,524,789号)、
-米国特許出願第15/385,936号、発明の名称「ARTICULATABLE SURGICAL INSTRUMENTS WITH ARTICULATION STROKE AMPLIFICATION FEATURES」(現在は、米国特許第10,517,596号)、
-米国特許出願第14/318,996号、発明の名称「FASTENER CARTRIDGES INCLUDING EXTENSIONS HAVING DIFFERENT CONFIGURATIONS」(現在は、米国特許出願公開第2015/0297228号)、
-米国特許出願第14/319,006号、発明の名称「FASTENER CARTRIDGE COMPRISING FASTENER CAVITIES INCLUDING FASTENER CONTROL FEATURES」(現在は、米国特許第10,010,324号)、
-米国特許出願第14/318,991号、発明の名称「SURGICAL FASTENER CARTRIDGES WITH DRIVER STABILIZING ARRANGEMENTS」(現在は、米国特許第9,833,241号)、
-米国特許出願第14/319,004号、発明の名称「SURGICAL END EFFECTORS WITH FIRING ELEMENT MONITORING ARRANGEMENTS」(現在は、米国特許第9,844,369号)、
-米国特許出願第14/319,008号、発明の名称「FASTENER CARTRIDGE COMPRISING NON-UNIFORM FASTENERS」(米国特許第10,299,792号)、
-米国特許出願第14/318,997号、発明の名称「FASTENER CARTRIDGE COMPRISING DEPLOYABLE TISSUE ENGAGING MEMBERS」(現在は、米国特許出願公開第10,561,422号)、
-米国特許出願第14/319,002号、発明の名称「FASTENER CARTRIDGE COMPRISING TISSUE CONTROL FEATURES」(現在は、米国特許第9,877,721号)、
-米国特許出願第14/319,013号、発明の名称「FASTENER CARTRIDGE ASSEMBLIES AND STAPLE RETAINER COVER ARRANGEMENTS」(現在は、米国特許出願公開第2015/0297233号)、及び
-米国特許出願第14/319,016号、発明の名称「FASTENER CARTRIDGE INCLUDING A LAYER ATTACHED THERETO」(現在は、米国特許第10,470,768号)。
本願の出願人は、2016年6月24日に出願された以下の米国特許出願を所有しており、これらは各々、それらの全体が参照により本明細書に組み込まれる。
-米国特許出願第15/191,775号、発明の名称「STAPLE CARTRIDGE COMPRISING WIRE STAPLES AND STAMPED STAPLES」(現在は、米国特許出願公開第2017/0367695号)、
-米国特許出願第15/191,807号、発明の名称「STAPLING SYSTEM FOR USE WITH WIRE STAPLES AND STAMPED STAPLES」(現在は、米国特許第10,702,270号)、
-米国特許出願第15/191,834号、発明の名称「STAMPED STAPLES AND STAPLE CARTRIDGES USING THE SAME」(現在は米国特許第10,542,979号)、
-米国特許出願第15/191,788号、発明の名称「STAPLE CARTRIDGE COMPRISING OVERDRIVEN STAPLES」(現在は、米国特許第10,675,024号)、及び
-米国特許出願第15/191,818号、発明の名称「STAPLE CARTRIDGE COMPRISING OFFSET LONGITUDINAL STAPLE ROWS」(現在は、米国特許第10,893,863号)。
本願の出願人は、2016年6月24日に出願された以下の米国特許出願を所有しており、これらは各々、それらの全体が参照により本明細書に組み込まれる。
-米国意匠特許出願第29/569,218号、発明の名称「SURGICAL FASTENER」(現在は、米国意匠特許第D826,405号)、
-米国意匠特許出願第29/569,227号、発明の名称「SURGICAL FASTENER」(現在は、米国意匠特許第D822,206号)、
-米国意匠特許出願第29/569,259号、発明の名称「SURGICAL FASTENER CARTRIDGE」(現在は、米国意匠特許第D847,989号)、及び
-米国意匠特許出願第29/569,264号、発明の名称「SURGICAL FASTENER CARTRIDGE」(現在は、米国意匠特許第D850,617号)。
本願の出願人は、2016年4月1日に出願された以下の特許出願を所有しており、これらは各々、それらの全体が参照により本明細書に組み込まれる。
-米国特許出願第15/089,325号、発明の名称「METHOD FOR OPERATING A SURGICAL STAPLING SYSTEM」(現在は、米国特許出願公開第2017/0281171号)、
-米国特許出願第15/089,321号、発明の名称「MODULAR SURGICAL STAPLING SYSTEM COMPRISING A DISPLAY」(現在は、米国特許第10,271,851号)、
-米国特許出願第15/089,326号、発明の名称「SURGICAL STAPLING SYSTEM COMPRISING A DISPLAY INCLUDING A RE-ORIENTABLE DISPLAY FIELD」、(現在は、米国特許第10,433,849号)、
-米国特許出願第15/089,263号、発明の名称「SURGICAL INSTRUMENT HANDLE ASSEMBLY WITH RECONFIGURABLE GRIP PORTION」(現在は、米国特許第10,307,159号)、
-米国特許出願第15/089,262号、発明の名称「ROTARY POWERED SURGICAL INSTRUMENT WITH MANUALLY ACTUATABLE BAILOUT SYSTEM」(現在は、米国特許第10,357,246号)、
-米国特許出願第15/089,277号、発明の名称「SURGICAL CUTTING AND STAPLING END EFFECTOR WITH ANVIL CONCENTRIC DRIVE MEMBER」(現在は、米国特許第10,531,874号)、
-米国特許出願第15/089,296号、発明の名称「INTERCHANGEABLE SURGICAL TOOL ASSEMBLY WITH A SURGICAL END EFFECTOR THAT IS SELECTIVELY ROTATABLE ABOUT A SHAFT AXIS」(現在は、米国特許第10,413,293号)、
-米国特許出願第15/089,258号、発明の名称「SURGICAL STAPLING SYSTEM COMPRISING A SHIFTABLE TRANSMISSION」(現在は、米国特許第10,342,543号)、
-米国特許出願第15/089,278号、発明の名称「SURGICAL STAPLING SYSTEM CONFIGURED TO PROVIDE SELECTIVE CUTTING OF TISSUE」(現在は、米国特許第10,420,552号)、
-米国特許出願第15/089,284号、発明の名称「SURGICAL STAPLING SYSTEM COMPRISING A CONTOURABLE SHAFT」(現在は、米国特許出願公開第2017/0281186号)、
-米国特許出願第15/089,295号、発明の名称「SURGICAL STAPLING SYSTEM COMPRISING A TISSUE COMPRESSION LOCKOUT」(現在は、米国特許第10,856,867号)、
-米国特許出願第15/089,300号、発明の名称「SURGICAL STAPLING SYSTEM COMPRISING AN UNCLAMPING LOCKOUT」(現在は、米国特許第10,456,140号)、
-米国特許出願第15/089,196号、発明の名称「SURGICAL STAPLING SYSTEM COMPRISING A JAW CLOSURE LOCKOUT」(現在は、米国特許第10,568,632号)、
-米国特許出願第15/089,203号、発明の名称「SURGICAL STAPLING SYSTEM COMPRISING A JAW ATTACHMENT LOCKOUT」(現在は、米国特許第10,542,991号)、
-米国特許出願第15/089,210号、発明の名称「SURGICAL STAPLING SYSTEM COMPRISING A SPENT CARTRIDGE LOCKOUT」(現在は、米国特許第10,478,190号)、
-米国特許出願第15/089,324号、発明の名称「SURGICAL INSTRUMENT COMPRISING A SHIFTING MECHANISM」(現在は、米国特許第10,314,582号)。
-米国特許出願第15/089,335号、発明の名称「SURGICAL STAPLING INSTRUMENT COMPRISING MULTIPLE LOCKOUTS」(現在は、米国特許第10,485,542号)、
-米国特許出願第15/089,339号、発明の名称「SURGICAL STAPLING INSTRUMENT」(現在は、米国特許出願公開第2017/0281173号)、
-米国特許出願第15/089,253号、発明の名称「SURGICAL STAPLING SYSTEM CONFIGURED TO APPLY ANNULAR ROWS OF STAPLES HAVING DIFFERENT HEIGHTS」(現在は、米国特許第10,413,297号)、
-米国特許出願第15/089,304号、発明の名称「SURGICAL STAPLING SYSTEM COMPRISING A GROOVED FORMING POCKET」(現在は、米国特許第10,285,705号)、
-米国特許出願第15/089,331号、発明の名称「ANVIL MODIFICATION MEMBERS FOR SURGICAL STAPLERS」(現在は、米国特許第10,376,263号)、
-米国特許出願第15/089,336号、発明の名称「STAPLE CARTRIDGES WITH ATRAUMATIC FEATURES」(現在は、米国特許第10,709,446号)、
-米国特許出願第15/089,312号、発明の名称「CIRCULAR STAPLING SYSTEM COMPRISING AN INCISABLE TISSUE SUPPORT」(現在は、米国特許出願公開第2017/0281189号)、
-米国特許出願第15/089,309号、発明の名称「CIRCULAR STAPLING SYSTEM COMPRISING ROTARY FIRING SYSTEM」(現在は、米国特許第10,675,021号)、及び
-米国特許出願第15/089,349号、発明の名称「CIRCULAR STAPLING SYSTEM COMPRISING LOAD CONTROL」(現在は、米国特許第10,682,136号)。
本願の出願人はまた、2015年12月30日に出願された以下に特定する米国特許出願を所有しており、これらは各々、それらの全体が参照により本明細書に組み込まれる。
-米国特許出願第14/984,488号、発明の名称「MECHANISMS FOR COMPENSATING FOR BATTERY PACK FAILURE IN POWERED SURGICAL INSTRUMENTS」(現在は、米国特許第10,292,704号)、
-米国特許出願第14/984,525号、発明の名称「MECHANISMS FOR COMPENSATING FOR DRIVETRAIN FAILURE IN POWERED SURGICAL INSTRUMENTS」(現在は、米国特許第10,368,865号)、及び
-米国特許出願第14/984,552号、発明の名称「SURGICAL INSTRUMENTS WITH SEPARABLE MOTORS AND MOTOR CONTROL CIRCUITS」(現在は、米国特許第10,265,068号)。
本願の出願人はまた、2016年2月9日に出願された以下に特定する米国特許出願を所有しており、これらは各々、それらの全体が参照により本明細書に組み込まれる。
-米国特許出願第15/019,220号、発明の名称「SURGICAL INSTRUMENT WITH ARTICULATING AND AXIALLY TRANSLATABLE END EFFECTOR」(現在は、米国特許第10,245,029号)、
-米国特許出願第15/019,228号、発明の名称「SURGICAL INSTRUMENTS WITH MULTIPLE LINK ARTICULATION ARRANGEMENTS」(現在は、米国特許第10,433,837号)、
-米国特許出願第15/019,196号、発明の名称「SURGICAL INSTRUMENT ARTICULATION MECHANISM WITH SLOTTED SECONDARY CONSTRAINT」(現在は、米国特許第10,413,291号)、
-米国特許出願第15/019,206号、発明の名称「SURGICAL INSTRUMENTS WITH AN END EFFECTOR THAT IS HIGHLY ARTICULATABLE RELATIVE TO AN ELONGATE SHAFT ASSEMBLY」(現在は、米国特許第10,653,413号)、
-米国特許出願第15/019,215号、発明の名称「SURGICAL INSTRUMENTS WITH NON-SYMMETRICAL ARTICULATION ARRANGEMENTS」(現在は、米国特許出願公開第2017/0224332号)、
-米国特許出願第15/019,227号、発明の名称「ARTICULATABLE SURGICAL INSTRUMENTS WITH SINGLE ARTICULATION LINK ARRANGEMENTS」(現在は、米国特許出願公開第2017/0224334号)、
-米国特許出願第15/019,235号、発明の名称「SURGICAL INSTRUMENTS WITH TENSIONING ARRANGEMENTS FOR CABLE DRIVEN ARTICULATION SYSTEMS」(現在は、米国特許第10,245,030号)、
-米国特許出願第15/019,230号、発明の名称「ARTICULATABLE SURGICAL INSTRUMENTS WITH OFF-AXIS FIRING BEAM ARRANGEMENTS」(現在は、米国特許第10,588,625号)、及び
-米国特許出願第15/019,245号、発明の名称「SURGICAL INSTRUMENTS WITH CLOSURE STROKE REDUCTION ARRANGEMENTS」(現在は、米国特許第10,470,764号)。
本願の出願人はまた、2016年2月12日に出願された以下に特定する米国特許出願を所有しており、これらは各々、それらの全体が参照により本明細書に組み込まれる。
-米国特許出願第15/043,254号、発明の名称「MECHANISMS FOR COMPENSATING FOR DRIVETRAIN FAILURE IN POWERED SURGICAL INSTRUMENTS」(現在は、米国特許第10,258,331号)、
-米国特許出願第15/043,259号、発明の名称「MECHANISMS FOR COMPENSATING FOR DRIVETRAIN FAILURE IN POWERED SURGICAL INSTRUMENTS」(現在は、米国特許第10,448,948号)、
-米国特許出願第15/043,275号、発明の名称「MECHANISMS FOR COMPENSATING FOR DRIVETRAIN FAILURE IN POWERED SURGICAL INSTRUMENTS」(現在は、米国特許出願公開第2017/0231627号)、及び
-米国特許出願第15/043,289号、発明の名称「MECHANISMS FOR COMPENSATING FOR DRIVETRAIN FAILURE IN POWERED SURGICAL INSTRUMENTS」(現在は、米国特許出願公開第2017/0231628号)。
本願の出願人は、2015年6月18日に出願された以下の特許出願を所有しており、これらは各々、それらの全体が参照により本明細書に組み込まれる。
-米国特許出願第14/742,925号、発明の名称「SURGICAL END EFFECTORS WITH POSITIVE JAW OPENING ARRANGEMENTS」(現在は、米国特許第10,182,818号)、
-米国特許出願第14/742,941号、発明の名称「SURGICAL END EFFECTORS WITH DUAL CAM ACTUATED JAW CLOSING FEATURES」(現在は、米国特許第10,052,102号)、
-米国特許出願第14/742,933号、発明の名称「SURGICAL STAPLING INSTRUMENTS WITH LOCKOUT ARRANGEMENTS FOR PREVENTING FIRING SYSTEM ACTUATION WHEN A CARTRIDGE IS SPENT OR MISSING」(現在は、米国特許第10,154,841号)、
-米国特許出願第14/742,914号、発明の名称「MOVABLE FIRING BEAM SUPPORT ARRANGEMENTS FOR ARTICULATABLE SURGICAL INSTRUMENTS」(現在は、米国特許第10,405,863号)、
-米国特許出願第14/742,900号、発明の名称「ARTICULATABLE SURGICAL INSTRUMENTS WITH COMPOSITE FIRING BEAM STRUCTURES WITH CENTER FIRING SUPPORT MEMBER FOR ARTICULATION SUPPORT」(現在は、米国特許第10,335,149号)、
-米国特許出願第14/742,885号、発明の名称「DUAL ARTICULATION DRIVE SYSTEM ARRANGEMENTS FOR ARTICULATABLE SURGICAL INSTRUMENTS」(現在は、米国特許第10,368,861号)、及び
-米国特許出願第14/742,876号、発明の名称「PUSH/PULL ARTICULATION DRIVE SYSTEMS FOR ARTICULATABLE SURGICAL INSTRUMENTS」(現在は、米国特許第10,178,992号)。
本願の出願人は、2015年3月6日に出願された以下の特許出願を所有しており、これらは各々、それらの全体が参照により本明細書に組み込まれる。
-米国特許出願第14/640,746号、発明の名称「POWERED SURGICAL INSTRUMENT」(現在は、米国特許第9,808,246号)、
-米国特許出願第14/640,795号、発明の名称「MULTIPLE LEVEL THRESHOLDS TO MODIFY OPERATION OF POWERED SURGICAL INSTRUMENTS」(現在は、米国特許第10,441,279号)、
-米国特許出願第14/640,832号、発明の名称「ADAPTIVE TISSUE COMPRESSION TECHNIQUES TO ADJUST CLOSURE RATES FOR MULTIPLE TISSUE TYPES」、(現在は、米国特許第10,687,806号)、
-米国特許出願第14/640,935号、発明の名称「OVERLAID MULTI SENSOR RADIO FREQUENCY(RF)ELECTRODE SYSTEM TO MEASURE TISSUE COMPRESSION」(現在は、米国特許第10,548,504号)、
-米国特許出願第14/640,831号、発明の名称「MONITORING SPEED CONTROL AND PRECISION INCREMENTING OF MOTOR FOR POWERED SURGICAL INSTRUMENTS」(現在は、米国特許第9,895,148号)、
-米国特許出願第14/640,859号、発明の名称「TIME DEPENDENT EVALUATION OF SENSOR DATA TO DETERMINE STABILITY,CREEP,AND VISCOELASTIC ELEMENTS OF MEASURES」(現在は、米国特許第10,052,044号)、
-米国特許出願第14/640,817号、発明の名称「INTERACTIVE FEEDBACK SYSTEM FOR POWERED SURGICAL INSTRUMENTS」(現在は、米国特許第9,924,961号)、
-米国特許出願第14/640,844号、発明の名称「CONTROL TECHNIQUES AND SUB-PROCESSOR CONTAINED WITHIN MODULAR SHAFT WITH SELECT CONTROL PROCESSING FROM HANDLE」(現在は、米国特許第10,045,776号)、
-米国特許出願第14/640,837号、発明の名称「SMART SENSORS WITH LOCAL SIGNAL PROCESSING」(現在は、米国特許第9,993,248号)、
-米国特許出願第14/640,765号、発明の名称「SYSTEM FOR DETECTING THE MIS-INSERTION OF A STAPLE CARTRIDGE INTO A SURGICAL STAPLER」(現在は、米国特許第10,617,412号)、
-米国特許出願第14/640,799号、発明の名称「SIGNAL AND POWER COMMUNICATION SYSTEM POSITIONED ON A ROTATABLE SHAFT」(現在は、米国特許第9,901,342号)、及び
-米国特許出願第14/640,780号、発明の名称「SURGICAL INSTRUMENT COMPRISING A LOCKABLE BATTERY HOUSING」(現在は、米国特許第10,245,033号)。
本願の出願人は、2015年2月27日に出願された以下の特許出願を所有しており、これらは各々、それらの全体が参照により本明細書に組み込まれる。
-米国特許出願第14/633,576号、発明の名称「SURGICAL INSTRUMENT SYSTEM COMPRISING AN INSPECTION STATION」(現在は、米国特許第10,045,779号)、
-米国特許出願第14/633,546号、発明の名称「SURGICAL APPARATUS CONFIGURED TO ASSESS WHETHER A PERFORMANCE PARAMETER OF THE SURGICAL APPARATUS IS WITHIN AN ACCEPTABLE PERFORMANCE BAND」(現在は、米国特許第10,180,463号)、
-米国特許出願第14/633,560号、発明の名称「SURGICAL CHARGING SYSTEM THAT CHARGES AND/OR CONDITIONS ONE OR MORE BATTERIES」(現在は、米国特許出願公開第2016/0249910号)、
-米国特許出願第14/633,566号、発明の名称「CHARGING SYSTEM THAT ENABLES EMERGENCY RESOLUTIONS FOR CHARGING A BATTERY」(現在は、米国特許第10,182,816号)、
-米国特許出願第14/633,555号、発明の名称「SYSTEM FOR MONITORING WHETHER A SURGICAL INSTRUMENT NEEDS TO BE SERVICED」(現在は、米国特許第10,321,907号)、
-米国特許出願第14/633,542号、発明の名称「REINFORCED BATTERY FOR A SURGICAL INSTRUMENT」(現在は、米国特許第9,931,118号)、
-米国特許出願第14/633,548号、発明の名称「POWER ADAPTER FOR A SURGICAL INSTRUMENT」(現在は、米国特許第10,245,028号)、
-米国特許出願第14/633,526号、発明の名称「ADAPTABLE SURGICAL INSTRUMENT HANDLE」(現在は、米国特許第9,993,258号)、
-米国特許出願第14/633,541号、発明の名称「MODULAR STAPLING ASSEMBLY」(現在は、米国特許第10,226,250号)、及び
-米国特許出願第14/633,562号、発明の名称「SURGICAL APPARATUS CONFIGURED TO TRACK AN END-OF-LIFE PARAMETER」(現在は、米国特許第10,159,483号)。
本願の出願人は、2014年12月18日に出願された以下の特許出願を所有しており、これらは各々、それらの全体が参照により本明細書に組み込まれる。
-米国特許出願第14/574,478号、発明の名称「SURGICAL INSTRUMENT SYSTEMS COMPRISING AN ARTICULATABLE END EFFECTOR AND MEANS FOR ADJUSTING THE FIRING STROKE OF A FIRING MEMBER」(現在は米国特許第9,844,374号)、
-米国特許出願第14/574,483号、発明の名称「SURGICAL INSTRUMENT COMPRISING LOCKABLE SYSTEMS」(現在は、米国特許第10,188,385号)、
-米国特許出願第14/575,139号、発明の名称「DRIVE ARRANGEMENTS FOR ARTICULATABLE SURGICAL INSTRUMENTS」(現在は、米国特許第9,844,375号)、
-米国特許出願第14/575,148号、発明の名称「LOCKING ARRANGEMENTS FOR DETACHABLE SHAFT ASSEMBLIES WITH ARTICULATABLE SURGICAL END EFFECTORS」(現在は、米国特許第10,085,748号)、
-米国特許出願第14/575,130号、発明の名称「SURGICAL INSTRUMENT WITH AN ANVIL THAT IS SELECTIVELY MOVABLE ABOUT A DISCRETE NON-MOVABLE AXIS RELATIVE TO A STAPLE CARTRIDGE」(現在は、米国特許第10,245,027号)、
-米国特許出願第14/575,143号、発明の名称「SURGICAL INSTRUMENTS WITH IMPROVED CLOSURE ARRANGEMENTS」(現在は、米国特許第10,004,501号)、
-米国特許出願第14/575,117号、発明の名称「SURGICAL INSTRUMENTS WITH ARTICULATABLE END EFFECTORS AND MOVABLE FIRING BEAM SUPPORT ARRANGEMENTS」(現在は、米国特許第9,943,309号)、
-米国特許出願第14/575,154号、発明の名称「SURGICAL INSTRUMENTS WITH ARTICULATABLE END EFFECTORS AND IMPROVED FIRING BEAM SUPPORT ARRANGEMENTS」(現在は、米国特許第9,968,355号)、
-米国特許出願第14/574,493号、発明の名称「SURGICAL INSTRUMENT ASSEMBLY COMPRISING A FLEXIBLE ARTICULATION SYSTEM」(現在は、米国特許第9,987,000号)、及び
-米国特許出願第14/574,500号、発明の名称「SURGICAL INSTRUMENT ASSEMBLY COMPRISING A LOCKABLE ARTICULATION SYSTEM」(現在は、米国特許第10,117,649号)。
本願の出願人は、2013年3月1日に出願された以下の特許出願を所有しており、これらは各々、それらの全体が参照により本明細書に組み込まれる。
-米国特許出願第13/782,295号、発明の名称「Articulatable Surgical Instruments With Conductive Pathways For Signal Communication」(現在は、米国特許第9,700,309号)、
-米国特許出願第13/782,323号、発明の名称「Rotary Powered Articulation Joints For Surgical Instruments」(現在は、米国特許第9,782,169号)、
-米国特許出願第13/782,338号、発明の名称「Thumbwheel Switch Arrangements For Surgical Instruments」(現在は、米国特許出願公開第2014/0249557号)、
-米国特許出願第13/782,499号、発明の名称「Electromechanical Surgical Device with Signal Relay Arrangement」(現在は、米国特許第9,358,003号)、
-米国特許出願第13/782,460号、発明の名称「Multiple Processor Motor Control for Modular Surgical Instruments」(現在は、米国特許第9,554,794号)、
-米国特許出願第13/782,358号、発明の名称「Joystick Switch Assemblies For Surgical Instruments」(現在は、米国特許第9,326,767号)、
-米国特許出願第13/782,481号、発明の名称「Sensor Straightened End Effector During Removal Through Trocar」(現在は、米国特許第9,468,438号)、
-米国特許出願第13/782,518号、発明の名称「Control Methods for Surgical Instruments with Removable Implement Portions」(現在は、米国特許出願公開第2014/0246475号)、
-米国特許出願第13/782,375号、発明の名称「Rotary Powered Surgical Instruments With Multiple Degrees of Freedom」(現在は、米国特許第9,398,911号)、及び
-米国特許出願第13/782,536号、発明の名称「Surgical Instrument Soft Stop」(現在は、米国特許第9,307,986号)。
本願の出願人はまた、2013年3月14日に出願された以下の特許出願を所有しており、これらは各々、それらの全体が参照により本明細書に組み込まれる。
-米国特許出願第13/803,097号、発明の名称「ARTICULATABLE SURGICAL INSTRUMENT COMPRISING A FIRING DRIVE」(現在は、米国特許第9,687,230号)、
-米国特許出願第13/803,193号、発明の名称「CONTROL ARRANGEMENTS FOR A DRIVE MEMBER OF A SURGICAL INSTRUMENT」(現在は、米国特許第9,332,987号)、
-米国特許出願第13/803,053号、発明の名称「INTERCHANGEABLE SHAFT ASSEMBLIES FOR USE WITH A SURGICAL INSTRUMENT」(現在は、米国特許第9,883,860号)、
-米国特許出願第13/803,086号、発明の名称「ARTICULATABLE SURGICAL INSTRUMENT COMPRISING AN ARTICULATION LOCK」(現在は、米国特許出願公開第2014/0263541号)、
-米国特許出願第13/803,210号、発明の名称「SENSOR ARRANGEMENTS FOR ABSOLUTE POSITIONING SYSTEM FOR SURGICAL INSTRUMENTS」(現在は、米国特許第9,808,244号)、
-米国特許出願第13/803,148号、発明の名称「MULTI-FUNCTION MOTOR FOR A SURGICAL INSTRUMENT」(現在は、米国特許第10,470,762号)、
-米国特許出願第13/803,066号、発明の名称「DRIVE SYSTEM LOCKOUT ARRANGEMENTS FOR MODULAR SURGICAL INSTRUMENTS」(現在は、米国特許第9,629,623号)、
-米国特許出願第13/803,117号、発明の名称「ARTICULATION CONTROL SYSTEM FOR ARTICULATABLE SURGICAL INSTRUMENTS」(現在は、米国特許第9,351,726号)、
-米国特許出願第13/803,130号、発明の名称「DRIVE TRAIN CONTROL ARRANGEMENTS FOR MODULAR SURGICAL INSTRUMENTS」(現在は、米国特許第9,351,727号)、及び
-米国特許出願第13/803,159号、発明の名称「METHOD AND SYSTEM FOR OPERATING A SURGICAL INSTRUMENT」(現在は、米国特許第9,888,919号)。
本願の出願人はまた、2014年3月7日に出願された以下の特許出願を所有しており、この全体が、参照により本明細書に組み込まれる。
-米国特許出願第14/200,111号、発明の名称「CONTROL SYSTEMS FOR SURGICAL INSTRUMENTS」(現在は、米国特許第9,629,629号)。
本願の出願人はまた、2014年3月26日に出願された以下の特許出願を所有しており、これらは各々、それらの全体が参照により本明細書に組み込まれる。
-米国特許出願第14/226,106号、発明の名称「POWER MANAGEMENT CONTROL SYSTEMS FOR SURGICAL INSTRUMENTS」(現在は、米国特許出願公開第2015/0272582号)、
-米国特許出願第14/226,099号、発明の名称「STERILIZATION VERIFICATION CIRCUIT」(現在は、米国特許第9,826,977号)、
-米国特許出願第14/226,094号、発明の名称「VERIFICATION OF NUMBER OF BATTERY EXCHANGES/PROCEDURE COUNT」(現在は、米国特許出願公開第2015/0272580号)、
-米国特許出願第14/226,117号、発明の名称「POWER MANAGEMENT THROUGH SLEEP OPTIONS OF SEGMENTED CIRCUIT AND WAKE UP CONTROL」(現在は、米国特許第10,013,049号)、
-米国特許出願第14/226,075号、発明の名称「MODULAR POWERED SURGICAL INSTRUMENT WITH DETACHABLE SHAFT ASSEMBLIES」(現在は、米国特許第9,743,929号)、
-米国特許出願第14/226,093号、発明の名称「FEEDBACK ALGORITHMS FOR MANUAL BAILOUT SYSTEMS FOR SURGICAL INSTRUMENTS」(現在は、米国特許第10,028,761号)、
-米国特許出願第14/226,116号、発明の名称「SURGICAL INSTRUMENT UTILIZING SENSOR ADAPTATION」(現在は、米国特許出願公開第2015/0272571号)、
-米国特許出願第14/226,071号、発明の名称「SURGICAL INSTRUMENT CONTROL CIRCUIT HAVING A SAFETY PROCESSOR」(現在は、米国特許第9,690,362号)、
-米国特許出願第14/226,097号、発明の名称「SURGICAL INSTRUMENT COMPRISING INTERACTIVE SYSTEMS」(現在は、米国特許第9,820,738号)、
-米国特許出願第14/226,126号、発明の名称「INTERFACE SYSTEMS FOR USE WITH SURGICAL INSTRUMENTS」(現在は、米国特許第10,004,497号)、
-米国特許出願第14/226,133号、発明の名称「MODULAR SURGICAL INSTRUMENT SYSTEM」(現在は、米国特許出願公開第2015/0272557号)、
-米国特許出願第14/226,081号、発明の名称「SYSTEMS AND METHODS FOR CONTROLLING A SEGMENTED CIRCUIT」(現在は、米国特許第9,804,618号)、
-米国特許出願第14/226,076号、発明の名称「POWER MANAGEMENT THROUGH SEGMENTED CIRCUIT AND VARIABLE VOLTAGE PROTECTION」(現在は、米国特許第9,733,663号)、
-米国特許出願第14/226,111号、発明の名称「SURGICAL STAPLING INSTRUMENT SYSTEM」(現在は、米国特許第9,750,499号)、及び
-米国特許出願第14/226,125号、発明の名称「SURGICAL INSTRUMENT COMPRISING A ROTATABLE SHAFT」(現在は、米国特許第10,201,364号)。
本願の出願人はまた、2014年9月5日に出願された以下の特許出願を所有しており、これらは各々、それらの全体が参照により本明細書に組み込まれる。
-米国特許出願第14/479,103号、発明の名称「CIRCUITRY AND SENSORS FOR POWERED MEDICAL DEVICE」(現在は、米国特許第10,111,679号)、
-米国特許出願第14/479,119号、発明の名称「ADJUNCT WITH INTEGRATED SENSORS TO QUANTIFY TISSUE COMPRESSION」(現在は、米国特許第9,724,094号)、
-米国特許出願第14/478,908号、発明の名称「MONITORING DEVICE DEGRADATION BASED ON COMPONENT EVALUATION」(現在は、米国特許第9,737,301号)、
-米国特許出願第14/478,895号、発明の名称「MULTIPLE SENSORS WITH ONE SENSOR AFFECTING A SECOND SENSOR’S OUTPUT OR INTERPRETATION」(現在は、米国特許第9,757,128号)、
-米国特許出願第14/479,110号、発明の名称「POLARITY OF HALL MAGNET TO IDENTIFY CARTRIDGE TYPE」(現在は、米国特許第10,016,199号)、
-米国特許出願第14/479,098号、発明の名称「SMART CARTRIDGE WAKE UP OPERATION AND DATA RETENTION」(現在は、米国特許第10,135,242号)、
-米国特許出願第14/479,115号、発明の名称「MULTIPLE MOTOR CONTROL FOR POWERED MEDICAL DEVICE」(現在は、米国特許第9,788,836号)、及び
-米国特許出願第14/479,108号、発明の名称「LOCAL DISPLAY OF TISSUE PARAMETER STABILIZATION」(現在は、米国特許出願公開第2016/0066913号)。
本願の出願人はまた、2014年4月9日に出願された以下の特許出願を所有しており、これらは各々、それらの全体が参照により本明細書に組み込まれる。
-米国特許出願第14/248,590号、発明の名称「MOTOR DRIVEN SURGICAL INSTRUMENTS WITH LOCKABLE DUAL DRIVE SHAFTS」(現在は、米国特許第9,826,976号)、
-米国特許出願第14/248,581号、発明の名称「SURGICAL INSTRUMENT COMPRISING A CLOSING DRIVE AND A FIRING DRIVE OPERATED FROM THE SAME ROTATABLE OUTPUT」(現在は、米国特許第9,649,110号)、
-米国特許出願第14/248,595号、発明の名称「SURGICAL SYSTEM COMPRISING FIRST AND SECOND DRIVE SYSTEMS」(現在は、米国特許第9,844,368号)、
-米国特許出願第14/248,588号、発明の名称「POWERED LINEAR SURGICAL STAPLER」(現在は、米国特許第10,405,857号)、
-米国特許出願第14/248,591号、発明の名称「SURGICAL INSTRUMENT COMPRISING A GAP SETTING SYSTEM」(現在は、米国特許第10,149,680号)、
-米国特許出願第14/248,584号、発明の名称「MODULAR MOTOR DRIVEN SURGICAL INSTRUMENTS WITH ALIGNMENT FEATURES FOR ALIGNING ROTARY DRIVE SHAFTS WITH SURGICAL END EFFECTOR SHAFTS」(現在は、米国特許第9,801,626号)、
-米国特許出願第14/248,587号、発明の名称「POWERED SURGICAL STAPLER」(現在は、米国特許第9867612号)、
-米国特許出願第14/248,586号、発明の名称「DRIVE SYSTEM DECOUPLING ARRANGEMENT FOR A SURGICAL INSTRUMENT」(現在は、米国特許第10,136,887号)、及び
-米国特許出願第14/248,607号、発明の名称「MODULAR MOTOR DRIVEN SURGICAL INSTRUMENTS WITH STATUS INDICATION ARRANGEMENTS」(現在は、米国特許第9,814,460号)。
本願の出願人はまた、2013年4月16日に出願された以下の特許出願を所有しており、これらは各々、それらの全体が参照により本明細書に組み込まれる。
-米国仮特許出願第61/812,365号、発明の名称「SURGICAL INSTRUMENT WITH MULTIPLE FUNCTIONS PERFORMED BY A SINGLE MOTOR」、
-米国仮特許出願第61/812,376号、発明の名称「LINEAR CUTTER WITH POWER」、
-米国仮特許出願第61/812,382号、発明の名称「LINEAR CUTTER WITH MOTOR AND PISTOL GRIP」、
-米国仮特許出願第61/812,385号、発明の名称「SURGICAL INSTRUMENT HANDLE WITH MULTIPLE ACTUATION MOTORS AND MOTOR CONTROL」、及び
-米国仮特許出願第61/812,372号、発明の名称「SURGICAL INSTRUMENT WITH MULTIPLE FUNCTIONS PERFORMED BY A SINGLE MOTOR」。
本願の出願人は、2017年12月28日に出願された以下の米国仮特許出願を所有しており、これらの各々の開示の全体が、参照により本明細書に組み込まれる。
-米国仮特許出願第62/611,341号、発明の名称「INTERACTIVE SURGICAL PLATFORM」、
-米国仮特許出願第62/611,340号、発明の名称「CLOUD-BASED MEDICAL ANALYTICS」、及び
-米国仮特許出願第62/611,339号、発明の名称「ROBOT ASSISTED SURGICAL PLATFORM」。
本願の出願人は、2018年3月28日に出願された以下の米国仮特許出願を所有しており、これらの各々の全体が、参照により本明細書に組み込まれる。
-米国仮特許出願第62/649,302号、発明の名称「INTERACTIVE SURGICAL SYSTEMS WITH encrypted COMMUNICATION CAPABILITIES」、
-米国仮特許出願第62/649,294号、発明の名称「DATA STRIPPING METHOD TO INTERROGATE PATIENT RECORDS AND CREATE ANONYMIZED RECORD」、
-米国仮特許出願第62/649,300号、発明の名称「SURGICAL HUB SITUATIONAL AWARENESS」、
-米国仮特許出願第62/649,309号、発明の名称「SURGICAL HUB SPATIAL AWARENESS TO DETERMINE DEVICES IN OPERATING THEATER」、
-米国仮特許出願第62/649,310号、発明の名称「COMPUTER IMPLEMENTED INTERACTIVE SURGICAL SYSTEMS」、
-米国仮特許出願第62/649,291号、発明の名称「USE OF LASER LIGHT AND RED-GREEN-BLUE COLORATION TO DETERMINE PROPERTIES OF BACK SCATTERED LIGHT」、
-米国仮特許出願第62/649,296号、発明の名称「ADAPTIVE CONTROL PROGRAM UPDATES FOR SURGICAL DEVICES」、
-米国仮特許出願第62/649,333号、発明の名称「CLOUD-BASED MEDICAL ANALYTICS FOR CUSTOMIZATION AND RECOMMENDATIONS TO A USER」、
-米国仮特許出願第62/649,327号、発明の名称「CLOUD-BASED MEDICAL ANALYTICS FOR SECURITY AND AUTHENTICATION TRENDS AND REACTIVE MEASURES」、
-米国仮特許出願第62/649,315号、発明の名称「DATA HANDLING AND PRIORITIZATION IN A CLOUD ANALYTICS NETWORK」、
-米国仮特許出願第62/649,313号、発明の名称「CLOUD INTERFACE FOR COUPLED SURGICAL DEVICES」、
-米国仮特許出願第62/649,320号、発明の名称「DRIVE ARRANGEMENTS FOR ROBOT-ASSISTED SURGICAL PLATFORMS」、
-米国仮特許出願第62/649,307号、発明の名称「AUTOMATIC TOOL ADJUSTMENTS FOR ROBOT-ASSISTED SURGICAL PLATFORMS」、及び
-米国仮特許出願第62/649,323号、発明の名称「SENSING ARRANGEMENTS FOR Robot-Assisted Surgical PlatformS」。
本願の出願人は、2018年3月29日に出願された以下の米国特許出願を所有しており、これらの各々の全体が、参照により本明細書に組み込まれる。
-米国特許出願第15/940,641号、発明の名称「INTERACTIVE SURGICAL SYSTEMS WITH encrypted COMMUNICATION CAPABILITIES」(現在は、米国特許出願公開第2019/0207911号)、
-米国特許出願第15/940,648号、発明の名称「INTERACTIVE SURGICAL SYSTEMS WITH CONDITION HANDLING OF DEVICES AND DATA CAPABILITIES」(現在は、米国特許出願公開第2019/0206004号)、
-米国特許出願第15/940,656号、発明の名称「Surgical hub coordination of control and communication of operating room devices」(現在は、米国特許出願公開第2019/0201141号)、
-米国特許出願第15/940,666号、発明の名称「Spatial awareness of surgical hubs in operating rooms」(現在は、米国特許出願公開第2019/0206551号)、
-米国特許出願第15/940,670号、発明の名称「Cooperative utilization of data derived from secondary sources by intelligent surgical hubs」(現在は、米国特許出願公開第2019/0201116号)、
-米国特許出願第15/940,677号、発明の名称「Surgical hub control arrangements」(現在は、米国特許出願公開第2019/0201143号)、
-米国特許出願第15/940,632号、発明の名称「DATA STRIPPING METHOD TO INTERROGATE PATIENT RECORDS AND CREATE ANONYMIZED RECORD」(現在は、米国特許出願公開第2019/0205566号)、
-米国特許出願第15/940,640号、発明の名称「COMMUNICATION HUB AND STORAGE DEVICE FOR STORING PARAMETERS AND STATUS OF A SURGICAL DEVICE TO BE SHAREd WITH CLOUD BASED ANALYTICS SYSTEMS」(現在は、米国特許出願公開第2019/0200863号)、
-米国特許出願第15/940,645号、発明の名称「SELF DESCRIBING DATA PACKETS GENERATED AT AN ISSUING INSTRUMENT」(現在は、米国特許第10,892,899号)、
米国特許出願第15/940,649号、発明の名称「DATA PAIRING TO INTERCONNECT A DEVICE MEASURED PARAMETER WITH AN OUTCOME」(現在は、米国特許出願公開第2019/0205567号)、
-米国特許出願第15/940,654号、発明の名称「SURGICAL HUB SITUATIONAL AWARENESS」(現在は、米国特許出願公開第2019/0201140号)、
-米国特許出願第15/940,663号、発明の名称「SURGICAL SYSTEM DISTRIBUTED PROCESSING」(現在は、米国特許出願公開第2019/0201033号)、
-米国特許出願第15/940,668号、発明の名称「AGGREGATION AND REPORTING OF SURGICAL HUB DATA」(現在は、米国特許出願公開第2019/0201115号)、
-米国特許出願第15/940,671号、発明の名称「SURGICAL HUB SPATIAL AWARENESS TO DETERMINE DEVICES IN OPERATING THEATER」(現在は、米国特許出願公開第2019/0201104号)、
-米国特許出願第15/940,686号、発明の名称「DISPLAY OF ALIGNMENT OF STAPLE CARTRIDGE TO PRIOR LINEAR STAPLE LINE」(現在は、米国特許出願公開第2019/0201105号)、
-米国特許出願第15/940,700号、発明の名称「STERILE FIELD INTERACTIVE CONTROL DISPLAYS」(現在は、米国特許出願公開第2019/0205001号)、
-米国特許出願第15/940,629号、発明の名称「COMPUTER IMPLEMENTED INTERACTIVE SURGICAL SYSTEMS」(現在は、米国特許出願公開第2019/0201112号)、
-米国特許出願第15/940,704号、発明の名称「USE OF LASER LIGHT AND RED-GREEN-BLUE COLORATION TO DETERMINE PROPERTIES OF BACK SCATTERED LIGHT」(現在は、米国特許出願公開第2019/0206050号)、
-米国特許出願第15/940,722号、発明の名称「CHARACTERIZATION OF TISSUE IRREGULARITIES THROUGH THE USE OF MONO-CHROMATIC LIGHT REFRACTIVITY」(現在は、米国特許出願第2019/0200905号)、及び
-米国特許出願第15/940,742号、発明の名称「DUAL CMOS ARRAY IMAGING」(現在は、米国特許出願公開第2019/0200906号)。
本願の出願人は、2018年3月29日に出願された以下の米国特許出願を所有しており、これらの各々の全体が、参照により本明細書に組み込まれる。
-米国特許出願第15/940,636号、発明の名称「ADAPTIVE CONTROL PROGRAM UPDATES FOR SURGICAL DEVICES」(現在は、米国特許出願公開第2019/0206003号)。
-米国特許出願第15/940,653号、発明の名称「ADAPTIVE CONTROL PROGRAM UPDATES FOR SURGICAL HUBS」(現在は、米国特許出願公開第2019/0201114号)。
-米国特許出願第15/940,660号、発明の名称「CLOUD-BASED MEDICAL ANALYTICS FOR CUSTOMIZATION AND RECOMMENDATIONS TO A USER」(現在は、米国特許出願公開第2019/0206555号)、
-米国特許出願第15/940,679号、発明の名称「CLOUD-BASED MEDICAL ANALYTICS FOR LINKING OF LOCAL USAGE TRENDS WITH THE RESOURCE ACQUISITION BEHAVIORS OF LARGER DATA SET」(現在は、米国特許出願公開第2019/0201144号)、
-米国特許出願第15/940,694号、発明の名称「Cloud-based Medical Analytics for Medical Facility Segmented Individualization of Instrument Function」(現在は、米国特許出願公開第2019/0201119号)、
-米国特許出願第15/940,634号、発明の名称「CLOUD-BASED MEDICAL ANALYTICS FOR SECURITY AND AUTHENTICATION TRENDS AND REACTIVE MEASURES」(現在は、米国特許出願公開第2019/0201138号)、
-米国特許出願第15/940,706号、発明の名称「DATA HANDLING AND PRIORITIZATION IN A CLOUD ANALYTICS NETWORK」(現在は、米国特許出願公開第2019/0206561号)、及び
-米国特許出願第15/940,675号、発明の名称「CLOUD INTERFACE FOR COUPLED SURGICAL DEVICES」(現在は、米国特許第10,849,697号)。
本願の出願人は、2018年3月29日に出願された以下の米国特許出願を所有しており、これらの各々の全体が、参照により本明細書に組み込まれる。
-米国特許出願第15/940,627号、発明の名称「DRIVE ARRANGEMENTS FOR ROBOT-ASSISTED SURGICAL PLATFORMs」(現在は、米国特許出願公開第2019/0201111号)、
-米国特許出願第15/940,637号、発明の名称「COMMUNICATION ARRANGEMENTS FOR ROBOT-ASSISTED SURGICAL PLATFORMS」(現在は、米国特許出願公開第2019/0201139号)、
-米国特許出願第15/940,642号、発明の名称「CONTROLS FOR ROBOT-ASSISTED SURGICAL PLATFORMS」(現在は、米国特許出願公開第2019/0201113号)、
-米国特許出願第15/940,676号、発明の名称「AUTOMATIC TOOL ADJUSTMENTS FOR ROBOT-ASSISTED SURGICAL PLATFORMS」(現在は、米国特許出願公開第2019/0201142号)、
-米国特許出願第15/940,680号、発明の名称「CONTROLLERS FOR ROBOT-ASSISTED SURGICAL PLATFORMS」(現在は、米国特許出願公開第2019/0201135号)、
-米国特許出願第15/940,683号、発明の名称「COOPERATIVE SURGICAL ACTIONS FOR ROBOT-ASSISTED SURGICAL PLATFORMS」(現在は、米国特許出願公開第2019/0201145号)、
-米国特許出願第15/940,690号、発明の名称「DISPLAY ARRANGEMENTS FOR ROBOT-ASSISTED SURGICAL PLATFORMS」(現在は、米国特許出願公開第2019/0201118号)、及び
-米国特許出願第15/940,711号、発明の名称「SENSING ARRANGEMENTS FOR Robot-Assisted Surgical PlatformS」(現在は、米国特許出願公開第2019/0201120号)。
明細書に記載され、添付の図面に示されるように、実施形態の全体的な構造、機能、製造、及び使用の完全な理解を提供するために、多数の具体的な詳細が説明される。周知の動作、構成要素、及び素子は、本明細書に記載される実施形態を不明瞭にしないようにするため詳細に記載されていない。読者は、本明細書に説明及び図示された実施形態が、非限定的な例であり、したがって本明細書において開示されている特定の構造的及び機能的詳細が、代表的及び例示的であり得ることを、理解するであろう。特許請求の範囲から逸脱することなく、それに対する変形及び変更を行うことができる。
「備える、含む(comprise)」(また、「comprises」及び「comprising」などのcompriseの任意の語形)、「有する(have)」(また、「has」及び「having」などのhaveの任意の語形)、「含む(include)」(また、「includes」及び「including」などのincludeの任意の語形)、及び「含有する(contain)」(また、「contains」及び「containing」などのcontainの任意の語形)という用語は、制約のない連結動詞である。結果として、1つ又は2つ以上の要素を「備える、含む(comprises)」、「有する(has)」、「含む(includes)」、又は「含有する(contains)」外科用システム、デバイス、又は装置は、それらの1つ又は2つ以上の要素を有するが、それらの1つ又は2つ以上の要素のみを有することに限定されない。同様に、1つ又は2つ以上の特徴を「備える、含む(comprises)」、「有する(has)」、「含む(includes)」、又は「含有する(contains)」システム、デバイス、又は装置の要素は、それらの1つ又は2つ以上の特徴を有するが、それらの1つ又は2つ以上の特徴のみを有することに限定されない。
「近位」及び「遠位」という用語は、本明細書では、外科用器具のハンドル部分を操作する臨床医を基準として使用される。「近位」という用語は、臨床医に最も近い部分を指し、「遠位」という用語は、臨床医から離れた位置にある部分を指す。便宜上及び明確性のために、「垂直」、「水平」、「上」、及び「下」などの空間的用語が、本明細書において図面に対して使用され得ることが更に理解されよう。しかしながら、外科用器具は、多くの向き及び位置で使用されるものであり、これらの用語は限定的及び/又は絶対的であることを意図したものではない。
腹腔鏡下及び低侵襲性の外科的処置を行うための、様々な例示的なデバイス及び方法が提供される。しかし、本明細書に開示される様々な方法及びデバイスが、例えば切開外科的処置と関連するものを含む、多くの外科的処置及び用途で使用され得ることが、読者には容易に理解されよう。本明細書の「発明を実施するための形態」を読み進めることで、読者は、本明細書に開示される様々な器具が、例えば、元からある開口部を通じて、組織に形成された切開部又は穿刺孔を通じてなど、任意の方法で体内に挿入され得ることを更に理解するであろう。これらの器具の作用部分すなわちエンドエフェクタ部分は、患者の体内に直接挿入することもでき、外科用器具のエンドエフェクタ及び細長シャフトを進めることが可能な作用通路を有するアクセスデバイスを通じて挿入することもできる。
外科用ステープル留めシステムは、シャフトと、シャフトから延在するエンドエフェクタと、を備えることができる。エンドエフェクタは、第1のジョーと第2のジョーとを備える。第1のジョーは、ステープルカートリッジを備える。ステープルカートリッジは、第1のジョー内に挿入可能であり、かつ第1のジョーから取り外し可能であるが、ステープルカートリッジが第1のジョーから取り外し可能でない、又は第1のジョーから少なくとも容易に交換可能ではない、他の実施形態が想到される。第2のジョーは、ステープルカートリッジから射出されたステープルを変形させるように構成されているアンビルを備える。第2のジョーは、閉鎖軸を中心に第1のジョーに対して枢動可能であるが、第1のジョーが第2のジョーに対して枢動可能である、他の実施形態が想定される。外科用ステープル留めシステムは、エンドエフェクタをシャフトに対して回転させる、すなわち関節運動させることができるように構成されている関節運動継手を更に備える。エンドエフェクタは、関節運動継手を通って延在する関節運動軸を中心に回転可能である。関節運動継手を含まない他の実施形態も想到される。
ステープルカートリッジは、カートリッジ本体を備える。カートリッジ本体は、近位端部と、遠位端部と、近位端部と遠位端部との間に延在するデッキと、を含む。使用中、ステープルカートリッジは、ステープル留めされる組織の第1の側に位置付けられ、アンビルは、組織の第2の側に位置付けられる。アンビルは、ステープルカートリッジに向かって移動させられて、デッキに対して組織を押し付けてクランプする。続いて、カートリッジ本体内に取り外し可能に格納されているステープルを、組織内に配備することができる。カートリッジ本体は、カートリッジ本体に画定されたステープルキャビティを含み、ステープルは、ステープルキャビティ内に取り外し可能に格納される。ステープルキャビティは、6つの長手方向列に配設されている。3列のステープルキャビティが長手方向スロットの第1の側に位置付けられ、3列のステープルキャビティが長手方向スロットの第2の側に位置付けられている。ステープルキャビティ及びステープルの他の構成も可能であり得る。
ステープルは、カートリッジ本体内のステープルドライバによって支持されている。ドライバは、ステープルキャビティからステープルを射出するために、第1の、すなわち未発射位置と、第2の、すなわち発射済み位置との間で移動可能である。ドライバは、カートリッジ本体の下部周辺に延在するリテーナによってカートリッジ本体内に保持され、また、カートリッジ本体を把持し、リテーナをカートリッジ本体に対して保持するように構成されている、弾性部材を含む。ドライバは、スレッドによってそれらの未発射位置とそれらの発射済み位置との間で移動可能である。スレッドは、近位端部に隣接した近位位置と、遠位端部に隣接した遠位位置との間で移動可能である。スレッドは、ドライバの下を摺動し、ドライバを持ち上げるように構成されている複数の傾斜面を含み、ステープルがその上に支持され、アンビルに向かう。
上記に加えて、スレッドは発射部材によって遠位に移動される。発射部材は、スレッドに接触し、スレッドを遠位端部に向かって押すように構成されている。カートリッジ本体内に画定された長手方向スロットは、発射部材を受容するように構成されている。アンビルは、発射部材を受容するように構成されているスロットも含む。発射部材は、第1のジョーに係合する第1のカムと、第2のジョーに係合する第2のカムと、を更に備える。発射部材を遠位に前進させる際、第1のカム及び第2のカムは、ステープルカートリッジのデッキとアンビルとの間の距離、すなわち組織間隙を制御することができる。発射部材はまた、ステープルカートリッジとアンビルとの中間に捕捉された組織を切開するように構成されているナイフも備える。ステープルがナイフよりも前方に射出されるように、ナイフが傾斜面に対して少なくとも部分的に近位に位置付けられることが望ましい。
外科用器具1000が図1に示されている。以下でより詳細に説明するように、外科用器具1000は、患者組織をクランプし、切開し、封止するように構成されている。外科用器具1000は、エンドエフェクタ1300と、関節運動継手1400と、エンドエフェクタ1300を関節運動継手1400の周りで関節運動させるように構成されている関節運動駆動システム1700(図13)と、を備える。エンドエフェクタ1300は、第1のジョー1310と、開放位置と閉鎖位置との間で移動可能な第2のジョー1320と、閉鎖ストローク中に第2のジョー1320を閉鎖するように動作可能な駆動システム1600(図13)と、を備える。エンドエフェクタ1300が閉鎖された後、駆動システム1600は、発射ストローク中に第1のジョー1310と第2のジョー1320との間に捕捉された患者組織を切開してステープル留めするように再び動作可能である。加えて、外科用器具1000は、切開された組織を封止するようにも動作可能であるエネルギー送達システム1900を備える。
外科用器具1000は、ハンドル1100と、ハンドル1100から延在するシャフト1200と、を更に備える。ハンドル1100は、ハンドル本体1120から下方に延在するグリップ1110を備える。以下でより詳細に考察するように、ハンドル1100は、エンドエフェクタ1300を閉鎖するように動作可能な閉鎖アクチュエータ1130と、シャフト1200に対してエンドエフェクタ1300を関節運動させるように動作可能な関節運動アクチュエータ1140と、を更に備える。シャフト1200は、回転継手1220を中心としてハンドル本体1120に回転可能に取り付けられた、外側ハウジング1210及び内側フレーム又はスパイン1230(図4)を備える。図5を参照すると、関節運動継手1400は、外側ハウジング1210に固定された可撓性外側ハウジング1410と、シャフトフレーム1230(図4)に接続された可撓性関節運動フレーム1430と、を備える。第1のジョー1310は、第1のジョー1310と第2のジョー1320との間に回転継手1330を形成するピンを介して可撓性関節運動フレーム1430に装着された近位端部1311を備える。可撓性関節運動ハウジング1410の遠位端部はまた、エンドエフェクタ1300が関節運動継手1400の遠位端部に固定されるように、クランプリング1420を介して第1のジョー1310に固定される。
主に図1及び図13を参照すると、関節運動駆動システム1700は、外科用器具1000の制御システムと通信する電気モータ1710を備える。制御システムは、関節運動アクチュエータ1140の作動に応答して、バッテリ1180から電気モータ1710に電力を供給するように構成されている。関節運動アクチュエータ1140は、電気モータ1710を第1の方向に動作させるように第1の方向に作動可能であり、電気モータ1710を第2の方向、すなわち、反対の方向に動作させるように第2の方向に作動可能である、スイッチを備える。関節運動駆動システム1700は、電気モータ1710のギア出力1720と動作可能に係合される、ハンドル1100内に回転可能に支持された伝達ギア1730を更に備える。主に図2及び図4を参照すると、関節運動駆動システム1700はまた、伝達ギア1730と動作可能に係合された第1の関節運動アクチュエータ1740及び第2の関節運動アクチュエータ1750を備える。より具体的には、伝達ギア1730は、第1の関節運動アクチュエータ1740の近位端部上に画定された第1の駆動ラック1745及び第2の関節運動アクチュエータ1750の近位端部上に画定された第2の駆動ラック1755と噛み合わされた、ピニオンギア部分1735を備える。伝達ギア1730の両側に第1の駆動ラック1745及び第2の駆動ラック1755を位置付けることにより、第1の関節運動アクチュエータ1740及び第2の関節運動アクチュエータ1750は、伝達ギア1730が回転させられると、互いに反対側に又は拮抗的に、近位及び遠位に駆動される。例えば、電気モータ1710がその第1の方向に動作するとき、エンドエフェクタ1300を第1の方向に関節運動させるために、第1の関節運動アクチュエータ1740は遠位に駆動され、第2の関節運動アクチュエータ1750は近位に駆動される。それに対応して、電気モータ1710がその第2の方向に動作するとき、エンドエフェクタ1300を第2の又は反対の方向に関節運動させるために、第1の関節運動アクチュエータ1740は近位に駆動され、第2の関節運動アクチュエータ1750は遠位に駆動される。
図4~図6を参照すると、第1のジョー1310は、第1のジョー1310の第1の横方向側上で上向きに延在する第1の関節運動駆動ポスト1317と、第1のジョー1310の第2の又は反対側の横方向側上で上向きに延在する第2の関節運動駆動ポスト1319と、を備える。第1の関節運動アクチュエータ1740の遠位端部は、第1の関節運動駆動ポスト1317と係合された第1の駆動マウント1747を備え、第2の関節運動アクチュエータ1750の遠位端部は、第2の関節運動駆動ポスト1319と係合された第2の駆動マウント1759を備え、これによって、関節運動アクチュエータ1740及び1750の近位移動及び遠位移動は、エンドエフェクタ1300を関節運動継手1400を中心として回転させる。エンドエフェクタ1300が関節運動しているとき、関節運動継手1400の可撓性外側ハウジング1410及び可撓性関節運動フレーム1430は、エンドエフェクタ1300の回転に適応するように弾性的に偏向する。様々な事例では、エンドエフェクタ1300の関節運動位置は、関節運動駆動部1700内の摩擦により所定位置に保持される。様々な実施形態では、関節運動駆動部1700は、エンドエフェクタ1300を定位置に解放可能に保持するように構成されている関節運動ロックを備える。
上述のように、外科用器具1000は、エンドエフェクタ1300を閉鎖するように動作可能であり、次いで、エンドエフェクタ1300の第1のジョー1310と第2のジョー1320との間に捕捉された患者組織をステープル留めして切開するようにもう一度動作可能である、駆動システム1600を備える。再び図13を参照すると、駆動システム1600は、外科用器具1000の制御システムと通信する電気モータ1610を備える。制御システムは、閉鎖アクチュエータ1130の作動に応答して、バッテリ1180から電気モータ1610に電力を供給するように構成されている。閉鎖アクチュエータ1130は、エンドエフェクタ1300を閉鎖するために、電気モータ1610を第1の方向に動作させるように第1の方向に作動可能であり、エンドエフェクタ1300を開放するために、電気モータ1610を第2の方向、すなわち、反対の方向に動作させるように第2の方向に作動可能である、スイッチを備える。閉鎖駆動システム1600は、電気モータ1610のギア出力1620と動作可能に係合される、ハンドル1100内に回転可能に支持された伝達ギア1630を更に備える。伝達ギア1630は、回転可能な駆動シャフト1660に固定して装着され、そのため、駆動シャフト1660は伝達ギア1630とともに回転する。回転可能な駆動シャフト1660は、シャフト1200を通って延在し、エンドエフェクタ1300の関節運動に適応するために関節運動継手1400を通って延在する可撓性部分1665を備える。回転可能な駆動シャフト1660は、第1のジョー1310の近位端部1311内に延在する遠位結合部1661を更に備える。少なくとも1つの実施形態では、遠位結合部1661は、例えば、六角形状のアパーチャを含むが、任意の好適な構成を含むことができる。
主に図6を参照すると、第1のジョー1310は、近位端部1311と遠位端部1313との間に延在するチャネル1312を更に備える。チャネル1312は、底壁から上向きに延在する2つの側壁を備え、例えば、側壁間にステープルカートリッジ1500などのステープルカートリッジを受容するように構成されている。ステープルカートリッジ1500は、近位端部1511、遠位ノーズ1513、及び近位端部1511と遠位ノーズ1513との間に延在する組織支持デッキ1512を含む、カートリッジ本体1510を備える。カートリッジ本体1510は、近位端部1511から遠位ノーズ1513に向かって延在する、カートリッジ本体1510に画定された長手方向スロット1520を更に備える。カートリッジ本体1510はまた、近位端部1511と遠位ノーズ1513との間に延在する長手方向列のステープルキャビティ1530を備える。より具体的には、カートリッジ本体1510は、長手方向スロット1520の第1の横方向側上に位置付けられた単一の長手方向列のステープルキャビティ1530と、長手方向スロット1520の第2の又は反対側の横方向側上に位置付けられた単一の長手方向列のステープルキャビティ1530と、を備える。とは言え、ステープルカートリッジは、任意の好適な数の長手方向列のステープルキャビティ1530を備え得る。ステープルカートリッジ1500は、各ステープルキャビティ1530内に取り外し可能に格納されたステープルを更に含み、ステープルは、以下で更に詳細に考察するように、ステープル発射ストローク中にステープルカートリッジ1500から排出される。
上記に加えて、再び図6を参照すると、ステープルカートリッジ1500は、カートリッジ本体内に回転可能に支持された駆動ねじ1560を更に備える。より具体的には、駆動ねじ1560は、カートリッジ本体1510の近位端部1511内の近位軸受によって回転可能に支持された近位端部1561と、カートリッジ本体1510の遠位端部1513内の遠位軸受によって回転可能に支持された遠位端部1563と、を備える。駆動ねじ1560の近位端部1561は、カートリッジ端部1510の近位端部1511に対して近位に延在する六角結合部を備える。ステープルカートリッジ1500が第1のジョー1310内に着座しているとき、カートリッジ本体1510の近位端部1511は、第1のジョー1310の近位端部1311内に摺動されて、これによって、近位駆動ねじ端部1561の六角結合部が回転可能な駆動シャフト1660の遠位駆動端部1661内に挿入されてそれと動作可能に係合される。駆動ねじ1560が回転可能な駆動シャフト1660に結合されると、ステープルカートリッジ1500の遠位ノーズ1513は、第1のジョー1310の遠位端部1313内に着座している。とは言え、ステープルカートリッジ1500は、任意の好適な様式で第1のジョー1310内に着座され得る。様々な事例では、ステープルカートリッジ1500は、第1のジョー1310内にステープルカートリッジ1500を解放可能に固定するために、第1のジョー1310に解放可能に係合する、1つ又は2つ以上のスナップ嵌め及び/又は圧入特徴部を備える。ステープルカートリッジ1500を第1のジョー1310から取り外すために、上向きの力又は持ち上げ力をステープルカートリッジ1500の遠位ノーズ1513に加えて、ステープルカートリッジ1500を第1のジョー1310から解放することができる。
再び図6を参照すると、駆動ねじ1560は、近位端部1561と遠位端部1563との間に延在するねじ山付き部分1565を更に備え、ステープルカートリッジ1500は、ねじ山付き部分1565と螺合可能に係合される発射部材1570を更に備える。より具体的には、発射部材1570は、駆動ねじ1560が回転させられるときに発射部材1570がステープルカートリッジ1500内で並進するように、回転が抑制されるか、又は少なくとも実質的に抑制されるねじ山付き部分1565と螺合可能に係合されるねじ山付きナットインサート1575を備える。駆動ねじ1560が第1の方向に回転させられると、発射部材1570は、閉鎖ストローク中に近位非作動位置から遠位作動位置に並進して、第2のジョー1320をその開放又は非クランプ位置(図7)からその遠位又はクランプ位置(図8及び図11)に移動させる。より具体的には、発射部材1570は、第1のジョー1310に係合する第1のカム1572と、第2のジョー1320に係合する第2のカム1576と、を備え、これらのカムは閉鎖ストローク中に、第1のジョー1310に対して第2のジョー1320を協働して位置付ける。閉鎖ストロークの開始時には、第2のカム1576は、第2のジョー1320と係合していない。しかしながら、第2のカム1576は、閉鎖ストローク中に傾斜1326(図6)と接触して、第2のジョー1320を第1のジョー1310に向かって回転させる。
発射部材1570がその閉鎖ストロークの終了に到達すると(図8及び図11)、外科用器具1000のコントローラは、駆動モータ1610を停止させる(図13)。そのような時点で、図11を参照すると、発射部材1570は、第1のジョー1310と第2のジョー1320との間に捕捉された患者組織を切開しておらず、かつ/又は患者組織をステープル留めしていない。臨床医が患者組織上でのジョー1310及び1320の位置付けに満足しない場合、臨床医は、閉鎖アクチュエータ1130(図1)を解放して、駆動モータ1610をその第2の又は反対の方向に動作させ、発射部材1570を第2のジョー1320との係合から近位に並進させることができる。少なくとも1つの事例では、ハンドル1100は、閉鎖アクチュエータ1130をその閉鎖位置に解放可能に保持する閉鎖ロックを備え、臨床医は、閉鎖アクチュエータ1130を再開放するために閉鎖ロックを非アクティブ化しなければならない。図1を参照すると、ハンドル1100は、作動されると閉鎖アクチュエータ1130をロック解除する閉鎖ロック解放部1160を更に備える。エンドエフェクタ1300が開放されると、臨床医は、エンドエフェクタ1300を患者組織に対して再位置付けし、患者組織に対するエンドエフェクタ1300の再位置付けに満足すると、閉鎖アクチュエータ1130をもう一度閉鎖して、駆動モータ1610をその第1の方向に再動作させて、第2のジョー1320を再閉鎖することができる。そのような時点で、駆動システム1600は、以下で更に考察するように、ステープル発射ストロークを行うように動作され得る。
上記に加えて、図11に示されるように、発射部材1570は、閉鎖ストロークの終了に、カートリッジ本体1510内に内蔵されたスレッド1550と接触するか、又はそれに近接するように移動する。外科用器具1000は、外科用器具1000の制御システムと通信している発射アクチュエータを更に備え、発射アクチュエータは、作動されると、制御システムに駆動モータ1610をその第1の方向に動作させて、発射部材1570をその遠位クランプ位置(図8及び図11)から遠位に前進させ、図12に示されるように、ステープル発射ストロークを通してスレッド1550を押す。様々な実施形態では、ステープルカートリッジ1500は、ステープルドライバを備え、ステープルドライバは、ステープル発射ストローク中にスレッド1550がステープルドライバに接触すると、ステープルを支持し、カートリッジ本体1510からステープルを駆動する。他の実施形態では、以下でより詳細に考察するように、ステープルは、ステープル発射ストローク中にスレッド1550によって直接接触される、ステープル上に一体的に形成されたドライバを備える。いずれの場合も、スレッド1550は、発射部材1570によってスレッド1550がその遠位クランプ位置(図11)からその遠位発射位置(図12)に移動されるにつれて、カートリッジ本体1510からステープルを漸進的に排出又は発射する。更に、図6を参照すると、発射部材1570は、ステープルカートリッジ1500のデッキ1512と第2のジョー1320との間に捕捉された組織を切開するために、ステープル発射ストローク中に長手方向スロット1520を通って移動する組織切断縁部1571を備える。
上記に加えて、第2のジョー1320は、第1のジョー1310に回転可能に接続された近位端部1321と、長手方向凹部1324と、ステープル発射ストローク中に発射部材1570を受容するように構成されている長手方向スロット1329と、を含む、フレーム1325を備える。フレーム1325は、長手方向スロット1329の第1の側に画定された第1の長手方向カム肩部1327と、長手方向スロット1329の第2の側に画定された第2の長手方向カム肩部1328と、を更に備える。ステープル発射ストローク中、発射部材1570の第2のカム1576は、第1の長手方向カム肩部1327及び第2の長手方向カム肩部1328に沿って摺動する。これらは、第1のカム1572と協働して第2のジョー1320を第1のジョー1310に対して定位置に保持する。フレーム1325はまた、第2のジョー1320がその閉鎖位置にあるときに、ステープルカートリッジ1500内に画定されたステープルキャビティ1530と位置合わせされる、カートリッジ本体1510に画定された長手方向列のステープル成形キャビティを備える。第2のジョー1320は、長手方向スロット1329を囲み、かつ第2のカム1576の上に延在するようにフレーム1325に溶接された長手方向凹部1324内に位置付けられたカバー又はキャップ1322を更に備える。カバー1322は、ステープルカートリッジ1500の遠位ノーズ1513に向かって角度が付けられた遠位端部又はノーズ1323を備える。
様々な事例では、臨床医は、ステープル発射ストロークが完了するまで、発射アクチュエータを押し下げて保持することができる。発射部材1570がステープル発射ストロークの終了に到達すると、そのような事例では、制御システムは、駆動モータ1610の動作をその第1の方向からその第2の方向に自動的に切り替えて、発射部材1570をその遠位クランプ位置(図8及び図11)へと近位に後退させることができる。そのような事例では、エンドエフェクタ1300は、閉鎖ロック解放部1160(図1)が臨床医によって作動されて、閉鎖アクチュエータ1130及びエンドエフェクタ1300を再開放するまで、その閉鎖構成又はクランプ構成のままである。特定の事例では、臨床医は、ステープル発射ストロークの終了前に発射アクチュエータを解放して、駆動モータ1610を停止することができる。そのような事例では、臨床医は、発射アクチュエータを再作動させてステープル発射ストロークを完了させることができるか、又は代替的に、制御システムと通信している後退アクチュエータを作動させて、駆動モータ1610をその第2の方向に動作させて、発射部材1570をその遠位クランプ位置(図8及び図11)に後退させて戻すことができる。様々な代替の実施形態では、発射部材1570の自動後退及び/又は後退アクチュエータの作動は、臨床医が閉鎖アクチュエータ1130を解放することを必要とせずに、発射部材1570をその近位非作動位置に後退させて、エンドエフェクタ1300を自動的に開放することができる。第2のジョー1320を開放位置(図12A)に移動させるために、第2のジョー1320の近位端部1321は、近位端部1321上に画定されたカム表面1339を備え、発射部材1570は、発射部材1570の近位端部上に画定されたカム部分1579を備える。カム部分1579は、カム表面1339に接触すると、第2のジョー1320を開放位置に枢動させるように構成されている。
ステープルカートリッジ1500が少なくとも部分的に消費され、すなわち、少なくとも部分的に発射され、エンドエフェクタ1500が再び開放されると、ステープルカートリッジ1500は、第1のジョー1310から取り外され、別のステープルカートリッジ1500及び/又は任意の他の好適なステープルカートリッジと交換され得る。消耗したステープルカートリッジ1500が交換されない場合、発射駆動部1600は、別のステープル発射ストロークを行うことからロックアウトされる。そのようなロックアウトは、使用済みステープルカートリッジ1500が未使用ステープルカートリッジと交換されるまで、制御システムが駆動モータ1610を動作させて別のステープル発射ストロークを行うことを防止する、電子ロックアウトを備え得る。電子ロックアウトに加えて、又はその代わりに、外科用器具1000は、使用済みステープルカートリッジ1500が交換されない限り、別のステープル発射ストロークを通じた発射部材1570の遠位前進を阻止する機械的ロックアウトを含み得る。注目すべきことに、図12を参照すると、スレッド1550は、ステープル発射ストロークの後、発射部材1570とともに近位に後退されない。したがって、電子的及び/又は機械的ロックアウトは、ステープル発射ストロークの開始時にスレッド1550の位置をキーオフすることができる。別の言い方をすれば、ステープル発射ストロークが開始されるときにスレッド1550がその未発射位置にない場合、ステープル発射ストロークは防止又は阻止される。
米国特許第7,143,923号、発明の名称「Surgical stapling instrument having a firing lockout for an unclosed anvil」(2006年12月5日発行)、米国特許第7,044,352号、「Surgical stapling instrument having a single lockout mechanism for prevention of firing」(2006年5月16日発行)、米国特許第7,000,818号、「Surgical stapling instrument having separate distinct closing and firing systems」(2006年2月21日発行)、米国特許第6,988,649号、「Surgical stapling instrument having a spent cartridge lockout」(2006年1月24日発行)、及び米国特許第6,978,921号、「Surgical stapling instrument incorporating an E-beam firing mechanism」(2005年12月27日発行)の開示全体が、参照によって本明細書に組み込まれる。
様々な代替の実施形態では、外科用器具は、別々の別個の閉鎖駆動システム及びステープル発射駆動システムを備え得る。少なくとも1つのそのような実施形態では、閉鎖駆動システムは、閉鎖アクチュエータと、作動時に閉鎖アクチュエータを閉鎖ストロークにわたって遠位に移動させて、エンドエフェクタを閉鎖する閉鎖駆動モータと、を備える。そのような実施形態では、ステープル発射駆動システムは、発射アクチュエータと、発射アクチュエータをステープル発射ストロークを通して遠位に移動させる別々の発射駆動モータと、を備える。以下でより詳細に考察するように、そのような実施形態における閉鎖ストロークの長さは、第2のジョー1320の位置を制御するために、ステープル発射ストロークとは独立して調節され得る。その上、閉鎖駆動システムはまた、ステープル発射ストローク中に作動されて、第2のジョー1320の位置を更に制御することができる。
上で考察したように、ステープルカートリッジ1500から射出されたステープルは、切開された患者組織を封止することができる。とは言え、切開部の各側の単一列のステープルは、切開された患者組織に十分な止血シールを作製することができない場合がある。この目的のために、以下でより詳細に考察するように、外科用器具1000は、電気エネルギーを使用して、患者組織を封止するように更に構成されている。図1を参照すると、外科用器具1000は、オフボード電源と、オフボード電源と通信するコード1990と、を含む、エネルギー送達システム1900を更に備える。様々な代替の実施形態では、エネルギー送達システム1900は、例えば、バッテリ1180などの搭載電源を備える。いずれの場合も、外科用器具1000の制御システムは、以下でより詳細に考察するように、エネルギー送達システム1900から患者組織へのエネルギーの送達を制御するように構成されている。外科用器具アセンブリ1900は、シャフト1200及び関節運動継手1400を通して、エンドエフェクタ1300内に延在する、電気回路を備える。図6を参照すると、エネルギー送達システム1900は、第2のジョー1320内に延在し、かつ第2のジョー1320のフレーム1325に装着された長手方向電極1925を備える、電極供給回路1920を備える。長手方向電極1925は、長手方向電極1925を流れる電流、又は長手方向電極1925を流れる電流の少なくとも大部分が、ステープルカートリッジ1500の長手方向戻り電極1590に流れるように、金属フレーム1325から電気的に絶縁されている。長手方向戻り電極1590は、カートリッジ本体1510内に着座され、ステープルカートリッジ1500が第1のジョー1310内に着座しているときに電極戻り回路1910の回路コネクタ1915と係合して電気的接続を行う、カートリッジコネクタ1595を備える。様々な代替の実施形態では、ステープルカートリッジ1500は、供給電極を含み、第2のジョー1320は、戻り電極を含む。
図1を参照すると、外科用器具1000は、外科用器具1000の制御システムと通信するディスプレイ1190を更に備える。様々な事例では、制御システムは、ステープル発射システム及び/又はエネルギー送達システムに関するパラメータ及び/又はデータを表示するように構成されている。
外科用器具2000が図14に示されている。外科用器具2000は、エンドエフェクタ2300及び発射駆動部2600を備える。エンドエフェクタ2300は、第1のジョー2310と、ピボット2330を中心として第1のジョー2310に対して回転可能な第2のジョー2320と、を備える。第1のジョー2310は、その中に取り外し可能に格納されたステープルを備える交換可能なステープルカートリッジ2500を備え、第2のジョー2320は、ステープルを変形させるように構成されているアンビルを備える。発射駆動部2600は、ステープル発射ストローク中にステープルカートリッジ2500内に内蔵されたスレッドを押して、ステープルを第2のジョー2320に向かって駆動するために、遠位方向に前進させられる発射部材2570を備える。発射部材2570は、ステープル発射ストローク中に、第1のジョー2310内に画定された長手方向カム肩部2312に係合するように構成されている第1のカム2572と、第2のジョー2320内に画定された長手方向カム肩部2327に係合するように構成されている第2のカム2576と、を備え、これらは協働して、第2のジョー2320を第1のジョー2310に対して定位置に保持する。発射部材2570は、ステープル発射ストローク中にステープルカートリッジ2500と第2のジョー2320との間に捕捉された患者組織を切開するように構成されている組織切断縁部2571を更に備える。
上記に加えて、発射駆動部2600は、ステープルカートリッジ2500内に延在する回転可能な駆動シャフト2560と係合された回転可能な駆動シャフト2660を更に備える。回転可能な駆動シャフト2660は、ねじ山付き軸受2315によって第1のジョー2310内に回転可能に支持されるねじ山付き部分2665を備える。駆動シャフト2660のねじ山付き部分2665とねじ山付き軸受2315との間の相互作用の結果として、駆動シャフト2660の回転は、駆動シャフト2660が回転させられる方向に応じて、駆動シャフト2660をエンドエフェクタ2300に対して近位又は遠位に並進させる。駆動シャフト2560が第1の方向に回転させられると、駆動シャフト2660は遠位に並進する。駆動シャフト2560が第2の又は反対の方向に回転させられると、駆動シャフト2660は近位に並進する。以下でより詳細に説明するように、駆動シャフト2660の回転及び並進は、回転可能な駆動シャフト2560に伝達される。
上記に加えて、発射部材2570は、回転可能な駆動シャフト2560のねじ山付き部分2565と螺合可能に係合された、発射部材2570に画定されたねじ山付きアパーチャ2575を備える。上述したように、図15を参照すると、駆動シャフト2560が駆動シャフト2660によって第1の方向に回転させられると、発射部材2570は、駆動シャフト2560に対して遠位に並進する。したがって、エンドエフェクタ2300に対する発射部材2570の遠位運動は、2つの同時の遠位並進(エンドエフェクタ2300に対する駆動シャフト2560の並進及び駆動シャフト2560に対する発射部材2570の並進)の合成である。上述したように、駆動シャフト2560が駆動シャフト2660によって第2の又は反対の方向に回転させられると、発射部材2570は、駆動シャフト2560に対して近位に並進する。したがって、エンドエフェクタ2300に対する発射部材2570の近位運動は、2つの同時の近位並進(エンドエフェクタ2300に対する駆動シャフト2560の並進及び駆動シャフト2560に対する発射部材2570の並進)の合成である。上記を達成するために、ねじ山付き部分2565及びねじ山付き部分2665は、例えば、右ねじ山及び/又は左ねじ山を含む、任意の好適なねじ山設計を備えることができる。
上述したように、駆動シャフト2560は、エンドエフェクタ2300に対して遠位に並進し、また、発射部材2570は、ステープル発射ストローク中に駆動シャフト2560に対して遠位に並進する。様々な事例では、駆動シャフト2560は、第1の並進速度でエンドエフェクタ2300に対して並進し、発射部材2570は、第2の並進速度で駆動シャフト2560に対して遠位に並進する。少なくとも1つの実施形態では、第1の並進速度及び第2の並進速度は同じであり、すなわち、発射部材2570は、エンドエフェクタ2300に対する駆動シャフト2560の遠位並進の速度の2倍の速度でエンドエフェクタ2300に対して遠位に並進する。少なくとも1つのそのような実施形態では、駆動シャフト2660のねじ山付き部分2665は、第1のねじ山ピッチを備え、駆動シャフト2560のねじ山付き部分2565は、第1のねじ山ピッチと同じ第2のねじ山ピッチを備える。少なくとも1つのそのような実施形態では、駆動シャフト2660のねじ山付き部分2665は、第1のインチ当たりねじ山(threads-per-inch、TPI)を備え、駆動シャフト2560のねじ山付き部分2565は、第1のインチ当たりねじ山と同じである第2のインチ当たりねじ山を含む。
様々な実施形態では、上記に加えて、エンドエフェクタ2300に対する駆動シャフト2560の第1の並進速度は、駆動シャフト2560に対する発射部材2570の第2の並進速度よりも速い。他の実施形態では、エンドエフェクタ2300に対する駆動シャフト2560の第1の並進速度は、駆動シャフト2560に対する発射部材2570の第2の並進速度よりも遅い。しかしながら、いずれの事例でも、エンドエフェクタ2300に対する発射部材2570の速度は、エンドエフェクタ2300に対する駆動シャフト2560の速度よりも速い。様々な実施形態では、ねじ山付き部分2665の第1のねじ山ピッチとねじ山付き部分2565の第2のねじ山ピッチとは異なる。同様に、様々な実施形態では、ねじ山付き部分2665の1インチ当たりの第1のねじ山は、ねじ山付き部分2565の1インチ当たりの第2のねじ山とは異なる。駆動シャフト2560に対する発射部材2570の第2の並進速度が、エンドエフェクタ2300に対する駆動シャフト2560の第1の並進速度よりも速い場合、例えば、ねじ山付き部分2565の1インチ当たりの第2のねじ山は、ねじ山付き部分2665の1インチ当たりの第1のねじ山よりも小さい。同様に、例えば、駆動シャフト2560に対する発射部材2570の第2の並進速度が、エンドエフェクタ2300に対する駆動シャフト2560の第1の並進速度よりも遅い場合、ねじ山付き部分2565の1インチ当たりの第2のねじ山は、ねじ山付き部分2665の1インチ当たりの第1のねじ山よりも大きい。
様々な実施形態では、ねじ山付き部分2665の第1のねじ山ピッチは、その長さに沿って一定である。したがって、駆動システム2600を駆動する電気モータの所与の速度に対して、駆動シャフト2660は、エンドエフェクタ2300に対して一定の速度で並進する。他の実施形態では、ねじ山付き部分2665の第1のねじ山ピッチは、その長さに沿って一定ではない。少なくとも1つのそのような実施形態では、例えば、第1のねじ山ピッチは、ねじ山付き部分2665の長さに沿って変化し、駆動システム2600を駆動する電気モータの所与の速度に対して、エンドエフェクタ2300に対する駆動シャフト2660の並進速度は、ステープル発射ストローク中に変化する。そのような構成は、ステープル発射ストロークの開始時における発射部材2570のソフトスタート、及び/又はステープル発射ストロークの終了時における発射部材2570のソフト停止を生成するのに有用であり得る。そのような事例では、駆動シャフト2660の第1の並進速度は、ステープル発射ストロークの開始時及び/又は終了時に、より遅い。
様々な実施形態では、上記に加えて、ねじ山付き部分2565の第2のねじ山ピッチは、その長さに沿って一定である。したがって、駆動システム2600を駆動する電気モータの所与の速度に対して、発射部材2570は、駆動シャフト2560に対して一定の速度で並進する。他の実施形態では、ねじ山付き部分2565の第2のねじ山ピッチは、その長さに沿って一定ではない。少なくとも1つのそのような実施形態では、例えば、第2のねじ山ピッチは、ねじ山付き部分2565の長さに沿って変化し、駆動システム2600を駆動する電気モータの所与の速度に対して、駆動シャフト2560に対する発射部材2570の並進速度は、ステープル発射ストローク中に変化する。そのような構成は、ステープル発射ストロークの開始時における発射部材2570のソフトスタート、及び/又はステープル発射ストロークの終了時における発射部材2570のソフト停止を生成するのに有用であり得る。そのような事例では、発射部材2570の第2の並進速度は、ステープル発射ストロークの開始時及び/又は終了時に、より遅い。
外科用器具3000が図16に示されている。外科用器具3000は、エンドエフェクタ3300、閉鎖駆動部3800、及び発射駆動部3600を備える。エンドエフェクタ3300は、第1のジョー3310と、ピボット3330を中心として第1のジョー3310に対して回転可能な第2のジョー3320と、を備える。第2のジョー3320は、以下でより詳細に考察するように、閉鎖ストローク中に閉鎖駆動部3800によって開放位置から閉鎖位置に移動可能である。第1のジョー3310は、その中に取り外し可能に格納されたステープルを含むステープルカートリッジ3500を備え、第2のジョー3320は、ステープルを変形させるように構成されている成形ポケットを備える。図16に示されるように、第2のジョー3320がその閉鎖位置にあると、発射駆動部3600は、ステープルカートリッジ3500からステープルを発射して、ステープルカートリッジ3500と第2のジョー3320との間に捕捉された患者組織をステープル留めするように動作可能であり、これについても以下でより詳細に説明する。
上記に加えて、閉鎖駆動部3800は、第2のジョー3320に係合して、閉鎖ストローク中に第2のジョー3320をその閉鎖位置に移動させるように、遠位に移動可能である閉鎖部材3870を備える。閉鎖部材3870は、ステープル発射ストローク中に、第1のジョー3310内に画定された第1の長手方向肩部3312に係合するように構成されている第1のカム3872と、第2のジョー3320に係合するように構成されている第2のカム3876と、を備える。図17及び図18を参照すると、第2のジョー3320は、アンビルプレート3325と、アンビルプレート3325に溶接されたカバー又はキャップ3322と、を備える。アンビルプレート3325は、閉鎖部材3870を受容するように構成されている、アンビルプレート3325に画定された傾斜3326及び長手方向スロット3329を備える。閉鎖ストロークの開始時に、閉鎖部材3870の第2のカム3876は、ランプ3326と接触していない。しかしながら、いったん閉鎖ストロークが開始されると、第2のカム3876は、ランプ3326と接触し、第2のジョー3320を閉鎖し始める。閉鎖ストロークが進行するにつれて、第2のカム3876は、長手方向スロット3329の側面上に画定された長手方向肩部3327及び3328上に摺動する。そのような時点で、第1のカム3872及び第2のカム3876は協働して、第2のジョー3320をその閉鎖位置に保持する。
再び図16を参照すると、アンビル33200は、そこから下向きに延在する組織停止部3340を備え、これは、患者組織がエンドエフェクタ3300の近位端部の中に移動することを防止するか、又は少なくとも抑制する。各組織停止部3340は、第1のジョー3310の側面と協働して、患者組織が近位方向に移動するのを防止するか、又は少なくとも抑制する、遠位縁部3345を備える。再び図16を参照すると、閉鎖ストロークの終了時に、閉鎖部材3870の前縁部3871は、組織停止部3340の遠位縁部3345に対して近位に位置付けられる。
閉鎖ストローク後、上述のように、発射駆動部3600を作動させて、ステープル発射ストローク中にステープルを発射し、患者組織を切開することができる。発射駆動部3600は、遠位に前進して、ステープルカートリッジ3500内に位置付けられたスレッド3550をステープル発射ストロークに通して押し、ステープルカートリッジ3500内に格納されたステープルを第2のジョー3320に向かって駆動する、発射バー3670を備える。発射バー3670は、第2のジョー3320内に画定された長手方向スロット3329内に延在し、ステープル発射ストローク中に第2のジョー3320とステープルカートリッジ3500との間に画定された組織間隙を通過して、患者組織がステープル留めされているときに患者組織を切開する、組織切断縁部3675を更に備える。
注目すべきことに、上記に加えて、発射バー3670は、ステープル発射ストローク中に第2のジョー3320を定位置に保持するために第1のジョー3310及び第2のジョー3320に係合するカムを含まない。そのような実施形態では、第1のジョー3310に対する第2のジョー3320の位置は、発射駆動部3600とは独立して動作する閉鎖駆動部3800によってのみ制御される。したがって、様々な事例では、外科用器具3000の制御システムは、所望の目標及び/又は治療効果を達成するために、発射駆動部3600の動作の修正とは独立して、閉鎖駆動部3800の動作を修正することができる。例えば、制御システムは、発射駆動部3600がステープル発射ストロークを行うように動作されている間に、閉鎖駆動部3800を動作させて第2のジョー3320を更に閉鎖することができる。そのような事例では、制御システムは、ステープル成形を改善するために、ステープル発射ストローク中に患者組織に印加されているクランプ力を増加させることができる。他の事例では、制御システムは、閉鎖駆動部3800を動作させて、ステープル発射ストローク中に患者組織に印加されているクランプ圧力を緩和することができる。そのような事例では、制御システムは、患者組織の過圧縮を防止し、及び/又は第2のジョー3320内の成形ポケットを、ステープルカートリッジ3500から射出されるステープルと位置合わせされた状態に保つことができる。発射バー3670が、ステープル発射ストローク中に第1のジョー3310に係合するための第1のカムを備えるが、第2のジョー3320に係合される第2のカムを備えない、他の実施形態が想定される。様々な代替の実施形態では、発射バー3670は、ステープル発射ストローク中に、第1のジョー3310と係合する第1のカムと、第2のジョー3320と係合する第2のカムとの両方を備え得る。そのような実施形態では、発射駆動部3600及び閉鎖駆動部3800の両方を使用して、エンドエフェクタ3300内の異なる場所で、第2のジョー3320の位置を制御することができる。
上記に加えて、外科用器具3000は、外科用器具3000の制御システムと通信するジョー調節アクチュエータ及び/又はタッチスクリーン制御を含むハンドルを備える。様々な実施形態では、制御システムは、ステープル発射ストローク中に発射駆動部3600内の発射負荷を検出するように構成されている1つ又は2つ以上のセンサを備える。少なくとも1つのそのような実施形態では、制御システムは、発射駆動部3600内の発射負荷の代用である、発射駆動部3600の電気モータを通る電流の大きさを検出し、電気モータを通って検出された電流の大きさに基づいて第2のジョー3320の位置を調節するように構成されている、電流センサを備える。特定の実施形態では、制御システムは、例えば、患者組織に印加されているクランプ力を検出し、ロードセルセンサ及び/又は歪みゲージセンサの電位出力に基づいて、第2のジョー3320の位置を調節するように構成されている、ロードセルセンサ及び/又は歪みゲージセンサを備える。様々な実施形態では、制御システムは、第2のジョー3320の位置を自動的に調節するように構成されている。他の実施形態では、制御システムは、外科用器具3000を使用する臨床医に、第2の3320の位置を修正する選択肢を提供するように構成されている。少なくとも1つのそのような実施形態では、制御システムは、発射駆動部3600内の発射負荷及び/又は閉鎖駆動部3800内のクランプ負荷が閾値を超えたときに、ジョー調節アクチュエータを照明するか、又はタッチスクリーン制御部上に作動可能な入力を提示し、アクチュエータが臨床医によって作動されたときに、第2のジョー3320の位置を調節するように構成されている。
上述のように、閉鎖駆動部3800は、ステープル発射ストローク中に、閉鎖部材3870の位置を調節するように動作可能である。したがって、閉鎖部材3870は、第2のジョー3320を閉鎖するための第1の閉鎖ストローク中に、次いで、ステープル発射ストローク中に第2のジョー3320の位置を制御するための第2の閉鎖ストローク中に、遠位に移動可能である。上記に加えて、再び図16を参照すると、閉鎖部材3870は、閉鎖部材3870が組織停止部3340の遠位縁部3345に対して近位に位置付けられる第1の閉鎖ストロークの結果として、第1の閉鎖位置へと遠位に移動可能である。第2の閉鎖ストロークの結果として、閉鎖部材3870の少なくとも一部分は、組織停止部3340の遠位縁部3345を越えて第2の閉鎖位置まで遠位に移動される。そのような第2の閉鎖位置では、閉鎖部材3870は、ステープル発射ストローク中の第2のジョー3320の上向きの移動及び/又は偏向に、より良く抵抗することができる。上述したように、閉鎖部材3870が第2の閉鎖ストローク中に組織停止部3340の遠位縁部3345を越えて遠位に移動しない様々な実施形態が想定される。
再び図16を参照すると、発射バー3670は、閉鎖部材3870を越えて遠位に延在する。より具体的には、発射バー3670は、閉鎖部材3870の長さに沿って閉鎖部材3870に対して横方向に位置付けられ、次いで、発射バー3670がエンドエフェクタ3300内で横方向に中心に置かれるか、又は少なくとも実質的に横方向に中心に置かれるように、閉鎖部材3870の前で遠位に延在する。結果として、組織切断縁部3675は、エンドエフェクタ3300の長手方向スロットと位置合わせされるか、又は少なくとも実質的に位置合わせされる。
閉鎖部材3870’の第1の横方向側に沿って延在する第1の発射バー3670a’と、閉鎖部材3870’の第2の又は反対側の横方向側に沿って延在する第2の発射バー3670b’と、を含む発射駆動部を備える、代替の装置が図19及び図20に示されている。図19は、外科用器具のエンドエフェクタに対して近位に取られたこの装置の断面図であり、図20は、エンドエフェクタ内で取られたこの装置の断面図である。閉鎖部材3870’は、発射バー3670a’と3670b’(図19)との間に延在する長手方向バーと、発射ストローク中に第1のジョー3310と第2のジョー3320とにそれぞれ係合するように構成されている第1のカム3872’と第2のカム3876’(図20)と、を備える。注目すべきことに、発射バー3670a’及び3670b’の高さは、発射バー3670a’及び3670b’がエンドエフェクタ内に更に延在するように、第1のカム3872’と第2のカム3876’との間に嵌合するように短縮される。発射バー3670a’及び3670b’の遠位端部は、発射バー3670a’及び3670b’が、発射ストローク中に組織切断ナイフ及び/又は発射部材を協働して支持するように、閉鎖部材3870’より遠位の場所で接続されている。
外科用器具4000が図21に示されている。外科用器具4000は、第1のジョー4310及び第2のジョー4320を含むエンドエフェクタ4300を備える。第1のジョー4310は、第2のジョー4320に対して、開放位置と閉鎖位置との間で回転可能である。第1のジョー4310は、カートリッジ本体と、カートリッジ本体内に画定された長手方向スロット4520と、長手方向スロット4520の各側に画定された長手方向列のステープルキャビティ4530と、ステープルキャビティ4530内に取り外し可能に格納されたステープルと、を備える、第1のジョー4310内に着座している交換可能なステープルカートリッジ4500を備える。ステープルカートリッジ4500は、以下でより詳細に考察するように、患者組織を封止するように動作可能な1つ又は2つ以上の電極4590を含む電気回路を更に備える。
上記に加えて、第1のジョー4310は、第1のジョー4310に画定された長手方向カムスロット4312を備え、第2のジョー4320は、長手方向スロット4329の両側に画定された長手方向カム肩部4327及び4328を備える。外科用器具4000の閉鎖駆動部は、基部又はスパイン4877を含むC字形チャネルと、スパイン4877から延在する第1のカム4872と、スパイン4877から延在する第2のカム4876と、を備える、閉鎖部材4870を備える。第1のカム4872は、第1のジョー4310のカムスロット4312内に延在するように構成され、第2のカム4876は、閉鎖ストローク中に第2のジョー4320内に画定された長手方向肩部4328に係合して、第1のジョー4310を開放非クランプ位置から閉鎖クランプ位置に移動させるように構成されている。外科用器具の発射駆動部は、基部又はスパイン4677を含むC字形チャネルと、スパイン4677から延在する第1のカム4672と、スパイン4677から延在する第2のカム4676と、を備える、発射部材4670を備える。第1のカム4672は、第1のジョー4310のカムスロット4312内に延在するように構成され、第2のカム4676は、ステープルカートリッジ4500からステープルを排出するためのステープル発射ストローク中に、第2のジョー4320内に画定された長手方向肩部4327に係合するように構成されている。注目すべきことに、スパイン4677及び4877は両方とも、ステープルカートリッジ4500内に画定された長手方向スロット4520及び第2のジョー4320内に画定された長手方向スロット4329内に延在し、発射部材4670及び閉鎖部材4870が互いに対して摺動することを可能にする背中合わせの構成で配設される。
ステープルカートリッジ5500の一部分が図22~図24に示されている。ステープルカートリッジ5500は、中に画定されたステープルキャビティ5530を含むカートリッジ本体5510と、ステープルキャビティ5530内に位置付けられたステープル5540と、を備える。各ステープル5540は、基部5541と、基部5541から延在する第1の脚部5542と、基部5541から延在する第2の脚部5544と、を備える。その上、各ステープル5540は、ステープル発射ストローク中にスレッドによって直接係合される一体型ドライバ部分を備え、これは、図33に関連して以下でより詳細に考察する。各ステープルキャビティ5530は、ステープル5540の基部5541を案内するように構成されている中央案内部分5531と、ステープル5540の第1の脚部5542を案内するように構成されている第1の端部5532と、ステープル5540が未発射位置(図23)から発射位置(図24)に持ち上げられるときにステープル5540の第2の脚部5544を案内するように構成されている第2の端部5534と、を備える。ステープル5540が発射されているとき、第1の脚部5542及び第2の脚部5544は、ステープルカートリッジ5500の反対側に位置付けられたアンビル内に画定された成形ポケットに接触し、略内向きに、すなわち、略互いに向かって、例えば、B字形構成などの成形構成に変形される。
様々な事例では、上記に加えて、ステープル5540は、ステープル成形プロセス中に変形し得る。例えば、ステープル脚部5542及び5544の一方又は両方は、ステープル成形プロセス中に内向きではなく外向きに変形してもよい。脚5542及び5544のそのような外向きの変形は、いくつかの状況において許容可能であり得るが、そのような成形不良は、一部の臨床医にとって望ましくない場合がある。ステープル脚部5542及び5544の成形不良を防止するか、又は少なくとも抑制するために、ステープル5540及びステープルキャビティ5530は、以下でより詳細に説明するように、ステープル成形プロセス中にステープル脚部5542及び5544を内向きに付勢する協働特徴部を備える。
主に図24を参照すると、ステープルキャビティ5530は、第1のカム5533を備え、ステープル5540は、ステープル5540がアンビルに向かって上向きに持ち上げられるときに第1のカム5533に係合する第1のカム肩部5543を備える。第1のカム肩部5543が第1のカム5533に接触すると、第1の脚部5542は内向きに、すなわち、第2の脚部5544に向かって押される。様々な事例では、第1のカム5533及び第1のカム肩部5543は、第1の脚部5542と位置合わせされたアンビル成形ポケットに第1の脚部5542が接触する前に、第1のカム肩部5543が第1のカム5533に接触するように構成及び配設される。そのような事例では、第1の脚部5542は、第1の脚部5542がアンビルに接触するときに内向きの運動量を有し、その結果、ステープル5540の適切な変形を容易にする。他の事例では、第1のカム5533及び第1のカム肩部5543は、第1の脚部5542が第1の脚部5542と位置合わせされたアンビル成形ポケットに接触するのと同時に、第1のカム肩部5543が第1のカム5533に接触するように構成及び配設される。そのような事例では、アンビル成形ポケット及び第1のカム5533は、第1のステープル脚部5542が変形されているときに、第1のステープル脚部5542に対して2つの接触点を協働して提供する。様々な他の事例では、第1のカム5533及び第1のカム肩部5543は、第1の脚部5542が第1の脚部5542と位置合わせされたアンビル成形ポケットに接触した後に、第1のカム肩部5543が第1のカム5533に接触するように構成及び配設される。
主に図24を参照すると、ステープルキャビティ5530は、第2のカム5535を更に備え、ステープル5540は、ステープル5540がアンビルに向かって上向きに持ち上げられるときに第2のカム5535に係合する第2のカム肩部5545を更に備える。第2のカム肩部5545が第2のカム5535に接触すると、第2の脚部5544は内向きに、すなわち、第1の脚部5542に向かって押される。様々な事例では、第2のカム5535及び第2のカム肩部5545は、第2の脚部5544と位置合わせされたアンビル成形ポケットに第2の脚部5544が接触する前に、第2のカム肩部5545が第2のカム5535に接触するように構成及び配設される。そのような事例では、第2の脚部5544は、第2の脚部5544がアンビルに接触するときに内向きの運動量を有し、その結果、ステープル5540の適切な変形を容易にする。他の事例では、第2のカム5535及び第2のカム肩部5545は、第2の脚部5544が第2の脚部5544と位置合わせされたアンビル成形ポケットに接触するのと同時に、第2のカム肩部5545が第2のカム5535に接触するように構成及び配設される。そのような事例では、アンビル成形ポケット及び第2のカム5535は、第2のステープル脚部5544が変形されているときに、第2のステープル脚部5544に対して2つの接触点を協働して提供する。様々な他の事例では、第2のカム5535及び第2のカム肩部5545は、第2の脚部5544が第2の脚部5544と位置合わせされたアンビル成形ポケットに接触した後に、第2のカム肩部5545が第2のカム5535に接触するように構成及び配設される。
ステープルカートリッジ6500の一部分が図25~図27に示されている。ステープルカートリッジ6500は、カートリッジ本体5510であって、カートリッジ本体5510内に画定されたステープルキャビティ5530を含む、カートリッジ本体5510と、ステープルキャビティ5530内に位置付けられたステープル6540と、を備える。各ステープル6540は、基部6541と、基部6541から延在する第1の脚部6542と、基部6541から延在する第2の脚部6544と、を備える。その上、各ステープル6540は、ステープル発射ストローク中にスレッドによって直接係合される一体型ドライバ部分を備える。上記に加えて、ステープル6540の第1の脚部6542は、ステープル6540がその発射位置に移動されるときに第1のカム5533に接触するように構成されている、第1の脚部6542内に画定された弧状部分6543を備える。同様に、ステープル6540の第2の脚部6544は、ステープル6540がその発射位置に移動されるときに第2のカム5535に接触するように構成されている、第2の脚部6544内に画定された弧状部分6545を備える。第1の脚部6542の弧状部分6543及び第2の脚部6544の弧状部分6545は、打ち抜きプロセス中に切り抜かれる。とは言え、二次成形プロセス中に弧状部分6543及び6545がそれぞれステープル脚部6542及び6544内に曲げられる様々な代替の実施形態が想定される。
ステープルカートリッジ7500の一部分が図28及び図29に示されている。ステープルカートリッジ7500は、カートリッジ本体5510であって、カートリッジ本体5510内に画定されたステープルキャビティ5530を含む、カートリッジ本体5510と、ステープルキャビティ5530内に位置付けられたステープル7540と、を備える。各ステープル7540は、基部7541と、基部7541から延在する第1の脚部7542と、基部7541から延在する第2の脚部7544と、を備える。その上、各ステープル7540は、ステープル発射ストローク中にスレッドによって直接係合される一体型ドライバ部分を備える。上記に加えて、ステープル7540の第1の脚部7542は、ステープル7540がその発射位置に移動されるときに第1のカム5533に接触するように構成されている、第1の脚部7542内に画定されたバンプ7543を備える。同様に、ステープル7540の第2の脚部7544は、ステープル7540がその発射位置に移動されるときに第2のカム5535に接触するように構成されている、第2の脚部7544内に画定されたバンプ7545を備える。第1の脚部7542のバンプ7543及び第2の脚部7544のバンプ7545は、打ち抜きプロセス中に切り抜かれる。
ステープルカートリッジ8500の一部分が図30~図32に示されている。ステープルカートリッジ8500は、カートリッジ本体5510であって、カートリッジ本体5510内に画定されたステープルキャビティ5530を含む、カートリッジ本体5510と、ステープルキャビティ5530内に位置付けられたステープル8540と、を備える。各ステープル8540は、基部8541と、基部8541から延在する第1の脚部8542と、基部8541から延在する第2の脚部8544と、を備える。その上、各ステープル8540は、ステープル発射ストローク中にスレッドによって直接係合される一体型ドライバ部分を備える。上記に加えて、ステープル8540の第1の脚部8542は、ステープル8540がその発射位置に移動されるときに第1のカム5533に接触するように構成されている、第1の脚部8542内に画定された角度付き肩部8543を備える。同様に、ステープル8540の第2の脚部8544は、ステープル8540がその発射位置に移動されるときに第2のカム5535に接触するように構成されている、第2の脚部8544内に画定された角度付き肩部8545を備える。第1の脚部8542の角度付き肩部8543及び第2の脚部8544の角度付き肩部8545は、打ち抜きプロセス中に切り抜かれる。その上、ステープル8540の第1の脚部8542及び第2の脚部8544は、第1の脚部8542及び第2の脚部8544内に画定されたノッチ又はノッチ8549を備え、これらは、ステープル成形プロセス中に脚部8542及び8544を内向きに、又は少なくとも実質的に互いに向かって曲げさせ、所望の成形構成をとるように構成されている。
打ち抜きされたステープル100が、図33に示されている。ステープル100は、近位ステープル脚部110と、遠位ステープル脚部120と、ステープル基部部分130と、を備える。ステープル100は、垂直遷移部分又はブレンド118、128と、横方向遷移部分又はブレンド116、126とを更に含む。垂直遷移部分118、128は、ステープル基部部分130から垂直又は上向きに脚部110、120を屈曲するか、又はステープル基部130から延在する。横方向遷移部分116、126は、横方向に外向きに、又はステープル基部部分130に対して少なくとも実質的に垂直にステープル脚部110、120を延在する。ステープル脚部110、120は、第1の平面を画定し、ステープル基部130は、第2の平面を画定する。垂直遷移部分118、128及び横方向遷移部分116、126は合わせて、ステープル脚部110、120が横方向にオフセットされ、ステープル基部部分130に対して平行であることを許容する。言い換えれば、第1の平面は、第2の平面からオフセットされ、第2の平面に対して少なくとも実質的に平行である。図33では、第1の平面は、垂直Z方向に直交する負のY方向にオフセットされている。複数のステープル100とともに他のステープルが使用されてもよく、他のステープルは、Y軸正方向にオフセットされた第1の平面を含む。両方の種類のステープルを使用することにより、ステープル列が入れ子になるか又は織り合わされ、隣接する列のステープル脚部は、少なくとも実質的に位置合わせされ、かつ/又は共通の長手方向軸を共有する。様々な事例では、ステープル列は入れ子になって、より高密度のステープル列を提供することができる。
上記に加えて、近位ステープル脚部110は、平坦な表面及び角部を含む略矩形の断面を備える。断面の角部は、面取り、半径、及び/又はコイニングされた縁部114を備え、これらは、患者組織への鋭い縁部の露出を低減する。とは言え、近位ステープル脚部110は、患者組織を切開するように構成されている鋭利な先端112を備える。同様に、遠位ステープル脚部120は、平坦な表面125と、患者組織への鋭い縁部の露出を低減するために面取りされ、半径付けされ、かつ/又はコイニングされた角部124と、を含む、略矩形の断面を備える。近位脚部110と同様に、遠位ステープル脚部120は、患者組織を切開するように構成されている鋭利な先端122を備える。
ステープル基部130は、患者組織に接触して患者組織を支持するように構成されている上側部分136を備える。ステープル基部130の上側部分136は、組織接触面137、138、及び139と、患者組織への鋭い縁部の露出を低減するために面取りされ、半径付けされ、及び/又はコイニングされた縁部134と、を備える。ステープル基部130は、スレッドによって直接係合されるように構成されている駆動カム132を含む下側部分135を更に備える。下側部分135は更に、スレッドレールの頂点の上に乗る底縁部131と、スレッドが遠位に移動するにつれてスレッドレールとの接触を失う遠位肩部133と、を備える。
上記に加えて、ステープル100の脚部110及び120は、第1の平面内に延在し、ステープル100の駆動カム132は、第2の平面内に画定される。第2の平面は、第1の平面に平行であるか、又は少なくとも実質的に平行である。脚部110及び120が変形されると、脚部110及び120は、第2の平面の外側でステープル100内に患者組織を捕捉する。とりわけ、そのような構成は、単一平面内に画定されるワイヤステープルと比較して、より大きな体積の組織がステープル100内に捕捉されることを可能にする。とは言え、そのようなワイヤステープルは、多くの事例において望ましく、いくつかの事例では、打ち抜きされたステープルと併せて使用され得る。米国特許出願第14/318,996号、発明の名称「FASTENER CARTRIDGES INCLUDING EXTENSIONS HAVING DIFFERENT CONFIGURATIONS」、現在の米国特許出願公開第2015/0297228号、米国特許出願第15/385,907号、発明の名称「SURGICAL INSTRUMENT SYSTEM COMPRISING AN END EFFECTOR LOCKOUT AND A FIRING ASSEMBLY LOCKOUT」、現在の米国特許出願公開第2018/0168608号、及び米国特許出願第15/191,775号、発明の名称「STAPLE CARTRIDGE COMPRISING WIRE STAPLES AND STAMPED STAPLES」、現在の米国特許出願公開第2017/0367695号の開示全体は、参照により本明細書に組み込まれる。
ステープルカートリッジ9500が、図34~図38に示される。ステープルカートリッジ9500は、近位端部9511と遠位ノーズ9513とを有するカートリッジ本体9510を備える。カートリッジ本体9510は、デッキ9512と、上記近位端部9511から遠位ノーズ9513に向かって延在する長手方向スロット9520と、近位端部9511と遠位ノーズ9513との間に延在するデッキ9512内に画定された長手方向列のステープルキャビティ9530と、を更に備える。カートリッジ本体9510はまた、デッキ9512から上向きに延在する長手方向組織圧縮レール9515及び9516を備える。長手方向圧縮レール9515は、長手方向スロット9520の第1の側に沿って延在し、長手方向圧縮レール9516は、長手方向スロット9520の第2の又は反対の側に沿って延在する。
上記に加えて、主に図37及び図38を参照すると、ステープルカートリッジ9500は、各ステープルキャビティ9530内に格納されたステープル9540と、ステープル9540を支持し、ステープル発射ストローク中にステープル9540をステープルキャビティ9530から押し出すステープルドライバ9580と、を更に備える。この実施形態では、各ステープルドライバ9580は、1つのステープル9540のみを支持及び駆動するが、ステープルドライバが2つ以上のステープルを支持及び駆動する他の実施形態が想定される。ステープルカートリッジ9500はまた、スレッド9550を備え、このスレッドは、ステープルドライバ9580に漸進的に接触し、スレッド9550がステープル発射ストローク中に遠位に移動されるにつれて、ステープルドライバ9580及びステープル9540をそれぞれのステープルキャビティ9530内で持ち上げる。上記に加えて、スレッド9550は、ステープル発射ストローク中に駆動システムの組織切断ナイフによって遠位に押される。ステープル発射ストロークが完了及び/又は別様に停止された後、組織切断ナイフは、その未発射位置に後退して戻される。注目すべきことに、スレッド9550は、近位に後退させられず、その代わりに、その遠位発射位置に残される。そのような構成は、上で考察したように、使用済みカートリッジ/欠落カートリッジ発射ロックアウトの一部分として使用することができる。
上記に加えて、ステープルカートリッジ9500は、電極回路9590を備える。電極回路9590は、ステープルカートリッジ9500が外科用器具内に着座しているときに、外科用器具内の対応する電気コネクタに係合するように構成されている電気コネクタ9595を備える。電極回路は、長手方向組織圧縮レール9516内に画定されたアパーチャ内に位置付けられた長手方向列の電極接点9594と、電極接点9594を電気コネクタ9595に電気的に接続するフレックス回路9592及び導体バー9596と、を更に備える。本明細書で考察するように、電力が電極回路9590に供給されて、ステープル9540と協働して患者組織を封止する。
上記に加えて、主に図38を参照すると、ステープルカートリッジ9500の各ステープル9540は、基部9541と、基部9541から延在する脚部9542と、を備える。各ステープルドライバ9580は、ステープルキャビティ9530内に摺動可能に位置付けられたシート9581を備え、このシートは、ステープルキャビティ9530内に位置付けられたステープル9540の基部9541を受容及び支持するように構成されている。ステープルドライバ9580のシート9581は、そのステープルキャビティ9530内に密接して受容されるようにサイズ決め及び構成されている。結果として、ステープルドライバ9580の移動は、ステープル発射ストローク中にステープルカートリッジ9500の反対側に位置付けられたアンビルに向かう上向きの移動に制約されるか、又は少なくとも実質的に制約される。したがって、ステープルキャビティ9530内でのステープルドライバ9580の横方向移動、長手方向移動、及び/又は回転は、それらの間の締まり嵌めにより防止されるか、又は少なくとも制限される。加えて、各ステープルドライバ9580は、カートリッジ本体9510内に画定された支持キャビティ9539内に摺動可能に位置付けられた横方向支持体9589を備える。ステープルドライバ9580の横方向支持体9589は、シート9581の内向きかつ上方に延在し、横方向支持体9589が支持キャビティ9539内に密接に受容されるようにサイズ決め及び構成されている。結果として、横方向支持体9589は、ステープルキャビティ9530内でのステープルドライバ9580の横方向移動、長手方向移動、及び/又は回転を防止するか、又は少なくとも制限する。少なくとも一実施形態では、横方向支持体9589は、図39に示されるように、ステープルドライバ9580がそれらの発射位置にあるとき、長手方向圧縮レール9515及び9516の下に画定されたキャビティ内に延在する。その上、ステープルドライバ9580の1つの列の横方向支持体9589は、ステープルドライバ9580がそれらの発射位置にあるとき、電極接点9594の下に位置付けられる。
ステープルカートリッジ10500は、図39~図41に示されており、多くの点でステープルカートリッジ9500に類似しているが、それらは簡潔にするために、本明細書では考察されていない。ステープルカートリッジ10500は、カートリッジ本体10510と、その中に画定された長手方向列のステープルキャビティ10530と、を備える。ステープルカートリッジ10500は、ステープルキャビティ10530内に位置付けられたステープルを発射するように構成されている長手方向列のステープルドライバ10580を更に備える。各ステープルドライバ10580は、ステープルキャビティ10530内に摺動可能に位置付けられたステープルシートと、支持キャビティ10589内に摺動可能に位置付けられた横方向支持体10539と、ステープルシートと横方向支持体10539との中間に位置付けられた駆動面又はカム10585と、を備える。長手方向列のステープルドライバ10580の駆動カム10585は、スレッドの傾斜がステープル発射ストローク中に駆動カム10585の全てに順次係合することができるように、長手方向に互いに位置合わせされるか、又は少なくとも実質的に位置合わせされる。ステープルドライバ10580は、ステープル発射ストローク中に、スレッドによって、未発射位置又は低位置(図40)から発射位置又は隆起位置(図39及び図41)に駆動される。様々な事例では、ステープルドライバ10580、及びその上に支持されたステープルは、ステープルカートリッジ10500が取り扱われている間、及び/又はステープル留め器具内に挿入されている間に、ステープルキャビティ10530内で偶発的に上向きに変位し得る。これが起こることを防止するか、又は少なくとも抑制するために、各ステープルドライバ10580は、ステープルドライバ10580がそれらの未発射位置にあるときにカートリッジ本体10510内に画定されたロック窓10517内に解放可能に係合されるラッチ10588を備える。しかしながら、スレッドがステープルドライバ10580に接触すると、ラッチ10588がロック窓10517から解放され、ステープルドライバ10580がそれらの発射位置に持ち上げられることを可能にする。その上、ラッチ10588は、カートリッジ本体10510内に画定されたロック肩部10518と係合して、ステープルドライバ10580をその発射位置に保持することができ、そのため、ステープルドライバ10580は、スレッドがそれを通過した後、そのステープルキャビティ10530内に戻って沈み込まない。そのような構成は、ステープルドライバ10580がステープルをそれらの変形形状に保持することを可能にし、それによって、例えば、ステープル発射ストローク後のステープルのスピングバックを低減する。
ステープルカートリッジ11500は、図42~図44に示されており、多くの点でステープルカートリッジ9500及び10500に類似しているが、その大部分は簡潔にするために、本明細書では考察されていない。ステープルカートリッジ11500は、デッキ11512と、組織切断ナイフを受容するように構成されている長手方向スロット11520と、デッキ11512内に画定された長手方向列のステープルキャビティ11530と、を含むカートリッジ本体11510を備える。カートリッジ本体11510は、デッキ11512から上向きに延在する長手方向組織圧縮レール11515及び11516を更に備える。ステープルカートリッジ11500は、ステープルキャビティ11530内に取り外し可能に格納されたステープルと、ステープル発射ストローク中にステープルを支持及び駆動するように構成されているステープルドライバ11580と、ステープル発射ストローク中にステープルドライバ11580及びステープルを未発射位置から発射位置に順次駆動するように構成されているスレッドと、を更に備える。ステープルカートリッジ11500はまた、電極回路11590を備え、これは、図示されていないが、長手方向組織圧縮レール11515及び11516上に電極接点を含む。
上記に加えて、主に図43及び図44を参照すると、各ステープルドライバ11580は、ステープルを支持するように構成されているスロットを含むステープルシート11581と、横方向支持体11589と、ステープルシート11581と横方向支持体11589とを接続する駆動カム11585と、を備える。注目すべきことに、各ステープルドライバ11580の横方向支持体11589は、ステープルシート11581に対して横方向内向きに位置付けられ、カートリッジ本体11510内に画定された支持キャビティ内に密接して受容される。ステープルカートリッジ11500の一方の側の支持キャビティは、長手方向組織圧縮レール11516内に画定された開口部11519を備え、この開口部は、ステープルドライバ11580が未発射位置に持ち上げられたときに、ドライバ11580の横方向支持体11589がカートリッジ本体11510から上向きに突出することを可能にするようにサイズ決め及び構成されている。そのような構成は、横方向支持体11589がステープルドライバ11580に追加のアンチロール安定性を提供することを可能にする。上記に加えて、又はその代わりに、長手方向組織圧縮レール11515は、他の列のステープルドライバ11580の横方向支持体11589を受容するように構成されている開口部11519を備え得る。また、注目すべきことに、横方向支持体11589は、ステープルシート11581に対して近位に延在する。そのような構成はまた、ステープルドライバ11580にアンチロール安定性を提供する。様々な代替の実施形態では、横方向支持体11589は、ステープルシート11581に対して遠位に延在する。上記と同様に、各ステープルドライバ11580は、ステープルドライバ11580をその未発射位置及び発射位置に解放可能に固定し、かつそれらの位置において追加の安定支持体を提供する、ラッチアーム11588を備える。
ステープルカートリッジ12500は、図45~図48Bに示されており、多くの点でステープルカートリッジ9500、10500、及び11500に類似しているが、その大部分は簡潔にするために、本明細書では考察されていない。ステープルカートリッジ12500は、カートリッジ本体12510を備え、カートリッジ本体12510は、組織切断ナイフを受容するように構成されている、カートリッジ本体12510内に画定された長手方向スロット12520を含む。カートリッジ本体12510はまた、長手方向スロット12520の各側に画定された長手方向列のステープルキャビティ12530を含む。ステープルカートリッジ12500は、ステープルキャビティ12530内に取り外し可能に格納されたステープルと、ステープルを支持して駆動するように構成されている長手方向列のステープルドライバ12580と、ステープル発射ストローク中にステープルドライバ12580に係合してこれを駆動するために、近位未発射位置(図45)から遠位発射位置まで移動可能なスレッド12550と、カートリッジ本体12510に取り付けられてその下に少なくとも部分的に延在するパン12505と、を更に備える。パン12505は、例えば、ステープルカートリッジ12500が外科用器具12000(図48A)内に着座するまで、ステープルドライバ12580がそれらの未発射位置から偶発的に取り外されること、及び/又はカートリッジ本体12510の底部から落下することを防止又は少なくとも抑制する。
上記に加えて、主に図46~図48を参照すると、各ステープルドライバ12580は、ステープルシート12581と、2つの横方向支持体12589と、駆動カム12585と、を備える。横方向支持体12589の一方は、ステープルシート12581と横方向に位置合わせされ、他方の横方向支持体12589は、ステープルシート12581に対して近位に位置付けられる。各ステープルドライバ12580は、テープル支持体12582を更に備え、テープル支持体12582は、テープル支持体12582の上に支持されたステープルの移動を制限するス。ステープル支持体12582は、ステープルの移動を制御し、ステープルがステープルシート12581から横方向に滑り落ちるのを防止するのに十分な高さを有する。少なくとも一実施形態では、ステープル支持体12582は、ステープルシート12581内に位置付けられたステープルの基部の上方に延在する。注目すべきことに、ステープル支持体12582は、開口した長手方向端部を有する。とは言え、ステープルキャビティ12530内のステープルの長手方向移動は、ステープルキャビティ12530の長手方向端部によって拘束され得る。いずれにしても、図48を参照すると、ステープルシート12581の全高は、ステープル支持体12582の上部と底面12583との間に画定される。図48に示すように、横方向支持体12589の全高は、ステープルシート12581の全高よりも高い。その上、横方向支持体12589は、ステープルシート12581の上方に垂直に延在する。また、横方向支持体12589は、ステープルシート12581の下方に垂直に延在する。そのような構成は、ステープル成形プロセス中にステープルシート12581を安定させる。注目すべきことに、図48Bを参照すると、パン12505は、ステープルドライバ12580がそれらの未発射位置にあるときの横方向支持体12589のための、パン12505内に画定されたクリアランス開口部12509を備える。
ステープルカートリッジ13500は、図49及び図50に示されており、多くの点でステープルカートリッジ9500、10500、11500、及び12500に類似しているが、その大部分は簡潔にするために、本明細書では考察されていない。ステープルカートリッジ13500は、組織切断ナイフを受容するように構成されている長手方向スロット13520を含むカートリッジ本体13510を備える。カートリッジ本体13510は、カートリッジ本体13510内に画定された長手方向列のステープルキャビティ13530を更に備える。ステープルカートリッジ13500は、ステープルキャビティ13530内に取り外し可能に格納されたステープルと、ステープルを支持し、かつステープル発射ストローク中にステープルを未発射位置から発射位置に駆動するように構成されている、長手方向列のステープルドライバ13580と、を更に備える。各ステープルドライバ13580は、ステープルシート13581と、ステープルシート13581に対して横方向に位置付けられた2つの横方向支持体13589と、ステープルシート13581と横方向支持体13589との間に位置付けられた駆動カム13585と、を備える。ステープルシート13581は、ステープルの基部を受容するように構成されている溝を画定するステープル支持体13582と、ステープルドライバ13580に対するステープルの横方向及び長手方向の移動を協働して制限する包囲された長手方向端部13586と、を更に備える。
上記に加えて、各ステープルドライバ13580は、カートリッジ本体13510内に画定されたガイドレール13514と摺動可能に係合される、ステープルシート13581内に画定されたガイドスロット13584を備える。ガイドレール13514及びガイドスロット13584は、ステープルドライバ13580がステープルキャビティ13530内で上向きに移動することを可能にするが、ステープルキャビティ13530内でのステープルドライバ13580の横方向並進、長手方向並進、及び/又は回転を防止するか、又は少なくとも制限する、協働特徴部を備える。様々な事例では、ガイドレール13514は、そのような相対移動を防止又は制限するために、ガイドスロット13584内に密接に受容される。少なくとも1つのそのような実施形態では、ガイドレール13514及びガイドスロット13584は、例えば、ダブテール装置を備える。
上記に加えて、ステープルカートリッジ13500は、カートリッジ本体13510の上面又はデッキから上向きに延在する長手方向レール13515上に位置付けられた電極接点を更に備える。使用中、電流は、電極接点から及び/又は電極接点を通って、患者組織に流れ、患者組織を加熱、焼灼、及び/又は封止する。いくつかの事例では、患者組織が電極接点に付着し得る。カートリッジ本体13510は、ステープルドライバ13580がそれらの発射位置にあるときに、横方向支持体13589がカートリッジ本体13510の上方に延在することを可能にするように構成されている、カートリッジ本体13510内に画定された長手方向列の開口部13519を更に備える。そのような事例では、横方向支持体13589は、焼灼された組織を電極接点から持ち上げて、患者組織をステープルカートリッジ13500から解放することができる。そのような事例では、患者組織は、少なくとも部分的に焼灼され、その後、組織が切開され、ステープル発射ストローク中にカートリッジ本体13510から持ち上げられる。
ステープルドライバ14580が図51及び図52に示される。ステープルドライバ14580は、2つのステープルシート14581と、横方向支持体14589と、ステープルシート14581と横方向支持体14589とを一緒に接続するドライバカム14585と、を含む。ステープルシート14581のうちの一方は、ステープルカートリッジ内に画定された第1のステープルキャビティ内に位置付けられ、他方のステープルシート14581は、ステープルカートリッジ内に画定された第2のステープルキャビティ内に位置付けられる。ステープルシート14581は、互いに長手方向に位置合わせされ、ステープルカートリッジ内の他のステープルドライバ14580の他のステープルシート14581と長手方向に位置合わせされる。各ステープルシート14581は、ステープルの基部を支持するように構成されている溝と、ステープルシート14581に対するステープル基部の相対移動を制限するように構成されているステープル支持体14582と、を備える。その上、各ステープルシート14581は、ステープルキャビティ内に画定された対応するガイドスロット内に延在するガイドエンドレール14586を備え、これは、ステープルキャビティ内のステープルシート14581の横方向並進、長手方向並進、及び回転を協働して防止するか、又は少なくとも制限する。上記に加えて、各ステープルシート14581は、ステープルドライバ14580をその未発射位置及び/又は発射位置に解放可能に保持するように構成されているラッチ14588を備える。
ステープルカートリッジ15500は、図53及び図54に示されており、多くの点で本明細書に開示される他のステープルカートリッジに類似しているが、その大部分は簡潔にするために、本明細書では考察されていない。ステープルカートリッジ15500は、カートリッジ本体15510を備え、カートリッジ本体15510は、デッキと、組織切断ナイフを受容するように構成されている、カートリッジ本体15510内に画定された長手方向スロット15520と、また、長手方向スロット15520の各側に画定された長手方向列のステープルキャビティ15530と、を含む。カートリッジ本体15510は、デッキと、デッキから上向きに延在する長手方向組織圧縮レール15515と、を更に備える。上記に加えて、組織圧縮レール15515の一方又は両方は、1つ又は2つ以上の電極を支持及び/又は収容するように構成されている。以下で更に詳細に考察するように、カートリッジ本体15510は、デッキから上方に延在するポケット延長部15537を更に備える。患者組織がステープルカートリッジ15500に対してクランプされるとき、ポケット延長部15537は、患者組織を非外傷的に把持し、患者組織がステープルカートリッジ15500に対して摺動することを防止するか、又は少なくとも抑制する。
上記に加えて、ステープルカートリッジ15500は、ステープルキャビティ15530内に格納されたステープル15540と、ステープル15540を支持及び駆動するように構成されているステープルドライバ15580と、ステープル発射ストローク中にステープルドライバ15580に順次係合するように構成されているスレッド15550と、を更に備える。上記と同様に、各ステープル15540は、基部と、基部から延在する脚部15542と、を備える。各ステープルドライバ15580は、ステープルキャビティ15530内に位置付けられたステープル15540の基部を受容及び支持するように構成されているシートを備える。各ステープルドライバ15580は、シートに安定性を提供する横方向支持体15589と、ステープルキャビティ15530内に画定された垂直ガイドレール15534と協働してステープルドライバ15580の移動を制御する、シート内に画定されたガイドスロット15584と、を更に備える。スレッド15550は、長手方向スロット15520内に位置付けられた中央部分15554と、長手方向スロット15520の側壁に係合するように構成されている、中央部分15554の両側から延在する突起部15552と、を備える。突起部15552と長手方向スロット15520の側壁との間の相互作用は、ステープル発射ストロークの前にスレッド15550が偶発的に遠位に移動されることを抑制するが、ステープル発射ストローク中に外科用器具の発射駆動部によってスレッド15550が遠位に移動されることを可能にする。スレッド15550が発射駆動部によって遠位方向に押されていないとき、スレッド15550は定位置に保持される。スレッド15550は、2つの傾斜15555(中央部分15554の各側に1つ)を更に備え、これらは各々、長手方向列のステープルドライバ15580に係合してこれを駆動するように構成されている。
ステープルカートリッジのステープルドライバ21580及びステープル21540が、図72~図74に示されている。ステープル21540は、ワイヤから構成され、基部21541と、基部21541から上向きに延在する脚部21542と、を含む。ステープル21540は、図72においてその未発射構成で図示されており、例えば、実質的にV字形である。少なくとも一実施形態では、ステープル21540の脚部21542は、ステープルキャビティの長手方向端部と係合され、これは、ステープル21540がステープルキャビティ内に位置付けられると、脚部21542を内向きに弾性的に付勢する。ステープル21540が、ステープルドライバ21540によってその未発射位置からその発射位置に移動されるとき、脚部21542は、ステープルキャビティから現れ、ステープルキャビティの反対側に位置付けられたアンビル成形ポケットに接触する。いくつかの事例では、脚部21542は、ステープル21540がその発射位置へと上向きに持ち上げられるにつれて、外向きに広がり始める。ステープルカートリッジ15500に関連して上述したポケット延長部15537(図53)は、ステープル脚部21542の外向きの広がりを制限し、ステープル脚部21542とアンビル成形ポケットとの間の位置合わせを維持するのを支援することができる。
上記に加えて、ステープルドライバ21580は、ステープルシート21581であって、ステープル21540の基部21541を支持する、ステープルシート21581内に画定された溝を含む、ステープルシート21581と、ステープルシート21581に対するステープル基部21541の横方向並進及び/又は長手方向並進を協働して防止又は少なくとも制限する包囲端部21582と、を備える。注目すべきことに、ステープルシート21581の囲まれた端部21582は、ステープル21540がステープルシート21581内に位置付けられたときに、ステープル21540の基部21541の上方に延在する。ステープルドライバ21580は、ステープルシート21581に対して横方向内向きに位置付けられた駆動カム21585と、駆動カム21585から延在する安定支持体21589と、を更に備える。ステープル21540がステープルドライバ21580によってその発射位置へと上向きに押されると、ステープルドライバ21580の囲まれた端部21582及びカートリッジ本体15510のポケット延長部15537は、ステープル21580がその成形された構成へと変形されるときに、ステープル脚部21582を協働して支持する。
ステープルカートリッジ16500は、図55~図60に示されており、多くの点で本明細書に開示される他のステープルカートリッジに類似しているが、その大部分は簡潔にするために、本明細書では考察されていない。ステープルカートリッジ16500は、カートリッジ本体16510を備え、カートリッジ本体16510は、デッキ16512と、組織切断ナイフを受容するように構成されている、カートリッジ本体16510内に画定された長手方向スロット16520と、長手方向スロット16520の各側に画定された長手方向列のステープルキャビティ16530と、を含む。カートリッジ本体16510は、デッキ16512から上向きに延在する長手方向組織圧縮レール16515を更に備え、組織圧縮レール16515の一方又は両方は、1つ又は2つ以上の電極を支持及び/又は収容するように構成されている。カートリッジ本体16510は、デッキ16512から上方に延在するポケット延長部16537を更に備える。患者組織がステープルカートリッジ16500に対してクランプされるとき、ポケット延長部16537は、患者組織を非外傷的に把持し、患者組織がステープルカートリッジ16500に対して摺動することを防止するか、又は少なくとも抑制する。
上記に加えて、ステープルカートリッジ16500は、ステープルキャビティ16530内に格納されたステープルと、ステープル16540を支持及び駆動するように構成されているステープルドライバ16580と、ステープル発射ストローク中にステープルドライバ16580に順次係合するように構成されているスレッドと、を更に備える。主に図58を参照すると、各ステープルドライバ16580は、ステープルシート16581と、横方向支持体16589と、横方向支持体16589を接続する駆動カムと、を備える。各ステープルキャビティ16530は、ステープルドライバ16580の望ましくない横方向及び長手方向の並進並びに/又は望ましくない回転に抵抗するために横方向支持体16589が密接に受容される、横方向支持キャビティ16539を備える。注目すべきことに、主に図59及び図60を参照すると、横方向支持キャビティ16539の上部は囲まれており、ステープル発射ストローク中にステープルドライバ16580のための上方停止部を提供する。加えて、図57及び図58を参照すると、各ステープルドライバ16580は、ステープルドライバ16580がスレッドによって上方に駆動されるまで、ステープルドライバ16580をその未発射位置(図59)に解放可能に保持するために、カートリッジ本体16510内に画定されたロック窓16517の側壁に解放可能に係合する、ラッチ又はロックアーム16588を更に備える。ロックアーム16588は、ステープルドライバ16580がスレッドによって上向きに持ち上げられたときに内側に撓み、かつステープルドライバ16580がその発射位置(図60)に到達したときに弾性的に外向きに撓む、片持ち梁を備える。そのような事例では、ロックアーム16588は、デッキ16512に係合し、ステープルドライバ16580をその発射位置に保持する。
ステープルカートリッジ17500は、図61~図63に示されており、多くの点で本明細書に開示される他のステープルカートリッジに類似しているが、その大部分は簡潔にするために、本明細書では考察されていない。ステープルカートリッジ17500は、カートリッジ本体17510を備え、カートリッジ本体17510は、デッキ17512と、組織切断ナイフを受容するように構成されている、カートリッジ本体17510内に画定された長手方向スロット17520と、長手方向スロット17520の各側に画定された長手方向列のステープルキャビティ17530と、を含む。カートリッジ本体17510は、デッキ17512から上向きに延在する長手方向組織圧縮レール17515を更に備え、組織圧縮レール17515の一方又は両方は、1つ又は2つ以上の電極を支持及び/又は収容するように構成されている。カートリッジ本体17510は、デッキ17512から上方に延在するポケット延長部17537を更に備える。患者組織がステープルカートリッジ17500に対してクランプされるとき、ポケット延長部17537は、患者組織を非外傷的に把持し、患者組織がステープルカートリッジ17500に対して摺動することを防止するか、又は少なくとも抑制する。
上記に加えて、ステープルカートリッジ17500は、ステープルキャビティ17530内に格納されたステープルと、ステープルを支持及び駆動するように構成されているステープルドライバ17580と、ステープル発射ストローク中にステープルドライバ17580に順次係合するように構成されているスレッドと、を更に備える。主に図63を参照すると、各ステープルドライバ17580は、ステープルの基部を受容するように構成されている溝を画定するステープルシート17581と、溝の側面まで延在するステープル支持体17582と、横方向支持体17589と、横方向支持体17589をステープルシート17581に接続する駆動カム17585と、を備える。各ステープルキャビティ17530は、ステープルドライバ17580の望ましくない横方向及び長手方向の並進並びに/又は望ましくない回転に抵抗するために横方向支持体17589が密接に受容される、横方向支持キャビティを備える。注目すべきことに、各ステープルドライバ17580の横方向支持体17589は、ステープルキャビティ17530内に画定されたガイドレール17534を密接に受容するガイドスロット17584をそれらの間に画定する。ガイドスロット17584及びガイドレール17534は、ステープルドライバ17580の移動をステープルキャビティ17530内の垂直移動に、協働して拘束する。また、注目すべきことに、横方向支持体17589は、ステープルシート17581に対して横方向外向きに位置付けられ、長手方向組織圧縮レール17515の下に延在しない。加えて、各ステープルドライバ17580は、ステープルドライバ17580がスレッドによって上向きに駆動されるまで、ステープルドライバ17580をその未発射位置に解放可能に保持するために、カートリッジ本体17510内に画定された内部ロック窓の側壁と解放可能に係合される、ラッチ又はロックアーム17588を更に備える。ロックアーム17588は、ステープルドライバ17580がスレッドによって上向きに持ち上げられたときに内側に撓み、かつステープルドライバ17580がその発射位置に到達したときに弾性的に外向きに撓む、片持ち梁を備える。そのような事例では、ロックアーム17588は、デッキ17512に係合し、ステープルドライバ17580をその発射位置に保持する。ロックアーム17588のロック肩部は、横方向支持体17589に向かって外向きに面するが、任意の好適な方向に延在し得る。
ステープルカートリッジ18500は、図64及び図65に示されており、多くの点で本明細書に開示される他のステープルカートリッジに類似しているが、その大部分は簡潔にするために、本明細書では考察されていない。ステープルカートリッジ18500は、組織切断ナイフを受容するように構成されている長手方向スロット18520と、長手方向スロット18520の各側に画定された長手方向列のステープルキャビティ18530と、を含むカートリッジ本体18510を備える。カートリッジ本体18510は、上部又はデッキ18512と、デッキ18512から上向きに延在する長手方向組織圧縮レール18515及び18516と、を更に備える。ステープルカートリッジ18500は、各ステープルキャビティ18530内に位置付けられたステープル18540と、ステープル発射ストローク中にステープル18540を支持し駆動するように構成されているステープルドライバ18580と、ステープルドライバ18580に接触しそれを駆動するように構成されているスレッドと、を更に備える。ステープルカートリッジ18500は、長手方向組織圧縮レール18516内に収容された電極接点18594と、電極接点18594を電気的に接続する導体18596と、を含む、電極回路18590を更に備える。図64に示されるように、各電極接点18594は、長手方向に延在し、電極接点18594は、長手方向組織圧縮レール18516の実質的大部分に沿って集合的に延在する。少なくとも1つの実施形態では、電極接点18594は、例えば、組織圧縮レール18516の長手方向長さの少なくとも90%に沿って延在する。少なくとも1つの実施形態では、電極接点18594は、例えば、組織圧縮レール18516の長手方向長さの少なくとも95%を覆う。
ステープルカートリッジ19500は、図66~図69に示されており、多くの点で本明細書に開示される他のステープルカートリッジに類似しているが、その大部分は簡潔にするために、本明細書では考察されていない。ステープルカートリッジ19500は、デッキと、発射駆動部1600の発射部材1570(図69)を受容するように構成されている長手方向スロット19520と、長手方向列のステープルキャビティ19530と、を含むカートリッジ本体19510を備える。ステープルカートリッジ19500は、各ステープルキャビティ19530内に位置付けられたステープル19540と、ステープル発射ストローク中にステープル19540を支持して駆動するように構成されているステープルドライバ19580と、ステープル発射ストローク中にステープルドライバ19580及び19540に順次接触してステープルキャビティ19530内で上向きに押すように構成されているスレッド19550と、を更に備える。主に図67を参照すると、スレッド19550は、長手方向スロット19520内で摺動する中央部分19554と、カートリッジ本体19510内に画定された長手方向傾斜スロット内で摺動し、かつステープルドライバ19580に係合する、横方向傾斜19555と、を備える。主に図69を参照すると、ステープルカートリッジ19500がカートリッジジョー1310内に着座しているとき、スレッド19550は、駆動ねじ1560の上に位置付けられるが、それと動作可能に係合されない。注目すべきことに、駆動ねじ1560は、駆動ねじ1560とスレッド19550との間にほとんど隙間がないように、スレッド19550の底部内に画定されたクリアランススロット19553内に密接に受容される。ステープル発射ストロークの間、駆動ねじ1560は、発射部材1570を遠位に駆動するように回転され、これはスレッド19550を遠位に押す。
上記に加えて、発射部材1570は、ステープル発射ストローク中にアンビルジョーをステープルカートリッジ19500に向かって引っ張るように構成されている。多くの事例では、結果として、ステープルカートリッジ19500は、特にアンビルジョーに接して変形されているステープル19540の周りで、著しい圧縮負荷を受ける可能性がある。注目すべきことに、スレッド19550は、スレッド19550によって持ち上げられているステープルドライバ19580の真下に位置付けられ、圧縮負荷の結果としてカートリッジ本体19510が下向きに撓む場合、カートリッジ本体19510を支持することができる。再び図66及び図67を参照すると、スレッド19550は、スレッド19550の両側に画定された角度付き支持肩部19551を備える。スレッド19550の角度付き支持肩部19551は、カートリッジ本体19510内に画定され、その長手方向長さに沿って延在する角度付き肩部19511に直接隣接し、かつ/又は当接接触する。結果として、カートリッジ本体19510は、スレッド19550によって直接支持され、ステープル発射ストローク中のカートリッジ本体19510の偏向を制限することができる。いくつかの事例では、スレッド19550は、カートリッジ本体19510によって駆動ねじ1560に対して下方に押され得る。したがって、スレッド19550内のクリアランスアパーチャ19553の表面は、駆動ねじ1560が回転している場合であっても、スレッド19550が駆動ねじ1560の上をそれに対して摺動することができるように滑らかである。
上記に加えて、各ステープルドライバ19580は、カートリッジ本体19510内に画定された支持スロット19539内で摺動するように構成されている横方向安定支持体19589を備える。各ステープルドライバ19580は、ステープルドライバ19580がそれらの未発射位置にあるときに駆動ねじ1560を密接に受容するように構成されている、各ステープルドライバ19580内に画定されたクリアランス凹部19583を更に備える。そのような構成は、垂直方向にコンパクトなステープルカートリッジ19500を可能にする。
ステープルカートリッジ20500が図70及び図71に示される。ステープルカートリッジ20500は、ステープルキャビティを備えるカートリッジ本体20510と、カートリッジ本体20510に取り付けられたパン20505と、ステープルキャビティ内に取り外し可能に格納されたステープルと、ステープルドライバと、を備える。パン20505は、パン20505をカートリッジ本体20510に固定する、カートリッジ本体20510上に画定された特徴部と係合する複数のラッチ及び/又はロック窓を備える。上記に加えて、パン20505は、カートリッジ本体20510の下に少なくとも部分的に延在し、ステープルカートリッジ20500がカートリッジジョー内に装填されるときに、カートリッジ本体20510内に格納されたステープルドライバ及びステープルがそれらの未発射位置から偶発的に外れることを防止又は少なくとも抑制する。
上記に加えて、カートリッジ本体20510は、その中に埋め込まれた支持体20501を更に備える。少なくとも1つの実施形態では、カートリッジ本体20510は、支持体20501がカートリッジ本体20510と一体的に形成されるように、支持体20501の周りに射出成形されるプラスチック材料から構成されている。図71を参照すると、各支持体20501は、カートリッジ本体20510のデッキ内に埋め込まれた上側部分20502と、カートリッジ本体20510の底部から延在する下側部分20503と、を備える。パン20505がカートリッジ本体20510に組み立てられるとき、支持体20501の下側部分20503は、パン20505と係合され、かつ/又は直接隣接する。上記に加えて、エンドエフェクタが閉鎖された結果としてステープルカートリッジ20500に圧縮負荷が印加されると、支持体20501は、圧縮負荷の少なくとも一部分をパン20505に伝達することによって、カートリッジ本体20510の下向きの偏向に抵抗する。ステープル発射ストロークの間、少なくとも1つの実施形態では、支持体20501は、圧縮負荷下で、及び/又はスレッドが支持体20501に接触してそれらを曲げてパン20505との接触から外す結果として、降伏するか、又は崩れる。上記の結果として、ステープルカートリッジ20500は、使用中の圧縮負荷に抵抗することができるが、再使用可能ではない。
ステープルカートリッジ22500は、図75~図79に示されており、多くの点で本明細書に開示される他のステープルカートリッジに類似しているが、その大部分は簡潔にするために、本明細書では考察されていない。ステープルカートリッジ22500は、その中に画定されたステープルキャビティ22530を含むカートリッジ本体22510と、各ステープルキャビティ22530内に位置付けられたステープルと、ステープルキャビティ22530内でステープルを上向きに駆動するように構成されているステープルドライバ22580と、ステープル発射ストローク中にステープルドライバ22580に係合するために近位未発射位置(図77)から遠位発射位置(図79)に移動可能なスレッド22550と、を備える。主に図75及び図76を参照すると、スレッド22550は、ステープル発射ストローク中にステープルドライバ22580に係合してこれを持ち上げるように構成されている横方向の角度付き駆動平面22555を備える。各角度付き駆動平面22555は、スレッド22550の遠位端部、すなわち、ウェッジ先端から、スレッド22550の近位端部、すなわち、頂点まで延在する。各ステープルドライバ22580は、スレッド22550がステープルドライバ22850の下を摺動するときに、角度付き駆動平面22555のうちの1つの上を上向きに摺動する、対応する角度付きカム平面を備える。各ステープルドライバ22850は、そこから延在するガイドキー22859を備え、これは、カートリッジ本体22510内に画定されるキースロット内に摺動可能に受容され、これは、ステープルドライバ22850の動きをカートリッジ本体22510内の垂直移動に拘束する。
図80~図85は、本明細書で記載されるような外科用器具とともに使用するための駆動システム23000を示す。駆動システム23000は、シフトモータ23100、駆動モータ23300、及びロックバー又はブレーキ23400を備える。主に図81を参照すると、シフトモータ23100は、外側ねじ山部分23120を含む回転出力シャフト23110を備える。シフトモータ23100は、複数の設定回転位置の間で回転出力シャフト23110を作動させるように構成されているステッパモータ又は任意の好適なモータであってもよい。ねじ山付き部分23120は、モータキャリア23200と螺合可能に係合される。具体的には、モータキャリア23200の内側ねじ山は、回転出力シャフト23110の外側ねじ山部分23120と螺合可能に係合される。したがって、回転出力シャフト23110が第1の方向に回転させられるとき、モータキャリア23200は遠位に並進される。注目すべきことに、モータキャリア23200は、回転出力シャフト23110とともに回転しない。これに対応して、回転出力シャフト23110が第1の方向とは反対の第2の方向に回転させられるとき、モータキャリア23200は近位に並進される。
上記に加えて、モータキャリア23200は、駆動モータ23300を受容するように構成されている開口部23220を備える。駆動モータ23300は、駆動モータ23300がモータキャリア23200とともに並進するように、モータキャリア23200に固定されかつ/又は取り付けられる。駆動モータ23300をモータキャリア23200の開口部23220内に固定するために、例えば、溶接、及び/又は接着剤、及び/又は締結具などの任意の好適な方法が利用され得る。駆動モータ23300がモータキャリア23200の開口部23220に圧入される他の実施形態が想定される。更に、モータキャリア23200及び駆動モータ23300が1つの一体構成要素である他の実施形態が想定される。いずれにしても、モータキャリア23200及び駆動モータ23300は、複数の半径方向位置間でのシフトモータ23100の回転出力シャフト23110の作動に応答して、複数の位置間で一緒に並進する。
上記に加えて、駆動モータ23300は、回転出力シャフト又は駆動モータシャフト23310を備える。駆動モータシャフト23310は、駆動モータ23300の本体部分23305から遠位に延在する。駆動モータシャフト23310は、駆動モータシャフト23310に沿って互いから離間された近位半径方向溝23320及び遠位半径方向溝23330を備える。半径方向溝23320、23330は、駆動モータシャフト23310の残りの部分と比較してより狭いシャフト部分を画定する。更に、駆動システム23000は、近位半径方向溝23320と遠位半径方向溝23330との中間で駆動モータシャフト23310に固定された主駆動ギア23340を備える。主駆動ギア23340は、例えば、溶接、及び/又は締結具、及び/又は接着剤などの任意の好適な手段を使用して、駆動モータシャフト23310に固定されてもよい。例えば、主駆動ギア23340が駆動モータシャフト23310上に圧入される他の実施形態が想定される。いずれにしても、駆動モータ23300を介した駆動モータシャフト23310の回転は、主駆動ギア23340の回転をもたらす。更に、主駆動ギア23340は、以下でより詳細に考察するように、駆動モータ23300の長手方向位置に応じて、複数の出力駆動ギアのうちの1つ及びそれらのそれぞれの出力シャフトを回転させるように構成されている。
上記に加えて、駆動システム23000は、ロックバー又はブレーキ23400と、第1の出力ギア23500と、第2の出力ギア23600と、第3の出力ギア23700と、を更に備える。主に図81を参照すると、ブレーキ23400は、本体部分23405から横方向に延在するクレビス部分23407を含む本体部分23405を備える。クレビス部分23407は、互いから離間された近位カラー23410及び遠位カラー23420を備える。近位カラー23410は、近位半径方向溝23320の周りに受容されるように構成されており、遠位カラー23420は、遠位半径方向溝23330の周りに受容されるように構成されている。具体的には、近位カラー23410は、近位半径方向溝23320の領域において駆動モータシャフト23310を受容する近位開口部23412を備える。更に、遠位カラー23420は、遠位凹部23330の領域において駆動モータシャフト23310を受容する遠位開口部23422を備える。更に、ブレーキ23400は、駆動モータシャフト23310を中心として自由に回転する。したがって、シフトモータ23100が作動されると、ブレーキ23400、駆動モータ23300、及び駆動モータシャフト23310は、一緒に並進する。しかしながら、ブレーキ23400は、駆動シャフト23310とともに回転しない。ブレーキ23400が駆動モータシャフト23310に取り付けられることなく、ブレーキ23400が駆動モータ23300とともに並進するように、ブレーキ23400が器具のハンドル又はハウジングに動作可能に取り付けられる、他の実施形態が想定される。いずれにしても、以下でより詳細に考察するように、ブレーキ23400は、駆動モータシャフト23310とともに並進して、3つの出力ギア23500、23600、及び23700のうちの2つに選択的に係合して、それらの回転を防止する一方で、3つの出力ギア23500、23600、及び23700のうちの1つが回転することを可能にする。
主に図81を参照すると、第1の出力ギア23500は、そこから遠位に延在する第1の出力シャフト23510を備え、第2の出力ギア23600は、そこから遠位に延在する第2の出力シャフト23610を備え、第3の出力ギア23700は、そこから遠位に延在する第3の出力シャフト23710を備える。出力駆動シャフト23510、23610、23710は、器具のハンドル又はハウジング内に回転可能に支持されており、外科用器具のエンドエフェクタ又はステープル留め取り付け内で異なる動きをもたらすように構成されている。更に、出力駆動シャフト23510、23610、23710は、互いに入れ子になっている。具体的には、第1の出力駆動シャフト23510は、第2の出力駆動シャフト23610の開口部23620内に受容され、第1及び第2の出力駆動シャフト23510、23610は、第3の出力駆動シャフト23710の開口部23720内に受容される。したがって、出力駆動シャフト23510、23610、23710は、同じ長手方向軸を中心として互いに対して回転可能である。
主に図82を参照すると、ブレーキ23400は、本体部分23405から横方向に延在する一対の長手方向歯23430を備える。一対の長手方向歯23430は、一対の長手方向歯23430内に画定される間隙23440を除いて、本体部分23405全体に沿って長手方向に延在する。具体的には、図83~図85は、一対の長手方向歯23430における間隙23440を示す。長手方向歯23430は、出力ギア23500、23600、23700の歯と噛み合って係合して、ブレーキ23400の長手方向位置に応じてそれらの回転を選択的に防止するように構成されている。具体的には、シフトモータ23100によって並進可能なブレーキ23400の長手方向位置は、以下でより詳細に説明するように、出力ギア23500、23600、23700のうちのどれが自由に回転できるかを決定する。
使用中、図83に示すように、シフトモータ23100が駆動モータ23300及びブレーキ23400を第1の位置に位置付けると、主駆動ギア23340上の歯は、第1の出力ギア23500上の歯と噛み合って係合される。したがって、主駆動ギア23340の回転は、第1の出力ギア23500及び第1の出力駆動シャフト23510を回転させて、第1のエンドエフェクタ機能を行う。更に、ブレーキ23400の間隙23440は、ブレーキ23400の一対の長手方向歯23430が第2の出力ギア23600及び第3の出力ギア23700とのみ係合し、したがって、第2の出力ギア23600及び第3の出力ギア23700が回転することを防止され、それによって、第2のエンドエフェクタ機能及び第3のエンドエフェクタ機能をロックアウトするように位置付けられる。
様々な実施形態では、第1のエンドエフェクタ機能は、例えば、エンドエフェクタの関節運動を含む。少なくとも1つのそのような実施形態では、例えば、外科用器具のエンドエフェクタは、関節運動継手を中心として回転可能である。少なくとも1つの実施形態では、第2のエンドエフェクタ機能は、例えば、エンドエフェクタを長手方向軸を中心として回転させることを含む。少なくとも1つのそのような実施形態では、外科用器具は、シャフトの少なくとも一部分及び外科用器具のエンドエフェクタが長手方向軸を中心として回転することを可能にする、関節運動継手の近位にある回転継手を備える。少なくとも1つの実施形態では、外科用器具は、エンドエフェクタが長手方向軸を中心にしてシャフトに対して回転することを可能にする、関節運動継手の遠位にある回転継手を備える。少なくとも1つの実施形態では、第3のエンドエフェクタ機能は、例えば、エンドエフェクタを通して組織切断ナイフを遠位に前進させることを含む。
上記に加えて、図84に示すように、シフトモータ23100が駆動モータ23300及びブレーキ23400を第2の位置に位置付けると、主駆動ギア23340の歯は、第2の出力ギア23600の歯と噛み合って係合される。したがって、主駆動ギア23340の回転は、第2の出力ギア23600及び第2の出力駆動シャフト23610を回転させる。更に、ブレーキ23400の間隙23440は、ブレーキ23400の一対の長手方向歯23430が第1の出力ギア23500及び第3の出力ギア23700とのみ係合し、第2の出力ギア23600とは係合せず、したがって、第1の出力ギア23500及び第3の出力ギア23700が回転することを防止されるように位置付けられる。
上記に加えて、図85に示すように、シフトモータ23100が駆動モータ23300及びブレーキ23400を第3の位置に位置付けると、主駆動ギア23340の歯は、第3の出力ギア23700の歯と噛み合って係合される。したがって、主駆動ギア23340の回転は、第3の出力ギア23700及び第3の出力駆動シャフト23710を回転させる。更に、ブレーキ23400の間隙23440は、ブレーキ23400の一対の長手方向歯23430が第1の出力ギア23500及び第2の出力ギア23600とのみ係合し、第3の出力ギア23700とは係合せず、したがって、第1の出力ギア23500及び第2の出力ギア23600が回転することを防止されるように位置付けられる。
図86~図92は、本明細書で記載されるような外科用器具とともに使用するための駆動システム24000を示す。駆動システム24000は、駆動モータ24100及びシフトモータ24200を備える。主に図89を参照すると、駆動モータ24100は、回転入力シャフト24110と、回転入力シャフト24110上に装着された駆動モータギア24120と、を備える。駆動モータギア24120は、第1のアイドラギア24130、第2のアイドラギア24140、及び第3のアイドラギア24150と動作可能に係合される。具体的には、駆動モータギア24120の歯は、第1のアイドラギア24130の歯のみと噛み合って係合され、第1のアイドラギア24130の歯は、第2のアイドラギア24140の歯及び第3のアイドラギア24150の歯と噛み合って係合される。第2のアイドラギア24140及び第3のアイドラギア24150は、第1のアイドラギア24130の両側に位置付けられる。したがって、駆動モータ24100を介した駆動モータギア24120の回転は、第1のアイドラギア24130、第2のアイドラギア24140、及び第3のアイドラギア24150の同時回転をもたらす。上述したように、駆動モータギア24120が3つのアイドラギア24130、24140、24150の全ての間に位置付けられ、3つのアイドラギア24130、24140、24150の全てと噛み合って係合される他の実施形態が想定される。
主に図88を参照すると、第1のアイドラギア24130は、第1の回転入力シャフト24132に装着され、第2のアイドラギア24140は、第2の回転入力シャフト24142に装着され、第3のアイドラギア24150は、第3の回転入力シャフト24152に装着される。示される実施形態では、駆動モータギア24120及びアイドラギア24130、24140、24150は、ピン又はねじを介してそれぞれのシャフト24132、24142、24152に取り付けられている。しかしながら、駆動モータギア24120及びアイドラギア24130、24140、24150が、例えば、溶接、接着剤、圧入などの任意の好適な手段を使用して、それらのそれぞれのシャフト24132、24142、24152に固定される及び/又は取り付けられている、他の実施形態が想定される。いずれにしても、第1の回転入力シャフト24132は、その遠位端部から延在する第1の入力クラッチ24134を備え、第2の回転入力シャフト24142は、その遠位端部から延在する第2の入力クラッチ24144を備え、第3の回転入力シャフト24152は、その遠位端部から延在する第3の入力クラッチ24154を備える。入力クラッチ24134、24144、24154は、以下でより詳細に考察するように、3つの異なる出力クラッチと選択的に係合可能であるように構成されている。
主に図88を参照すると、シフトモータ24200は、回転割出シャフト24220を備えるシフトモータシャフト24210を備える。回転割出シャフト24220は、長手方向軸LAを画定し、シフトモータ24200が作動されると、その長手方向軸LAを中心にして回転するように構成されている。シフトモータ24200は、例えば、複数の設定回転位置の間で回転割出シャフト24220を作動させるように構成されているステッパモータ又は任意の好適なモータであってもよい。更に、回転割出シャフト24220は、以下でより詳細に説明するように、回転割出シャフト24220の周り全体に延在する3つの別個のカムプロファイル24222、24224、24226を備える。
上記に加えて、回転割出シャフト24220は、第1のカムプロファイル24222と、第2のカムプロファイル24224と、第3のカムプロファイル24226と、を備える。第1、第2、及び第3のカムプロファイル24222、24224、24226の各々は、回転割出シャフト24220内に半径方向溝を画定する。更に、各カムプロファイル24222、24224、24226は、長手方向軸LAを基準として見たときに異なる。具体的には、第1のカムプロファイル24222は、第2のカムプロファイル24224と同一である。しかしながら、第2のカムプロファイル24224は、長手方向軸LAを中心として第1のカムプロファイル24222に対して約60度回転している。更に、第2のカムプロファイル24224は、第3のカムプロファイル24226と同一である。しかしながら、第3のカムプロファイルは、第2のカムプロファイル24225に対して約60度回転している。カムプロファイル24222、24224、24226の互いに対する任意の好適な向きが企図されることを理解されたい。以下でより詳細に考察するように、カムプロファイル24222、24224、24226の各々は、3つの別個のカムの異なる移動をもたらすように、長手方向軸LAに対して回転割出シャフト24220内に別個に画定される。
主に図88を参照すると、第1のカム24300は、回転割出シャフト24220を受容するように構成されている開口部24310を備える。第1のカム24300は、開口部24310を通って第1のカムプロファイル24222内に延在する第1のカムピン24320(図87参照)を備え、これによって、回転割出シャフト24220が回転すると、第1のカムピン24320が第1のカムプロファイル24222内でそれに沿って移動するようになっている。更に、第2のカム24400は、回転割出シャフト24220を受容するように構成されている開口部24410を備える。第2のカム24400は、開口部24410を通って第2のカムプロファイル24224内に延在する第2のカムピン24420(図87参照)を備え、これによって、回転割出シャフト24220が回転すると、第2のカムピン24420が第2のカムプロファイル24224内でそれに沿って移動するようになっている。更に、第3のカム24500は、回転割出シャフト24220を受容するように構成されている開口部24510を備える。第3のカム24500は、開口部24510を通って第3のカムプロファイル24226内に延在する第3のカムピン24520を備え、これによって、回転割出シャフト24220が回転すると、第3のカムピン24520が第3のカムプロファイル24226内でそれに沿って移動するようになっている。以下でより詳細に考察するように、カム24300、24400、24500の各々は、回転割出シャフト24220が長手方向軸LAを中心として回転させられるとき、長手方向軸LAに対して長手方向に並進することができる。
主に図88を参照すると、第1のカム24300は、第1の横方向フランジ24330と、第1の横方向フランジ24330内に画定された第1の開口部24340と、を備える。第2のカム24400は、第2の横方向フランジ24430と、第2の横方向フランジ24430内に画定された第2の開口部24440と、を備える。第3のカム24500は、第3の横方向フランジ24530と、第3の横方向フランジ24530内に画定された第3の開口部24540と、を備える。以下でより詳細に考察するように、第1の回転出力シャフト24600は、第1の開口部24340を通って延在し、第2の回転出力シャフト24700は、第2の開口部24440を通って延在し、第3の回転出力シャフト24800は、第3の開口部24540を通って延在する。
上記に加えて、第1の回転出力シャフト24600、第2の回転出力シャフト24700、及び第3の回転出力シャフト24800は、外科用器具に回転可能に装着される。出力シャフト24600、24700、24800は、例えば、スラスト軸受及び/又は任意の他の好適な手段によって器具内に回転可能に支持される。第1の出力クラッチ24610は、第1の回転出力シャフト24600の近位端部上に摺動可能に装着される。第1の出力クラッチ24610は、第1の出力シャフト24600内に画定された溝24640内に位置付けられた突出部又はキー24630を備える。突出部及び溝装置24630、24640は、第1の出力クラッチ24610が第1の出力シャフト24600に対して摺動又は並進し、また、第1の出力シャフト24600とともに回転することを可能にする。更に、第2の出力クラッチ24710は、第2の回転出力シャフト24700の近位端部上に摺動可能に装着される。第2の出力クラッチ24710は、第2の出力シャフト24700内に画定された溝24740内に位置付けられた突出部又はキー24730を備える。突出部及び溝装置24730、24740は、第2の出力クラッチ24710が第2の出力シャフト24700に対して摺動又は並進し、また、第2の出力シャフト24700とともに回転することを可能にする。更に、第3の出力クラッチ24810は、第3の回転出力シャフト24800の近位端部上に摺動可能に装着される。第3の出力クラッチ24810は、第3の出力シャフト24800内の溝24840内に位置付けられた突出部又はキー24830を備える。突出部及び溝装置24830、24840は、第3の出力クラッチ24810が第3の出力シャフト24800に対して摺動又は並進し、また、第3の出力シャフト24800とともに回転することを可能にする。
主に図88を参照すると、第1の出力クラッチ24610は、第1のカム24300の第1の開口部24340内に受容され、その中で回転可能な第1の半径方向溝24620を備える。第2の出力クラッチ24710は、第2のカム24400の第2の開口部24440内に受容され、その中で回転可能な第2の半径方向溝24720を備える。第3の出力クラッチ24810は、第3のカム24500の第3の開口部24540内に受容され、その中で回転可能な第3の半径方向溝24820を備える。したがって、第1の出力クラッチ24610は、第1のカム24300に対して回転可能であり、第2の出力クラッチ24710は、第2のカム24400に対して回転可能であり、第3の出力クラッチ24810は、第3のカム24500に対して回転可能である。更に、出力クラッチ24610、24710、24810それぞれの半径方向溝24620、24720、24820の側壁は、カム部材24300、24400、24500が出力クラッチ24610、24710、24810をそれぞれの出力シャフト24600、24700、24800に対して並進させるための軸受面を提供する。以下により詳細に考察するように、出力クラッチ24610、24710、24810のそれぞれの出力シャフト24600、24700、24800に対するそのような並進は、出力クラッチ24610、24710、24810がそれぞれの入力クラッチ24134、24144、24154と選択的に係合及び係合解除されることを可能にする。
図90を参照すると、シフトモータ24200の回転割出シャフト24220は、長手方向軸LAに対して第1の半径方向位置にある。回転割出シャフト24200がその第1の半径方向位置にあるとき、カム24300、24400、24500は第1の構成にある。第1の構成では、第1のカム24300及び第1の出力クラッチ24610は、第1の出力クラッチ24610が第1の入力クラッチ24134と係合されない遠位位置にある。更に、第1の構成では、第2のカム24400及び第2の出力クラッチ24710は、第2の出力クラッチ24710が第2の入力クラッチ24144と係合される近位位置にある。更に、第1の構成では、第3のカム24500及び第3の出力クラッチ24810は、第3の出力クラッチが第3の入力クラッチ24154と係合されない遠位位置にある。したがって、第1の構成では、第2の出力クラッチ24710のみが、そのそれぞれの入力クラッチ24400と係合される。したがって、カム24300、24400、24500がそれらの第1の構成(図90)にあるとき、駆動モータギア24120の回転は、第2の出力シャフト24700の回転をもたらす。
図91を参照すると、回転割出シャフト24220は、図90の第1の半径方向位置から長手方向軸LAを中心として第2の半径方向位置へと回転されている。回転割出シャフト24220がその第2の半径方向位置にあるとき、カム24300、24400、24500は、第2の構成にある。具体的には、第1のカム24300及び第2のカム24400は、互いに向かって移動しているが、第3のカム24500は、図90の第1の構成と同じ長手方向位置に留まる。第1のカム24300及び第2のカム24400は、回転割出シャフト24220がその第1の半径方向位置からその第2の半径方向位置に回転させられるとき、回転割出シャフト24220の第1及び第2のカムプロファイル24222、24224が第1及び第2のカム24300、24400の第1及び第2のカムピン24320、24420にカム作用で係合することにより、互いに向かって並進される。第3のカムプロファイル24226のドエルは、回転割出シャフト24200がその第1の半径方向位置からその第2の半径方向位置に回転するときに第3のカムピン24520が並進しないように、第1及び第2のカムプロファイル24222、24224に対して半径方向に配向される。したがって、第3のカム24500及び第3の出力クラッチ24810は、回転割出シャフト24220がその第1の半径方向位置からその第2の半径方向位置に回転するときに並進しない。
上記に加えて、カム24300、24400、24500が図91に示されるように第2の構成にあるとき、第1のカム24300及び第1の出力クラッチ24610は、第1の出力クラッチ24610が第1の入力クラッチ24134と係合される近位位置にある。更に、第2の構成では、第2のカム24400及び第2の出力クラッチ24710は、第2の出力クラッチ24710が第2の入力クラッチ24144と係合されない遠位位置にある。更に、第2の構成では、第3のカム24500及び第3の出力クラッチ24810は、第3の出力クラッチ24810が第3の入力クラッチ24154と係合されない遠位位置に留まる。したがって、第2の構成では、第1の出力クラッチ24610のみが、そのそれぞれの入力クラッチ24134と係合される。したがって、カム24300、24400、24500がそれらの第2の構成(図91)にあるとき、駆動モータギア24120の回転は、第1の出力シャフト24600の回転をもたらす。
図92を参照すると、回転割出シャフト24220は、図91のその第2の半径方向位置から長手方向軸LAを中心として第3の半径方向位置へと回転されている。カム24300、24400、24500は、回転割出シャフト24220がその第3の半径方向位置にあるとき、第3の構成にある。具体的には、第1のカム24300及び第3のカム24500は、互いから離れるように移動するが、第2のカム24400は、第2の構成(図91)と同じ長手方向位置に留まる。第1のカム24300及び第3のカム24500は、回転割出シャフト24220がその第2の半径方向位置からその第3の半径方向位置に回転するとき、回転割出シャフト24222の第1及び第3のカムプロファイル24222、24226が第1及び第3のカム24300、24500の第1及び第3のカムピン24320、24520にカム作用で係合することにより、互いから離れるように並進される。第2のカムプロファイル24224のドエルは、回転割出シャフト24200がその第2の半径方向位置からその第3の半径方向位置に回転するときに第2のカムピン24420が並進しないように、第1及び第3のカムプロファイル24222、24226に対して半径方向に配向される。したがって、第2のカム24400及び第2の出力クラッチ24710は、回転割出シャフト24220がその第2の半径方向位置からその第3の半径方向位置に回転するときに並進しない。
上記に加えて、カム24300、24400、24500が図92に示されるように第3の構成にあるとき、第1のカム24300及び第1の出力クラッチ24610は、第1の出力クラッチ24610が第1の入力クラッチ24134と係合されない遠位位置にある。更に、第3の構成では、第2のカム24400及び第2の出力クラッチ24710は、第2の出力クラッチ24710が第2の入力クラッチ24144と係合されない遠位位置に留まる。更に、第3の構成では、第3のカム24500及び第3の出力クラッチ24810は、第3の出力クラッチ24810が第3の入力クラッチ24154と係合される近位位置にある。したがって、第3の構成では、第3の出力クラッチ24810のみが、そのそれぞれの入力クラッチ24154と係合される。したがって、カム24300、24400、24500がそれらの第3の構成(図92)にあるとき、駆動モータギア24120の回転は、第3の出力シャフト24800の回転をもたらす。
図86を参照すると、回転割出シャフト24220は、第1の半径方向位置(図90)、第2の半径方向位置(図91)、及び第3の半径方向位置(図92)とは異なる第4の半径方向位置にある。回転割出シャフト24220が第4の半径方向位置にあるとき、カム部材24300、24400、24500は、第4の構成にある。第4の構成では、カム24300、24400、24500、及びそれぞれの出力クラッチ24610、24710、24810は、出力クラッチ24610、24710、24810がそれぞれの入力クラッチ24134、24144、24154と係合されない遠位位置にある。したがって、カム24300、24400、24500が第4の構成(図86)にあるとき、駆動モータギア24120の回転は、出力シャフト24600、24700、24800のいずれの回転ももたらさない。
図93~図96は、シャフト25010と、エンドエフェクタ25020と、関節運動継手又は領域25030と、を備える、外科用器具アセンブリ25000を図示する。外科用器具アセンブリ25000は、エンドエフェクタ25020の機能を作動させるように構成されている一次駆動シャフト25060と、ピボット軸PAを中心としてシャフト25020に対してエンドエフェクタ25020を関節運動させるように構成されている関節運動アクチュエータ25050と、を更に備える。シャフト25010は、シャフト25010の遠位端部25011から延在するタブ25012を備える遠位端部25011を備える。シャフト25010は、中央キャビティ25014を更に備え、中央キャビティ25014は、中央キャビティ25014を通して一次駆動シャフト25060及び関節運動アクチュエータ25050を受容するように構成されている。中央キャビティ25014はまた、それを通して、例えば、他の駆動シャフト、フレーム構成要素、及び/又は電気構成要素を受容してもよい。エンドエフェクタ25020は、エンドエフェクタ25020の近位端部25021から延在するタブ25023を備える近位端部25021を備える。タブ25012は、タブ25023に枢動可能に結合されて、シャフト25010とエンドエフェクタ25020とを一緒に枢動可能に結合し、シャフト25010に対するエンドエフェクタ25020の関節運動を可能にする。タブ25012及びタブ25023は、ピン25031によって互いに枢動可能に結合される。ピボット軸PAは、ピン25031によって画定される。
関節運動継手25030は、関節運動支持ピボット25040を備える。関節運動支持ピボット25040は、タブ25012とタブ25023との間に画定されたキャビティ25022内に位置付けられた円筒形部材を備えており、関節運動アクチュエータ25050によって作動されるときに枢動するように構成されている。「円筒形」という用語が使用されているが、関節運動支持ピボットは完全な円筒に似ている必要はない。各関節運動アクチュエータ25050は、遠位端部25051を備える。遠位端部25051は、作動ピン25035によって関節運動支持ピボット25040にピン留めされる。関節運動アクチュエータ25050は、例えば、可撓性アクチュエータ、ケーブル、可撓性プラスチックプレート、電気活性ポリマーアクチュエータ、及び/又は圧電バイモルフアクチュエータなどの任意の好適なタイプのアクチュエータを含み得る。関節運動支持ピボット25040は、それを通して長手方向軸LAに沿って画定された中央キャビティ25041を備える。一次駆動シャフト25060は、中央キャビティ25041を通して受容されるように構成されている。少なくとも1つの事例では、一次駆動シャフト25060は、可撓性であり、エンドエフェクタ25030がシャフト25010に対して関節運動されるときに曲がるか又は屈曲するように構成されている。少なくとも1つの事例では、一次駆動シャフト25060は、可撓性アクチュエータを含む。少なくとも1つの事例では、一次駆動シャフト25060は、直線的に並進可能なアクチュエータを含む。少なくとも1つの事例では、一次駆動シャフト25060は、回転駆動シャフトを含む。少なくとも1つの事例では、一次駆動シャフト25060は、可撓性であり、回転してエンドエフェクタの機能を作動させるように構成されており、並進してエンドエフェクタ25020の機能を作動させるように構成されている。
少なくとも1つの事例では、関節運動支持ピボットは、角柱構造、球形構造、及び/又は矩形構造を備える。
エンドエフェクタ25020を関節運動させるために、関節運動アクチュエータ25050は、エンドエフェクタ25030をシャフト25010に対して関節運動させる拮抗的な様式で押し引きされるように構成されている。例えば、第1のアクチュエータ25050は、ピン25035の第1の側を遠位方向に押すように構成され、第2のアクチュエータ25050は、ピン25035の第2の側を近位方向に引っ張るように構成され、その結果、関節運動支持ピボット25040が回転又は枢動して、エンドエフェクタ25020を第1の方向に関節運動させる。同様に、第1のアクチュエータ25050は、ピン25035の第1の側を近位方向に引っ張るように構成され、第2のアクチュエータ25050は、ピン25035の第2の側を遠位方向に押すように構成され、その結果、関節運動支持ピボット25040が回転又は枢動して、エンドエフェクタ25020を第1の方向とは反対の第2の方向に関節運動させる。少なくとも1つの事例では、一次駆動シャフト25060は、関節運動支持ピボット25040の中央キャビティ25041によって曲げられるか、又は枢動される。結果として、一次駆動シャフト25060は、枢動力をエンドエフェクタ25020に印加して、エンドエフェクタ25020を所望の方向に関節運動させるように構成されている。
少なくとも1つの事例では、第1の関節運動アクチュエータ25050は能動的に作動され、第2の関節運動アクチュエータ25050の受動的な移動は、第1のアクチュエータ25050の作動に依存する。少なくとも1つの事例では、唯一の関節運動アクチュエータ25050が提供される。
少なくとも1つの事例では、エンドエフェクタ25020は、関節運動支持ピボット25040に固定して取り付けられ、これによって、関節運動支持ピボット25040がアクチュエータ25050及び作動ピン25035によって回転させられると、関節運動支持ピボット25040は、エンドエフェクタ25020と関節運動支持ピボット25040との間の固定された関係によって、シャフト25010に対してエンドエフェクタ25020を直接関節運動させる。そのような事例では、エンドエフェクタ25020は、エンドエフェクタ25020がシャフト25060に対して関節運動されるときに、一次駆動シャフト25010を屈曲させるのを助け得る。
少なくとも1つの事例では、関節運動支持ピボット25040は、長手方向軸LAを横断する中心軸を画定する。少なくとも1つの事例では、中心軸は、ピボット軸PAと位置合わせされる。そのような事例では、関節運動支持ピボット25040は、ピボット軸PAを中心にして回転する。少なくとも1つの事例では、関節運動支持ピボット25040は、関節運動継手25030内で横方向に浮動するように構成されている。そのような事例では、関節運動支持ピボット25040が回転する軸は、エンドエフェクタ25020及び/又はシャフト25010に対して固定されておらず、むしろエンドエフェクタ25020及び/又はシャフト25010に対して横方向及び/又は長手方向に移動する。そのような構成は、固定されたピボット軸を取り除き、半可動又は浮動可能なピボット軸を提供することによって、関節運動継手25030内にある程度の可撓性を提供し得る。
図95に見られるように、関節運動支持ピボット25040は、一次駆動シャフト25060が関節運動継手25030から飛び出すことを防止するように構成されている。中央キャビティ25041は、エンドエフェクタ25020がシャフト25060に対して関節運動されるときに、関節運動継手25030内で一次駆動シャフト25010を拘束するように構成されている。少なくとも1つの事例では、中央キャビティ25041は、関節運動継手25030を通して一次駆動シャフト25060を横方向及び垂直方向に支持する。少なくとも1つの事例では、関節ピン25035は、中央キャビティ25041内に垂直支持制限を提供する。
少なくとも1つの事例では、関節運動支持ピボット25040は、シャフト25010及びエンドエフェクタ25020と組み立てられ、次いで、一次駆動シャフト25060は、シャフト25010及び中央キャビティ25041を通ってエンドエフェクタ25020内に挿入される。結果として、一次駆動シャフト25060自体は、関節運動継手25030の分解を防止するように構成されている。そのような事例では、一次駆動シャフト25060自体は、関節運動継手25030の1つ又は2つ以上の構成要素を一緒に保持する。
図97は、外科用器具アセンブリ25000と同じ構成要素の多くを備える外科用器具アセンブリ25100を図示する。外科用器具アセンブリ25100は、外科用器具アセンブリ25100とは異なり、関節運動支持ピボット25140に加えてタブ25012、25023を互いにピン留めするピボットピン25131を備える、関節運動継手25130を備える。関節運動支持ピボット25140は、関節運動支持ピボット25040と同じ及び/又は同様の機能を備えてもよい。関節運動支持ピボット25140は、ピン25035の一部分及び一次駆動シャフト25060を受容するように構成されている、それを通して画定された中央キャビティ25141を備える。関節運動継手25130は、シャフト25010を関節運動支持ピボット25140に枢動可能に結合することによって、より別個のピボットを可能にすることができる。少なくとも1つの事例では、エンドエフェクタ25020は、関節運動支持ピボット25140に固定して取り付けられている。少なくとも1つの事例では、エンドエフェクタ25020は、関節運動支持ピボット25140に枢動可能に取り付けられている。
図98及び図99は、エンドエフェクタカートリッジ25210と、発射部材25270と、複数の可撓性アクチュエータ25220と、を備える、外科用器具アセンブリ25200を図示する。アクチュエータ25220は、複数の第1のアクチュエータ25260と、チューブ25230と、を備える。チューブ25230は、発射部材25270を押す及び/又は引っ張るように構成されている直線的に並進可能な部材を備えてもよい。少なくとも1つの事例では、チューブ25230は、アクチュエータ25260に対するジャケットとしてのみ作用し、フレックス回路25240がその周りに巻き付けられることを可能にする。外科用器具アセンブリ25200は、アクチュエータ25220が通って延在するように構成されている関節運動継手を備えてもよい。この目的のために、各アクチュエータ25260は、アクチュエータ25260が第1の所定の方向に撓む又は曲がることを可能にするように構成されている、複数のスリット25261を備える。方向は、エンドエフェクタカートリッジ25210が関節運動される関節運動平面に対応し得る。少なくとも1つの事例では、各アクチュエータ25260は、アクチュエータ25260が第1の所定の方向に加えて第2の所定の方向に撓む又は曲がることを可能にする、追加のスリットを備える。そのような構成は、エンドエフェクタカートリッジ25210が2つの別個の平面において関節運動され得る多軸関節運動継手におけるアクチュエータ25260の使用を可能にするであろう。
少なくとも1つの事例では、アクチュエータ25260は、発射部材25270を通じてエンドエフェクタカートリッジ25210に関節運動力を印加することによってエンドエフェクタカートリッジ25210を関節運動させるために提供される。アクチュエータ25260は、アクチュエータ25260を所望の屈曲構成に屈曲させ、それによってアクチュエータ25260が取り付けられた発射部材25270を所定の方向に移動させるように通電されるように構成されている、電気活性ポリマー及び/又は圧電バイモルフを備えてもよい。アクチュエータ25260はまた、エンドエフェクタカートリッジ25210、及び/又はエンドエフェクタカートリッジ25210を備えるエンドエフェクタアセンブリの1つ又は2つ以上の機能をもたらすように前進及び/又は回転されてもよい。例えば、アクチュエータ25260は、発射部材25270を遠位に押すように、及び/又は発射部材25270を近位に引っ張るように、直線的に並進されてもよい。少なくとも1つの事例では、アクチュエータ25260は、例えば、シャフトに対してエンドエフェクタカートリッジ25210を回転させるために、回転力を発射部材25270に印加するように構成されている。そのような事例では、アクチュエータ25260は、例えば、遊星ギア列によって作動されてもよい。
スリット25260は、任意の好適な方法によってアクチュエータ25260内に形成することができる。例えば、スリット25260は、アクチュエータ25260にレーザ切断されてもよい。アクチュエータ25260は、任意の好適な材料(単数及び/又は複数)で構成することができる。例えば、アクチュエータ25260は、金属材料から構成されてもよく、例えば、追加の関節運動バンド、ケーブル、及び/又はプレートによって作動されてもよい。少なくとも1つの事例では、アクチュエータ25260は、電気活性ポリマーから構成されており、アクチュエータ25260を曲げる及び/又は前進/後退させるために通電される及び電源を切られるように構成されている。
図99を参照すると、フレックス回路25240は、発射部材25270に取り付けられている。フレックス回路25240は、チューブ25230の周りに螺旋状に巻き付けられるか、又はコイル状に巻かれる。少なくとも1つの事例では、フレックス回路25240の巻き付けは、例えば、フレックス回路25240の位置をシャフト内で半径方向に変動させることによって、シャフト内の様々な電気構成要素間の容量結合を低減するように構成されている。
少なくとも1つの事例では、容量結合を能動的に緩和するように構成されている制御回路が提供される。アクティブインダクタ同調可能インピーダンスシステムは、外科用器具アセンブリ内の容量結合を監視及び緩和するために用いられ得る。
少なくとも1つの事例では、制御回路は、外科用器具アセンブリ内の電気システムに有効電力管理を提供するように構成されている。そのような事例では、制御回路は、容量結合を検出し、電力送達を能動的に調節して、外科用器具アセンブリ内の様々な電気構成要素間の容量結合を低減するように構成されている。
少なくとも1つの事例では、フレックス回路25240は、中立の非回転状態においてフレックス回路25240が最小張力状態にあるように、シャフトアセンブリの1つ又は2つ以上の構成要素の周りに巻き付けられる。そのような事例では、フレックス回路25240を同様に回転させる構成要素の回転は、フレックス回路25240がねじれるにつれてフレックス回路25240の張力を増加させる。フレックス回路25240は、制御回路が回転を停止する前に、最大量のねじれ誘起張力を受けるように構成することができる。様々な事例では、第1の方向への回転は、フレックス回路25240をシャフトの周りに締め付けさせ、反対方向への回転は、フレックス回路25240をシャフトの周りに緩める。そのような構成は、シャフトアセンブリの構成要素の回転の前に、システム内にある大きさの緩みを提供する。少なくとも1つの事例では、フレックス回路25240は、コイル状に巻かれた状態で製造される。少なくとも1つの事例では、フレックス回路25240は、非コイル状態で製造され、中性コイル状態に組み立てられる。フレックス回路25240をコイル状に製造することは、例えば、より多くの信号送信を可能にするより厚い及び/又はより広いフレックス回路を可能にすることができる。少なくとも1つの事例では、フレックス回路25240のコイル状構成は、様々な信号送信線間の容量結合を低減する。少なくとも1つの事例では、複数の接地層又は接地平面を用いて、無線周波数信号を囲み、及び/又は外科用器具アセンブリ内で生成される任意の漂遊磁場を分離することができる。
図100及び図101は、外科用器具アセンブリとともに使用されるように構成されている関節運動システム25300を図示する。関節運動システム25300は、シャフト25301と、付勢システム25310と、関節運動平面内で関節運動継手25330、したがってシャフト25301を屈曲させるように構成されている、複数の電磁石25351及び複数のシャフトセグメント25360を備える関節運動継手25330と、を備える。付勢システム25310は、関節運動システムを非関節運動構成に付勢するように構成されている。
付勢システム25310は、ラチェットフォーク25311と、並進可能ラック部材25320と、並進可能ラック部材25320に取り付けられたスレーブケーブル25340と、近位シャフトセグメント25360と、を備える。ラチェットフォーク25311は、並進可能なラック部材25320のうちの1つ又は2つ以上の並進によりラチェットフォーク25311のばね力に打ち勝ったときに互いに対して内向きに屈曲するように構成されている歯付きプロング25312を備える。歯付きプロング25312は、並進可能なラック部材25320と係合され、これによって、並進可能なラック部材25320が関節運動継手25350によって押され、かつ/又は引っ張られると、歯付きプロング25312がラック部材25320の歯25321に乗り、ラック部材25320に所定の保持力を提供する。スレーブケーブル25340は、各ラック部材25320の遠位端部25322に取り付けられ、関節運動継手25350の押す力及び/又は引っ張る力をラック部材25320に変換する。ラック部材25320は、シャフトアセンブリ内のコイルばね25330に取り付けられ、例えば、これによって、関節運動継手25350が関節運動されると、コイルばね25330は、緩みが対応するスレーブケーブル25340に導入されるとラック部材25320を関節運動継手25350から離れるように押し、張力が関節運動継手25350によって対応するスレーブケーブル25340に印加されると関節運動継手25350に向かって引っ張られるように構成されている。
シャフト25301を関節運動継手25350で関節運動させるために、シャフトセグメント25360は、アコーディオンの様式で作動され作動され、これによって、関節運動継手25350の片側の電磁石25351が通電されて、電磁石25351を互いに引き付けて、関節運動継手25350のこの側を収縮させ、シャフト25301を第1の方向に曲げる。少なくとも1つの事例では、関節運動継手23350の他方の側の電磁石25351は、通電されている電磁石25351によって引き起こされる関節運動の方向に起因して、関節運動継手25350のこの他方の側の拡張とともに電磁石が互いから離れるように移動することを可能にするように、通電が断たれるか、又は通電されない。少なくとも1つの事例では、関節運動継手25350の拡張側の電磁石25351は、関節運動継手25350のこの側の拡張を助けるように、関節運動継手25350の拡張側の電磁石に反発するような様式で通電される。同様に、関節運動継手25350は、上述した方法とは反対の方法で電磁石に通電することによって、他の方向に曲げられてもよい。
少なくとも1つの事例では、各電磁石25351は、所望の電磁石25351を吸引及びそれに反発するように同時に通電される。少なくとも1つの事例では、スレーブケーブルに取り付けられた近位電磁石25351が通電されて、関節運動継手25350の一方の側の近位電磁石25351より遠位の電磁石のチェーン全体の収縮及び/又は拡張をアクティブ化させる。少なくとも1つの事例では、関節運動継手25350の両側は、所望の構成(拡張又は収縮)に対応して通電される。ケーブル25352は、関節運動継手25350の所望の構成によって、収縮及び拡張することができる。少なくとも1つの事例では、ケーブル25352は、関節運動継手25350を非関節構成に付勢するように構成されており、対応する電磁石25351に通電すると、圧縮されるか、又は弛緩されるか、及び/又は延伸されるか、又は引っ張られて張力状態になる。
上で考察したように、付勢システム25310は、関節運動継手25350を非関節運動構成に付勢するように構成されている。少なくとも1つの事例では、電磁石25351は、付勢システム25310が関節運動継手25350を押し引きして非関節運動構成にすることを可能にするように、電源が切られる。図101を参照すると、電磁石25351は電源が切られると、拡張されたコイルばね25330は、その対応するラック部材25320を関節運動継手25350に向かって引っ張り、圧縮されたコイルばね25330は、その対応するラック部材25320を関節運動継手25350から離れるように押す。この押し引き運動は、スレーブケーブル25340に印加され、関節運動継手25350を非関節運動構成に移動させるのを助けるように構成されている。少なくとも1つの事例では、歯25321及び歯付きプロング25312は、可聴音をユーザに提供して、関節運動継手25350が完全な非関節運動構成に達したときを示す。
少なくとも1つの事例では、電磁石25351に供給される電力を変化させて、関節運動角度を変化させることができる。例えば、ユーザがエンドエフェクタを関節運動させたいと思うほど、電磁石25351に供給される電力を漸進的に増加させることができる。様々な事例では、ケーブル25352、25340は、例えば、導電糸を備える。導電糸は、糸の抵抗及び/又は導電率をリアルタイムで監視し、監視された抵抗及び/又は導電率を関節運動角度に相関させることによって、関節運動継手の関節運動角度を検出するために監視することができる。少なくとも1つの事例では、単一平面関節運動ではなく多軸関節運動を可能にするために、別の組の電磁石を用いることができる。
図102~図104は、例えば、本明細書に開示されるものなどの外科用器具とともに使用するように構成されている外科用器具シャフトアセンブリ25400を図示する。シャフトアセンブリ25400は、外科用器具1000と同じ構成要素の多くを備える。シャフトアセンブリ25400は、例えば、エンドエフェクタを関節運動させ、エンドエフェクタを長手方向軸を中心として回転させ、及び/又はエンドエフェクタを発射させるように構成されている、様々な駆動部材を備え得る。シャフトアセンブリ内のこれらの駆動部材及び/又は構成要素のうちの1つ又は2つ以上は、そのような駆動部材及び/又は構成要素と、シャフトアセンブリ25400を用いる外科用器具の他の駆動部材及び/又は構成要素との相互作用により、張力及び/又は圧縮を受け得る。少なくとも1つの事例では、エンドエフェクタの関節運動は、関節運動継手が取り付けられ得るスパイン部材を、エンドエフェクタの関節運動時に延伸及び/又は圧縮させ得る。これは、スパイン部材への関節運動継手の取り付け、及び関節運動継手の屈曲又は関節運動に起因し得る。コアインサートは、シャフトアセンブリ25400を強化するのを助け、及び/又はシャフトアセンブリ25400の最大システム延伸を定めるのに役立ち得る。最大システム延伸は、例えば、最大負荷及び/又は最大延伸長さによって定義されてもよい。コアインサートは、シャフトアセンブリの部材が早期に故障することを防止することができる。コアインサートはまた、シャフトアセンブリ及び/又はシャフトアセンブリがともに使用される外科用器具の1つ又は2つ以上の構成要素の予測可能な量の延伸を提供するように、シャフトアセンブリの最大システム延伸を予め定義してもよい。
シャフトアセンブリ25400は、スパイン部材25410及び関節運動継手1400を備える。シャフトアセンブリ25400は、ピンアパーチャ25431を備える、近位に延在する関節運動継手部分25430を更に備える。スパイン部材25410は、スパイン部材25410内に画定された横方向スロット25411を備え、各スロットは、関節運動アクチュエータを受容するように構成されている。横方向スロット25411は、関節運動アクチュエータのために、外側シャフトチューブとスパイン部材25410との間に空間を提供することができる。スパイン部材25410は、それを通して、例えば、一次駆動シャフトなどの駆動部材を受容するように構成されている一次スロット25412を更に備える。
シャフトアセンブリ25400は、スパイン部材25410とともに位置付けられたコアインサート25420を更に備える。コアインサート25420は、スパイン部材25410内にインサート成形及び/又はオーバー成形されてもよい。他の好適な製造技術も企図される。コアインサート25420は、遠位フック端部25422を備える近位コア部材25421を備える。遠位フック端部25422は、近位コア部材25421から延在するフックタブ25423を備える。コアインサート25420は、近位フック端部25426を備える遠位コア部材25425を更に備える。近位フック端部25426は、遠位コア部材25425から延在するフックタブ25427を備える。フックタブ25423、25427は互いに面し、スパイン部材25410を通して延伸力を互いに伝達するように協働する。遠位コア部材25425は、スパイン部材25410から遠位に延在する遠位装着部分25428を更に備える。遠位装着部分25428は、それを通して画定されたピンアパーチャ25429を備える。シャフトアセンブリ25400は、アパーチャ25429によって関節運動継手部分25430を遠位装着部分25428にピン留めするように構成されている、ピン2543を更に備える。遠位装着部分25428と関節運動継手部分25430との間のピン係合は、結果として、延伸力又は引張力がスパイン部材25410に印加され得る。コアインサート25420は、例えば、スパイン部材25410が過度に延伸することを防止するのに役立ち得る。
少なくとも1つの事例では、スパイン部材25410は、第1の材料を含み、コアインサート25420は、第1の材料とは異なる第2の材料を含む。第1の材料は、ポリマー材料を含んでもよく、第2の材料は、金属材料を含んでもよい。少なくとも1つの事例では、第2の材料の引張強度は、第1の材料の引張強度よりも大きい。そのような構成は、例えば、シャフトアセンブリ25400を用いる外科用器具の重量を低減することができる一方で、著しい作動力が存在する外科用器具の所望のシステム及び/又はシャフト強度を維持することができる。例えば、関節運動アクチュエータがエンドエフェクタを関節運動させ、関節運動継手1400を曲げると、延伸力がスパイン部材25410に印加され、コアインサート25420は、これらの延伸力に対抗するように機能することができる。近位コア部材25421と遠位コア部材25425との間に位置付けられたスパイン部材25410の材料は、容量結合を低減し、かつ/又は近位コア部材25421を遠位コア部材25425から電気的に絶縁することができる。
図105~図111は、外科用器具とともに使用するように構成されている複数の関節運動アクチュエータを図示する。少なくとも1つの事例では、本明細書で考察するアクチュエータは、アクチュエータを必要とする任意の好適なシステムに使用することができる。図105は、通電回路25601及び圧電バイモルフポリマー25610を備える圧電アクチュエータ25600を図示する。圧電バイモルフ25610は、内側基板層25611及び外側圧電層25612を備える。外側圧電層25612は、バイモルフ25610を所望の方向に曲げるような方法で通電されるように構成されている。アクチュエータ25600は、関節運動平面においてエンドエフェクタを関節運動させるために使用され得る。基板は、任意の好適な材料を含んでもよい。少なくとも1つの事例では、基板は、例えば、その剛性及び/又は1つ又は2つ以上の他の材料特性のために特に選択された材料を含む。電界に応答して、層25612は、所望の方向に曲がるように構成されている。少なくとも1つの事例では、層25611、25612は、例えば、関節運動継手内での曲げ時に長さの半径方向の差を補償するために、互いに対して広がるように構成されている。
図106及び図107は、外科用器具とともに使用されるように構成されている圧電バイモルフアクチュエータ25800を図示する。少なくとも1つの事例では、アクチュエータ25800のうちの1つ又は2つ以上は、エンドエフェクタを関節運動させるために使用されるように構成されている。アクチュエータ25800は、内側基板層25810と、アクチュエータ25800を所望の方向に曲げるように通電されるように構成されている圧電外側層25820と、を備える。アクチュエータ25800の分極方向は、アクチュエータ25800を所望の方向に予測可能に曲げるために予め決定することができる。アクチュエータ25800は、アクチュエータ25800を作動又は通電するように構成されている入力回路25801を更に備える。少なくとも1つの事例では、両方の圧電層は、同じ分極方向を含む。少なくとも1つの事例では、同じ電圧信号が、圧電層の露出した外面に接続されている。少なくとも1つの事例では、基板層は接地される。
図108及び図109は、外科用器具とともに使用されるように構成されている圧電バイモルフアクチュエータ25900を図示する。少なくとも1つの事例では、アクチュエータ25900のうちの1つ又は2つ以上は、エンドエフェクタを関節運動させるために使用されるように構成されている。アクチュエータ25900は、入力回路25910及び作動部材25920を備える。アクチュエータ25900は、アクチュエータ25900の屈曲可能長さ25923を所定の変位量25924及び方向に曲げるように通電されるように構成されている。少なくとも1つの事例では、アクチュエータ25900の一部分25921は非アクティブである。少なくとも1つの事例では、アクチュエータ25900は、アクチュエータ25900を複数の方向に曲げてエンドエフェクタを複数の方向に関節運動させることができるような様式で通電される。
本明細書に記載されるアクチュエータの任意の好適な組み合わせは、外科用器具とともに使用するために組み合わされてもよい。例えば、電気活性ポリマーアクチュエータに加えて、圧電バイモルフアクチュエータが使用されてもよい。少なくとも1つの事例では、本明細書に開示される様々なアクチュエータを通電するために用いられる回路は、アクチュエータの所望の屈曲量に応じて、及び/又は例えば、エンドエフェクタを関節運動させることなどのエンドエフェクタの機能を作動させるために必要な力に応じて、具体的に調整され得る。図112には、外科用器具とともに使用するための圧電アクチュエータの力発生対変位を示すチャート25650が提供されている。
図111は、外科用器具とともに使用されるように構成されている電気活性ポリマー(EAP)アクチュエータ25700を図示する。少なくとも1つの事例では、アクチュエータ25700のうちの1つ又は2つ以上は、エンドエフェクタを関節運動させるために使用されるように構成されている。少なくとも1つの事例では、アクチュエータ25700は、PVDF材料(ポリフッ化ビニリデン)を含む。アクチュエータ25700は、入力装着回路25701及び曲げ可能部材25710を備える。曲げ可能部材25710は、導電層25722(例えば、金など)、基板層25721(例えば、PVDF層など)、及びポリピロール層25723を含む。
図112は、外科用器具内での遠位エンドエフェクタの回転を可能にするように構成されているシャフトアセンブリ26000を図示する。シャフトアセンブリ26000は、外側シャフト26010と、スパインシャフト26020と、一次駆動シャフト26030と、遠位ヘッド回転駆動シャフト26040と、を備える。少なくとも1つの事例では、エンドエフェクタは、スパインシャフト26020によって回転され得るように、スパインシャフト26020から遠位に延在する。少なくとも1つの事例では、スパインシャフト26020は、外側シャフト26010とは独立して回転する。スパインシャフト26020を回転させるために、駆動係合表面26050が、駆動シャフト26040上及びスパインシャフト26020の内径上で用いられ、これによって、駆動シャフト26040が回転させられると、スパインシャフト26020が回転させられる。少なくとも1つの事例では、エラストマー摩擦誘導材料は、駆動シャフト26040の周りに位置付けられ、スパインシャフト26020の内径の周りに位置付けられる。少なくとも1つの事例では、スパインシャフト26020は、スプライン溝を備え、駆動シャフト26040は、スパイン溝に係合するように構成されている歯を備える。
図113は、外科用器具内での遠位エンドエフェクタの回転を可能にするように構成されているシャフトアセンブリ26100を図示する。シャフトアセンブリ26100は、外側シャフト26110と、スパインシャフト26120と、一次駆動シャフト26140と、スパインシャフト26120を回転させるように構成されている駆動システムと、を備える。少なくとも1つの事例では、エンドエフェクタは、スパインシャフト26120によって回転され得るように、スパインシャフト26120から遠位に延在する。少なくとも1つの事例では、スパインシャフト26120は、外側シャフト26110とは独立して回転する。スパインシャフト26120を回転させるために、駆動システムは、シャフト26150の周りに位置付けられた巻線26160と、スパインシャフト26120の内径上に位置付けられた磁石26130と、を備える。スパインシャフト26120を回転させるために、巻線26160が通電されて、磁石26130を巻線26160の周りで移動させる。
回転駆動機構をロックする様々な方法が企図される。例えば、システムは、磁石26130の共振位置保持トルクに依存して、エンドエフェクタをシャフトに対して定位置に保持することができる。少なくとも1つの事例では、機械的ラチェットを用いて、エンドエフェクタをシャフトに対して定位置に保持する。少なくとも1つの事例では、ばね仕掛けクラッチシステムは、モータがばね仕掛けクラッチシステムに打ち勝ってエンドエフェクタの回転をロック解除することを必要とするために用いられる。
少なくとも1つの事例では、リングギアは、エンドエフェクタの回転をもたらし、固定ジョーに対するジョーのエフェクタ閉鎖をもたらすように、ロック及びロック解除される。遊星ギアシステムを用いて、シャフトアセンブリの異なる要素を回転させて、例えば、外科用器具アセンブリの異なる機能をもたらすことができる。
図114は、外側シャフト26210と、外側シャフト26210内に位置付けられた近位スパイン部材26220と、外側シャフト26210内に位置付けられ、近位スパイン部材26220及び少なくとも1つの事例では、外側シャフト26210に対して回転させられるように構成されている、遠位スパイン部材26230と、を備える、外科用器具アセンブリ26200を示す。遠位スパイン部材26230の回転を用いて、例えば、外科用器具のエンドエフェクタを回転させることができる。外科用器具アセンブリ26200は、例えば、ステープルの発射及び/又は組織の切断などのエンドエフェクタの機能を作動させるように構成されている、駆動シャフト26250を更に備える。近位スパイン部材26220は、環状フランジ部分26221を備え、遠位スパイン部材26230は、環状フランジ部分26231を備える。外科用器具アセンブリ26200は、遠位スパイン部材26230を近位スパイン部材26220に対して回転させることができるように、環状フランジ部分26221、26231の間に位置付けられた1つ又は2つ以上の軸受26245を更に備える。
外科用器具アセンブリ26200は、圧電回転モータを更に備える。圧電回転モータは、アセンブリ26200内に固定された回転圧電部材26240と、圧電部材26240によって作動されるように構成されている1つ又は2つ以上の駆動部材26241と、を備える。外科用器具アセンブリ26200は、内側駆動面26233に回転トルクを印加するような様式で駆動部材26241を作動させるために圧電部材26240に通電するように構成されている、電気トレース26260を更に備える。回転トルクが表面26233に印加されると、遠位スパイン部材26230を回転させて、例えば、エンドエフェクタを回転させる。少なくとも1つの事例では、圧電回転モータは、遠位スパイン部材26230を時計回り方向及び反時計回り方向に回転させるように構成されている。
様々な事例では、外科用器具とともに使用するためのシャフトアセンブリは、例えば、シャフトアセンブリを通って近位端部から遠位端部まで延在する、電気トレース及び/又はワイヤを内蔵することができる。電気トレースは、シャフトアセンブリの遠位端部に取り付けられたエンドエフェクタに延在し得る。様々な事例では、エンドエフェクタは、シャフトに対して回転するように構成され得る。様々な事例では、エンドエフェクタ、及びエンドエフェクタが取り付けられているシャフトアセンブリは、例えば、近位取り付けインターフェース及び/又は外科用器具ハンドルに対して回転するように構成されている。そのような事例では、エンドエフェクタ及び/又はシャフトアセンブリの回転は、エンドエフェクタ及び/又はシャフトアセンブリが過回転させられる場合、電気トレースを束縛させ得る。エンドエフェクタ及び/又はシャフトアセンブリの回転によって引き起こされ得る、シャフトアセンブリ内に位置付けられた電気トレースとの結合問題及び/又は接触問題に対処する様々な方法が、本明細書で考察する。
図115~図117は、外科用器具とともに使用されるように構成されているリミッタシステム26300を図示する。リミッタシステム26300は、駆動列の過回転を止めるように構成されている。少なくとも1つの事例では、リミッタシステム26300は、自動であり、駆動列の過回転を止めるためにユーザからの入力を必要としない。少なくとも1つの事例では、リミッタシステム26300は、ユーザからの入力を必要とする。リミッタシステム26300は、例えば、ソレノイドを備えるアクチュエータ26310を備える。アクチュエータ26310は、ばね26312及び遠位端部26313を備える、シャフト26311を備える。リミッタシステム26300は、ギア26320を更に備える。少なくとも1つの事例では、ギア26320は、エンドエフェクタの機能を作動させるように構成されている回転駆動列の一部分である。例えば、ギア26320は、エンドエフェクタを複数の方向に関節運動させ、エンドエフェクタをシャフトに対して長手方向軸を中心として回転させ、エンドエフェクタのジョーをクランプし、及び/又はエンドエフェクタの発射部材を作動させるように構成されている、回転駆動列の一部分であってもよい。
図115に見られるように、アクチュエータ26310が作動されていないので、ギア26320は自由に回転する。少なくとも1つの事例では、アクチュエータ26310は、特定の事例においてのみ適用されるブレーキを備える。アクチュエータ26310は、ユーザが所望するとき、及び/又は外科用ロボットがギア26320の移動を制限するようにプログラムされるときにのみ、アクティブ化又はトリガされてもよい。例えば、上述したように、ギア26320は、エンドエフェクタを関節運動させるように構成されている回転駆動列の構成要素を含んでもよい。少なくとも1つの事例では、ユーザは、関節運動駆動列をアクティブ化させ、それによって、ギア26320を回転させてもよい。任意の時点で、ユーザ及び/又は外科用ロボットは、アクチュエータ26310をアクティブ化させて、エンドエフェクタの関節運動を停止させてもよい。図116は、作動位置にあるアクチュエータ26310を示す。遠位端部26313は、ギア26320の歯26321に係合するように構成されている歯26314を備える。しかしながら、ギア26320の回転のこの時点で、ギア26320に印加される制動力は、回転駆動列の回転を停止させるのに十分でない場合がある。回転駆動列は、電動式及び/又は手動であってもよい。両方とも、リミッタシステム26300を使用して止めることができる。図116に示される位置では、ギア26320の回転中に、可聴ラチェット音が聞こえることがある。ばね26312は完全に圧縮されておらず、ギア26320が図117に示される位置に回転するまで、完全な制動力を印加しない。
図117に見られるように、ばね26312は完全に圧縮されている。この位置において、リミッタシステム26300は、ギア26320の歯26323に係合することによって、回転駆動列に最大制動力を印加するように構成されている。歯26323がギア26320の全ての歯26321の最大半径を含み、ばね26312の最大圧縮をもたらすので、歯26314と歯26323との間の係合は、最大制動力をもたらす。ギア26320が図116に示される位置から図117に示される閾値位置まで回転すると、可聴ラチェット音は、音量が増加し、及び/又は周波数が遅くなり得る。これは、最大制動力に近づいていることをユーザ及び/又は制御回路に示すことができる。少なくとも1つの事例では、制御回路は、制動力が印加されたときに制動力を検出するように構成されており、ギア26320に接続された回転駆動列を作動させるモータを自動的に停止するように構成されている。
少なくとも1つの事例では、リミッタシステムは、実質的に円形のギアを用いて適用される。そのような事例では、アクチュエータを漸進的に作動させて、シャフトを円形ギアに向かって漸進的に前進させ得る。そのような事例では、徐々に増加する制動力がギアに印加されてもよい。制御回路は、リミッタシステムの使用中に制動力を監視し、能動的に調節するように構成されてもよい。少なくとも1つの事例では、制御回路は、外科用器具の1つ又は2つ以上のシステムが動作中にシャットダウンされるべきであることを示す入力を1つ又は2つ以上の他の制御システム及び/又は回路から受信すると、リミッタシステムを作動させるように構成されている。
少なくとも1つの事例では、リミッタシステム26300は、ギア26320が最大制動力が印加される閾値位置を超えて回転され得るようにオーバーライドされるように構成されている。少なくとも1つの事例では、リミッタシステム26300は、回転駆動列によって作動されるように構成されている機能のためのストロークの終了時に自動的に作動されるように構成されている。例えば、エンドエフェクタが最大関節運動角度に近づくと、リミッタシステム26300は、制動力を印加するようにアクティブ化されてもよい。最大関節運動角度は、例えば、関節運動モータ上のエンコーダ、及び/又は関節運動角度を直接検出するように構成されているセンサによって、検出されてもよい。様々な事例では、リミッタシステム26300は、ユーザ及び/又は制御回路が回転駆動列の中断されない作動を継続しようとする任意の時点で非アクティブ化されてもよい。少なくとも1つの事例では、可聴ラチェット音は、ギア26320が反時計回り方向及び時計回り方向の両方に回転する間に聞こえる場合がある。アクチュエータ26310が作動すると、ギア26320がいずれかの方向に回転している間に、可聴ラチェット音が聞こえる。
少なくとも1つの事例では、リミッタシステム26300は、閾値位置に到達したことのフィードバックのみを提供するように構成されており、フィードバックを提供する回転駆動列の作動に影響を与えるようには構成されない。換言すれば、リミッタシステム26300は、インジケータシステムにすぎず、監視されているエンドエフェクタの機能に制動力を印加しない。
少なくとも1つの事例では、リミッタシステム26300は、エンドエフェクタの機能のためのハード停止を提供する。閾値位置に達すると、回転駆動システムを作動させるモータは、リミッタシステム26300によってモータに印加される制動力に打ち勝つことができない。
様々な事例では、リミッタシステム26300を作動させるように構成されている制御回路は、逆回転特徴部を備える。ギア23620が閾値位置に到達すると、制御回路は、アクチュエータ26310を非アクティブ化させ、ギア26320を非閾値位置まで逆回転させてもよい。ギア26320が逆回転させられると、ユーザは、回転駆動列の作動の制御を取り戻すことができる。少なくとも1つの事例では、ユーザは、閾値位置を超える回転駆動列の回転の必要性を示してもよい。そのような事例では、ユーザは、更なる回転が所望されることを示し得る。更なる回転が所望されることをユーザが示す場合、アクチュエータ26310は、自動的に非アクティブ化されてもよく、回転駆動列は、自由に回転する。少なくとも1つの事例では、絶対最大回転が予め決定されており、それを超えることができない。そのような事例では、ソフト最大閾値は、ソフト最大閾値を通過するが絶対最大回転を超えない何らかの回転を可能にするように予め決定され得る。絶対最大回転は、例えば、機械的制限によって定義されてもよい。ソフト最大閾値は、例えば、いかなる構成要素にも過度のストレスを与えない動作制限によって定義されてもよい。少なくとも1つの事例では、逆回転特徴部は、エンドエフェクタのジョーが組織上に完全にクランプされた状態を感知した場合に抑制される。これは、ジョーを偶発的に開放し、標的組織に対する把持を失う可能性を低減することができる。
少なくとも1つの事例では、ギア26320が数回転する間に、制動力が印加されてもよい。そのような事例では、回転駆動列のシャフト回転を追跡することができ、アクチュエータ26310によって印加される制動力は、ギア26320が回転するにつれて徐々に増加する。
図118~図120は、外科用器具とともに使用される回転作動システム26400を図示する。回転作動システムは、駆動システムの過回転又は作動を防止するように構成されている機械的制限システムを備える。駆動システムは、例えば、関節運動駆動システム、エンドエフェクタ回転駆動システム、ジョークランプ及び/若しくはアンクランプ駆動システム、並びに/又は発射部材駆動システムを備えてもよい。回転作動システム26400は、モータ26410と、モータ26410によって回転させられるように構成されている可変ねじ26420と、ねじ26420によって直線的に作動されるように構成されている駆動ナット26430と、を備える。モータ26410は、ねじ26420を回転させて駆動ナット26430を作動させ、外科用器具の機能を作動させるように構成されている。駆動ナット26430は、外科用器具の機能を作動させるように構成されている駆動部材に接続され得る。任意の好適な機能が回転作動システム26400によって作動され得るが、回転作動システム26400は、関節運動システムに関連して説明する。
ねじ26420は、可変ねじ山26425と、内側区分26421と、内側区分26421から延在する外側区分26422と、を備える。外側区分26422は、内側区分26421から延在し、ねじ山26425のねじ山直径を徐々に増加させる。少なくとも1つの事例では、ねじ山直径は、ねじ26420によって画定されたねじ軸に沿って変化する。少なくとも1つの事例では、ねじ山ピッチは、ねじ26420によって画定されたねじ軸に沿って変化する。少なくとも1つの事例では、ねじ山直径及びねじ山ピッチは、ねじ軸に沿って変化する。少なくとも1つの事例では、ねじ山プロファイルは、ねじ26420の長さに沿って変化する。変化するねじ山プロファイルは、駆動ナット26430のねじ山26431とねじ26420のねじ山26425との係合がねじ26420の長さに沿って変化するように、駆動ナット26430と係合される。
ねじ26420が第1の方向に回転させられると、駆動ナット26430は、ねじ26420の外側区分26422に向かって対応する第1の方向に移動するように構成されている。少なくとも1つの事例では、外側区分26422に向かう駆動ナット26430の移動は、エンドエフェクタの関節運動に対応する。駆動ナット26430が外側区分26422に向かって移動するにつれて、ナット26430とねじ26420との間の螺合係合は、変化するねじ山プロファイルに起因して締め付けられる。この締め付けられた係合は、モータ26410への負荷を増加させ得る。この増加した負荷を監視し、検出することができる。検出された負荷は、駆動ナット26430がストローク位置の端部に近づいていることをユーザ及び/又は制御回路に示すために、ユーザ及び/又は制御回路に伝達することができる。少なくとも1つの事例では、モータ26410は、ストローク位置の終了近くで駆動ナット26430の速度を遅くするように自動的に遅くされる。少なくとも1つの事例では、モータ26410は、閾値負荷を検出すると自動的に停止される。少なくとも1つの事例では、駆動ナット26430は、モータ26410への負荷を減少させるために少なくとも部分的に自動的に逆回転させられる。少なくとも1つの事例では、外側端部26422は、例えば、関節運動ストロークなどの作動ストロークのためのハード停止を提供する。少なくとも1つの事例では、駆動ナット26430が移動することができる距離は、例えば、最大関節運動角度などの対応する作動ストロークによる機械的制限に対応する。
少なくとも1つの事例では、ねじ山26431は、非可変ねじ山プロファイルを備え、ねじ山26425は、可変ねじ山プロファイルを備える。少なくとも1つの事例では、ねじ山26431はまた、ねじ26420のねじ山26425に加えて、可変ねじ山プロファイルを備える。少なくとも1つの事例では、モータは、最大回転制限に達すると停止するように構成されている。少なくとも1つの事例では、ねじ係合は、最大回転制限に達すると、ナット26430を定位置にロックする。少なくとも1つの事例では、制御回路は、最大回転制限に達した後に、モータ26410を再アクティブ化してねじ26420を反対方向に回転させることによって、駆動ナット26430をロック解除するように構成されている。少なくとも1つの事例では、駆動ナット26430をその最大回転制限位置からロック解除するために、より大きいトルクが必要とされ得る。
少なくとも1つの事例では、最大回転制限位置に近づくにつれて、フィードバックが提供される。例えば、制御回路は、駆動ナット26430が最大回転制限位置に接近するにつれて、検出されたモータ負荷の増加に基づいて、音声及び/又は触覚フィードバックをユーザに提供してもよい。少なくとも1つの事例では、制御回路は、駆動ナット26430が最大回転制限位置に達する前、その間、及び/又はその後に、モータ26410の作動の制御運動を自動的に調節するように構成されている。駆動ナット26430は、ねじ26420の両方の外側区分26422上に最大回転制限位置を備える。少なくとも1つの事例では、ナット26430とねじ26420との不可逆的な結合を防止するために、ハード停止が提供される。
図121は、外科用器具アセンブリとともに使用するためのセグメント化リング接点システム26500を図示する。セグメント化リング接点システム26500は、2つ又はそれ以上の構成要素間で用いられてもよく、この場合、電気送信が2つ又はそれ以上の構成要素間で所望され、1つ又は2つ以上の構成要素が1つ又は2つ以上の他の構成要素に対して回転させられるように構成されている。セグメント化リング接点システム26500は、例えば、外科用器具用のシャフトアセンブリ内に冗長スリップリング接点を提供するように構成されている。セグメント化リング接点システム26500は、複数のスリップリング接点セグメント26511を備える外側セグメント化接点システム26510と、複数のスリップリング接点セグメント26521を備える内側セグメント化接点システム26520と、を備える。図121に見られるように、スリップリング接点セグメント26511は、スリップリング接点セグメント26521の間に画定された間隙に広がり、スリップリング接点セグメント26521は、スリップリング接点セグメント26511の間に画定された間隙に広がる。少なくとも1つの事例では、接点システム26500は、例えば、シャフトの360度の長さにわたる単一のスリップリング接点とは対照的に、複数のセグメントを提供することによって、接点間の流体短絡を緩和することができる。1つのセグメントが短絡した場合、別のセグメントは、電気信号を送信するための冗長手段を提供することができる。
少なくとも1つの事例では、セグメント26511及びセグメント26521は、制御回路によって検出及び監視され得る異なる抵抗値を含む。そのような構成は、ユーザ及び/又は制御回路に、例えば、どの接点が電気信号を送信しており、どの接点が電気信号を送信していないかを示すことができる。そのような構成はまた、制御回路が回転シャフト位置を決定することを可能にし得る。
図122~図127は、外科用器具アセンブリとともに使用するための様々な電気送信装置を図示する。様々な事例では、電気送信装置は、第1のシャフトと第2のシャフトとの間で電気信号を送信するように構成されている。第1のシャフトは、例えば、外科用ロボット及び/又はハンドルに取り付けられてもよく、第2のシャフトは、その遠位端部に取り付けられたエンドエフェクタを備えてもよい。少なくとも1つの事例では、電気送信装置は、第1のシャフトアセンブリ及び第2のシャフトアセンブリのセンサ、プロセッサ、並びに/又は電源などの間で電気信号を送信するように構成されている。例えば、第2のシャフトは、第1のシャフト及び/又は第1のシャフトの上流の構成要素からの電力を必要とするモータを備えてもよい。別の実施例は、第2のシャフト上に位置付けられたセンサ及び/又は第2のシャフトに取り付けられたエンドエフェクタから電気信号を受信することを含んでもよい。第1のシャフトアセンブリと第2のシャフトアセンブリとの間の電気送信を必要とする他のシステムが企図される。本明細書に開示される電気送信装置は、例えば、送信装置の流体短絡を防止するのに役立つように構成することができる。
図122は、第1のシャフト26610、第2のシャフト26620、及び電気送信装置26640を備える外科用器具アセンブリ26600を図示する。第2のシャフト26620は、第1のシャフト26610に対して回転可能である。少なくとも1つの事例では、第1のシャフト26610は、第2のシャフト26620に対して回転可能である。少なくとも1つの事例では、第1のシャフト26610及び第2のシャフト26620は、互いに対して回転可能である。少なくとも1つの事例では、第2のシャフト26620は、その遠位端部に取り付けられたエンドエフェクタを備える。電気送信装置26640は、電気トレース26611と、電気トレース26611に接続され、かつ第1のシャフト26610の内側チャネル26613内に位置付けられた第1の接点26612と、を備える。第1の接点26612は、例えば、チャネル26613の内径全体の周りに延在するスリップリング接点を備えてもよい。少なくとも1つの事例では、第1の接点26612は、絶縁された接点セグメントを備える。
電気送信装置26640は、電気トレース26621と、電気トレース26621に接続され、第2のシャフト26620の外面26623上に位置付けられた第2の接点26622と、を更に備える。第2の接点26622は、例えば、第2のシャフト26620の外面26623の外径全体の周りに延在するスリップリング接点を備えることができる。第2の接点26622は、第1の接点26612と接触して、それらの間で電気信号を送信するように構成されている。第2の接点26622は、第1のシャフト26610に対する第2のシャフト26620の回転中に第1の接点26612との電気的接触を維持するように構成されている。
外科用器具アセンブリ26600は、第1のシャフト26610と第2のシャフト26620との間にチャネル26630を更に備える。患者からの流体及び/又はデブリは、動作中にチャネル26630に流入し得る。電気送信装置26640は、流体及び/又はデブリがチャネル26630に流入するのを防止するのに役立ち得る。少なくとも1つの事例では各接点26612は、異なる電気システムに対して異なる電気信号を供給及び/又は受信するように構成されている。少なくとも1つの事例では、接点26612、26622は、冗長接点として機能する。
図123は、外科用器具アセンブリ26700を図示する。外科用器具アセンブリ26700は、外科用器具アセンブリ26600と同じ構成要素の多くを備える。外科用器具アセンブリ26700は、各組の接点26612、26622の間に位置付けられたグロメット26710を更に備える。グロメット26710は、例えば、ゴム材料で構成することができる。グロメット26710は、流体及び/又はデブリがチャネル26630内に流入するのを防止するのに役立ち得る。
図124は、外科用器具アセンブリ26800を図示する。外科用器具アセンブリ26800は、外科用器具アセンブリ26600と同じ構成要素の多くを備える。外科用器具アセンブリ26800は、接点26612、26622から離れるように位置付けられたグロメット26810を更に備える。グロメット26810は、流体及び/又はデブリがチャネル26630内に流入し、接点26612、26622から十分に離れて接点26612、26622に向かって流れるのを防止するのを助けることができる。
図125は、第1のシャフト26910、第2のシャフト26920、及び電気送信装置26940を備える外科用器具アセンブリ26900を図示する。第2のシャフト26920は、第1のシャフト26910に対して回転可能である。少なくとも1つの事例では、第1のシャフト26910は、第2のシャフト26920に対して回転可能である。少なくとも1つの事例では、第1のシャフト26910及び第2のシャフト26920は、互いに対して回転可能である。少なくとも1つの事例では、第2のシャフト26920は、その遠位端部に取り付けられたエンドエフェクタを備える。電気送信装置26940は、電気トレース26911と、電気トレース26911に接続され、第1のシャフト26910の内側チャネル26913内に位置付けられた第1の接点26912A、26912Bと、を備える。第1の接点26912A、26912Bは、絶縁された接点セグメントを備える。接点26912Aと接点26912Bとは、互いに反対側に位置付けられている。この位置付けは、流体がチャネル26930の下側部分ではなくチャネル26930の上側部分に流れ込む場合に、接点26912A、26912Bが短絡するのを防止するのに役立ち得る。
電気送信装置26940は、電気トレース26921と、電気トレース26921に接続され、第2のシャフト26920の外面26923上に位置付けられた第2の接点26922と、を更に備える。第2の接点26922は、例えば、第2のシャフト26920の外面26923の外径全体の周りに延在するスリップリング接点を備えることができる。第2の接点26922は、第1の接点26912A、26912Bと接触して、それらの間で電気信号を送信するように構成されている。第2の接点26922は、第1のシャフト26910に対する第2のシャフト26920の回転中に第1の接点26912A、26912Bとの電気的接触を維持するように構成されている。
外科用器具アセンブリ26900は、第1のシャフト26910と第2のシャフト26920との間にチャネル26930を更に備える。患者からの流体及び/又はデブリは、動作中にチャネル26930に流入し得る。外科用器具アセンブリ26900は、流体及び/又はデブリがチャネル26930内に流入するのを防止するように構成されているグロメット26931を更に備える。
図126は、第1のシャフト27010、第2のシャフト27020、及び電気送信装置27040を備える外科用器具アセンブリ27000を図示する。第2のシャフト27020は、第1のシャフト27010に対して回転可能である。少なくとも1つの事例では、第1のシャフト27010は、第2のシャフト27020に対して回転可能である。少なくとも1つの事例では、第1のシャフト27010及び第2のシャフト27020は、互いに対して回転可能である。少なくとも1つの事例では、第2のシャフト27020は、その遠位端部に取り付けられたエンドエフェクタを備える。電気送信装置27040は、第1のシャフト27010の内径27013内に画定された環状スロット27011内に位置付けられた第1の電気接点27012を備える。電気送信装置27040は、例えば、シャフト27020の外径27022上に位置付けられたスリップリング接点などの第2の電気接点27021を更に備える。第1の電気接点27012は、シャフト27010、27020の一方が他方のシャフト27010、27020に対して回転するときに、電気的接触を維持するように構成されている。この接点装置は、ブレード型電気接点装置と称され得る。第2の電気接点27021は、環状スロット27011内に少なくとも部分的に位置付けられるように構成されており、ブレード接点と称され得る。
図127は、第1のシャフト27110、第2のシャフト27120、及び電気送信装置27140を備える外科用器具アセンブリ27100を図示する。第2のシャフト27120は、第1のシャフト27110に対して回転可能である。少なくとも1つの事例では、第1のシャフト27110は、第2のシャフト27120に対して回転可能である。少なくとも1つの事例では、第1のシャフト27110及び第2のシャフト27120は、互いに対して回転可能である。少なくとも1つの事例では、第2のシャフト27120は、その遠位端部に取り付けられたエンドエフェクタを備える。電気送信装置27140は、第1のシャフト27110の内径27111内に画定された環状スロット27112内に位置付けられた第1の電気接点27113を備える。電気送信装置27140は、シャフト27120の外径27121上に位置付けられたブレードホイール27122上に位置付けられた第2の電気接点27123を更に備える。第1の電気接点27113及び第2の電気接点27123は、シャフト27110、27120の一方が他方のシャフト27110、27120に対して回転するときに、互いに電気的接触を維持するように構成されている。第2の電気接点27123は、環状スロット27112内に少なくとも部分的に位置付けられるように構成されている。ブレードホイール27122は、電気送信装置27140内に存在する露出した電気接点領域の量を低減させることによって、接点27123、27113の短絡を軽減するのを助けることができる。
図128及び図129は、外科用器具シャフトアセンブリとともに使用されるように構成されている誘導コイルシステム28000、28100を図示する。例えば、シャフトアセンブリ及びエンドエフェクタなどの、互いに対して回転するように構成されている構成要素間の有線電気トレースを用いること。誘導コイルシステム28000は、第1の誘導コイル28010及び第2の誘導コイル28020を備える。少なくとも1つの事例では、コイル28010は、送信器コイルを備え、コイル28020は、受信器コイルを備える。コイル28010、28020は、それらの間で電気信号を送信するように構成することができる。少なくとも1つの事例では、コイル28010、28020の一方は、第1の構成要素上に位置付けられ、コイル28010、28020の他方は、第1の構成要素に対して回転するように構成されている第2の構成要素上に位置付けられる。少なくとも1つの事例では、コイル28010間の距離は、各コイル28010、28020の直径よりも小さい。コイルシステム28100は、第1の誘導コイル28110及び第2の誘導コイル28120を備える。少なくとも1つの事例では、コイル28110は、送信器コイルを備え、コイル28120は、受信器コイルを備える。コイル28120は、コイル28110の直径よりも小さい直径を含む。少なくとも1つの事例では、複数のコイルシステムが外科用器具アセンブリとともに用いられる。例えば、電力を送信するために1つ又は2つ以上のコイルシステムを利用することができ、データを送信するために1つ又は2つ以上のコイルシステムを利用することができる。
図130及び図131は、外科用器具アセンブリとともに使用するための電気活性ポリマーシステム29000を図示する。システム29000は、電気活性ポリマー29010及び入力回路29020を備える。システム29000は、例えば、関節運動アクチュエータなどの外科用器具アセンブリのためのアクチュエータとして使用することができる。図131は、通電状態のポリマー29010を示す。図130は、非通電状態のポリマー29010を示す。少なくとも1つの事例では、ポリマー29010は、シャフトに対してエンドエフェクタを回転させるために用いられる。ポリマー29010の一端をシャフトに固定することができ、ポリマー29010の屈曲可能な端部をエンドエフェクタに取り付けることができる。ポリマー29010は、シャフトに対するエンドエフェクタの回転を引き起こすためにねじられるように構成され得る。システム29000のために選択される材料は、作動のために必要とされる偏向の量を予め定義するために、材料制限に基づいて選択されることができる。
外科用器具のエンドエフェクタ(その構成要素を含む)は、単一の発射ストロークの間に、それらに対してかなりの力を受ける。そのような力は、機器の摩耗につながり、最終的に、例えば、効果的でない組織治療につながる可能性がある。様々な事例では、臨床医は、特定の外科的処置中に各組織切断ストロークに対して新しい切断要素を使用することを望む場合がある。本明細書に記載される使い捨てエンドエフェクタアセンブリは、臨床医が、エンドエフェクタの1つ又は2つ以上の構成要素を特定の外科用器具から交換可能に交換することを可能にする。
図132~図138は、外科用器具とともに使用されるエンドエフェクタ30000を図示する。エンドエフェクタ30000は、チャネル30100、アンビル30200、及びカートリッジ30300を備える。様々な事例では、チャネル30100は、外科用器具の細長いシャフト30500から固定して、又は交換不可能に延在するように構成されている。他の事例では、チャネル30100は、細長いシャフト30500に交換可能に取り付けられるように構成されている。いずれにしても、チャネル30100は、関節運動継手に対して遠位の点において細長いシャフト30500から延在するように構成されている。
アンビル30200は、その中に画定された細長いスロット30280を備える。細長いスロット30280は、アンビル30200の近位端部30202から遠位端部30204に向かって延在しており、発射部材30400の第1のカム部材30406を受容するように構成されている。アンビル突起部30210は、アンビル30200の近位端部30202の近くの側壁又は組織停止部30208から延在する。アンビル突起部30210は、アンビル30200がカートリッジ30300に対してその周りを移動可能であるピボット継手を画定する。アンビル突起部30210は、その中に画定されたアパーチャ30212を備える。アパーチャ30212は、その中にカートリッジ突起部30310を嵌合して受容するようにサイズ決めされている。アンビル突起部30210の少なくとも一部分を通って延在するカートリッジ突起部30310は、カートリッジ30300とアンビル30200との間の結合及び/又は取り付けを確立する一方で、構成要素の位置合わせも維持する。様々な事例では、カートリッジ30300及びアンビル30200は、製造及び/又は包装プロセス中に互いに結合される。他の事例では、臨床医は、外科用器具とともにアセンブリを使用する前に、互換性のあるアンビル及びカートリッジの様々な組み合わせの間で選択的に選ぶことができる。
図134に示されるように、カートリッジ30300は、カートリッジ突起部30310がそこから延在するカートリッジピボット部材30350を備える。カートリッジピボット部材30350は、カートリッジ30300がチャネル30100内に着座しているときにチャネル30100に対する電子インターフェースとして機能する。様々な事例では、例えば、カートリッジピボット部材30350は、金属から構成されており、残りのカートリッジ本体は、プラスチック材料から構成されている。様々な事例では、カートリッジ30300は、その中に画定された複数のステープルキャビティ30360と、少なくとも1つの電極30370と、近位端部から遠位端部に向かって延在する長手方向スロット30380と、を備える。少なくとも1つの電極30370は、長手方向電極1925と同様であり、その機能は、図1及び図6に関してより詳細に説明する。様々な事例では、少なくとも1つの電極30370は、RF電極である。長手方向スロット30380は、発射ストローク中に発射部材30400がエンドエフェクタ30000を通って並進する際に、発射部材30400の一部分を受容するように構成されている。ステープルは、ステープルキャビティ30360内に取り外し可能に位置付けられている。他の事例では、カートリッジは、ステープルキャビティのみを備えてもよいか、又はRF電極のみを備えてもよい。いずれにしても、カートリッジ30300は、チャネル30100内に取り外し可能に着座されるように構成されている。カートリッジ30300は、カートリッジ側壁から延在する横方向突起部30320を更に備える。
チャネル30100の側壁は、その遠位部分に画定されたノッチ30120を備える。ノッチ30120は、カートリッジ30300がチャネル30100内に着座しているときに、カートリッジ30300の横方向突起部30320をその中に受容するようにサイズ決めされる。カートリッジ30300をチャネル30100に固定することに加えて、ノッチ30120は、カートリッジ30300及びアンビル30200から構成されているアセンブリが、チャネル30100、したがって細長いシャフト30500と適切に位置合わせされることを確実にする。カートリッジ30300及びアンビル30200から構成されているアセンブリをチャネル30100内に設置する行為はまた、エンドエフェクタ30000全体にわたって様々な電気構成要素30700を接続する役割を果たす。
チャネル30100の側壁は、その中に画定されたピボットノッチ30110を更に備える。ピボットノッチ30110は、その中にアンビル突起部30210を受容するように構成されているサイズ及び/又は幾何形状を含む。図132及び図133に示されるように、ピボットノッチ30110は、例えば、アンビル30200及びカートリッジ30300のアセンブリがチャネル30100から望んでもいないのに外れることを防止するために角度が付けられている。アンビル30200及びカートリッジ30300から構成されている使い捨てアセンブリがチャネル30100内に完全に着座しているとき、アンビル30200は、細長いシャフト30500に物理的に又は直接的に取り付けられない。別の言い方をすれば、アンビル30200は、カートリッジ30300及びチャネル30100に物理的にのみ又は直接的に結合される。
図133に示されるように、チャネル30100は、ステープルカートリッジ30300をチャネル30100に取り付ける前に、チャネル30100内に位置付けられた、駆動ねじ30150を更に備える。チャネル基部30108の遠位端部30104は、駆動ねじ30150の遠位端部30154を固定するための装着インターフェース30130を備える。発射部材30400は、ステープルカートリッジ30300がチャネル30100内に着座される前に、駆動ねじ30150上に装着される。
図135~図138は、アンビル30200及びカートリッジ30300を備える使い捨てアセンブリをチャネル30100の中に着座させる進行を示す。図135に示されるように、アンビル30200は、アセンブリとしてカートリッジ30300に結合され、チャネル30100は、任意の関節運動継手に対して遠位の点で細長いシャフト30500に取り付けられている。しかしながら、アンビル30200及びカートリッジ30300は、チャネル30100から完全に外される。
使い捨てアセンブリをチャネル30100内に着座させる第1段階が、図136に示される。使い捨てアセンブリがチャネル30100に向かって運ばれると、アンビル30200の近位端部30202は、チャネル30100の基部30106に向かって傾斜する一方で、アンビル30200の遠位端部30204、したがって使い捨てアセンブリは、チャネル30100の基部30106からわずかに離れるように傾斜する。最初の接触は、アンビル突起部30210とチャネル30100のピボットノッチ30110との間でなされる。注目すべきことに、横方向突起部30320は、チャネル30100のノッチ30120とまだ位置合わせされていない。第1段階では、発射部材30400の第1のカム部材30406は、アンビル30200の細長いスロット30280の近位部分内に摺動される。追加的に、駆動ねじ30150は、カートリッジ30300の長手方向スロット30380とまだ位置合わせされていない。そのような位置合わせ不良は、カートリッジ30300がチャネル30100内に完全に着座されることを防止する。
使い捨てアセンブリをチャネル30100内に着座させる第2段階が、図137に示される。アンビル突起部30210がチャネル30100のピボットノッチ30110内に完全に摺動されると、使い捨てアセンブリは、チャネル30100内で遠位に移動し、発射部材30400の第1のカム部材30406をアンビル30200の細長いスロット30280から係合解除する。そのような遠位方向への移動により、横方向突起部30320をノッチ30120と一致させる。しかしながら、カートリッジ30300の遠位端部は持ち上げられたままである。
図138は、チャネル30100内に完全に着座した使い捨てアセンブリを図示する。そのような時点で、アンビル突起部30210は、ピボットノッチ30110内に完全に収容され、横方向突起部30320は、ノッチ30120内に完全に収容され、駆動ねじ30150は、カートリッジ30300の長手方向スロット30380内に完全に収容される。カートリッジ30300と駆動ねじ30150との間のそのような位置合わせは、カートリッジ30300及びアンビル30200使い捨てアセンブリがチャネル30100内に完全に着座していることを可能にする。使い捨てアセンブリがチャネル30100内に完全に着座していると、フレックス回路及び/又はセンサアレイ30700などの全ての電気構成要素は、チャネル30100及び/又は外科用器具の細長いシャフト30500と結合されて通信する。
様々な事例では、カートリッジ30300、アンビル30200、及び様々なフレックス回路30700から構成されている使い捨てアセンブリは、単回使用のみが意図される。別の言い方をすれば、単一の発射ストロークが完了すると、カートリッジ30300、アンビル30200、及び関連付けられたフレックス回路30700は、チャネル30100から取り外されるか、又は離座され、駆動ねじ30150及び発射部材30400を残す。そのような事例では、駆動ねじ30150及び発射部材30400は、2回以上の発射ストロークに使用されることが意図されている。駆動ねじ30150及び発射部材30400を含むチャネル30100は、例えば、所定の数の発射ストロークにわたって使用された後、又は不良になったときに、細長いシャフト30500から外され、処分され得る。
図139~図146は、外科用器具とともに使用されるエンドエフェクタ31000を図示する。エンドエフェクタ30000と同様に、エンドエフェクタ31000は、チャネル31100と、アンビル31200と、カートリッジ31300と、を備える。エンドエフェクタ31000は、任意の関節運動継手に対して遠位の点で外科用器具の細長いシャフト31500に、外すことが可能なように又は交換可能に結合される。別の言い方をすれば、エンドエフェクタ31000は、例えば、1回などの所定の数の発射ストローク後に処分されるように構成されている。図146に示されるように、エンドエフェクタ31000は、使い捨て部分の一部分として発射部材31400を備える。そのような事例では、エンドエフェクタ31000が交換されるたびに、例えば、新しい切断要素が存在する。
カートリッジ30300と同様に、カートリッジ31300は、ステープルキャビティ、RF電極、及び/又は特徴部の任意の好適な組み合わせを備え得る。カートリッジ31300は、カートリッジ側壁から延在する横方向突起部31320を更に備える。チャネル31100の側壁は、その遠位部分に画定されたノッチ31120を備える。ノッチ31120は、カートリッジ31300がチャネル31100内に着座しているときに、カートリッジ31300の横方向突起部31320をその中に受容するようにサイズ決めされる。カートリッジ31300をチャネル31100に固定することに加えて、ノッチ31120は、カートリッジ31300がチャネル31100と適切に位置合わせされることを確実にする。エンドエフェクタ31000は、細長いシャフト31500に、外すことが可能なように結合されるものとして示されているが、カートリッジ31300もまた、チャネル31100内に交換可能に着座される。図141に示されるように、アンビル31200は、近位端部の近くのアンビル31200の側壁又は組織停止部上に配設されたトレースを有するフレックス回路31700を備える。チャネル31100に枢動可能に結合されると、アンビルトレースは、チャネル上に位置付けられたトレース31151を備えるフレックス回路と電気的に接触している。
結合部材31800は、細長いシャフト31500と、チャネル31100、アンビル31200、及びカートリッジ31300で形成されたアセンブリとの間の取り付けインターフェースとして機能する。細長いシャフト31500の遠位端部は、結合部材31800及びエンドエフェクタ31000をそれに取り付ける前の状態で図140に示されている。細長いシャフト31500の遠位端部は、駆動システム及び/又は電気的接続を結合することに加えて、細長いシャフト31500をエンドエフェクタ31000に固定及び/又は位置合わせするように構成されている、様々な取り付け部材を備える。結合部材31800の近位端部は、細長いシャフト31500の遠位端部と相互作用するように構成されている。細長いシャフト31500に取り付けられる前の結合部材31800の近位端部が図142に示されている。結合部材31800は、細長いシャフト31500の特徴部に対して相補的な特徴部を備える。
より具体的には、細長いシャフト31500の遠位端部は、そこから延在する駆動シャフト31600を備える。チャネル31860は、その中に駆動シャフト31600を緊密に受容するようにサイズ決めされている結合部材31800内に画定される。駆動シャフト31600は、エンドエフェクタ31000のチャネル31100及び/又はカートリッジ31300内の駆動ねじへの最終的な取り付けのために、チャネル31860を通って延在する。全体を通してより詳細に説明するように、フレックス回路又は電気トレース31550は、細長いシャフト31500を通って、例えば、近位ハウジング内の制御回路及び/又はプロセッサまで延在する。細長いシャフト31500のフレックス回路31550は、結合部材31800上のフレックス回路31850に電気的に結合される。結合部材31800上のフレックス回路31850は、アンビル31200上のフレックス回路31700と電気通信している。感知されたパラメータ及び/又は構成要素の状態は、エンドエフェクタ31000が結合部材31800を介して細長いシャフト31500に結合されるときに、フレックス回路のチェーンを通じて通信され得る。
細長いシャフト31500の遠位端部は、取り付け部材31570及び位置合わせピン31580を更に備える。結合部材31800の近位端部は、エンドエフェクタ31000が細長いシャフト31500に取り付けられたときに、取り付け部材31570を受容するようにサイズ決めされた取り付け溝31870と、位置合わせピン31580を受容するようにサイズ決めされた位置合わせ溝31880と、を備える。
図142~図146は、チャネル31100、アンビル31200、及びカートリッジ31300を備える使い捨てエンドエフェクタ31000を細長いシャフト31500に取り付ける進行を示す。図142に示されるように、カートリッジ31300は、チャネル31100内に完全に着座され、アンビル30200は、アセンブリとしてそれに結合される。エンドエフェクタ31000は、エンドエフェクタ31000を細長いシャフト31500に任意の関節運動継手より遠位の点で交換可能に取り付けるための結合部材31800を更に備える。
使い捨てエンドエフェクタアセンブリを細長いシャフト31500に取り付ける第1段階が図143に示されている。使い捨てアセンブリの結合部材31800が細長いシャフト31500の遠位端部に向かって動かされると、細長いシャフト31500から延在する取り付け部材31570と結合部材31800内に画定された取り付け溝31870との間で最初の接触が行われる。駆動シャフト31600は、最初にチャネル31860内に受容される。しかしながら、駆動シャフト31600はまだ、駆動ねじ31150に結合されていない。注目すべきことに、フレックス回路31850、31750は、取り付けの第1段階において位置合わせ不良であり、物理的接触から外れている。更に、位置合わせピン31580は、結合部材31800内に画定された位置合わせ溝31880と位置合わせされていない。そのような位置合わせ不良は、使い捨てエンドエフェクタ31000が細長いシャフト31500に完全に取り付けられることを防止する。
使い捨てエンドエフェクタアセンブリを細長いシャフト31500に取り付ける第2段階が、図144に示されている。結合部材31800の近位端部と位置合わせピン31580との間の接触は、位置合わせピン31580を結合部材31800から離れるようにばね付勢させ、それによって、使い捨てエンドエフェクタ31000及び/又は細長いシャフト31500が互いに対して自由に回転することを可能にする。使い捨てエンドエフェクタ31000及び/又は細長いシャフト31500の互いに対するそのような回転は、駆動シャフト31600を駆動ねじ31150に回転可能に取り付け始める。しかしながら、フレックス回路31850、31550は依然として物理的に接触しておらず、位置合わせピン31580は、結合部材31800内に画定された位置合わせ溝31880によってまだ受容されていない。
図145は、細長いシャフト31500に完全に取り付けられた使い捨てエンドエフェクタアセンブリを図示する。そのような時点で、位置合わせピン31580は、結合部材31800に向かって戻るように付勢され、結合部材31800内に画定された位置合わせ溝31880内に完全に収容される。図146に示されるように、駆動シャフト31600と駆動ねじ31150との間の完全な動作結合は、使い捨てエンドエフェクタアセンブリが細長いシャフト31500に完全に取り付けられたときに達成される。更に、エンドエフェクタ31000と細長いシャフト31500との間のそのような位置合わせはまた、フレックス回路31850、31550の間の位置合わせ及び/又は物理的接触を確実にする。使い捨てアセンブリが細長いシャフト31500に完全に取り付けられると、アンビル31200、カートリッジ31300、及び/又はチャネル31100内に位置付けられたフレックス回路30700及び/又はセンサアレイを含む全ての電気構成要素が、外科用器具の細長いシャフト31500に結合されてそれと通信している。
様々な事例では、チャネル31100、アンビル31200、カートリッジ31300、及び様々なフレックス回路31700から構成されている使い捨てアセンブリは、単回使用のみが意図される。別の言い方をすれば、単一の発射ストロークが完了すると、発射部材31400を含むエンドエフェクタ31000及び関連付けられたフレックス回路31700は、細長いシャフト31500から取り外されるか、又は外される。外すことは、例えば、所定の数の発射ストロークにわたって使用された後、又は欠陥が生じたときに生じ得る。
図147及び図148は、外科用器具の細長いシャフト32500に交換可能に取り付けられるように構成されているエンドエフェクタ32050を図示する。エンドエフェクタ32050は、チャネル32100、アンビル32200、及びカートリッジ32300を有する。カートリッジ32300は、チャネル32100内に着座しているようにサイズ決め及び/又は構成されている。図132~図138に関してより詳細に説明するように、様々な事例では、アンビル32200及びカートリッジ32300は、カートリッジ32300がチャネル32100内に着座される前に、ピボット継手32210の周りで互いに枢動可能に取り付けられている。様々な事例では、アンビル32200は、チャネル32100に枢動可能に取り付けられるように構成されている。
チャネル32100は、近位端部32052及び遠位端32054を備える。チャネル32100の近位端部32052は、そこから近位に延在する取り付け部材32056を備える。取り付け部材32056は、エンドエフェクタ32050を外科用器具の細長いシャフト32500に解放可能に固定するように構成されている。図147及び図148は、チャネル32100の近位端部から延在する取り付け部材32056を示すが、取り付け部材32056は、アンビル32200又はカートリッジ32300などのエンドエフェクタ32050の任意の好適な構成要素から延在し得る。様々な事例では、取り付け部材32056は、特定のエンドエフェクタ構成要素と一体的に形成される。他の事例では、エンドエフェクタ32050は、エンドエフェクタ32050の近位端部に取り付けられたアダプタを備える。アダプタは、エンドエフェクタ32050を細長いシャフト32500に固定するための取り付け部材32056を備える。
細長いシャフト32500の遠位端部は、ピボット継手32520を中心として開放位置と閉鎖位置との間で移動可能な固定ドア32510を備える。様々な事例では、固定ドア32510は、開放位置に動かされるまで閉鎖位置に留まる。そのような事例では、固定ドア32510は、それへのエンドエフェクタ32050の取り付け前に閉鎖位置にある。エンドエフェクタ32050の取り付け部材32056を使用して、固定ドア32510を開放位置に付勢することができる。代替的に、臨床医は、エンドエフェクタ32050を細長いシャフト32500に取り付ける前に、固定ドア32510を開放位置に動かすことができる。固定ドア32510は、取り付け部材32056が溝内に適切に位置付けられるまで、及び/又は固定ドア32510が閉鎖位置に動かされるまで、開放位置で付勢されて開放したままにすることができる。
その開放位置では、図147に示されるように、固定ドア32510は、エンドエフェクタ32050の取り付け部材32056をその中に受容するようにサイズ決めされた溝を露出させる。別の言い方をすれば、固定ドア32510が開放位置にあるとき、取り付け部材32056が細長いシャフト32500の溝内に位置付けられるための経路が空けられる。様々な事例では、取り付け部材32056が溝内に適切に位置付けられると、固定ドア32510は、その閉鎖位置に戻ることができる。他の事例では、臨床医は、固定ドア32510を閉鎖位置に動かすことができる。センサアセンブリは、固定ドア32510の状態及び/又は位置をプロセッサに通信することができる。そのような事例では、プロセッサは、固定ドア32510が開放位置にある及び/又は欠陥がある間、外科用器具の使用を防止するように構成されている。
固定ドア32510は、ラッチ幾何形状を有する遠位端部32512を有する。取り付け部材32056は、第1の厚さを有する近位部分と、第2の厚さを有する遠位部分と、を備える。図147及び図148に示されるように、第1の厚さは、第2の厚さよりも大きい。そのような幾何形状は、固定ドア32510の遠位端部32512及び/又は溝の対応する幾何形状がその中に取り付け部材32056を保持することを可能にする。溝の幾何形状は、例えば、取り付け部材32056の望ましくない移動を防止し、かつ/又はエンドエフェクタ32050と細長いシャフト32500との位置合わせを維持する。様々な事例では、取り付け部材32056は、溝との圧入関係を有する。しかしながら、構成要素間の取り付け及び/又は位置合わせを維持する任意の好適な機構が想定される。
様々な事例では、取り付け部材32056の幾何形状及び/又はサイズは、チャネルの幾何形状及び/又はサイズに対応しない。そのような幾何形状及び/又はサイズの不一致は、エンドエフェクタ32050が細長いシャフト32500に完全に取り付けられること及び/又はそれと位置合わせされることを防止する。そのような事例では、発射駆動部及び/又は電子構成要素は接続されておらず、外科用器具は動作不能である。取り付け部材32056が溝内に嵌合するには大きすぎる場合、固定ドア32510はその完全に閉鎖した位置に達することができず、本明細書でより詳細に説明するように、アラートをプロセッサに送信することができる。同様に、センサアセンブリは、取り付け部材32056と溝の障壁との間の接触の不在を検出することができ、取り付け部材32056が外科用器具とともに使用するために不適切に小さい幾何形状を備えることを示唆する。そのような事例では、プロセッサは、外科用器具の使用を防止する。
エンドエフェクタ32050は、駆動ねじ上に装着された発射部材32400を更に備える。駆動シャフト32600は、駆動シャフト1660と同様に、細長いシャフト32500を通って延在し、エンドエフェクタ32050が細長いシャフト32500に取り付けられると、エンドエフェクタ32050の駆動ねじと結合される。駆動ねじのその後の回転は、発射部材32400をエンドエフェクタ32050を通して並進させる。発射部材32400は、発射部材32400がエンドエフェクタ32050を通って並進するときにアンビル32200に係合するように構成されている第1のカム部材32406と、発射部材32400がエンドエフェクタ32050を通って並進するときにチャネル32100に係合するように構成されている第2のカム部材32408と、切断要素32410と、を備える。全体を通してより詳細に考察するように、発射部材32400は、カートリッジ32300をチャネル32100に取り付ける前に、チャネル32100内の駆動ねじ上に装着され得るか、又は発射部材32400は、カートリッジ32300をチャネル32300内に着座させる前に、カートリッジと一体型構成要素であり得る。
いずれにしても、図149及び図150に示されるように、発射部材32400は、発射部材32400の近位端部32402上にキー付きプロファイル32425を有する突起部32420を備える。キー付きプロファイル32425は、駆動シャフト32600の遠位端部32604に形成された対応する溝32610内に受容されるように構成されている。エンドエフェクタ32050が細長いシャフト32500と位置合わせされると、突起部32420のキー付きプロファイル32425は、溝32610内に位置付けられるように構成されている。様々な事例では、溝32610は、発射部材32400のキー付きプロファイル32425よりも大きい幾何形状を含む。しかしながら、溝32610は、発射部材32400のキー付きプロファイル32425を捕捉し、かつ発射部材32400が遠位方向に並進して駆動シャフト32600との接続から外れることを防止するように構成されている、ノッチを備える。様々な事例では、溝32610の幅は、キー付きプロファイル32425の幅と同様である。そのような幅の類似性は、キー付きプロファイル32425が溝32610内に快適に嵌合することを可能にするが、溝32610内でのキー付きプロファイル32425の望ましくない近位並進及び/又は回転を防止する。
図151及び図152は、アンビル33250と、それに円周方向に溶接されたアンビルプレート33260と、を有する補強アンビル33200を図示する。アンビル33250は、本明細書でより詳細に説明するように、カートリッジ及び/又はチャネルに枢動可能に取り付けるための突起部33210を備える。アンビルプレート33260は、突起部33210の周りに形成されたピボット継手の上部に少なくとも部分的に架橋又は交差する。アンビルプレート33260は、アンビル33200に溶接されるものとして説明されているが、アンビル33200に好適な補強を提供する任意の取り付け方法が想定される。補強されたアンビル33200は、補強されたアンビル33200が、閉鎖ストローク及び/又は発射ストロークの間に経験されるより大きな負荷に耐えることを可能にするように、特に、例えば、ピボット取り付け継手にわたって、増加した強度を提供する。
図153に示されるように、補強されたアンビル33200は、エンドエフェクタ33000のチャネル33100に枢動可能に取り付けられている。エンドエフェクタ33000は、チャネル33100内に着座しているカートリッジ33300を更に備える。発射部材33400がエンドエフェクタ33000内に位置付けられている。発射部材33400は、発射部材33400がエンドエフェクタ33000を通って並進するときにアンビル33200の細長いスロット33220に係合するように構成されている第1のカム部材33406と、発射部材33400がエンドエフェクタ33000を通って並進するときにチャネル33100に係合するように構成されている第2のカム部材33408と、切断要素33410と、を有する。
アンビルプレート33260は、その近位端部33262において第1の厚さAを備え、その遠位端部33264において第2の厚さaを備える。様々な事例では、例えば、第1の厚さAは、0.03インチ~0.035インチの範囲であり得る一方、第2の厚さaは、0.01インチ~0.015インチの範囲であり得る。第1の厚さAは、第2の厚さよりも大きく、例えば、突起部33210の周りに形成されたピボット継手において、補強されたアンビル33200に増加した強度を提供する。補強されたアンビル33200は、組織圧縮面を備える。組織圧縮面は、湾曲したトポグラフィーを有し、ここで、組織圧縮面とカートリッジ33300の組織支持面との間の距離は、突起部33210の周りのピボット継手により近い点でより小さい。湾曲したトポグラフィーは、例えば、患者組織が、補強されたアンビル33200とカートリッジ33300及び/又はチャネル33100との間に捕捉される及び/又は挟まれることを防止する。アンビルプレート33260をアンビル33250に溶接することは、補強されたアンビル33200が、アンビル33250の細長いスロット33220に沿って増加した剛性を有することを可能にし、ここで、突起部33210を取り囲むアンビル33250の部分に加えて、発射部材33400によって実質的な負荷が印加される。そのような剛性の増加は、例えば、組織操作及び/又は組織クランプ負荷を改善する。
図154は、カートリッジ34300及びチャネル34100から構成されているアセンブリを図示する。そのようなアセンブリは、関節運動継手より遠位の外科用器具の細長いシャフトに交換可能に結合されるように構成されている。例えば、より剛性の使い捨てアセンブリを形成するために、アセンブリは、チャネル34100及びカートリッジ34300の壁に成形されたインターロックシステムを備える。チャネル34100は、基部34120を備え、基部34120は、発射部材の一部分を受容するための、基部34120内に画定された細長いスロット34110を有する。チャネル34100は、基部34120から延在する一対の側壁34130を更に備える。ノッチ34150は、側壁34130内に画定されている。
全体を通してより詳細に説明するように、カートリッジ34300は、チャネル34100内に着座されるように構成されている。カートリッジ34300は、ステープルキャビティ内に取り外し可能に位置付けられた複数のステープルと、カートリッジ34300の近位端部から遠位端部に向かって延在する長手方向スロット34310と、ウェッジスレッド34600であって、発射ストローク中にウェッジスレッド34600が長手方向スロット34310を通って並進するときに、ステープルをそれぞれのステープルキャビティから出すように動かすように構成されているウェッジスレッドと、を備える。カートリッジ34300は、カートリッジ34300がチャネル34100内に完全に着座したときにノッチ34150内に受容されるように構成されている、突起部34350を更に備える。カートリッジデッキ34320の一部分は、チャネル側壁34130の上部分34140上に載るように構成されている。カートリッジは突起部を有するものとして説明され、チャネルはノッチを有するものとして説明されているが、カートリッジをチャネル内に解放可能に固定するために、任意の好適な取り付け機構又は取り付け機構の組み合わせが想定される。
ウェッジスレッド34600がカートリッジ34300の近位端部内に挿入されるとき、カートリッジ34300は横方向に押され、突起部34350をチャネル34100のノッチ34150内に入れ子にさせる。そのようなインターロック係合は、チャネル34100が、基部34120のみからよりも、カートリッジデッキ34320及びカートリッジ本体に追加の支持を提供することを可能にする。カートリッジ34300の横方向の動機付けは、組織圧縮負荷がカートリッジの本体のみを通して伝達されることを可能にするのではなく、組織圧縮負荷をカートリッジデッキ34320からチャネル34100の側壁34130へと逸らす。
図151~図154に示される補強されたアンビル33200と同様に、チャネル34100は、細長いスロット34110の上部を少なくとも部分的に架橋又は交差するチャネルキャップで補強することができる。チャネル34100の基部34120は、例えば、0.025インチ~0.035インチの厚さの範囲であり得る。例えば、0.01インチ~0.015インチの厚さを有するチャネルキャップをチャネル34100の基部34120に溶接することができる。チャネルキャップの追加は、より堅牢なカートリッジ及びチャネルアセンブリを可能にする。
本開示の様々な態様は、エネルギー及びステープル留めモダリティの組み合わせを使用して組織を封止するための方法、デバイス、及びシステムを対象とする。ハイブリッドアプローチは、エネルギーモダリティ及びステープル留めモダリティを別々に使用することの欠点を改善し、補償する。
ここで図155を参照すると、外科用器具60000は、エネルギーとステープル留めモダリティ又は段階との組み合わせを使用して組織を封止するように構成されている。特定の事例では、組織を切断するようにも構成されている。外科用器具60000は、多くの点で、本明細書の他の箇所に記載されている他の外科用器具(例えば、外科用器具1000)と類似しており、簡潔にするために、本明細書では同じレベルの詳細さで繰り返さない。外科用器具60000は、エンドエフェクタ60002と、関節運動アセンブリ60008と、シャフトアセンブリ60004と、ハウジングアセンブリ60006と、を含む。示される例では、関節運動アセンブリ60008は、エンドエフェクタ60002がシャフトアセンブリ60006に対して中心長手方向軸60005の周りで関節運動されることを可能にする。
示される例では、ハウジングアセンブリ60006は、ハンドル部分60012に対して移動可能なトリガ60010を含むハンドルの形態であり、エンドエフェクタ60002に動きをもたらす。しかしながら、他の例では、ハウジングアセンブリ60006は、ロボットシステムに組み込むことができる。本明細書に開示される様々な形態の外科用器具の様々な独自の新規な構成がまた、ロボット制御式の外科用システムに関連して効果的に用いられ得ることが理解されるであろう。したがって、「ハウジング」という用語はまた、本明細書に開示するシャフトアセンブリ及びそれらそれぞれの等価物を作動させるのに使用することができる、少なくとも1つの制御運動を生成し適用するように構成されている少なくとも1つの駆動システムを収容するか又は別の方法で動作可能に支持する、ロボットシステムのハウジング又は類似の部分を包含してもよい。例えば、本明細書に開示する外科用器具は、米国特許出願第13/118,241号、名称「SURGICAL STAPLING INSTRUMENTS WITH ROTATABLE STAPLE DEPLOYMENT ARRANGEMENTS」、現在の米国特許出願公開第US2012/0298719号に開示されている、様々なロボットシステム、器具、構成要素、及び方法とともに用いられてもよい。米国特許出願第13/118,241号、名称「SURGICAL STAPLING INSTRUMENTS WITH ROTATABLE STAPLE DEPLOYMENT ARRANGEMENTS」、現在の米国特許出願公開第US2012/0298719号は、その全体を参照により本明細書に組み込む。特定の態様では、ハウジングアセンブリ60006は、例えば、シャフトアセンブリ60004、関節運動アセンブリ60008、及びエンドエフェクタ60002を含む交換可能なアセンブリに、外すことが可能なように結合可能である。
図156~図162を参照すると、エンドエフェクタ60002は、関節運動アセンブリ60008から遠位に延在し、アンビル60020と、カートリッジ60030を収め入れるように構成されているカートリッジ支持チャネル60040と、を含む。示される例では、アンビル60020は、第1のジョーを画定し、支持チャネル60040及びカートリッジ60030は、第2のジョーを画定する。第1のジョー及び第2のジョーのうちの少なくとも一方は、その間の組織を把持するように他方のジョーに対して移動可能である。示される例では、駆動ねじの形態であり得る駆動部材の回転は、Iビーム764の形態であり得る発射部材を遠位に移動させて、アンビル60020をカートリッジ60030に向かって閉鎖運動で枢動させて、それらの間に組織を把持する。
駆動部材の更なる回転は、発射運動において、Iビーム764をスレッドに係合させ、スレッドを動かし、アンビル60020から把持された組織の中へステープル60033(図159)を配備させる。ステープルは、概して、カートリッジ60030のカートリッジ本体60039内に画定された長手方向スロット60035の両側に長手方向に延在するステープルキャビティ60031、60032の列内に格納される。スレッドは、ステープルキャビティ60031、60032の列内のステープルドライバを上向きに押すことによって、ステープル60033を配備するように構成されている。ステープルドライバの上方への動きは、ステープル60033をステープルキャビティ60031、60032の列から組織内に配備する。次いで、ステープル60033のステープル脚部は、アンビル60020のアンビルプレート60024内に画定された長手方向スロット60025の両側にあるアンビルポケット60021、60022(図162)の対応する列によって変形される。
図163を主に参照すると、制御回路760は、例えば、エンドエフェクタ60002の閉鎖、少なくとも1つの電極の起動及び/又はカートリッジ60030の発射などの、外科用器具750の1つ又は2つ以上の機能を制御するようプログラムされてもよい。制御回路760は、いくつかの例では、マイクロコントローラ、マイクロプロセッサ、又は1つ若しくは複数のプロセッサに、外科用器具60000の1つ又は2つ以上の機能を制御させる命令を実行するための他の好適なプロセッサのうちの1つ又は複数を備えてもよい。一態様では、タイマ/カウンタ781は、経過時間又はデジタルカウントなどの出力信号を制御回路760に提供する。タイマ/カウンタ781は、経過時間を測定する、外部事象を計数する、又は外部事象の時間を測定するように構成され得る。
制御回路760は、モータ設定点信号772を生成し得る。モータ設定点信号772は、モータコントローラ758に提供され得る。モータコントローラ758は、本明細書に記載されているとおり、モータ754にモータ駆動信号774を提供して、モータ754を駆動するように構成されている1つ又は2つ以上の回路を備え得る。いくつかの例では、モータ754は、ブラシ付きDC電気モータであり得る。例えば、モータ754の速度は、モータ駆動信号774に比例し得る。いくつかの例では、モータ754は、ブラシレスDC電気モータであってもよく、モータ駆動信号774は、モータ754の1つ又は2つ以上の固定子巻線に提供されるPWM信号を含み得る。同様に、いくつかの例では、モータコントローラ758は省略されてもよく、制御回路760が、モータ駆動信号774を直接、発生し得る。
モータ754は、エネルギー源762から電力を受信し得る。エネルギー源762は、電池、超コンデンサ若しくは任意の他の好適なエネルギー源であってもよい、又はこれらを含んでもよい。モータ754は、伝動装置756を介して駆動部材751に機械的に連結され得る。伝動装置756は、モータ754を駆動部材751に連結するための1つ又は2つ以上のギア又は他の連結構成要素を含んでもよい。
ある種の例では、モータ754により流される電流を測定するために、電流センサ786を使用することができる。駆動部材751を前進させるために必要な力は、モータ754によって流された電流に相当する。力は、デジタル信号に変換されて、制御回路760に提供される。モータ754によって流された電流は、組織圧縮を表すことができる。
図164を参照すると、制御回路760の模式図が図示されている。非限定的な態様による、制御回路760は、少なくとも1つのメモリ回路68008に結合された1つ又は2つ以上のプロセッサ68002(例えば、マイクロプロセッサ、マイクロコントローラ)を備えるマイクロコントローラを含むことができる。メモリ回路68008は、プロセッサ68002によって実行されると、プロセッサ68002に、本明細書に説明される様々なプロセスを実装するための機械命令を実行させることができる、機械実行可能命令を記憶するように構成することができる。プロセッサ68002は、当該技術分野で既知の多数のシングルコアプロセッサ又はマルチコアプロセッサのうちの任意の1つである可能性がある。代替的に及び/又は追加的に、マイクロコントローラは、例えばフィールドプログラマブルゲートアレイなどの論理基板を含むことができる。メモリ回路8008は、揮発性及び不揮発性の記憶媒体を備えることができる。プロセッサ68002は、命令処理ユニット68004、及び演算ユニット68006を含み得る。命令処理ユニット68004は、本開示のメモリ回路68008から命令を受信するように構成することができる。
制御回路760は、Iビーム764の位置を決定するために位置センサ784を用いることができる。位置情報は、制御回路760のプロセッサ68002に提供され、これは、位置情報に基づいてIビーム764の位置を決定するようにプログラム又は構成することができる。一態様では、位置情報は、駆動部材751の回転位置を示し、プロセッサ68002は、駆動部材751の回転位置に基づいてIビーム764の位置を計算するように構成されている。
ディスプレイ711は、外科用器具60000の様々な動作条件を表示し、データ入力のためのタッチスクリーン機能を含んでもよい。ディスプレイ711上に表示された情報は、撮像モジュールを介して取得された画像とオーバーレイされ得る。
制御回路760は、1つ又は2つ以上のセンサ788と通信してもよい。センサ788は、エンドエフェクタ752上に位置付けられ、外科用器具750とともに動作して、間隙距離対時間、組織圧縮対時間、及びアンビル歪み対時間などの様々な導出パラメータを測定するように適合されてもよい。センサ788は、磁気センサ、磁場センサ、歪みゲージ、圧力センサ、力センサ、渦電流センサなどの誘導センサ、抵抗センサ、容量センサ、光センサ、及び/又はエンドエフェクタ752の1つ又は2つ以上のパラメータを測定するための任意の他の好適なセンサを含み得る。
一態様では、センサ788は、とりわけ、リミットスイッチ、電気機械デバイス、固体スイッチ、ホール効果デバイス、MRデバイス、GMRデバイス、磁力計として実装されてもよい。他の実装形態では、センサ788は、とりわけ、光センサ、IRセンサ、紫外線センサなどの光の影響下で動作する固体スイッチであってもよい。更に、スイッチは、トランジスタ(例えば、FET、接合FET、MOSFET、バイポーラなど)などの固体デバイスであってもよい。他の実装形態では、センサ788は、とりわけ、電気導体非含有スイッチ、超音波スイッチ、加速度計及び慣性センサを含んでもよい。センサ788は、1つ又は2つ以上のセンサを含み得る。
制御回路760は、器具の実際のシステムの応答を、コントローラのソフトウェアでシミュレートするよう構成することができる。駆動部材751は、目標速度又はその付近で、エンドエフェクタ752において、1つ又は2つ以上の要素を移動させることができる。外科用器具750は、フィードバックコントローラを含むことができ、フィードバックコントローラは、例えば、以下に限定されないが、PID、状態フィードバック、LQR及び/又は適応コントローラを含む、任意のフィードバックコントローラのうちの1つであってよい。外科用器具750は、フィードバックコントローラからの信号を、例えば、ケース電圧、PWM電圧、周波数変調電圧、電流、トルク及び/又は力などの物理的入力値に変換するための電源を含むことができる。
アンビル60020とカートリッジ60030との間に把持された組織をステープル留めすることに加えて、外科用器具60000は、RFエネルギー治療を組織に適用するように更に構成されている。RFエネルギー源794(図163)は、エンドエフェクタ60002に結合される。図162に示されるように、アンビル60020は、長手方向スロット60025の第1の側に第1の電極アセンブリ60026を含み、第1の側とは反対側の長手方向スロット60025の第2の側に第2の電極アセンブリ60027を含む。電極アセンブリ60026、60027は、別々に、又は共通して、RFエネルギー源に接続されることができ、RFエネルギーを組織に別々に、又は同時に送達するように構成されている。
示される例では、第1の電極アセンブリ60026は、長手方向スロット60025の第1の側の第1の列に配設された3つのセグメント化電極60026a、60026b、60026cを含む。同様に、第2の電極アセンブリ60027は、長手方向スロット60025の第2の側の第2の列に配設された3つのセグメント化電極60027a、60027b、60027cを含む。しかしながら、アンビル60020内のセグメント化電極の数は、例えば、様々な用途に対応するように変更され得ることが理解される。セグメント化電極60026a~c及びセグメント化電極60027a~cは、以下でより詳細に考察するように、1つ又は2つ以上のRFエネルギーアルゴリズムによって組織にRFエネルギー治療を送達するために別々に又は同時にアクティブ化することができる。
示される例では、第1の電極アセンブリ60026は、ステープルキャビティ60021の列から段上げられている。同様に、第2の電極アセンブリ60027は、ステープルキャビティ60022の列から段上げられている。様々な態様では、セグメント化電極60026a~c及び/又はセグメント化電極60027a~cは、同じ又は実質的に同じ高さを含む。他の例では、セグメント化電極60026a~c及び/又はセグメント化電極60027a~cは、異なる高さを含む。一構成では、セグメント化電極60026a~c及び/又はセグメント化電極60027a~cは、それらの高さが最遠位から最近位に徐々に減少するように構成されている。別の構成では、セグメント化電極60026a~c及び/又はセグメント化電極60027a~cは、それらの高さが最遠位から最近位に徐々に増加するように構成されている。
上記に加えて、カートリッジ60030は、長手方向スロット60035の第1の側にセグメント化電極60036a、60036b、60036c、60036d、60036e、60036fの列を含む第3の電極アセンブリ60036を収め入れる非対称カートリッジ本体60034を含む。第3の電極アセンブリ60036は、図158に示されるように、閉鎖構成においてアンビル60020の第1の電極アセンブリ60026に対向するように構成されている。カートリッジ60030は、長手方向スロット60035の第2の側に電極アセンブリを欠いている。代わりに、アンビル60020の第2の電極アセンブリ60027は、第3の電極アセンブリ60036に沿って延在する長手方向段部60037によって対向される。特定の事例では、長手方向段部60037は、第3の電極アセンブリ60036と平行に、又は少なくとも実質的に平行に延在する。
第3の電極アセンブリ60036は、6つのセグメント化電極60036a~fを備えて図示されているが、より多くの又はより少ないセグメント化電極を利用することができる。セグメント化電極60036a~fは、RFエネルギー源794に別々に又は共通に接続することができ、別々に又は同時にアクティブ化することができる。示される例では、電極アセンブリ60026、60027は、ソース電極を画定する一方で、第3の電極アセンブリ60036は、戻り電極を画定し、これによって、双極RFエネルギーは、電極アセンブリ60026、60027から第3の電極アセンブリ60036に流れるように構成されている。しかしながら、他の例では、第3の電極アセンブリ60036をソース電極として構成することができ、電極アセンブリ60026、60027の一方又は両方を戻り電極として構成することができる。
上記に加えて、第3の電極アセンブリ60036のセグメント化電極60036a~fは、長手方向列に配設され、互いに離間される。第3の電極アセンブリ60036は、図159に最もよく示されるように、長手方向列に沿ってセグメント化電極60036a~fの間の空間に配置された絶縁体60039a~eを更に含む。一例では、絶縁体60039a~eは、均一な長さ及び/又は形状を含む。他の例では、絶縁体60039a~eは、異なる長さ及び/又は形状を含む。
主に図160及び図161を参照すると、支持壁60048は、第3の電極アセンブリ60036とステープルキャビティ60031の列との間に延在し、これらを分離するか、又は少なくとも部分的に分離する。第3の電極アセンブリ60036及び支持壁60048は、長手方向スロット60035の第1の側のステープルキャビティ60031の列から段上げられている。同様に、長手方向段部60037は、長手方向スロット60035の第2の側上のステープルキャビティ60032の列から段上げられている。長手方向段部60037及び第3の電極アセンブリ60036は、内側組織封止ゾーンの両側に画定されたステープルキャビティ60031、60032の列によって画定された外側組織ステープル留めゾーンから段状になった内側組織封止ゾーンを協働して画定する。示される例では、長手方向段部60037及び第3の電極アセンブリ60036は、長手方向スロット60035の反対側の側壁を画定するか、又は少なくとも部分的に画定する。Iビーム764は、外科用器具60000の発射運動において、長手方向段部60037と第3の電極アセンブリ60036との間を通過するように構成されている。
図160及び図161は、第3の電極アセンブリ60036の例示的な構成を示すカートリッジ60030の拡大図である。フレックス回路60041は、セグメント化電極60036a~f及び絶縁体60039a~eの後ろに長手方向に延在する。フレックス回路60041は、カートリッジデッキ60047に接して位置付けられる。示される例では、セグメント化電極60036a~fは、正温度係数(positive temperature coefficient、PTC)セグメント60042a~fの形態であり得る、受動スイッチ、電流制限素子、エネルギー感受性抵抗素子、又は局所的に調節可能な抵抗素子を介してフレックス回路60041に電気的に接続されている。他の例では、セグメント化電極60036a~fは、フレックス回路60041に直接接続することができる。いずれにしても、フレックス回路60041は、セグメント化電極60036a~fをエネルギー源794に接続するように構成されている。
示される例では、セグメント化電極60036a~fは、図173に示すように、対応するPTCセグメント60042a~fとそれぞれ別々に直列に接続されている。換言すれば、等しい数のセグメント化電極及びPTCセグメントが存在する。しかしながら、他の例では、2つ又はそれ以上のセグメント化電極を1つのPTCセグメントに接続することができる。
様々な態様では、絶縁体60039a~eは、セグメント化電極60036a~fの間の間隙内に延在し、セグメント化電極60036a~fと同一又は少なくとも実質的に同一の高さを備え、第3の電極アセンブリ60036によって画定される組織封止ゾーンに沿って、均一又は少なくとも実質的に均一な組織接触面を可能にする。代替的に、図160に最もよく示されるように、セグメント化電極60036a~f及び絶縁体60039a~eは、異なる高さを含み得る。高さの相違は、セグメント化電極60036a~fが導電性組織把持特徴部として機能することを可能にし得る。
示される例では、絶縁体60039eは、セグメント化電極60036fとセグメント化電極60036eとの間で長手方向に延在し、セグメント化電極60036f及びセグメント化電極60036eの第2並びに第3の高さよりもわずかに低い第1の高さまで垂直に延在する。他の例では、第2及び第3の高さは、第1の高さよりも大きい。他の例では、第1、第2、第3の高さは、同じであるか、又は少なくとも実質的に同じである。
様々な態様では、セグメント化電極60036a~fは、均一な、又は少なくとも実質的に均一な高さを含む。他の例では、セグメント化電極60036a~fは異なる高さを含む。一構成では、セグメント化電極60036a~fは、それらの高さが最遠位(セグメント化電極60036f)から最近位(セグメント化電極60036a)まで徐々に減少するように配設されている。別の構成では、セグメント化電極60036a~fは、それらの高さが最遠位(セグメント化電極60036f)から最近位(セグメント化電極60036a)まで徐々に増加するように配設されている。
様々な態様では、第3の電極アセンブリ60036は、第3の電極アセンブリ60036内の孔を通って延在するポスト60043を介してカートリッジ本体60039に固定され得る。図159に示されるように、特定の例では、孔は絶縁体60039a~e内に画定される。ポスト60043はまた、例えば、熱杭として機能することができる。追加的に、又は代替的に、第3の電極アセンブリ60036は、例えば、任意の好適なロック又は嵌合特徴部を使用して、カートリッジ本体60039に固定され得る。
様々な態様では、長手方向段部60037及び第3の電極アセンブリ60036は、同じ高さ、又は少なくとも実質的に同じ高さを含む。他の例では、長手方向段部60037及び第3の電極アセンブリ60036は、異なる高さを含む。図158に示されるように、アンビル60020及びカートリッジ60030は、第1の電極アセンブリ60026と第3の電極アセンブリ60036との間に画定された第1の間隙部分60044aと、第2の電極アセンブリ60027と長手方向段部60037との間に画定された第2の間隙部分60044bと、を含む組織封止間隙60044を協働して画定する。様々な態様では、間隙部分60044a、60044bは、同じ又は少なくとも実質的に同じサイズ及び/又は高さを含む。他の態様では、間隙部分60044a、60044bは、異なるサイズ及び/又は高さを含む。
上記に加えて、アンビル60020及びカートリッジ60030は、それらの間に組織ステープル留め間隙60045を協働して画定する。組織ステープル留め間隙60045は、ステープルポケット60021の列とステープルキャビティ60031の列との間に画定された第1の間隙部分60045aと、ステープルポケット60022の列とステープルキャビティ60032の列との間に画定された第2の間隙部分60045bと、を含む。組織封止間隙60044は、第1の間隙部分60045aと第2の間隙部分60045bとの間に延在する。
示される例では、組織封止間隙60044は、組織ステープル留め間隙60045とは異なる高さを含む。効果的な組織封止のために、組織封止間隙60044は、例えば、約0.005インチ~約0.02インチの範囲、約0.008インチ~約0.018インチの範囲、又は約0.009インチ~約0.011インチの範囲から選択される高さを含む。効果的な組織ステープル留めのために、組織ステープル留め間隙60045は、約0.04インチ~約0.08インチの範囲、約0.05インチ~約0.07インチの範囲、又は約0.055インチ~約0.065インチの範囲から選択される高さを含む。少なくとも1つの例では、アンビル60020及びカートリッジ60030は協働して、それらの間に組織封止間隙60044及び組織ステープル留め間隙60045を画定し、組織封止間隙は、約0.01インチの高さを含み、組織ステープル留め間隙は、約0.06インチの高さを含む。
様々な態様では、図160に最もよく示されるように、ステープルキャビティ60031、60032の列は、カートリッジ60030のカートリッジデッキ60047から突出するポケット延長部60046を含む。ポケット延長部60046は、カートリッジデッキ60047に接して位置付けられた組織内へのステープル60033の適切な配備を確実にする。特定の例では、組織封止間隙60044は、ポケット延長部60046の上方に隆起している。そのような事例では、長手方向段部60037及び/又は第3の電極アセンブリ60036は、例えば、ポケット延長部60046の高さよりも高い高さ(単数又は複数)を含む。
様々な態様では、図160に最もよく示されるように、長手方向段部60037及び支持壁60048は、標的組織の下へのカートリッジ60030の挿入を容易にする遠位傾斜60037a、60048aを含む。遠位傾斜60037a、60048aは、カートリッジデッキ60047から、例えば、長手方向段部60037及び第3の電極アセンブリ30036の組織接触面と同一平面上にある、又は少なくとも実質的に同一平面上にある上縁部に向かって徐々に突出する。
主に図158を参照すると、エンドエフェクタ60002は、電極アセンブリ60026、60027と第3の電極アセンブリ60036と長手方向段部60037との間の組織部分への治療エネルギー治療の適用、及びステープルポケット60021、60022の列とステープルキャビティ60031、60032の列との間の組織部分への組織ステープル留め治療の適用に好適な閉鎖構成で示されている。閉鎖構成では、組織封止中心線は、組織封止間隙60044を通して画定され、組織ステープル留め中心線は、組織ステープル留め間隙60045を通して画定され、組織封止中心線は、組織ステープル留め中心線よりも高い。換言すれば、組織封止中心線は、組織ステープル留め中心線よりもカートリッジデッキ60047から更に離れている。示される例では、組織封止間隙60044は、組織ステープル留め中心線よりも高いか、又はカートリッジデッキ60047から更に離れている。
エンドエフェクタ60002の他の構成では、組織封止中心線及び組織ステープル留め中心線は同一直線上にある。様々な態様では、組織封止中心線は、第1の電極アセンブリ60026及び第3の電極アセンブリ60036から等距離であり、かつ/又は第2の電極アセンブリ60027及び長手方向段部60037から等距離である。様々な態様では、組織ステープル留め中心線は、第1列のステープルキャビティ60021及び第1列のステープルキャビティ60031から等距離であり、かつ/又は第2列のステープルキャビティ60022及び第2列のステープルキャビティ60032から等距離である。
様々な態様では、エンドエフェクタ60002にRFエネルギーを供給するように構成されているRFエネルギーデバイス794は、例えば、図165、図166に関連して以下でより詳細に説明する発生器800、900などの発生器の形態であり得る。様々な態様では、RFエネルギーデバイス794は、電極アセンブリ60026、60027、60036に電気的に結合され、制御回路760は、RFエネルギー源794に、電極アセンブリ60026、60027、60036のセグメント化電極のうちの1つ又は2つ以上をアクティブモードと非アクティブモードとの間で選択的に切り替えさせるように構成されている。特定の事例では、電極アセンブリ60026、60027、60036のセグメント化電極のうちの1つ又は2つ以上をアクティブモードと非アクティブモードとの間で移行させるために、1つ又は2つ以上の切り替え機構を用いることができる。アクティブモードでは、電極アセンブリ60026、60027、60036のセグメント化電極は、例えば、制御回路760によって定義される様々な組織封止アルゴリズムを実装するために、極性に応じて、ソース電極又は戻り電極として利用され得る。
様々な態様では、制御回路760は、RFエネルギー源794に、反対側双極エネルギーモードとオフセット双極エネルギーモードとを交互に繰り返させる又は切り替えさせてもよい。反対側双極エネルギーモードでは、制御回路760は、RFエネルギー源794に、第1の電極アセンブリ60026と第3の電極アセンブリ60036との間で第1の治療信号を通過させるように構成されている。オフセット双極エネルギーモードでは、制御回路760は、RFエネルギー源794に、第2の電極アセンブリ60027と第3の電極アセンブリ60036との間に第2の治療信号を通過させるように構成されている。
カートリッジ60030は、長手方向スロット60035の片側に、アンビル60020の第2の電極アセンブリ60027と協働して、エネルギー封止に好適な組織圧縮を達成するように構成されているが、戻り/ソース電極として作用しない、長手方向段部60037を含む。反対側エネルギーモードとオフセットエネルギーモードとを交互に行うことにより、長手方向段部60037の存在により電極アセンブリが欠如している組織封止間隙60044の第2の間隙部分60044bにおける組織の適切な封止が可能になる。様々な態様では、本明細書の他の箇所でより詳細に説明するように、長手方向段部60037は、ドライバロールに抵抗するドライバ支持体を収め入れるように構成されているキャビティ60049をその中に含む。長手方向段部60037は、ドライバ支持体がカートリッジデッキ60047の上方に延在して、ドライバのロールに抵抗することを可能にする。
様々な態様では、制御回路760は、RFエネルギー源794に、例えば、組織インピーダンスなどの組織パラメータ又は状態に基づいて、反対側双極エネルギーモードとオフセット双極エネルギーモードとを交互に繰り返させる又は切り替えさせてもよい。図167は、反対側エネルギーモードとオフセットエネルギーモードとの間で交互に行うか又は切り替えることによって、エンドエフェクタによって把持された組織を封止するための制御プログラム又は論理構成を図示するプロセス60160の論理フロー図である。特定の事例では、プロセス60160は、例えば、外科用器具60000によって実装され得る。特定の事例では、メモリ68008は、プロセッサ68002によって実行されると、プロセッサ68002にプロセス60160の1つ又は2つ以上の態様を行わせるプログラム命令を記憶する。
プロセス60160は、エンドエフェクタ60002によって把持された組織の組織パラメータを監視すること(60161)を含む。特定の例では、組織パラメータは、組織圧縮である。制御回路760は、1つ又は2つ以上のセンサ788からのセンサ信号に基づいて、組織圧縮を監視してもよい(60161)。
組織パラメータが好適なエネルギー封止条件を示す場合(60162)、プロセス60160は、反対側エネルギーモード及びオフセットエネルギーモードのうちの1つをアクティブ化させる(60163)。組織パラメータが好適なエネルギー封止状態を示すかどうかを決定するために、制御回路760は、例えば、組織パラメータの検出値を、例えば、メモリ68008などのプロセッサ68002によってアクセス可能な記憶媒体内に記憶することができる好適なエネルギー封止状態を示す所定の閾値と比較してもよい。
好適なエネルギー封止状態を示す組織パラメータの検出に続いて、反対のエネルギーモードのみがアクティブ化され(60163)、一方で、オフセットエネルギーモードは、非アクティブのままである。反対側エネルギーモードでは、制御回路760は、電極アセンブリ60026、60036をアクティブ化させてもよく、一方、電極アセンブリ60027は、非アクティブのままである。プロセス60160は、組織インピーダンスを監視して(60164)、反対側エネルギーモードとオフセットエネルギーモードとの間でいつ交互にするか、又は切り替えるかを決定することを更に含む。本明細書の他の箇所でより詳細に説明するように、組織部分の組織インピーダンスは、治療量以下の信号を組織部分に通過させ、電圧感知回路924及び電流感知回路914から測定値を受信し、電圧感知回路924からの測定値を電流感知回路914からの対応する測定値で除算することによって、例えば、制御回路760によって、検出され得る。
示される例では、所定の閾値以上の組織インピーダンスが検出された場合(60165)、プロセス60160は、反対側エネルギーモードからオフセットエネルギーモードに切り替える(60166)。オフセットエネルギーモードに切り替えるために、制御回路760は、電極アセンブリ60026を非アクティブ化し、電極アセンブリ60027をアクティブ化してもよい。他の事例では、オフセットエネルギーモードは、反対側エネルギーモードのアクティブ化の前にアクティブ化され、反対側エネルギーモードのアクティブ化とともに、又はその後に非アクティブ化される。
発生器ハードウェア
図165は、他の利点の中でも、インダクタレス同調を提供するように構成されている発生器800の簡略ブロック図である。発生器800の追加の詳細は、2015年6月23日出願の米国特許第9,060,775号、表題「SURGICAL GENERATOR FOR ULTRASONIC AND ELECTROSURGICAL DEVICES」に記載されており、同文献は、その全体が参考により本明細書に組み込まれる。発生器800は、電力変圧器806を介して非絶縁段階804と通信する患者絶縁段階802を含んでもよい。電力変圧器806の二次巻線808は、絶縁段階802内に収容され、例えば、超音波外科用器具、RF電気外科用器具、並びに単独又は同時に送達可能な超音波及びRFエネルギーモードを含む多機能型外科用器具などの様々な外科用器具に駆動信号を送達するために駆動信号出力部810a、810b、810cを画定するためのタップ構成(例えば、センタタップ又は非センタタップ構成)を備えることができる。具体的には、駆動信号出力部810a、810cは、超音波駆動信号(例えば、420Vの二乗平均根(root-mean-square、RMS)駆動信号)を超音波外科用器具に出力してもよく、駆動信号出力部810b、810cは、電力変圧器806のセンタタップに対応する駆動信号出力部810bにより、RF電気外科用駆動信号(例えば、100VのRMS駆動信号)をRF電気外科用器具(例えば、外科用器具60000)に出力してもよい。
外科用器具60000に提供される電気外科用信号は、治療用又は治療量以下のレベルの信号のどちらかであり、治療量以下の信号は、例えば、組織又は器具状態を監視して、発生器800へとフィードバックを提供することに使用され得る、と理解されよう。特定の事例では、治療量以下の信号は、例えば、エンドエフェクタ60002によって把持された組織のインピーダンスを検出するために用いられ得る。
非絶縁段階804は、電力変圧器806の一次巻線814に接続された出力部を有する電力増幅器812を含むことができる。特定の形態では、電力増幅器812は、プッシュプル増幅器を含んでもよい。例えば、非絶縁段階804は、対応するアナログ信号を電力増幅器812の入力に続いて供給するデジタル-アナログ変換器(digital-to-analog converter、DAC)回路818に、デジタル出力を供給するための論理デバイス816を更に含んでもよい。特定の形態では、論理デバイス816は、例えば、他の論理回路の中でも、プログラマブルゲートアレイ(programmable gate array、PGA)、FPGA、プログラマブル論理デバイス(programmable logic device、PLD)を含んでもよい。したがって、論理デバイス816は、DAC回路818を介して電力増幅器812の入力を制御することにより、駆動信号出力部810a、810b、810cで出現する駆動信号の多くのパラメータ(例えば、周波数、波形、波形振幅)のうちのいずれかを制御することができる。特定の形態では、また以下で説明するように、論理デバイス816は、プロセッサ(例えば、以下で説明するDSP)とともに、多数のDSPベースの及び/又は他の制御アルゴリズムを実施して、発生器800によって出力される駆動信号のパラメータを制御することができる。
電力は、スイッチモードレギュレータ820、例えば、電力変換器によって、電力増幅器812の電力レールに供給されてもよい。特定の形態では、スイッチモードレギュレータ820は、例えば、調節可能なバックレギュレータを含んでもよい。非絶縁段階804は、第1のプロセッサ822を更に含んでもよく、この第1のプロセッサは、一形態では、例えば、Analog Devices(Norwood,MA)から入手可能なAnalog Devices ADSP-21469 SHARC DSPなどのDSPプロセッサを含んでもよいが、様々な形態において、任意の好適なプロセッサが使用されてもよい。特定の形態では、DSPプロセッサ822は、電力増幅器812からDSPプロセッサ822がADC回路824を介して受信する電圧フィードバックデータに応じて、スイッチモードレギュレータ820の動作を制御してもよい。一形態では、例えば、DSPプロセッサ822は、電力増幅器812によって増幅された信号(例えば、RF信号)の波形エンベロープを、ADC回路824を介して入力として受信してもよい。次いで、DSPプロセッサ822は、電力増幅器812に供給されるレール電圧が増幅された信号の波形エンベロープを追跡するように、(例えば、PWM出力を介して)スイッチモードレギュレータ820を制御してもよい。波形エンベロープに基づいて、電力増幅器812のレール電圧を動的に変調することにより、電力増幅器812の効率は、固定レール電圧増幅器スキームに対して顕著に改善することができる。
特定の形態では、論理デバイス816は、DSPプロセッサ822とともに、直接デジタルシンセサイザ制御スキームなどのデジタル合成回路を実装して、発生器800によって出力される駆動信号の波形形状、周波数、及び/又は振幅を制御してもよい。一形態では、例えば、論理デバイス816は、FPGA内に埋め込まれてもよいRAM LUTなどの、動的に更新されるルックアップテーブル(lookup table、LUT)内に記憶された波形サンプルを呼び出すことによって、DDS制御アルゴリズムを実施してもよい。この制御アルゴリズムは、超音波変換器などの超音波変換器をその共振周波数における明瞭な正弦波電流によって駆動することができる、超音波用途で特に有用である。他の周波数が寄生共振を引き起こし得るため、動作ブランチ電流の全歪みが最小化又は低減されることに対応して、望ましくない共振効果が最小化又は低減されることができる。発生器800によって出力される駆動信号の波形形状が、出力駆動回路内に存在する歪みの様々な発生源(例えば、電力変圧器806、電力増幅器812)によって影響されるため、駆動信号に基づいた電圧及び電流のフィードバックデータを、DSPプロセッサ822によって実施される誤差制御アルゴリズムなどのアルゴリズムに入力することができ、これにより、動的、継続的に(例えば、リアルタイムで)、LUTに記憶された波形サンプルを好適に予め歪ませる又は修正することによって、歪みを補償する。一形態では、LUTサンプルに加えられる予歪みの量又は程度は、計算された動作分岐電流と所望の電流波形との間の誤差に基づいてもよく、誤差は、サンプル毎に決定される。このようにして、予め歪ませたLUTサンプルは、駆動回路を通じて処理される場合、超音波トランスデューサを最適に駆動するために、所望の波形形状(例えば、正弦波)を有する動作ブランチ駆動信号を生じ得る。そのような形態では、LUT波形サンプルは、したがって、駆動信号の所望の波形を表すのではなく、歪み効果を考慮した際の、動作分岐駆動信号の所望の波形を最終的に生成するために必要な波形を表す。
非絶縁段階804は、発生器800によって出力される駆動信号の電圧及び電流をそれぞれサンプリングするために、各絶縁変圧器830、832を介して電力変圧器806の出力部に連結された第1ADC回路826及び第2ADC回路828を更に備えてもよい。特定の形態では、ADC回路826、828は、駆動信号のオーバーサンプリングを可能にするために、高速(例えば、80メガサンプル/秒(mega samples per second、MSPS))でサンプリングするように構成することができる。一形態では、例えば、ADC回路826、828のサンプリング速度は、駆動信号のおよそ200x(周波数による)のオーバーサンプリングを可能にしてもよい。特定の形態では、ADC回路826、828のサンプリング動作は、双方向マルチプレクサを介し、入力電圧及び電流信号を受信する単一のADC回路によって実施されてもよい。発生器800の形態での高速サンプリングの使用は、とりわけ、動作ブランチを通って流れる複素電流の計算(これは、上述のDDSベースの波形形状制御を実施するために、特定の形態で使用されてもよい)、サンプリングされた信号の正確なデジタルフィルタリング、及び高精度での実電力消費の計算を可能にすることができる。ADC回路826、828によって出力される電圧及び電流フィードバックデータは、論理デバイス816によって受信して処理することができ(例えば、先着順処理方式(first-in-first-out、FIFO)バッファ、マルチプレクサ)、例えば、DSPプロセッサ822による以後の読み出しのために、データメモリに格納されてもよい。上記のように、電圧及び電流のフィードバックデータは、動的及び進行中ベースで、LUT波形サンプルを予め歪ませるか又は修正するため、アルゴリズムへの入力として使用され得る。特定の形態では、これは、電圧及び電流のフィードバックデータ対が得られる場合に、論理デバイス816によって出力された対応するLUTサンプルに基づき、又は別の方法でこれに関連して、記憶された各電圧及び電流のフィードバックデータ対がインデックス付けされることを必要とし得る。この方法によるLUTサンプルと電圧及び電流のフィードバックデータとの同期は、予歪みアルゴリズムの正確なタイミング及び安定性に寄与する。
特定の形態では、電圧及び電流のフィードバックデータは、駆動信号の周波数及び/又は振幅(例えば、電流振幅)を制御するために使用されてもよい。例えば、一形態では、電圧及び電流のフィードバックデータは、インピーダンス相を決定するために使用されてもよい。駆動信号の周波数はその後、判定されたインピーダンス相とインピーダンス相設定点(例えば、0°)との間の差を最小化又は低減するように制御されてもよく、したがって高調波歪みの効果を最小化又は低減し、これに対応してインピーダンス相測定正確性を向上させる。相インピーダンス及び周波数制御信号の判定は、例えば、DSPプロセッサ822に実装されてもよく、周波数制御信号は、論理デバイス816によって実装されるDDS制御アルゴリズムへの入力として供給される。
別の形態では、例えば、電流のフィードバックデータは、駆動信号の電流振幅を電流振幅設定点で維持するために監視されてもよい。電流振幅設定値は、直接指定されてもよく、又は指定された電圧振幅及び電力設定値に基づいて間接的に判定されてもよい。特定の形態では、電流振幅の制御は、例えば、DSPプロセッサ822内の比例-積分-微分(proportional-integral-derivative、PID)制御アルゴリズムなどの、制御アルゴリズムによって実施されてもよい。駆動信号の電流振幅を好適に制御するために、制御アルゴリズムにより制御される変数としては、例えば、論理デバイス816に格納されるLUT波形サンプルのスケーリング、及び/又はDAC回路834を介したDAC回路818(これは電力増幅器812に入力を供給する)のフルスケール出力電圧を挙げることができる。
非絶縁段階804は、とりわけユーザインターフェース(user interface、UI)機能を提供するために、第2のプロセッサ836を更に含んでもよい。一形態では、UIプロセッサ836は、例えば、Atmel Corporation(San Jose,California)から入手可能な、ARM 926EJ-Sコアを有するAtmel AT91SAM9263プロセッサを含んでもよい。UIプロセッサ836によってサポートされるUI機能の例としては、聴覚的及び視覚的なユーザフィードバック、周辺デバイスとの通信(例えば、USBインターフェースを介して)、フットスイッチとの通信、入力デバイス(例えば、タッチスクリーンディスプレイ)との通信、並びに出力デバイス(例えば、スピーカ)との通信を挙げることができる。UIプロセッサ836は、DSPプロセッサ822及び論理デバイス816と(例えば、SPIバスを介して)通信することができる。UIプロセッサ836は、UI機能を主に支持してもよいが、特定の形態では、また、DSPプロセッサ822と協調して、危険の緩和を実施してもよい。例えば、UIプロセッサ836は、ユーザ入力及び/又は他の入力(例えば、タッチスクリーン入力、フットスイッチ入力、温度センサ入力)の様々な様相を監視するようにプログラミングされてもよく、かつ誤った状態が検出されると、発生器800の駆動出力を無効化してもよい。
特定の形態では、DSPプロセッサ822及びUIプロセッサ836の両方は、例えば、発生器800の動作状態を判定し、監視してもよい。DSPプロセッサ822に関して、発生器800の動作状態は、例えば、どの制御及び/又は診断プロセスがDSPプロセッサ822によって実施されるかを表してもよい。UIプロセッサ836に関して、発生器800の動作状態は、例えば、UI(例えば、ディスプレイスクリーン、音)のどの要素がユーザに提示されるかを表してもよい。DSPプロセッサ822及びUIプロセッサ836はそれぞれ、発生器800の現在の動作状態を別個に維持し、現在の動作状態からの可能な遷移を、認識し評価してもよい。DSPプロセッサ822は、この関係におけるマスタとして機能し、動作状態間の遷移が生じるときを判定してもよい。UIプロセッサ836は、動作状態間の有効な遷移を認識してもよく、また特定の遷移が適切であるかを確認してもよい。例えば、DSPプロセッサ822が、UIプロセッサ836に特定の状態へと遷移するように命令すると、UIプロセッサ836は、要求される遷移が有効であることを検証してもよい。要求される状態間の遷移がUIプロセッサ836によって無効であると判定された場合、UIプロセッサ836は、発生器800を故障モードにしてもよい。
非絶縁段階804は、入力デバイスを監視するためのコントローラ838(例えば、発生器800をオン及びオフするために使用される静電容量式タッチセンサ、静電容量式タッチスクリーン)を更に含むことができる。特定の形態では、コントローラ838は、少なくとも1つのプロセッサ、及び/又はUIプロセッサ836と通信する他のコントローラデバイスを含んでもよい。一形態では、例えば、コントローラ838は、1つ又は2つ以上の静電容量式タッチセンサを介して提供されるユーザ入力を監視するように構成されたプロセッサ(例えば、Atmelから入手可能なMeg168 8ビットコントローラ)を含むことができる。一形態では、コントローラ838は、静電容量式タッチスクリーンからのタッチデータの取得を制御及び管理するための、タッチスクリーンコントローラ(例えば、Atmelから入手可能なQT5480タッチスクリーンコントローラ)を含むことができる。
特定の形態では、発生器800が「電源オフ」状態にあるとき、コントローラ838は、(例えば、後述の電源854などの、発生器800の電源からのラインを介して)動作電力を受信し続けてもよい。このようにして、コントローラ838は、発生器800をオン及びオフするための入力デバイス(例えば、発生器800の前側パネルに位置する静電容量式タッチセンサ)を監視し続けることができる。発生器800が電源オフ状態にあるとき、コントローラ838は、ユーザによる「オン/オフ」入力デバイスの起動が検出された場合、電源を起動することができる(例えば、電源854の1つ又は2つ以上のDC/DC電圧変換器856の動作を有効化する)。その結果、コントローラ838は、発生器800を「電源オン」状態に遷移させるためのシーケンスを開始することができる。逆に、発生器800が電源オン状態にあるときに「オン/オフ」入力デバイスの起動が検出された場合、コントローラ838は、発生器800を電源オフ状態に遷移させるためのシーケンスを開始することができる。特定の形態では、例えば、コントローラ838は、「オン/オフ」入力デバイスの起動をUIプロセッサ836に報告することができ、その結果、発生器800を電力オフ状態へ遷移させるために必要なプロセスシーケンスを実施する。そのような形態では、コントローラ838は、発生器800の電源オン状態が確立された後に、発生器800から電力を排除するための別個の能力を有しないことがある。
特定の形態では、コントローラ838は、ユーザに電源オン又は電源オフシーケンスが開始されたことを警告するために、発生器800に可聴又は他の感覚的フィードバックを提供させてもよい。そのような警告は、電源オン又は電源オフシーケンスの開始時、及びシーケンスと関連する他のプロセスの開始前に提供されてもよい。
特定の形態では、絶縁段階802は、例えば、外科用器具の制御回路(例えば、ハンドピーススイッチを含む制御回路)と、例えば、論理デバイス816、DSPプロセッサ822、及び/又はUIプロセッサ836などの非絶縁段階804の構成要素との間の、通信インターフェースを提供するために、器具インターフェース回路840を含んでもよい。器具インターフェース回路840は、例えば、IRベースの通信リンクなどの、絶縁段階802と非絶縁段階804との間の好適な程度の電気的絶縁を維持する通信リンクを介して、非絶縁段階804の構成要素と情報を交換することができる。例えば、非絶縁段階804から駆動される絶縁変圧器によって電力供給される低ドロップアウト電圧レギュレータを使用して、器具インターフェース回路840に電力を供給することができる。
一形態では、器具インターフェース回路840は、信号調整回路844と通信している論理回路842(例えば、論理回路、プログラマブル論理回路、PGA、FPGA、PLD)を含むことができる。信号調整回路844は、同一の周波数を有する双極呼掛け信号を生成するために、論理回路842から周期信号(例えば、2kHz方形波)を受信するように構成することができる。呼掛け信号は、例えば、差動増幅器によって供給される双極電流源を使用して発生させることができる。呼掛け信号は、(例えば、発生器800を外科用器具に接続するケーブル内の導電ペアを使用することによって)外科用器具制御回路に通信され、制御回路の状態又は構成を判定するために監視されてもよい。制御回路は、多数のスイッチ、抵抗器、及び/又はダイオードを含んでもよく、制御回路の状態又は構成が1つ又は2つ以上の特性に基づいて個別に識別可能であるように、呼掛け信号の1つ又は2つ以上の特性(例えば、振幅、整流)を修正してもよい。一形態では、例えば、信号調整回路844は、呼掛け信号が通過する経路から生じる制御回路の入力にわたって出現する電圧信号のサンプルを生成するための、ADC回路を含むことができる。論理回路842(又は、非絶縁段階804の構成要素)は、次いで、ADC回路サンプルに基づいて、制御回路の状態又は構成を判定することができる。
特定の形態では、第1のデータ回路は、第1のデータ回路が関連している特定の外科用器具に関する情報を記憶してもよい。そのような情報は、例えば、モデル番号、シリアル番号、外科用器具が使用された動作数、及び/又は任意の他のタイプの情報を含むことができる。この情報は、器具インターフェース回路840によって(例えば、論理回路842によって)読み出され、出力デバイスを介したユーザへの提示のため、及び/又は発生器800の機能若しくは動作の制御のために、非絶縁段階804の構成要素(例えば、論理デバイス816、DSPプロセッサ822、及び/又はUIプロセッサ836)に伝達されてもよい。加えて、任意の種類の情報が、第1のデータ回路インターフェース846を介して内部に記憶させるために、(例えば、論理回路842を使用して)第1のデータ回路に通信されてもよい。そのような情報は、例えば、外科用器具が使用された最新の手術数並びに/又はその使用の日付及び/若しくは時間を含んでもよい。
上記のように、外科用器具は、器具の互換性及び/又は廃棄性を促進するために、ハンドピースから外すことが可能であってもよい(例えば、多機能型外科用器具は、ハンドピースから外すことが可能であってもよい)。そのような場合、従来の発生器は、使用されている特定の器具構成を認識し、これに対応して制御及び診断プロセスを最適化する能力が制限されている場合がある。しかし、この問題に対処するために、外科用器具に読み取り可能なデータ回路を追加することは、適合性の観点から問題がある。例えば、必要なデータ読み取り機能性を欠く発生器との後方互換性を保つように外科用器具を設計することは、例えば、異なる信号スキーム、設計複雑性及び費用のために、実用的でない場合がある。本明細書で論じられる器具の形態は、既存の外科用器具に実装されてもよいデータ回路を経済的に使用し、外科用器具と最新の発生器プラットフォームとの適合性を維持するための設計変更を最小限にすることによってこれらの懸念に対処する。
加えて、発生器800の形態は、器具ベースのデータ回路との通信を可能にしてもよい。例えば、発生器800は、器具(例えば、多機能型外科用器具)内に収容される第2のデータ回路と通信するように構成することができる。いくつかの形態では、第2のデータ回路は、本明細書に記載される第1のデータ回路のものと類似した多くのものに実装されてもよい。器具インターフェース回路840は、この通信を可能にする第2のデータ回路インターフェース848を含むことができる。一形態では、第2のデータ回路インターフェース848は、トライステートデジタルインターフェースを含んでもよいが、他のインターフェースも使用されてもよい。特定の形態では、第2のデータ回路は、一般にデータを送信及び/又は受信するための任意の回路であってもよい。一形態では、例えば、第2のデータ回路は、第2のデータ回路が関連付けられた特定の外科用器具に関する情報を記憶してもよい。そのような情報は、例えば、モデル番号、シリアル番号、外科用器具が使用された動作数、及び/又は任意の他のタイプの情報を含むことができる。
いくつかの形態では、第2のデータ回路は、関連する超音波変換器、エンドエフェクタ、又は超音波駆動システムの電気的及び/又は超音波的特性に関する情報を記憶してもよい。例えば、第1のデータ回路は、本明細書に記載されたように、バーンイン周波数スロープを示してもよい。加えて、又は代わりに、第2のデータ回路インターフェース848を介して内部に記憶させるために、第2のデータ回路に任意の種類の情報を通信してもよい(例えば、論理回路842を使用して)。そのような情報は例えば、器具が使用された最新の動作数、並びに/又は、その使用の日付及び/若しくは時間を含んでもよい。特定の形態では、第2のデータ回路は、1つ又は2つ以上のセンサ(例えば、器具ベースの温度センサ)によって取得されたデータを送信してもよい。特定の形態では、第2のデータ回路は、発生器800からデータを受信し、受信したデータに基づいてユーザにインジケーション(例えば、発光ダイオードのインジケーション又はその他の可視インジケーション)を提供してもよい。
特定の形態では、第2のデータ回路及び第2のデータ回路インターフェース848は、論理回路842と第2のデータ回路との間の通信を、この目的のための追加的な導体(例えば、ハンドピースを発生器800に接続するケーブルの専用導体)の提供を必要とせずにもたらすことができるように、構成することができる。一形態では、例えば、使用される導体のうちの1つが、信号調整回路844からハンドピース内の制御回路へ呼掛け信号を送信するなど、既存のケーブル配線上に実装されたワンワイヤバス通信方式を使用して、第2のデータ回路との間で情報を通信することができる。このようにして、元来必要とされる場合がある外科用器具への設計変更又は修正は、最小化されるか又は低減される。更に、一般的な物理的チャネル上で実施される異なる種類の通信を周波数帯域分離することができるため、第2のデータ回路の存在は、必要なデータ読み取り機能を有しない発生器にとって「不可視」であり、したがって、外科用器具の後方互換性を可能にする。
特定の形態では、絶縁段階802は、直流電流が患者を通るのを防ぐために、駆動信号出力部810bに接続された、少なくとも1つのブロッキングコンデンサ850-1を含んでもよい。単一のブロッキングコンデンサは、例えば、医学的規制又は基準に準拠することが必要とされる場合がある。単一コンデンサ設計における故障は比較的稀であるが、それでもなおそのような故障は否定的な結果をもたらす恐れがある。一形態では、第2のブロッキングコンデンサ850-2は、ブロッキングコンデンサ850-1と直列で提供されてもよく、ブロッキングコンデンサ850-1と850-2との間の点からの電流漏洩が、例えば、漏れ電流により誘発される電圧をサンプリングするために、ADC回路852によって監視される。サンプルは、例えば、論理回路842によって受信されてもよい。(電圧サンプルによって示されるような)漏れ電流の変化に基づいて、発生器800は、ブロッキングコンデンサ850-1、850-2のうちの少なくとも1つが故障したときを判定して、したがって、単一の故障点を有する単一コンデンサ設計に勝る利点を提供することができる。
特定の形態では、非絶縁段階804は、好適な電圧及び電流でDC電力を送達するための電源854を含むことができる。電源は、例えば、48VDCシステム電圧を送達するための、400W電源を含み得る。電源854は、電源の出力を受信して発生器800の様々な構成要素によって必要とされる電圧及び電流でDC出力を生成するための1つ又は2つ以上のDC/DC電圧変換器856を更に備えることができる。コントローラ838と関連して上述したように、DC/DC電圧変換器856のうちの1つ又は2つ以上は、ユーザによる「オン/オフ」入力デバイスの起動がコントローラ838によって検出されたときにコントローラ838から入力を受信し、DC/DC電圧変換器856の動作を可能にする又はそれを起動させることができる。
図166は、発生器800(図165)の一形態である発生器900の例を示す。発生器900は、複数のエネルギーモダリティを外科用器具に送達するように構成されている。発生器900は、エネルギーを外科用器具に送達するためのRF信号及び超音波信号を、単独で又は同時にのいずれかで提供する。RF信号及び超音波信号は、単独で又は組み合わせて提供されてもよく、また同時に提供されてもよい。上述したように、少なくとも1つの発生器出力部は、単一のポートを通して複数のエネルギーモダリティ(例えば、とりわけ、超音波、双極若しくは単極RF、不可逆及び/若しくは可逆電気穿孔法、並びに/又はマイクロ波エネルギー)を送達することができ、これらの信号は、組織を治療するために別個に又は同時に、エンドエフェクタに送達することができる。
発生器900は、波形発生器904に連結されたプロセッサ902を含む。プロセッサ902及び波形発生器904は、開示を明瞭にするために示されていない、プロセッサ902に連結されたメモリに記憶された情報に基づいて、様々な信号波形を発生するように構成されている。波形に関連するデジタル情報は、デジタル入力をアナログ出力に変換するために1つ又は2つ以上のDAC回路を含む波形発生器904に提供される。アナログ出力は、信号調節及び増幅のために、増幅器1106に供給される。増幅器906の、調節され増幅された出力は、電力変圧器908に連結されている。信号は、電力変圧器908を横断して患者絶縁側にある二次側に連結されている。第1のエネルギーモダリティの第1の信号は、ENERGY1及びRETURNとラベルされた端子間の外科用器具に提供される。第2のエネルギーモダリティの第2の信号は、コンデンサ910を横断して連結され、ENERGY2及びRETURNとラベルされた端子間の外科用器具に提供される。3つ以上のエネルギーモダリティが出力されてもよく、したがって添え字「n」は、最大n個のENERGYn端子が提供され得ることを表示するために使用することができ、このnは、2以上の正の整数であることが理解されよう。最大「n」個のリターンパス(RETURNn)が、本開示の範囲から逸脱することなく提供されてもよいということも理解されよう。
第1の電圧感知回路912は、ENERGY1及びRETURN経路とラベルされた端子にわたって連結され、それらの間の出力電圧を測定する。第2の電圧感知回路924は、ENERGY2及びRETURN経路とラベルされた端子にわたって連結され、それらの間の出力電圧を測定する。電流感知回路914は、いずれかのエネルギーモダリティの出力電流を測定するために、示される電力変圧器908の二次側のRETURN区間と直列に配置される。異なるリターン経路が各エネルギーモダリティに対して提供される場合、別個の電流感知回路は各リターン区間で提供されねばならない。第1の電圧感知回路912及び第2の電圧感知回路924の出力がそれぞれの絶縁変圧器916、922に提供され、電流感知回路914の出力は、別の絶縁変圧器918に提供される。電力変圧器908の一次側(非患者絶縁側)における絶縁変圧器916、928、922の出力は、1つ又は2つ以上のADC回路926に提供される。ADC回路926のデジタル化された出力は、更なる処理及び計算のためにプロセッサ902に提供される。出力電圧及び出力電流のフィードバック情報は、外科用器具に提供される出力電圧及び電流を調節するために、出力インピーダンスなどのパラメータを計算するために使用することができる。プロセッサ902と患者絶縁回路との間の入力/出力通信は、インターフェース回路920を介して提供される。センサもまた、インターフェース回路920を介してプロセッサ902と電気通信してもよい。
一態様では、インピーダンスは、ENERGY1/RETURNとラベルされた端子にわたって連結された第1の電圧感知回路912の出力、又はENERGY2/RETURNとラベルされた端子にわたって連結された第2の電圧感知回路924の出力のうちのいずれかを、電力変圧器908の二次側のRETURN区間と直列に配置された電流感知回路914の出力で除算することによって、プロセッサ902により決定され得る。第1の電圧感知回路912及び第2の電圧感知回路924の出力は、別個の絶縁変圧器916、922に提供され、電流感知回路914の出力は、別の絶縁変圧器916に提供される。ADC回路926からのデジタル化された電圧及び電流感知測定値は、インピーダンスを計算するためにプロセッサ902に提供される。一例として、第1のエネルギーモダリティENERGY1は、超音波エネルギーであってもよく、第2のエネルギーモダリティENERGY2は、RFエネルギーであってもよい。それでも、超音波、及び双極若しくは又は単極RFエネルギーモダリティに加えて、他のエネルギーモダリティとしては、とりわけ不可逆及び/若しくは可逆電気穿孔法並びに/又はマイクロ波エネルギーなどが挙げられる。また、図166に例示された例は、単一の戻り経路RETURNが2つ又はそれ以上のエネルギーモダリティに提供されてもよいことを示しているが、他の態様では、複数の戻り経路RETURNnが、各エネルギーモダリティENERGYnに提供されてもよい。したがって、本明細書に記載されるように、超音波トランスデューサのインピーダンスは、第1の電圧感知回路912の出力を、電流感知回路914の出力で割ることによって測定されてもよく、組織のインピーダンスは、第2の電圧感知回路924の出力を電流感知回路914の出力で割ることによって測定されてもよい。
図166に示すように、少なくとも1つの出力ポートを含む発生器900は、実施される組織の治療のタイプに応じて、電力を、例えば、とりわけ、超音波、双極若しくは単極RF、不可逆及び/若しくは可逆電気穿孔法、並びに/又はマイクロ波エネルギーなどの1つ又は2つ以上のエネルギーモダリティの形態でエンドエフェクタに提供するために、単一の出力部を有し、かつ複数のタップを有する電力変圧器908を含むことができる。例えば、発生器900は、超音波トランスデューサを駆動するために高電圧かつ低電流のエネルギーを送達し、RF電極を駆動して組織を封止するために低電圧かつ高電流のエネルギーを送達し、又は単極又は双極RF電気外科用電極のいずれかを使用したスポット凝固のために凝固波形を有するエネルギーを送達することができる。発生器900からの出力波形は、周波数を外科用器具のエンドエフェクタに提供するために、誘導、切り替え又はフィルタリングされ得る。超音波トランスデューサの発生器900の出力部への接続部は、好ましくは、図166に示したENERGY1とラベルされた出力部とRETURNとラベルされた出力部との間に位置するであろう。一実施例では、RF双極電極の発生器900の出力部への接続部は、好ましくは、ENERGY2とラベルされた出力部とRETURNとラベルされた出力部との間に位置するであろう。単極出力の場合、好ましい接続は、活性電極(例えば、ペンシル型又は他のプローブ)のENERGY2出力部への接続と、好適なリターンパッドを、RETURN出力部に接続する接続であろう。
追加の詳細は、その全体が参照により本明細書に組み込まれる、「TECHNIQUES FOR OPERATING GENERATOR FOR DIGITALLY GENERATING ELECTRICAL SIGNAL WAVEFORMS AND SURGICAL INSTRUMENTS」と題する2017年3月30日公開の米国特許出願公開第2017/0086914号に開示されている。
図168~図170を参照すると、カートリッジ60130は、多くの点でカートリッジ60030に類似している。例えば、カートリッジ60130はまた、組織を封止及びステープル留めするために、外科用器具60000とともに利用され得る。また、カートリッジ60130は、カートリッジ本体60139内に画定された長手方向スロット60135の両側に延在し、かつステープル60133を収容する、ステープルキャビティ60131、60132の列を含む。カートリッジ60130はまた、カートリッジ本体60139に結合された第3の電極アセンブリ60136を含む。示される例では、第3の電極アセンブリ60136は、セグメント化電極60136a~fと、セグメント化電極の背後で長手方向に延在し、セグメント化電極をRFエネルギー源794に接続するように構成されているフレックス回路60141と、を含む。フレックス回路60141は、カートリッジデッキ60147に接して位置付けられる。セグメント化電極とフレックス回路60141との間には、正温度係数(PTC)セグメント60142の形態であり得る、受動スイッチ、電流制限素子、エネルギー感受性抵抗素子、又は局所的に調節可能な抵抗素子が挟まれている。
上記に加えて、第3の電極アセンブリ60136は、カートリッジ本体60139内の露出したキャビティ60134を覆うように構成されており、露出したキャビティ60134は、ステープルドライバ60149のドライバ支持体60149aを収め入れるように構成されている。ドライバ支持体60149aは、ドライバロールに抵抗するように構成されている。露出されたキャビティ60134は、ドライバ支持体60149aがカートリッジデッキ60147の上方に延在して、ドライバロールに抵抗することを可能にする。カートリッジ60030と同様に、カートリッジ60130は、長手方向停止部60037と同様の長手方向段部60137を含み、これらは、簡潔にするために本明細書では繰り返さない。長手方向段部60137は、カートリッジ本体60139内の露出したキャビティ60134’を覆うように構成されており、露出したキャビティ60134’は、ステープルドライバ60149’のドライバ支持体60149a’を収め入れるように構成されている。ドライバ支持体60149aは、ドライバロールに抵抗するように構成されている。露出されたキャビティ60134’は、ドライバ支持体60149a’がカートリッジデッキ60147の上方に延在して、ドライバロールに抵抗することを可能にする。ドライバ支持体に関する追加の詳細は、本開示の他の箇所で開示されており、簡潔にするために本明細書では繰り返さない。
固定部材60145a~cは、カートリッジ60130のカートリッジデッキ60147から突出する。固定部材60145a~cは、第3の電極アセンブリ60136にロック係合するように構成されている。示される例では、固定部材60145a~cは、第3の電極アセンブリ60136の部分に嵌合係合するように構成されている直角ブラケットを画定する。組み立て中、第3の電極アセンブリ60136の絶縁セグメントは、固定部材6045a~cとスナップ係合するように構成されている。
図171は、図162のアンビル60020の断面図を示す。示される例では、電極アセンブリ60026、60027は、セグメント化電極60026a~c及び60027a~cをそれぞれ含む。更に、フレックス回路60056、60058は、セグメント化電極60026a~c及び60027a~cのそれぞれとアンビルデッキ60057との間に長手方向に延在する。フレックス回路60056、60058は、図173に示されるように、セグメント化電極をRFエネルギー源794に接続するように構成されている。
セグメント化電極とフレックス回路60056、60058との間には、正温度係数(PTC)セグメント60053a~c、60054a~cの形態であり得る、受動スイッチ、電流制限素子、エネルギー感受性抵抗素子、又は局所的に調節可能な抵抗素子が挟まれている。示される例では、電極アセンブリ60026、60027のセグメント化電極60026a~c、60027a~cは、図173に示されるように、対応するPTCセグメント60053a~c、60054a~cとそれぞれ別々に直列に接続されている。換言すれば、等しい数のセグメント化電極及びPTCセグメントが存在する。しかしながら、他の例では、2つ又はそれ以上のセグメント化電極を1つのPTCセグメントに接続することができる。
図172は、多くの点でアンビル60020に類似しているアンビル60120を示す。例えば、アンビル60120はまた、組織を封止及びステープル留めするために、外科用器具60000とともに利用され得る。また、アンビル60120は、アンビルデッキ60157内に画定されたステープルポケット60121、60122の列と、長手方向スロット60125の両側に延在する電極アセンブリ60126、60127と、を含む。示される例では、電極アセンブリ60126、60127は、セグメント化電極60126a~c及び60127a~cをそれぞれ含む。更に、フレックス回路60156、60158は、それぞれ、セグメント化電極60126a~c及び60127a~cの背後に長手方向に延在しており、セグメント化電極60126a~c及び60127a~cをRFエネルギー源794に接続するように構成されている。
更に、電極アセンブリ60126、60127は、正温度係数(PTC)セグメント60153a~c、60154a~cの形態であり得る、受動スイッチ、電流制限素子、エネルギー感受性抵抗素子、又は局所的に調節可能な抵抗素子を含む。示される例では、セグメント化電極60126a~c及び60127a~cは、それぞれPTCセグメント60153a~c、60154a~cに直列に接続されているが、PTCセグメント60153a~c、60154a~cは、セグメント化電極60126a~c及び60127a~cの直後には位置していない。代わりに、PTCセグメント60153a~c、60154a~cは、アンビル60120の近位部分に配置される。フレックス回路60156、60158は、PTCセグメント60153a~c、60154a~cとセグメント化電極60126a~c及び60127a~cとの間に延在する。示される例では、セグメント化電極60126a~c及び60127a~cの各々は、専用のPTCセグメントに接続されている。しかしながら、他の例では、2つ又はそれ以上のセグメント化電極がPTCセグメントを共有することができる。
更に図172を参照すると、PTCセグメント60153a~c及びPTCセグメント60154a~cは、アンビル60120の近位部分において長手方向スロット60125の両側に配設されている。示される例では、PTCセグメント60153a~c及び60154a~cは、ステープルポケット60121、60122の列の近位でアンビル60120に結合される。更に、PTCセグメント60153a~c及び60154a~cは、2列に配設されている。他の構成も本開示で企図される。
図173は、本開示の少なくとも1つの態様による、電極アセンブリ60036、60026、60027の簡略化された電気的レイアウトを示す電気図である。示される例では、セグメント化電極60036a~f、60026a~c、60027a~cは、それぞれ正温度係数(PTC)セグメント60042a~f、60053a~c、60054a~cの形態であり得る、受動スイッチ、電流制限素子、エネルギー感受性抵抗素子、又は局所的に調節可能な抵抗素子に別々に接続されている。
正温度係数(PTC)セグメント60042a~f、60053a~c、60054a~cの形態であり得る、受動スイッチ、電流制限素子、エネルギー感受性抵抗素子、又は局所的に調節可能な抵抗素子は、それぞれのセグメント化電極60036a~f、60026a~c、60027a~cを通る電流を適応的かつ独立して制御するように構成されている。特定の事例では、正温度係数(PTC)セグメント60042a~f、60053a~c、60054a~cの形態であり得る、受動スイッチ、電流制限素子、エネルギー感知抵抗素子、又は局所的に調節可能な抵抗素子は、例えば、短絡に応答して、それらのそれぞれのセグメント化電極60036a~f、60026a~c、60027a~cを通るエネルギー流を受動的かつ独立して非アクティブ化又は低減するように構成されている。
図173に示される例では、電極アセンブリ60026、60027、60036の各々は、PTCセグメントを含む。しかしながら、他の例では、PTCセグメントは、電極アセンブリ60026、60027、60036のうちの任意の1つ又は2つに限定され得る。以下でより詳細に説明するように、電極アセンブリ60026、60027、60036とともに利用されるPTCセグメントは、1つ又は2つ以上の態様では異なり得る。特定の例では、PTCセグメントは、遷移温度、材料組成、及び/又は短絡に対する応答が異なり得る。
図174は、電極アセンブリ60036、60026、60027のうちの1つ又は2つ以上とともに実装されることができる、代替の電極アセンブリ60060の電気的レイアウトを示す電気図である。示される例では、電極アセンブリ60060は、セグメント化電極60060a~cを含む。しかしながら、他の例では、電極アセンブリ60060は、3つよりも多い又は少ないセグメント化電極を含んでもよい。いずれにしても、セグメント化電極60060a~cは、正温度係数(PTC)セグメント60061の形態であり得る、受動スイッチ、電流制限素子、エネルギー感受性抵抗素子、又は局所的に調節可能な抵抗素子に共通に接続されている。そのような事例では、PTCセグメント60061は、セグメント化電極60060a~cを通る電流を適応的かつ独立して制御するように構成されている。特定の事例では、PTCセグメント60061は、例えば、短絡に応答して、セグメント化電極60060a~cを通るエネルギー流を受動的かつ独立して非アクティブ化するように構成されている。
主に図163及び図173を参照すると、制御回路760は、RFエネルギー源794に、反対側双極エネルギーモードとオフセット双極エネルギーモードとを交互に繰り返させる又は切り替えさせてもよい。反対側双極エネルギーモードでは、制御回路760は、RFエネルギー源794に、第1の電極アセンブリ60026と第3の電極アセンブリ60036との間で第1の治療信号を通過させるように構成されている。オフセット双極エネルギーモードでは、制御回路760は、RFエネルギー源794に、第2の電極アセンブリ60027と第3の電極アセンブリ60036との間に第2の治療信号を通過させるように構成されている。
上記に加えて、反対側エネルギーモードでは、電流経路は、例えば、PTCセグメント60053a、セグメント化電極60026a、組織(T)(アンビル60020とステープルカートリッジ60030との間)、セグメント化電極60036a、及びPTCセグメント60042aを通って画定され得る。反対側エネルギーモードがオフセットエネルギーモードに切り替えられると、電流経路も切り替えられる。例えば、オフセットエネルギーモードでは、電流経路は、PTCセグメント60054a、セグメント化電極60024a、組織(T)、セグメント化電極60036a、及びPTCセグメント60042aを通って画定され得る。
更に、セグメント化電極のサイズ及び回路極性に応じて、様々な他の電流経路を確立することができる。例えば、セグメント化電極60026aとセグメント化電極60036a、60036bとの間に電流経路を確立することができる。
図175は、エンドエフェクタ60002に多くの点で類似するエンドエフェクタ60002’の断面図であり、簡潔にするために本明細書では繰り返さない。例えば、エンドエフェクタ60002’はまた、エンドエフェクタ60002と同様に、外科用器具6000とともに使用することができる。エンドエフェクタ60002と同様であるエンドエフェクタ60002’の様々な構成要素は、簡潔にするために取り外されている。エンドエフェクタ60002とは異なり、エンドエフェクタ60002’は、PTCセグメント60054a~f、60053a~fを欠くアンビル60020’を含む。
示される例では、組織(T)は、アンビル60020’とカートリッジ60030’との間に捕捉される。次いで、制御回路760は、電極アセンブリ60026、60036をアクティブ化させて、反対側双極エネルギーモードを利用して組織(tissue、T)に組織治療サイクルを適用する。示される例では、RFエネルギー源794は、電極アセンブリ60026から電極アセンブリ60036に電流をさせる。したがって、セグメント化電極60026b、60026cは、ソース電極を画定し、セグメント化電極60036d、60036e、60036fは、戻り電極を画定する。他の例では、RFエネルギー源794は、セグメント化電極60026b、60026cが戻り電極を画定し、セグメント化電極60036d、60036e、60036fがソース電極を画定するように、回路極性を反転させることができる。
いずれにしても、組織(T)は、組織内に以前に配備されたステープル60033を含む。ステープル60033の存在により、セグメント化電極60026c、60036e間に短絡が形成される。以下でより詳細に説明するように、短絡は、PTCセグメント60042eの抵抗を増加させ(例えば、5Ωから20Ωに)、それによって、セグメント化電極60026cと60036eとの間のエネルギー流を効果的に非アクティブ化するか、又は少なくともエネルギー流を治療量以下のレベルに低減する。
したがって、PTCセグメント60042eは、組織(T)を通る電流を受動的かつ独立して制御するように構成されている。特定の事例では、PTCセグメント60042eは、セグメント化電極60026c、60036e間の短絡に応答して、プロセッサベースの通信又は制御なしにセグメント化電極60036eを受動的に非アクティブ化するように構成されている。示される例では、PTCセグメント60042d、60042fの抵抗が短絡によって影響を受けていないので、電流は、隣接するセグメント化電極60036d、60036fに自動的に分流される。
PTCセグメントは、本開示の少なくとも1つの態様によれば、通常動作中の温度で低抵抗状態を一般に含む。しかしながら、例えば、短絡又は過剰放電の成形から生じる異常に大きな電流に起因する高温にさらされると、PTCセグメントは極めて高い抵抗モードに切り替わる。簡単に言えば、PTCセグメントが回路内に含まれ、ステープル60033によって引き起こされる短絡の事例など、異常電流が回路を通過するとき、結果として生じるより高い温度状態が、PTCセグメントをより高い抵抗状態に切り替えて、回路を通過する電流を最小レベルまで減少させ、したがって、回路の電気素子を保護する。
図176は、本開示の少なくとも1つの態様による、温度(℃)の変化に応答したPTCセグメントの抵抗(Ω)の変化を示すグラフ60060である。示される例では、PTCセグメントは、本明細書の他の箇所で切り替え温度又は閾値温度とも称される遷移温度Tsを含む。動作中、おそらく組織(T)内の以前に発射されたステープル60033の存在によって引き起こされる短絡は、PTCセグメントの温度の上昇を引き起こし得る。遷移温度Tsにおいて、PTCセグメントの抵抗(Ω)は著しく増加し、先に説明したように、短絡によって影響を受けたセグメント化電極を効果的に非アクティブ化する。したがって、PTCセグメントは、過電流保護のためのリセット可能なヒューズとして作用する。
図177は、本開示の少なくとも1つの態様による、温度(℃)の変化に応答したPTCセグメントの抵抗(Ω)の変化を示す別のグラフ60065である。抵抗(Ω)は対数目盛で示されている。PTCセグメントの抵抗(Ω)は、一般に、通常動作中に定常状態に維持されるが、抵抗(Ω)は、遷移温度Tsにおいて指数関数的に増加し始める。温度が転移温度Tsに向かって上昇するにつれて、抵抗(Ω)は、最小抵抗Rminからわずかに増加し、転移温度Tsにおいてより高い抵抗(例えば、2倍のRmin)になる。しかしながら、遷移温度Tsを超えると、抵抗(Ω)の増加は指数関数的であり、事実上、PTCセグメントを通る電流の非アクティブ化をもたらす。
再び図175を参照すると、PTCセグメント60042a~fは、先に発射されたステープルとの重複が生じる短絡した電気経路を局所的に感知し、図176及び177に関連して考察した同じ原理に基づいて、影響を受けたセグメント化電極60036a~f、60026a~c、60027a~cを非アクティブ化するように構成することができる。図175に示される例示では、セグメント化電極60036a~fは、共通接続の個々の分岐から生じる個々の接続によってRFエネルギー源794に共通に接続されている。したがって、PTCセグメント60042eによるセグメント化電極60036eの非アクティブ化は、電極アセンブリ60036内の他のセグメント化電極への電流の流れを停止させない。代わりに、セグメント化電極60026cからの電流は、セグメント化電極60036eから自動的に分流され、ステープル60033から離れてセグメント化電極60036f、60036dに向かう。結果として、セグメント化電極60036eは、プロセッサベースの通信又は制御なしに、短絡に応答して受動的かつ独立して非アクティブ化される一方で、短絡によって影響を受けない第3の電極アセンブリ60036の残りのセグメント化電極は、組織を封止するために、組織にエネルギーを途切れなく送達し続ける。
図178は、本開示の少なくとも1つの態様による、反対側エネルギーモードを用いる組織治療サイクル中の電極アセンブリ60026、60036間(例えば、セグメント化電極60026c、60036fの間)のステープル60033を含む組織部分を通る電流の受動的かつ独立した制御を示すグラフ60070である。示される例では、PTCセグメント60042c、60053fは、組織治療サイクル中に電流の受動的かつ独立した制御を行うように構成されている。グラフ60070は、X軸上の時間(t)対Y軸上のPTCセグメント40053f、60042cのうちの少なくとも1つの、ソース電極(例えば、60026c)アクティブ状態60071、戻り電極(例えば、セグメント化電極60036f)アクティブ状態60072、電力レベル60073、組織インピーダンス60074、及び抵抗60075を図示する複数のグラフを含む。
示される例では、制御回路760は、エンドエフェクタ60002によって把持された組織に印加される治療量以下の信号60077a及び治療信号60077bを含む、組織治療サイクルを実行するように構成されている。制御回路760は、RFエネルギー源794に戻り電極をアクティブ化させ(70076)、次いで、ソース電極をアクティブ化させる(70077)ように構成されている。特定の事例では、RFエネルギー源794は、例えば、電極アセンブリ60026、60027、60036のセグメント化電極のうちの1つ又は2つ以上をアクティブモードと非アクティブモードとの間で遷移させるための1つ又は2つ以上の切り替え機構を含んでもよい。
上記に加えて、治療量以下の信号60077aの印加中、電力レベルは、ステープル60033の存在下でPTCセグメントの抵抗の有意な変化(抵抗線の第1の部分70079a)をもたらすには低すぎる第1のレベル60078aに維持される。しかしながら、治療信号60077bの印加中、電力レベルは、第2のレベル60078bに増加され、これは、ステープル60033によって生成される短絡によって引き起こされる温度の増加に起因して、PTCセグメントの抵抗を増加させ始める(抵抗線の第2の部分70079b)。特定の事例では、PTCセグメントの抵抗の変化は、電流及び電圧パラメータを監視することによって制御回路760によって検出することができる。特定の事例では、抵抗の変化が所定の閾値以上である場合、制御回路760は、短絡の存在を結論付け、これは、例えば、ディスプレイ711を通じてユーザに報告することができる。更に、特定の事例では、制御回路760は更に、この時点でエンドエフェクタ60002への電力送達を停止する(60080)ように構成され得る。
電力送達が継続すると、PTCセグメントの温度は、最終的にPTCセグメントの転移温度Tsに達する。そのような時点で、PTCセグメントの抵抗は、指数関数的に増加し(抵抗線の第3の部分60079c)、ソース電極及び戻り電極を効果的に非アクティブ化する(60081、60081)。
様々な事例では、本開示の少なくとも1つの態様によるPTCセグメントは、セラミック粒界の電子特性に起因する抵抗温度特徴を有するセラミックPTCセグメントである。特定の態様では、PTCセグメント60042a~f、60053a~c、60054a~cのうちの1つ又は2つ以上は、それらの温度抵抗特徴に基づいて、以前に発射されたステープル60033によって引き起こされたものなどの短絡に応答して、クイックトリップヒューズ又はスロートリップヒューズとして動作するように選択され得る。
図179は、異なる温度におけるPTCセグメントのトリップ応答を示すグラフ60090である。Y軸はPTCセグメントを通る電流を表し、X軸はPTCセグメントの温度を表す。示される例では、線60091は、動作温度におけるホールド電流の最大値を表すホールド電流線である。ホールド電流は、通常動作時に流すことができる最大電流値である。また、線60092は、トリップ電流線であり、PTCセグメントが高抵抗状態に移動するのに必要な最小電流値を表す。ホールド電流及びトリップ電流は、温度が上昇すると電流値が減少するという特徴を有する温度依存性を有する。線60091、60092は、3つの別個の領域を画定する。第1の領域60090aは、PTCセグメントがクイックトリップヒューズとして動作する場所を識別し、第2の領域60090bは、PTCセグメントが低/通常抵抗で動作する場所を識別し、第3の領域60090cは、PTCセグメントがスロートリップヒューズとして動作する場所を識別する。
したがって、PTCセグメント60042a~f、60053a~c、60054a~cのうちの1つ又は2つ以上は、抵抗温度特徴に基づいて、クイックトリップヒューズ又はスロートリップヒューズとして動作するように選択することができる。特定の事例では、スロートリップPTCセグメントは、ファーストトリップPTCセグメントよりも高い遷移温度Tsを有する。一例では、短絡に応答して、PTCセグメント60042a~fのうちの1つ又は2つ以上は、クイックトリップヒューズとして動作するように選択することができ、PTCセグメント60053a~c、60054a~cのうちの1つ又は2つ以上は、スロートリップヒューズとして動作するように選択することができる。少なくとも1つの例では、PTCセグメント60042a~fのうちの1つ又は2つ以上は、第1の転移温度Tsを含むことができ、PTCセグメント60053a~c、60054a~cのうちの1つ又は2つ以上は、第1の転移温度よりも高い第2の転移温度Tsを含むことができる。
特定の事例では、PTCセグメント60042a~fのクイックトリップヒューズ特徴は、組織への電流の流れが短絡中に停止されることを確実にする。一方、PTCセグメント60053a~c、60054a~cのスロートリップヒューズ特徴は、依然として、電流が、対応するセグメント化電極60026a~c、60027a~cを通って流れることを可能にし得る。特定の事例では、電極アセンブリ60026、60027は、PTCセグメント60053a~c、60054a~cのスロートリップヒューズがトリガされている間に、セグメント化電極60026a~c、60027a~cの各々が、電流をRFエネルギー源794又はその制御電子機器(例えば、制御回路760)に、絶縁された様式で逆流させて、セグメント化電極60026a~c、60027a~cのうちのどれがその抵抗を変化させたPTCセグメントに関連付けられているかを制御電子機器が検出できるように構成されている。次いで、制御回路760は、例えば、ディスプレイ711を通して、短絡によって影響を受けたエンドエフェクタ60002の一部分をユーザにアラートし得る。更に、制御回路760はまた、検出された短絡に対処するために、進行中の組織治療サイクルを調節し得る。
図180は、エンドエフェクタ60002によって把持された組織に適用された組織治療サイクル中に短絡を検出して対処するための制御プログラム又は論理構成を図示するプロセス60100の論理フロー図である。特定の事例では、プロセス60100は、例えば、外科用器具60000によって実装され得る。少なくとも1つの例では、プロセス60100は制御回路760によって実行され得る。特定の事例では、メモリ68008は、プロセッサ68002によって実行されると、プロセッサ68002にプロセス60100の1つ又は2つ以上の態様を行わせるプログラム命令を記憶する。
プロセス60100は、ソースセグメント化電極(例えば、セグメント化電極60026a~c、60027a~c)から戻される電流を示すパラメータを監視すること(60101)を含む。制御回路760は、戻り電流の1つ又は2つ以上の電流値を示す信号を電流センサから受信してもよい。プロセス60100は、監視されたパラメータの変化が所定の値以上である場合(60103)、セグメント化電極における短絡を検出する(60106)。特定の事例では、所定の値は、例えば、メモリ68008などの記憶媒体内に記憶することができる。プロセス60100は更に、短絡に応答して、アラートを発行し(60104)、かつ/又は組織治療サイクルの少なくとも1つのパラメータを調節し(60105)得る。
図181は、本開示の少なくとも1つの態様による、エンドエフェクタ60002によって把持された組織に適用された組織治療サイクルのための制御プログラム又は論理構成を図示するプロセス60110の論理フロー図である。特定の事例では、プロセス60110は、例えば、外科用器具60000によって実装され得る。プロセス60110は、多くの点でプロセス60150に類似している。例えば、プロセス60110はまた、制御回路760によって実行され得る。特定の事例では、メモリ68008は、プロセッサ68002によって実行されると、プロセッサ68002にプロセス60110の1つ又は2つ以上の態様を行わせるプログラム命令を記憶する。
プロセス60110は、エンドエフェクタ60002によって把持された組織の組織パラメータを監視すること(60111)を含む。特定の例では、組織パラメータは、組織圧縮である。制御回路760は、1つ又は2つ以上のセンサ788からのセンサ信号に基づいて、組織圧縮を監視してもよい(60111)。組織パラメータが好適なエネルギー封止条件を示す場合(60112)、プロセス60110は、オフセットエネルギーモードをアクティブ化させる(60113)一方で、反対側エネルギーモードは、非アクティブのままである。組織パラメータが好適なエネルギー封止状態を示すかどうかを決定するために、制御回路760は、例えば、組織パラメータの検出値を、例えば、メモリ68008などのプロセッサ68002によってアクセス可能な記憶媒体内に記憶することができる好適なエネルギー封止状態を示す所定の閾値と比較してもよい。
オフセットエネルギーモードでは、制御回路760は、電極アセンブリ60026、60036をアクティブ化させてもよく、一方、電極アセンブリ60027は、非アクティブのままである。プロセス60110は、組織インピーダンスを監視して(60114)、オフセットエネルギーモードから反対側エネルギーモードにいつ切り替えるかを決定することを更に含む。本明細書の他の箇所でより詳細に説明されるように、組織部分の組織インピーダンスは、治療量以下の信号を組織部分に通過させ、電圧感知回路924及び電流感知回路914から測定値を受信し、電圧感知回路924からの測定値を電流感知回路914からの対応する測定値で除算することによって、例えば、制御回路760によって、検出され得る。
示される例では、所定の閾値以上の組織インピーダンスが検出された場合(60114)、プロセス60110は、反対側エネルギーモードからオフセットエネルギーモードに切り替える(60115)。オフセットエネルギーモードに切り替えるために、制御回路760は、電極アセンブリ60026を非アクティブ化し、電極アセンブリ60027をアクティブ化してもよい。他の事例では、オフセットエネルギーモードは、反対側エネルギーモードのアクティブ化の前にアクティブ化され、反対側エネルギーモードのアクティブ化とともに、又はその後に非アクティブ化される。
上記に加えて、短絡が検出された場合(60116)、プロセス60110は、例えば、アラートを発行し(60117)、オフセットエネルギーモードに切り替え(60118)、及び/又は電極アセンブリ60026、60027、60036のうちの1つ又は2つ以上の影響を受けたセグメント化電極を非アクティブ化する(60119)ことができる。プロセス60100に関連してより詳細に説明するように、例えば、ソースセグメント化電極から戻される電流を示すパラメータを監視することによって、短絡を検出することができる。
特定の事例では、組織は肝臓組織などの厚い組織であり、エンドエフェクタ60002は、プロセス60110によって、肝臓組織を把持し、肝臓組織に組織治療サイクルを適用するように構成されている。例えば、制御回路760は、フェザリング負荷技術を適用するために反対側エネルギーモードを利用してもよく、フェザリング負荷技術は、エンドエフェクタ60002に、把持された組織に対する所定の圧縮を一定又は実質的に一定の値に維持させながら、オフセットエネルギーモード及び反対側エネルギーモードのうちの1つを把持された組織に適用する。把持された組織が溶接中に薄くなると、短絡が制御回路760によって検出され得る(60116)。例えば、薄くなった組織は、組織内の既存の金属物体(例えば、ステープル又はクリップ)を露出させる場合があり、これが短絡を引き起こす場合がある。それに応答して、制御回路760は、短絡を緩和するためにオフセットエネルギーモード60118に切り替えることができる。
特定の事例では、プロセス60150及び/又はプロセス60100は、反対側エネルギーモードの代わりにオフセットエネルギーモードで開始するように修正され得る。そのような事例では、プロセス60150及び/又はプロセス60100は、短絡を緩和するために、オフセットエネルギーモードから反対側エネルギーモードに切り替えることができる。特定の事例では、オフセット及び反対側エネルギーモードのうちの一方は、組織治療サイクルの初期組織加温部分において利用することができる一方、オフセット及び反対側エネルギーモードのうちの他方は、組織加温部分に続く組織治療サイクルの組織溶接部分において利用することができる。
様々な態様では、制御回路760は、RFエネルギー源794に、短絡の検出後にアクティブ状態に維持されるセグメント化電極における電力レベルを調節させるように構成することができる。調節は、短絡に応答して非アクティブ化されたセグメント化電極を補償するために電力レベルを増加させることを含んでもよい。
様々な態様では、電極アセンブリ60036、60026、60027の1つ又は2つ以上のセグメント化電極間の短絡は、PTC遷移温度Tsを検出するために、セグメント化電極に、又はその近傍に、例えば、熱電対などの温度センサを組み込むことによって検出されることができる。例えば、セグメント化電極60026cとセグメント化電極60036eとの間のステープル60033などの既存の金属物体による短絡は、PTCセグメント60042eにおいて、PTC遷移温度Tsまで、又はそれを超える温度上昇を引き起こす。この増加は、温度センサによって生成される信号に基づいて、制御回路760によって検出可能である。それに応答して、制御回路760は、短絡を緩和するためにRFエネルギー源794の1つ又は2つ以上のパラメータを調節することができる。
様々な態様では、例えば、組織内の既存の金属物体に起因する、電極アセンブリ60036、60026、60027のセグメント化電極間の短絡は、正常動作状態中に予想される電気出力を超えて、そのようなセグメント化電極の電気出力を異常に変化させる。更に、短絡の場合に電気出力によって誘導される磁界は、通常動作中に誘導される磁界とは異なる。
様々な事例では、例えば、セグメント化電極60026c、60036eなどの電極アセンブリ60036、60026、60027のセグメント化電極間の短絡は、セグメント化電極60026c、60036eの電気出力によって誘導される磁場のパラメータを測定するために、セグメント化電極60026c、60036eに、又はその近くに磁気センサを組み込むことによって検出することができる。パラメータの測定値が所定の閾値以上である場合、制御回路760は、セグメント化電極60026c、60036e間の短絡を検出する。したがって、制御回路760は、電極アセンブリ60036、60026、60027のセグメント化電極の電気出力によって誘導される磁場を監視するように構成されている磁気センサからの信号に基づいて、短絡を検出するように構成することができる。
図182を参照すると、グラフ60190は、本開示の少なくとも1つの態様による、組織治療サイクルのための電力スキーム60191及び対応する組織インピーダンス60192を表す。電力スキーム60191は、例えば、RFエネルギー源794によって実装することができる。特定の事例では、制御回路760は、RFエネルギー源794に、電力スキーム60191に従って、エンドエフェクタ60002によって把持された組織にエネルギー治療サイクルを適用させるように構成されている。
示される例では、電力スキーム60191は、第1のセグメント160121a(時間tとtとの間)、第2のセグメント60121b(時間tとtとの間)、及び第3のセグメント60121c(時間tとtとの間)を含む。第1のセグメント60121aでは、制御回路760は、RFエネルギー源794に、オフセット双極エネルギーモードで組織に治療エネルギーを印加させるように構成されている。RFエネルギー源794は、電極アセンブリ60027、60036をアクティブ化させて、オフセット双極エネルギーモードをもたらすことができる。電極アセンブリ60026は、第1のセグメント60121aの間、非アクティブのままである。少なくとも1つの例では、電極アセンブリ60027は、ソース電極として構成されている一方で、電極アセンブリ60036は、戻り電極として構成されている。他の例では、RFエネルギー源794は、電極アセンブリ60036がソース電極になり、かつ電極アセンブリ60027が戻り電極になるように、回路極性を反転させることができる。
第2のセグメント60121bでは、制御回路760は、RFエネルギー源794に、反対側双極エネルギーモードとオフセット双極エネルギーモードとの組み合わせを使用するハイブリッドモードにおいて、治療エネルギーを組織に印加させるように構成されている。RFエネルギー源794は、電極アセンブリ60026をアクティブ化させて、第2のセグメント60121b中に反対側双極エネルギーモードをもたらすことができる。ハイブリッドモードでは、時間がtに向かって遷移するにつれて、オフセット双極エネルギーモードは徐々に減少する一方で、反対側双極エネルギーモードは徐々に増加する。換言すれば、電極アセンブリ60026を通るエネルギー流は徐々に増加する一方で、電極アセンブリ60027を通るエネルギー流は徐々に減少する。
第3のセグメント60121aでは、制御回路760は、RFエネルギー源794に、反対側双極エネルギーモードで組織に治療エネルギーを印加させるように構成されている。RFエネルギー源794は、電極アセンブリ60026、60036に、反対側双極エネルギーモードを生じさせ得る。電極アセンブリ60027は、第3のセグメント60121cの間に非アクティブ化される。少なくとも1つの例では、電極アセンブリ60026は、ソース電極として構成されている一方で、電極アセンブリ60036は、戻り電極として構成されている。他の例では、RFエネルギー源794は、電極アセンブリ60036がソース電極になり、かつ電極アセンブリ60026が戻り電極になるように、回路極性を反転させることができる。
図183、図184、図185、及び図186を参照すると、アンビル60210、60220は、多くの点でアンビル60020に類似している。例えば、アンビル60210、60220は、エンドエフェクタ60002とともに容易に利用することができ、同様に、PTCセグメント60053a~c、60054a~cの有無にかかわらず、ステープルポケット60021、60022及び電極アセンブリ60026、60027の列を含むことができる。図183~図186に示す例では、電極アセンブリ60026、60027はPTCセグメントを欠いている。しかしながら、他の例では、電極アセンブリ60026、60027は、アンビル60020に関連して説明したように、PTCセグメント60053a~c、60054a~cを含むことができる。
更に、アンビル60210、60220は、異なる方法で、異なる構成要素から組み立てられる。例えば、アンビル60210、60220は、電極アセンブリ60026、60027を収め入れるように構成されている異なる電極キャリア60211、60221を含む。電極アセンブリ60026、60027は、別々に製造され、次いで、電極キャリア60211、60221と組み立てられる。少なくとも1つの例では、電極アセンブリ60026、60027は、例えば、アンビルキャリア60211、60221の組織接触面60216、60226内にそれぞれ画定された対応する長手方向スロット60213、60214及び60223、60224内への圧入、スナップ嵌め、又は締まり嵌めによって、電極キャリア60211、60221とともに組み立てられる。他の事例では、任意の好適な糊などの接着剤を利用して、電極アセンブリ60026、60027をそれぞれアンビルキャリア60211、60221に固定することができる。
アンビル60210のアンビルキャリア60211は、それと一体化されたアンビルキャップ60212を画定する。一方、アンビル60220のアンビルキャリア60221は、別々に製造され、別々のアンビルキャップ60222と組み立てられるように構成されている、別々のキャリア部分60221a、60221bを含む。アンビルキャップ60212、60222は、Iビーム764を摺動可能に収め入れるように構成されている長手方向のアンビルスロット60215、60225を架橋する。
様々な態様では、電極キャリア60211、60221は、アンビル60210、60220に構造的支持を提供し、長手方向スロット60215、60225内のIビーム摩擦を低減し、かつ/又は金属アンビル構成要素を電極アセンブリ60026、60027から絶縁し、それぞれアンビル60210、60220内へのその組み立てを容易にするように構成されている。
上記に加えて、アンビルキャリア60211、60221は、それぞれステープルポケットキャリア60217、60218、60227、60228の側壁と嵌合係合するようにキー止めされた、側壁60231、60232、60233、602234を含む。特定の例では、アンビルキャリア60211、60221は、それぞれステープルポケットキャリア60217、60218、60227、60228と摺動可能にロック係合状態に入るように構成されている。特定の事例では、ロック係合は、圧入係合、スナップ嵌め係合、締まり嵌め係合、又は任意の他の好適な係合の形態であり得る。更に、特定の事例では、アンビルキャリア60211、60221及び対応するステープルポケットキャリア60217、60218、60227、60228は、任意の好適な溶接技術を使用して溶接され得る。
特定の事例では、図183~図186に示されるように、電極キャリア60211、60221の側壁60231、60232、60233、602234は、それぞれステープルポケットキャリア60217、60218、60227、60228の長手方向に延在する横方向部分を、それらとの組み立てのために摺動可能に受容するように構成されている、長手方向に延在する横方向スロットを画定する。特定の例では、ステープルポケットキャリア60217、60218、60227、60228の嵌合部分は、遠位から近位方向に側壁60231、60232、60233、602234のスロット内に挿入可能である。そのような例では、アンビル60210、60220のノーズ部分又は遠位部分は、ステープルポケットキャリア60217、60218、60227、60228を電極キャリア60211、60221と組み立てた後に、それぞれ電極キャリア60211、60221の遠位部分に取り付けられている。
他の例では、図187に示されるように、多くの点でアンビル60210と同様であるアンビル60210’の電極キャリア60211’は、一体型ノーズ又は遠位部分60219を含み得る。そのような事例では、ステープルポケットキャリア60217、60218は、ステープルポケットキャリア60217、60218の嵌合部分を電極キャリア60211’の側壁60231、60232によって画定されたスロットに横方向に挿入することによって、電極キャリア60211’と組み立てることができる。
様々な態様では、電極キャリア60211、60221の1つ又は2つ以上の表面は、アンビル60210、60220の金属構成要素を電極アセンブリ60026、60027から絶縁するために、絶縁材料で被覆又はコーティングされる。ステープル発射中にIビーム764と相互作用する電極キャリア60211、60221の内面上の絶縁コーティングは、摩擦低減コーティングとしても作用する。そのような事例では、アンビル長手方向スロット60215、60225は、より緩い公差を使用して安価に製造され得る一方で、アンビル長手方向スロット60215、60225内の不一致/欠陥を補償するために、より厳しい仕様に絶縁/摩擦低減コーティングを製造する。
図188は、アンビル60210、60220に多くの点で類似するアンビル60240を示す。示される例では、アンビル60240は、別々に製造されたアンビルキャップ60242と、ステープルポケットキャリア60247、60248と、電極キャリア60241、60243と、を含む。ステープルポケットキャリア60247、60248は、電極キャリア60241、60243の固定特徴部60251、60252を受容し、それと嵌合係合するように構成されているレッジ60253、60254内に画定された長手方向開口部を含む。
様々な事例では、電極の固着/炭化は、例えば、エンドエフェクタ60002などのエンドエフェクタによる組織へのエネルギー印加に関連付けられる。アンビル60020の電極アセンブリ60026、60027とカートリッジ60030の電極アセンブリ60036との間の組織を通って移動するエネルギーは、固着及び/又は炭化によって電極アセンブリを損傷し得る。外科用器具60000のライフサイクルを改善するために、エンドエフェクタ60002は、エンドエフェクタ60002の使い捨て構成要素の近くにエネルギーを集中させて、非使い捨て構成要素における固着及び/若しくは炭化から保護するか、又はそれによって引き起こされる損傷を低減するように構成されている。
示される例では、カートリッジ60030は使い捨てであり、アンビル60020は非使い捨てである。その結果、カートリッジ60030は、毎回の発射後に新しいカートリッジ60030と交換される一方、同じアンビル60020は、外科用器具60000のライフサイクルを通して利用される。したがって、エンドエフェクタ60002は、電極アセンブリ60036の近くにエネルギーを集中させることによって、電極アセンブリ60026、60027における固着及び/又は炭化から保護するか、又はそれによって引き起こされる損傷を低減するように構成されている。示される例では、これは、セグメント化電極60026a~c、60027a~cの表面積を、対応するセグメント化電極60036a~fの表面積よりも大きくなるように設計することによって達成される。他の事例では、エネルギー集中は、使い捨てセグメント化電極60036a~fが隆起部分を含むように設計することによっても達成することができ、隆起部分は、例えば、スパイン状部分であり得る。
図189は、アンビル60520及びステープルカートリッジ60530を含むエンドエフェクタ60502の略式図である。エンドエフェクタ60502は、多くの点でアンビル60020と類似しており、簡潔にするために本明細書では繰り返さない。例えば、エンドエフェクタ60502は、外科用器具60000とともに利用することができ、アンビル60520とカートリッジ60530との間に把持された組織に組織治療サイクルを適用するように構成されている。組織治療サイクルは、例えば、組織封止段階及び組織ステープル留め段階を含んでもよく、これらは、同時に、連続して、又は交互に施行することができる。
アンビル60520は、Iビーム764を摺動可能に収め入れるように構成されている長手方向スロット60525を含む。ステープルポケット60521、60522の列は、長手方向スロット60525の両側に配置される。アンビル60520は、長手方向スロット60525の両側に同様に配置された電極アセンブリ60526、60527を更に含む。電極アセンブリ60526、60527は、セグメント化電極60526a~c、60527a~cの列を含む。示される例では、2列のステープルポケット及び1列のセグメント化電極は、長手方向スロット60525の各側に図示されている。更に、セグメント化電極の各列は、3つのセグメント化電極を含む。しかしながら、これらの数は、例示を目的としたものであり、限定として解釈されるべきではない。他の例では、アンビル60520は、例えば、2つ、3つ、5つ、若しくは6つの列のステープルポケットを含んでもよく、及び/又は1つ、3つ、若しくは4つの列のセグメント化電極は各々、2つ、4つ、5つ、若しくは6つのセグメント化電極を含む。
上記に加えて、カートリッジ60530は、Iビーム764を摺動可能に収め入れるように構成されている長手方向スロット60535を含む。長手方向スロット60535の両側のステープルキャビティ60531、60532の列。カートリッジ60530は、長手方向スロット60535の両側に同様に配置された電極アセンブリ60536、60537を更に含む。電極アセンブリ60536、60537は、セグメント化電極60536a~b、60537a~bの列を含む。示される例では、2列のステープルキャビティ及び1列のセグメント化電極が、長手方向スロット60535の各側に図示されている。更に、セグメント化電極の各列は、2つのセグメント化電極を含む。しかしながら、これらの数は、例示を目的としたものであり、限定として解釈されるべきではない。他の例では、カートリッジ60530は、例えば、2つ、3つ、5つ、若しくは6つの列のステープルポケットを含んでもよく、及び/又は1つ、3つ、若しくは4つの列のセグメント化電極は各々、3つ、4つ、5つ、若しくは6つのセグメント化電極を含む。
示される例では、セグメント化電極60526a~c、60527a~c、60536a~b、60537a~bは、RFエネルギー源794に別々に接続されている。この構成は、本明細書の他の箇所でより詳細に説明するように、制御回路760が、RFエネルギー源794に、所定の組織治療サイクルに従って、及び/又は例えば、セグメント化電極のうちの1つ又は2つ以上に関連する短絡の検出などの特定の事象に応答して、個々の電極セグメントを選択的にアクティブ化及び非アクティブ化させることを可能にする。様々な態様では、マルチプレクサは、例えば、制御回路760の制御下で、所望に応じて、RFエネルギー源794から様々なセグメント化電極にRFエネルギーを分配してもよい。
特定の事例では、セグメント化電極60526a~c、60527a~c、60536a~b、60537a~bのうちの1つ又は2つ以上は、例えば、セグメント化電極60526a~c、60527a~c、60536a~b、60537a~bのうちの1つ又は2つ以上のための個々の電源を含み得るRFエネルギー源794に別々に接続するように構成されている別々の導体に別々に接続されている。導体は、制御信号、感知信号、通信信号、及び/又は他の信号を送信する役割を果たすことができる。個々の導体は、プロセッサから発することができる。特定の事例では、プロセッサは、エンドエフェクタ60502内にローカルで存在することができる。他の事例では、プロセッサは、例えば、外科用器具60000の近位ハウジング内、又はRFエネルギー源794など、近位に位置し得る。様々な事例では、セグメント化電極60526a~c、60527a~c、60536a~b、60537a~bを制御するために、例えば、エンドエフェクタ60502においてマルチプレクサを用いることができる。
特定の事例では、近位プロセッサ(例えば、外科用器具60000の近位ハウジング又はRFエネルギー源794にある)が関与する場合、単一の導体がプロセッサからエンドエフェクタ60502まで延在してもよく、この単一の導体は、例えば、セグメント化電極60526a~c、60527a~c、60536a~b、60537a~bの各々のための別々の接続部に分割されてもよい。代替的に、例えば、フレックス回路に組み込むことができる個々の導体は、プロセッサからセグメント化電極60526a~c、60527a~c、60536a~b、60537a~bの各々まで延在してもよい。
他の事例では、図190及び図191に示されるように、エンドエフェクタ60502’は、多くの点でエンドエフェクタ60502に類似しており、簡潔にするために本明細書では繰り返さないが、例えば、正温度係数(PTC)セグメントの形態であり得る、1つ又は2つ以上の受動スイッチ、電流制限要素、エネルギー感受性抵抗要素、又は局所的に調節可能な抵抗要素を更に含んでもよい。示される例では、エンドエフェクタ60502’は、アンビル電極アセンブリ60526’、60527’及びカートリッジ電極アセンブリ60536’、60537’を含み、セグメント化電極60526a~c、60527a~c、60536a~b、60537a~bの各々は、PTCセグメントに直列に、又は代替的に並列に接続されている。示される例では、セグメント化電極60526a~c、60527a~c、60536a~b、60537a~bの各々は、PTCセグメント60553a~c、60554a~c、60542a~b、60543a~bのうちの1つに直列に接続されている。
上記に加えて、RFエネルギー源794は、セグメント化電極60526a~c、60527a~c、60536a~b、60537a~bの各々に独立して接続されているので、制御回路760は、測定された変化電流及び/又は電圧を通じてPTCセグメントの抵抗の増加を検出することによって、短絡の場所を検出するように構成することができる。それに応答して、制御回路760は、例えば、ディスプレイ711を通じて、影響を受けたセグメント化電極の場所を示すアラートを発行することができる。追加的に、又は代替的に、制御回路760は、短絡の決定された場所において影響を受けるセグメント化電極を非アクティブ化するように構成することができる。
また、RFエネルギー源794は、セグメント化電極60526a~c、60527a~c、60536a~b、60537a~bの各々に独立して接続されているので、制御回路760は、セグメント化電極のうちのどれを組織治療サイクルのためにアクティブ化させるかについての命令を臨床医に促すように構成することができる。図192は、臨床医によって選択されたセグメント化電極を排他的に使用して、エンドエフェクタ60502などのエンドエフェクタによって把持された組織に組織治療サイクルを適用するための制御プログラム又は論理構成を図示するプロセス60570の論理フロー図である。特定の事例では、プロセス60570は、例えば、外科用器具60000によって実装され得る。プロセス60570は、制御回路760によって実行することができる。特定の事例では、メモリ回路68008は、プロセッサ68002によって実行されると、プロセッサ68002に、例えば、プロセス60570を実装するための機械命令を実行させる、機械実行可能命令を記憶する。
示される例では、プロセス60570は、セグメント化電極を選択するように臨床医に促すこと(60571)を含む。少なくとも1つの例では、制御回路760は、ディスプレイ711に図189の模式図を提示させる。次いで、臨床医は、例えば、ディスプレイ711を押すことによって、アクティブ化されるセグメント化電極を選択することができる。プロセス60570は、臨床医に組織治療サイクルを選択するように促すこと(60572)と、選択されたセグメント化電極のみをアクティブ化させること(60573)と、選択された電極のみを使用して組織治療サイクルを開始すること(60574)と、を更に含む。
特定の事例では、制御回路760は、臨床医の選択が行われると、組織治療サイクルを自動的に開始するように構成されている。特定の例では、自動組織治療サイクル開始は、組織パラメータに更に基づくことができる。そのような例では、組織治療サイクルの開始は、(i)臨床医選択の受信、及び(ii)組織パラメータの測定値が所定の範囲内にあるか、又は所定の閾値に等しいか、若しくはそれを超えることを検出することによってトリガされる。特定の事例では、組織パラメータは、例えば、エンドエフェクタ60502によって把持された組織のインピーダンスである。
本明細書の他の箇所でより詳細に説明されるように、組織部分の組織インピーダンスは、治療量以下の信号を組織部分に通過させ、電圧感知回路924及び電流感知回路914から測定値を受信し、電圧感知回路924からの測定値を電流感知回路914からの対応する測定値で除算することによって、例えば、制御回路760によって、検出され得る。
次いで、制御回路760は、選択されたセグメント化電極のみをアクティブ化させるように構成されている。したがって、選択されたセグメント化電極のみが、組織の治療に利用される。このアプローチは、ジョーの特定の予め選択された部分にエネルギーを流す一方で、ジョーの残りの部分をより冷たい状態に維持する。
様々な態様では、エンドエフェクタ60502によって把持された組織を効果的に封止するための電力要件は、例えば、把持された組織の厚さ及び/又は種類に応じて異なり得る。特定の事例では、把持された組織のインピーダンスは、組織を効果的に封止するのに必要な電力を示すことができる。利用可能な電力が必要とされる電力未満である間に、把持された組織を封止しようと試みることは、無効で不完全な組織封止をもたらし得る。これは、特に把持された組織が血管を含む場合に、望ましくない結果を生じ得る。
図193は、組織治療サイクルにおいて印加するために利用可能な電力が、効果的な組織封止のための電力要件未満である状況に対処するための制御プログラム又は論理構成を図示する、プロセス60580の論理フロー図である。特定の事例では、プロセス60580は、例えば、外科用器具60000によって実装され得る。プロセス60580は、制御回路760によって実行することができる。特定の事例では、メモリ回路68008は、プロセッサ68002によって実行されると、プロセッサ68002に、例えば、プロセス60580を実装するための機械命令を実行させる、機械実行可能命令を記憶する。
示される実施例では、プロセス60580は、例えば、エンドエフェクタ60502などのエンドエフェクタによって把持された組織の組織パラメータを検出すること(60581)と、測定された組織パラメータに基づいて、利用可能電力が、組織治療サイクルを介して効果的な組織封止をもたらすのに十分である(60582)かどうかを決定することと、を含む。特定の事例では、制御回路760は、組織パラメータを示す1つ又は2つ以上のセンサ(例えば、電流センサ)からの信号に基づいて検出する(60581)ように構成されている。組織パラメータは、例えば、組織インピーダンス又は組織厚さとすることができる。
そのような事例では、制御回路760は、例えば、メモリ回路68008などの記憶媒体内に記憶された情報からの検出された組織パラメータに基づいて、組織治療サイクルを介して効果的な組織封止を達成するのに必要な電力を確認するように更に構成され得る。情報は、組織パラメータの様々な値を電力要件の対応する値に関連付けるデータベース、方程式、公式、及び/又は表の形態であり得る。更に、制御回路760は、確認された電力要件を利用可能な電力と比較して、利用可能な電力が効果的な組織封止をもたらすのに十分であるかどうかを決定するように構成され得る。他の事例では、メモリ回路68008内に記憶された情報は、組織治療サイクルを介して効果的な組織封止を達成するのに好適な組織パラメータの値の範囲又はリストの形態であり得る。
いずれにしても、利用可能な電力が効果的な組織封止をもたらすのに十分であると決定された場合(60581)、プロセス60580は、組織治療サイクルを変更せずに認可する(60583)。例えば、プロセス60580は、エンドエフェクタ60502の全ての部分に同時に組織治療サイクルを適用し得る。
しかしながら、60582において、プロセス60580が、利用可能な電力が組織治療サイクルを介して効果的な組織封止をもたらすのに不十分であると決定した場合、プロセス60581は、エンドエフェクタ60502の別個の部分において組織治療サイクルを別々に適用し得る(60584)。制御回路760は、電極アセンブリ60526、60527、60536、60537のセグメント化電極のグループをエンドエフェクタの長さに沿って別々にアクティブ化させて、エンドエフェクタ60502の別個の部分に組織封止を別々にもたらすことによって、エンドエフェクタ60502の別個の部分への組織治療サイクルの別々の適用60584を実装するように構成され得る。したがって、利用可能な電力の全ては、エンドエフェクタ60502の全ての別個の部分における全ての組織部分が組織治療サイクルによって治療されるまで、エンドエフェクタ60502の第1の別個の部分における第1の組織部分において、次いで、エンドエフェクタ60502の第2の別個の部分における第2の組織部分においてなど、効果的な組織封止を達成することに完全に向けられる。
先に考察したように、RFエネルギー源794は、セグメント化電極60526a~c、60527a~c、60536a~b、60537a~bの各々に独立して接続されている。したがって、制御回路760は、RFエネルギー源794にセグメント化電極60526a、60536aを排他的にアクティブ化させて、セグメント化電極60526a、60536aの間の第1の組織部分に組織治療サイクルを適用し、エンドエフェクタ60502によって同時に把持された組織の全てに対して効果的な組織封止を達成するのに必要な電力よりも小さい利用可能な電力で、第1の組織部分の効果的な組織封止をもたらすことができる。次いで、制御回路760は、組織治療サイクルがエンドエフェクタ60502によって把持された全ての組織に適用されるまで、RFエネルギー源794にセグメント化電極60526b、60536bを排他的にアクティブ化させて、セグメント化電極60526b、60536bの間の第2の組織部分に組織治療サイクルを適用するなどしてもよい。
様々な態様では、エンドエフェクタ60502によって把持された組織の異なる部分は、組織治療サイクルを介して効果的な組織封止を達成するために異なる時間量を必要とし得る。特定の事例では、効果的な組織封止を達成するために必要な時間量は、例えば、組織部分のインピーダンスなどの組織部分の組織パラメータの関数であり得る。本明細書の他の箇所でより詳細に説明されるように、組織部分の組織インピーダンスは、治療量以下の信号を組織部分に通過させ、電圧感知回路924及び電流感知回路914から測定値を受信し、電圧感知回路924からの測定値を電流感知回路914からの対応する測定値で除算することによって、例えば、制御回路760によって、検出され得る。
図194は、エンドエフェクタによって組織治療サイクルに露出された異なる組織部分に対して異なる封止時間のバランスを取るための制御プログラム又は論理構成を図示するプロセス60590の論理フロー図である。特定の事例では、プロセス60590は、例えば、外科用器具60000によって実装され得る。プロセス60590は、制御回路760によって実行することができる。特定の事例では、メモリ回路68008は、プロセッサ68002によって実行されると、プロセッサ68002に、例えば、プロセス60590を実装するための機械命令を実行させる、機械実行可能命令を記憶する。
プロセス60590は、エンドエフェクタ60502によって把持された組織の第1の部分に組織治療サイクルを適用することに関連する第1の封止時間を決定すること(60591)と、エンドエフェクタ60502によって把持された組織の第2の部分に組織治療サイクルを適用することに関連する第2の封止時間を決定すること(60592)と、第1の封止時間及び第2の封止時間が同時に完了するように、組織の第1の部分に接して位置付けされた第1のセグメント化電極及び組織の第2の部分に接して位置付けされた第2のセグメント化電極のアクティブ化をずらす/調節すること(60593)と、を含む。換言すれば、両方の封止時間の同時完了を保証するために、より短い封止の前に、より長い封止時間を開始する。
上記に加えて、第1の封止時間を決定すること(60591)及び第2の封止時間を決定すること(60592)は、組織の第1の部分の第1の組織インピーダンスを測定することと、組織の第2の部分の第2の組織インピーダンスを測定することと、によって達成され得る。制御回路760は、第1及び第2の組織部分に接して位置付けられたエンドエフェクタ60502のセグメント化電極に、それらの組織インピーダンスを決定する目的で、第1及び第2の組織部分を通して治療量以下の信号を通過させてもよい。更に、制御回路760は、例えば、メモリ回路68008などの記憶媒体内に記憶された情報から、その組織インピーダンスに基づいて組織部分の封止時間を確認するように更に構成され得る。情報は、組織インピーダンス値と対応する封止時間値との間の相関を含み得、この相関は、組織インピーダンスの様々な値を封止時間の対応する値に関連付けるデータベース、方程式、公式、及び/又は表の形態であり得る。
他の事例では、多くの点でプロセス60590と同様のプロセス(簡潔にするために本明細書では繰り返さない)は、他の目的のために、組織の第1の部分に接して位置付けされた第1のセグメント化電極と、組織の第2の部分に接して位置付けされた第2のセグメント化電極とのアクティブ化をずらす/調節することができる。例えば、プロセスは、第1の組織部分及び第2の組織部分で同時に組織治療サイクルにおいて特定の事象の発生を回避するように、アクティブ化をずらし/調節してもよい。特定の事例では、特定の事象は、例えば、最大電力が第1及び第2の組織部分に印加される、第1及び第2の封止時間中の時点であり得る。
したがって、制御回路760は、第2のセグメント化電極のアクティブ化の前に、RFエネルギー源794に第1のセグメント化電極をアクティブ化させるように構成することができる。特定の事例では、第1の封止時間が第2の封止時間よりも長い場合、制御回路760は、例えば、第1のセグメント化電極による最大電力事象の完了後に、RFエネルギー源794に第2のセグメント化電極をアクティブ化させるように構成され得る。特定の例では、最大電力事象は、所定の閾値以上の電力レベルによって定義される。特定の例では、最大電力事象は、最小組織インピーダンス閾値によって定義される。
上記に加えて、様々な態様では、制御回路760は、エンドエフェクタ60502によって把持された組織の異なる部分を同時に封止するために、セグメント化電極のアクティブ化を迅速に交互に行うように構成され得る。例えば、制御回路760は、RFエネルギー源794に、異なる組織部分に接して位置付けられたセグメント化電極のグループのアクティブ化を迅速に交互に行わせてもよく、組織治療サイクルの完全な適用が全ての組織部分において達成されるまで、任意の時点でグループのうちの1つのみがアクティブである。
上記に加えて、様々な態様では、制御回路760は、セグメント化電極を順次アクティブ化させて、エンドエフェクタ60502によって把持された組織の異なる部分を封止するように構成され得る。例えば、制御回路760は、RFエネルギー源794を使って、エンドエフェクタ60502によって把持された組織の近位部分に組織治療サイクルを適用するためにセグメント化電極の近位サブセットをアクティブ化させることができ、その後に遠位サブセットをアクティブ化して、エンドエフェクタ60502によって把持された組織の遠位部分に治療サイクルを適用することができる。
図195は、エンドエフェクタ60502によって把持された組織に適用された組織治療サイクル中に短絡を検出して対処するための制御プログラム又は論理構成を図示するプロセス60200の論理フロー図である。プロセス60200は、エンドエフェクタ60502によって把持された組織の第1の組織部分を通して第1の治療量以下の信号を通過させること(60201)と、第1の治療量以下の信号に基づいて第1の組織部分の第1の組織インピーダンスを監視すること(60202)と、を含む。プロセス60200は、エンドエフェクタ60502によって把持された組織の第2の組織部分に第2の治療量以下の信号を通過させること(60203)を更に含み、第2の組織部分は、第1の組織部分とは異なる。プロセス60200は、第2の治療量以下の信号に基づいて第2の組織部分の第2の組織インピーダンスを監視すること(60204)を更に含む。加えて、プロセス60200は、第1の組織インピーダンスに基づいて、第1の組織部分を通過するように構成されている第1の治療信号を調節すること(60205)と、第1の組織インピーダンス及び第2の組織インピーダンスに基づいて、第2の組織部分を通過するように構成されている第2の治療信号を調節すること(60206)と、を含む。更に、プロセス60200は、第1の組織インピーダンスに基づいて短絡を示すアラートを発行すること(60207)を含む。
特定の事例では、第1の組織部分は第2の組織部分の近位にある。例えば、第1の組織部分は、セグメント化電極60526a、605236aの間に位置付けられてもよく、第2の組織部分は、セグメント化電極60526b、60536bの間に位置付けられることができる。
図196は、プロセス60200による、第1の組織部分の呼掛けを表すグラフ60260である。グラフ60260は、X軸上の時間(t)対Y軸上のソース電極(例えば、60526a)アクティブ状態60261、戻り電極(例えば、セグメント化電極60536a)アクティブ状態60262、電力レベル60263、及び組織インピーダンス60264を図示する複数のグラフを含む。示される例では、制御回路760は、RFエネルギー源794に、第1の組織部分に当接するセグメント化電極60526a、60536aを選択的にアクティブ化させて(60265、60266)、例えば、アクティブ化されたセグメント化電極60526a、60536aの間に第1の治療量以下の信号を通過させる(60201)ように構成されている。制御回路760は、RFエネルギー源794に、第1の組織部分の第1の組織インピーダンス曲線60267を監視させる(60202)ように更に構成されている。
示される例では、監視された第1の組織インピーダンス曲線60267は、例えば、第1の組織部分内の以前に発射されたステープルなどの金属物体の存在に起因するセグメント化電極60526a、60536a間の短絡を示す。第1の組織インピーダンス曲線60267は、短絡を示す、第1の治療量以下の信号を停止する前の異常な又は早まった減少を示す。特定の事例では、例えば、メモリ回路68008などの記憶媒体は、治療量以下の信号に応答して、予想される組織インピーダンスを表す情報を記憶する。情報は、1つ又は2つ以上の曲線、表、データベース、方程式、又は任意の好適な媒体の形態であり得る。曲線60267に示されるように、予想される組織インピーダンスからの逸脱は、短絡を示す。
上記に加えて、制御回路760は、セグメント化電極60526b、60536bに当接する第2の組織部分に同様に呼び掛けるように構成されてもよい。加えて、制御回路760は、検出された短絡に対処するために、RFエネルギー源794に、セグメント化電極60526a、60536aの間を通過するように構成されている第1の治療信号、及びセグメント化電極60526b、60536bの間を通過するように構成されている第2の治療信号を調節させてもよい。
特定の事例では、第1の治療信号を調節することは、第1の治療信号の電力パラメータの低減を含む。特定の事例では、第1の治療信号を調節することは、第1の治療信号を治療量以下のレベルに低減することを含む。他の事例では、第1の治療信号を調節することは、第1の治療信号を組織ウォームアップのみのレベルに低減することを含む。他の事例では、第1の治療信号を調節することは、セグメント化電極60526a、60536aのうちの少なくとも1つを非アクティブ化することを含む。
特定の事例では、第2の治療信号を調節することは、第1の治療信号の電力パラメータの減少を補償するために、第2の治療信号の熱効果を第1の組織部分に拡張するのに好適な任意の修正を含む。特定の事例では、第2の治療信号を調節することは、第2の治療信号の電力パラメータの増加を含む。他の事例では、第2の治療信号を調節することは、第2の治療信号が組織に印加される時間を増加させることを含み、これは同じ電圧又はより低い電圧であり得る。他の事例では、第2の治療信号は、隣接する第1の組織部分に関連付けられた短絡に応答して、第2の組織部分の過剰封止を引き起こすように調節される。
様々な事例では、第1及び第2の治療信号に対する調節は、例えば、メモリ回路68008などの記憶媒体内に記憶された所定の組織治療サイクルに従って行われる。制御回路760は、セグメント化電極60526a、60526aの間の短絡の検出に応答して、短絡状況に対処するために、先に説明したように、第1及び第2の治療信号が調節された組織治療サイクルを選択することができる。
様々な事例では、制御回路760は、RFエネルギー源794にソースセグメント化電極及び戻りセグメント化電極の両方を能動的に循環させて、短絡が検出された組織部分の周りを封止することによって、短絡の検出に応答することができる。更に、様々な隣接するセグメント化電極はまた、オフセット及び/又は反対側エネルギー送達モードで利用されて、例えば、交差構成の電極セグメントを取り囲むアクティブ化/循環を含む検出された短絡を有する組織部分の周りを封止することができる。特定の事例では、短絡の場所に応じて、制御回路760は、RFエネルギー源794に、特定のセグメント化電極をソース電極として選択的にアクティブ化させ、同時に他のセグメント化電極を戻り電極としてアクティブ化させることができる。そのようなアクティブ化は、検出された短絡の場所を回避しながら、エンドエフェクタ60502によって把持された組織全体の効果的な封止を達成するように、循環又は交互に行うことができる。
電気アーク放電は、例えば、エンドエフェクタ60502によって把持された組織への封止エネルギーの印加中に生じ得る現象である。特定の事例では、アクティブセグメント化電極に隣接する以前に発射されたステープルなどの金属物体の存在は、電気アーク放電を生じ得る。組織治療サイクルの有効性は、意図された組織標的から離れる封止エネルギーの迂回/跳ね上がりに起因する電気アーク放電によって悪影響を受ける可能性がある。エネルギー転換はまた、隣接する組織への意図しない損傷を引き起こし得る。様々な事例では、セグメント化電極60526a~c、60527a~c、60536a~b、60537a~bの各々のアクティブ化、非アクティブ化、及び極性を別々に制御する制御回路760の能力は、例えば、セグメント化電極の様々なパラメータをアーク放電事象の近くで選択的に調節することによって、制御回路760が局所的な様式でアーク放電事象(予測及び/又はアクティブ)を管理することを更に可能にする。特定の事例では、調節されたパラメータは電力パラメータである。特定の事例では、制御回路760は、アーク放電事象に対処するために、RFエネルギー源794に、セグメント化電極60526a~c、60527a~c、60536a~b、60537a~bの選択された対にわたる電圧を選択的に低減させることができる。
例えば、以前に発射されたステープルなどの隣接する金属物体の存在に起因してアクティブアークが発生した状況では、制御回路760は、アーク放電事象の原因であるセグメント化電極を排他的に非アクティブ化することによって応答するように構成することができる。次いで、非アクティブ化されたセグメント化電極は、影響を受けるセグメント化電極間の間隙及び/又は電圧レベルに対して調節が行われた後に、組織治療サイクルを完了するために再アクティブ化され得る。特定の事例では、組織治療時間を増加させながら電圧レベルを低減して、低減された電圧で効果的な組織封止を依然として達成することができる。様々な態様では、制御回路760は、組織治療サイクルを再開する前に、電力及び/又は間隙調節がアーク放電の再発を回避するのに有効であるかどうかを試験するために、治療量以下の信号を用いるように構成されている。
様々な事例では、制御回路760は、例えば、エンドエフェクタ60502のジョー間の全体的な組織間隙を増加させることによって、アーク放電事象に対処するように構成されている。しかしながら、増加した組織間隙を有する組織の効果的な密閉を確実にするために、制御回路760は、電力パラメータ、例えば、電圧、又は組織の密閉時間のうちの少なくとも1つを更に増加させてもよい。増加した電力パラメータ及び/又は増加した封止時間は、選択された対のセグメント化電極60526a~c、60527a~c、60536a~b、60537a~b、例えば、に限定することができる。
様々な事例では、制御回路760は、組織治療サイクル中にエンドエフェクタ60502の撮像データを分析することによって、アーク放電事象を検出するように構成され得る。追加的に、又は代替的に、アーク放電事象は、例えば、ディスプレイ711を介した臨床医入力を通して検出され得る。追加的に、又は代替的に、アーク放電事象は、例えば、RFエネルギー源794の1つ又は2つ以上のパラメータを監視することによって検出され得る。追加的に、又は代替的に、アーク放電事象は、例えば、エンドエフェクタ60502内の温度センサを介して組織治療サイクル中に組織温度を監視することによって検出され得る。組織部分に供給されるエネルギーと組織部分の温度との間の予想される相関からの逸脱は、組織部分にエネルギーを供給するように構成されているセグメント化電極に関連するアーク放電事象を示すことができる。
様々な事例では、セグメント化電極60526a~c、60527a~c、60536a~b、60537a~bの各々のアクティブ化、非アクティブ化、及び極性を別々に制御する制御回路760の能力は、制御回路760が、外科用器具60000のシャフト内で生じ得る容量結合問題を管理することを更に可能にする。特定の事例では、容量結合は、例えば、エンドエフェクタ60502への電力供給の低減をもたらし得る。
低減は、エンドエフェクタ60502によって把持された組織全体に組織治療サイクルを同時に適用する際に、利用可能な電力を無効にし得る。それに応答して、制御回路760は、把持された組織の部分に組織治療サイクルを別々に適用するように構成され得る。これは、例えば、エンドエフェクタ60502のセグメント化電極のサブセットを、一度に1つのサブセットを選択的にアクティブ化させて、組織治療サイクルを組織部分に別々に適用することによって達成することができる。
例えば、エンドエフェクタ60502のセグメント化電極の第1のサブセット(例えば、近位サブセット)をアクティブ化させて、把持された組織の第1の部分(例えば、近位部分)に組織治療サイクルを適用することができる。次いで、第1のサブセットが非アクティブ化され、第2のサブセット(例えば、近位サブセットに対して遠位に位置付けられた遠位サブセット)が、組織の第2の部分(例えば、近位部分に対して遠位に位置付けられた遠位部分)に組織治療サイクルを適用するようにアクティブ化されることができる。
他の事例では、制御回路760は、セグメント化電極のサブセットのアクティブ化を交互に行うことによって電力供給の低減に対処するように構成され得る。そのような事例では、セグメント化電極の1つのサブセットのみが各時点でアクティブ化される。他の事例では、制御回路760は、異なる組織治療サイクル、例えば、低減された電力要件及び増加された封止時間を有するものを選択することによって、電力供給の低減に対処するように構成され得る。
様々な事例では、セグメント化電極60526a~c、60527a~c、60536a~b、60537a~bの各々のアクティブ化、非アクティブ化、及び極性を別々に制御する制御回路760の能力は、制御回路760が、エンドエフェクタ60502によって把持された組織に適用された組織治療サイクルにおいてエネルギーモダリティを動的に調節することを更に可能にする。異なるエネルギーモダリティは、異なる組織部分に適用され得るか、又は同じ組織部分若しくは把持された組織全体に、所定の順序で適用され得る。特定の事例では、制御回路760は、1つ又は2つ以上のセグメント化電極を選択的にアクティブ化させて、単極エネルギーモダリティ、双極エネルギーモダリティ、及び/又は双極/単極エネルギーモダリティの組み合わせ又は混合を、アクティブ化されたセグメント化電極に隣接する組織部分に適用するように構成されている。
上記に加えて、閉鎖負荷応答、ジョー閉鎖のパーセンテージ、組織インピーダンス、組織の場所及び/若しくは種類、並びに/又は短絡の存在を含むがこれらに限定されない、いくつかの要因が、制御回路760によるエネルギーモダリティ選択において考慮され得る。特定の事例では、血管を検出することにより、制御回路760は双極モダリティを選択することができる。特定の事例では、例えば、所定の閾値を超える組織厚さを検出することにより、制御回路760は、組織の厚さを低減させるための初期双極エネルギーモダリティ、封止速度を増加させるための中間単極エネルギーモダリティ、次いで、組織封止を完了させるための最終双極エネルギーモダリティを用いて組織治療サイクルを選択することができる。
上記に加えて、例えば、以前に発射されたステープルの存在に起因して短絡が検出された場合、制御回路760は、特に短絡に対処するように修正された、双極エネルギーモダリティ及び単極エネルギーモダリティを有する組織治療サイクルを選択するように構成され得る。更に、制御回路760は、検出された短絡によって影響を受けないセグメント化電極のサブセットのみに双極エネルギーモダリティを選択的に適用し、次いで、全てのセグメント化電極に単極エネルギーモダリティを適用するように構成することができる。例えば、制御回路760は、RFエネルギー源794に、短絡が検出されたセグメント化電極を非アクティブ化させ、次いで、残りのセグメント化電極に双極エネルギーモダリティを適用させることができる。次に、制御回路760は、単極エネルギーモダリティを組織に適用するために、RFエネルギー源794に、以前に非アクティブ化されたセグメント化電極を再アクティブ化させることができる。
図197~図203は、例えば、エンドエフェクタ60502によって把持された組織への治療信号60300、60310、60320、60330、60340、60350、60360の印加に関連する組織インピーダンス、電圧、電力、及び電流曲線を表すグラフに図示された、いくつかのエネルギープロファイル又は治療信号60300、60310、60320、60330、60340、60350、60360を示す。治療信号60300、60310、60320、60330、60340、60350、60360は、例示目的のみのためであり、したがって、限定するものではないことが理解される。他の高、中、及び低エネルギープロファイルが、制御回路760によってもたらされる組織治療サイクルにおいて利用され得る。特定の事例では、治療信号60300、60310、60320、60330、60340、60350、60360のうちの2つ又はそれ以上は、制御回路760によってもたらされる組織治療サイクルにおいて、エンドエフェクタ60502の長さに沿った異なるゾーン内の異なる組織部分に送達され得る。異なるゾーンは、セグメント化電極60526a~c、60527a~c、60536a~b、60537a~bの異なるサブセットによって画定することができる。
特定の事例では、治療信号60300、60310、60320、60330、60340、60350、60360のうちの2つ又はそれ以上は、組織治療サイクルにおいて異なるゾーンに同時に送達され得る。特定の事例では、異なるゾーンは、近位ゾーン及び遠位ゾーンを含む。他の事例では、異なるゾーンは、近位ゾーン、1つ又は2つ以上の中間ゾーン、及び遠位ゾーンを含む。
様々な事例では、治療信号60300、60310、60320、60330、60340、60350、60360の様々なパラメータは、例えば、組織治療サイクルを実装するためにアクセスすることができる、例えば、メモリ回路68008などの記憶媒体内に記憶することができる。制御回路760は、例えば、組織厚さ、組織タイプ、組織の場所、及び/又は組織インピーダンスを含む、1つ又は2つ以上のゾーン内の把持された組織の1つ又は2つ以上の状態に基づいて、エンドエフェクタ60502の1つ又は2つ以上のゾーンに適用される組織治療サイクルにおいて実行するための治療信号60300、60310、60320、60330、60340、60350、60360のうちの1つ又は2つ以上を選択するように構成することができる。
主に図1及び図155を参照すると、外科用器具(例えば、外科用器具1000、60000)は、エンドエフェクタ(例えば、エンドエフェクタ1300、60002、60502)を含み得る。1つ又は2つ以上のモータアセンブリは、制御回路(例えば、制御回路760)によって動かされて、ジョーの閉鎖、ステープルの発射、並びに/又は外科用器具の中心長手方向軸(例えば、軸60005)を中心としたエンドエフェクタの回転及び/若しくは関節運動を含む、エンドエフェクタの1つ又は2つ以上の機能/運動をもたらすことができる。エンドエフェクタの関節運動、回転、閉鎖、及び発射のための様々な機構は、本開示の他の箇所でより詳細に説明されており、簡潔にするために本明細書では繰り返さない。
様々な態様では、制御回路760は、エンドエフェクタのジョーを組織に対して位置合わせするための臨床医からの入力に応答して、1つ又は2つ以上のモータアセンブリに、エンドエフェクタ(例えば、エンドエフェクタ1300、60002、60502)の様々な回転及び/又は関節運動を行わせるように構成され得る。次いで、臨床医は、ジョーの一方を組織の背後に位置付けることができる。更に、制御回路760はまた、別の臨床医入力に応答して、1つ又は2つ以上のモータアセンブリに、閉鎖運動において組織を把持するように、ジョーを動かすようにさせるように構成され得る。特定の事例では、満足のいく組織咬合が達成されるまで、ジョーの閉鎖を複数回反転させることができる。そのような時点で、制御回路760は、例えば、Iビーム764などの発射ドライバを遠位に前進させて、ステープルカートリッジのステープルキャビティ内に格納されたステープルを把持された組織内に発射するように構成され得る。
特定の事例では、臨床医は、例えば、エンドエフェクタ閉鎖前、エンドエフェクタ閉鎖中、及びエンドエフェクタ閉鎖後などに、組織の近傍でエンドエフェクタの追加の回転調節を行うことを選択してもよい。特定の事例では、臨床医は、治療エネルギーを組織に印加する前に、又はステープルを組織内に発射する前に、エンドエフェクタの閉鎖又は組織の噛み込みの成功が達成された後に、エンドエフェクタの追加の回転調節を行うことを選択してもよい。追加の回転調節は、組織を保護し、かつ/又は経験の少ない臨床医を助けるために、標準的な回転調節とは異なる回転パラメータを用いた微細な回転調節であり得る。
図204は、本開示の少なくとも1つの態様による、少なくとも1つのインピーダンス測定値に基づいて決定されるように、組織がエンドエフェクタによって把持されているかどうかに基づいて、外科用器具のエンドエフェクタの回転のパラメータを調節するための制御プログラム又は論理構成を図示するプロセス60400の論理フロー図である。様々な事例では、プロセス60400は、例えば、エンドエフェクタ1300、60002、60502などの任意の好適なエンドエフェクタを含む、例えば、外科用器具1000、60000などの任意の好適な外科用器具によって実装され得る。しかしながら、簡潔にするために、プロセス60400の以下の説明は、例えば、外科用器具60000及びエンドエフェクタ60502におけるその実装に焦点を当てる。特定の事例では、メモリ68008は、プロセッサ68002によって実行されると、プロセッサ68002にプロセス60400の1つ又は2つ以上の態様を行わせるプログラム命令を記憶する。
プロセス60400は、治療量以下の信号をエンドエフェクタ60502に提供させること(60401)を含む。例えば、制御回路760は、RFエネルギー源794に、電極アセンブリ60526、60536の間に治療量以下のレベル信号を通過させようと試みさせてもよい。プロセス60400は、治療量以下の信号に応答して電極アセンブリ60526、60536の間のインピーダンスを決定して(60402)、組織がエンドエフェクタ60502によって把持されているかどうかを評価することを更に含む。プロセス60400は、少なくとも1つのインピーダンス測定値に基づいて、エンドエフェクタの回転のパラメータを選択すること(60403)を更に含む。エンドエフェクタの回転のパラメータは、例えば、回転速度、回転距離、回転方向、及び/又は回転時間を含む。
本明細書の他の箇所でより詳細に説明するように、制御回路760は、例えば、電圧感知回路924及び電流感知回路914からの測定値に基づいて、治療量以下の信号に応答して、電極アセンブリ60526、60536の間のインピーダンスを決定する(60402)ように構成されている。制御回路760は、例えば、インピーダンスを決定するために、電圧感知回路924からの測定値を電流感知回路914からの対応する測定値で除算するように構成され得る。
上記に加えて、制御回路760は、インピーダンス測定値と所定の閾値との比較に基づいて、エンドエフェクタ60502の回転のパラメータを選択する(60403)ように構成され得る。インピーダンス測定値は、エンドエフェクタ60502と接触している組織の有無を示すことができる。制御回路760は、インピーダンス測定値が、例えば、開放回路に起因して、所定の閾値以上である場合、組織の不在を検出するように構成され得る。逆に、制御回路760は、インピーダンス測定値が所定の閾値未満である場合、組織の存在を検出するように構成され得る。特定の事例では、所定の閾値は、例えば、メモリ回路68008などの記憶媒体内に記憶することができ、組織がエンドエフェクタ60502と接触しているかどうかを決定するために、プロセッサ68002によって利用することができる。
上記に加えて、エンドエフェクタ60502の回転のパラメータを選択すること(60403)は、エンドエフェクタ60502の回転速度又は回転距離を選択することを含み得る。特定の事例では、エンドエフェクタ60502の回転のパラメータを選択すること(60403)は、第1の回転プロファイルと第2の回転プロファイルとの間で選択することを含む。第1及び第2の回転プロファイルは、例えば、メモリ回路68008などの記憶媒体内に記憶することができる。制御回路760は、インピーダンス測定値と所定の閾値との比較に基づいて決定されるように、組織が存在しない場合の第1の回転プロファイル、及び組織が存在しない場合の第1の回転プロファイルを選択するように構成され得る。
上記に加えて、第1の回転プロファイルは、第2の回転プロファイルの第2の回転速度よりも速い第1の回転速度を含んでもよい。特定の例では、第1の回転速度は、最大回転速度であってもよい。特定の例では、第2の回転速度は、第1の回転速度のパーセンテージであり得る。このパーセンテージは、例えば、約1%~約50%の範囲から選択することができる。特定の事例では、第1の回転プロファイルは、第2の回転プロファイルよりも速い、所定の回転速度への初期加速を含む。
特定の事例では、第1の回転プロファイルは、第2の回転プロファイルの第2の回転距離よりも速い、第1の回転距離を含んでもよい。特定の例では、第1の回転距離は、最大回転距離であってもよい。特定の例では、第2の回転距離は、第1の回転距離のパーセンテージであり得る。このパーセンテージは、例えば、約1%~約50%の範囲から選択することができる。
特定の事例では、エンドエフェクタ60502の回転のパラメータを選択すること(60403)は、エンドエフェクタ60502の回転をもたらすためにモータに供給される電力のパラメータを選択することを含む。本明細書の他の箇所でより詳細に説明するように、モータアセンブリは、モータと、例えば、制御回路760によって選択される電力パラメータによって、モータに電力を供給するように構成されているモータ制御回路と、を含んでもよい。モータは、例えば、ハウジングアセンブリ60006に対するシャフト60004及びエンドエフェクタ60502の回転を引き起こすように構成され得る。
特定の事例では、モータ制御回路によってモータに供給される電流は、インピーダンス測定値に基づいて選択することができる。制御回路760は、組織が存在しない場合に第1の電流を選択し、組織が存在する場合に第2の電流を選択するように構成することができ、第1の電流は第2の電流よりも大きい。
特定の事例では、第2の電流は0の値を含む。したがって、制御回路760は、エンドエフェクタ60502のジョーの間に組織が検出された場合、全ての回転運動を捕らえるためにモータを非アクティブ化するように構成され得る。
上記に加えて、インピーダンス測定値に基づいて、組織がもはや検出されない場合、制御回路760は、モータの電力パラメータを再調節するように構成され得る。例えば、制御回路760は、第1の電流を再選択するか、又は第1の回転プロファイルを再選択するように構成することができる。
他の実施形態では、図204に示されるように、エンドエフェクタ60502の回転のパラメータは、インピーダンス測定値に加えて、エンドエフェクタ60502の閉鎖状態に基づいて選択され得る(60405)。代替的に、エンドエフェクタ60502の回転のパラメータは、エンドエフェクタ60502の閉鎖状態のみに基づいて選択することができる。
特定の例では、エンドエフェクタ60502の回転のパラメータは、異なる閉鎖状態に関連付けられた異なる値に調節される。例えば、制御回路760は、全開放状態のエンドエフェクタ60502の回転のパラメータの第1の値を選択し、部分的開放状態のエンドエフェクタ60502の回転のパラメータの第2の値を選択し、及び/又は完全閉鎖状態のエンドエフェクタ60502の回転のパラメータの第3の値を選択するように構成され得る。特定の事例では、第1の値は第2の値よりも多く、第2の値は第3の値よりも多い。
エンドエフェクタ60502の閉鎖状態は、1つ又は2つ以上のセンサのセンサ信号に基づいて制御回路760によって検出することができる(60404)。例えば、位置センサ784(図163)からのセンサ信号は、エンドエフェクタ60502の閉鎖をもたらすために、モータ754によって移動可能な駆動部材(例えば、Iビーム764又は閉鎖駆動部3800)の位置を示すことができる。駆動部材の位置は、エンドエフェクタ60502の異なる閉鎖状態に相関させることができる。例えば、エンドエフェクタ60502のジョーの間の間隙を検出するように構成されているセンサなどの他のセンサ788(図163)も、エンドエフェクタ60502の閉鎖状態を決定するために、制御回路760によって利用され得る。
他の実施形態では、エンドエフェクタ60502の回転のパラメータは、組織インピーダンスの代わりに、又は組織インピーダンスに加えてエンドエフェクタ60502の閉鎖負荷に基づいて選択することができる。特定の例では、エンドエフェクタ60502の回転のパラメータは、異なる閉鎖負荷に調節される。例えば、制御回路760は、第1の閉鎖負荷に対してエンドエフェクタ60502の回転のパラメータの第1の値を選択し、第2の閉鎖負荷に対してエンドエフェクタ60502の回転のパラメータの第2の値を選択し、及び/又は第3の閉鎖負荷に対してエンドエフェクタ60502の回転のパラメータの第3の値を選択するように構成され得る。特定の事例では、第3の閉鎖負荷は、第1の閉鎖負荷よりも大きい第2の閉鎖負荷よりも大きい。そのような事例では、第3の値は第2の値よりも小さく、第2の値は第1の値よりも小さい。様々な事例では、制御回路760は、閉鎖負荷をもたらすモータによる電流引き込みに基づいて、エンドエフェクタ60502の閉鎖負荷を検出するように構成されている。電流センサ786は、モータの電流引き込みを測定するように構成することができる。
他の実施形態では、図204に示されるように、エンドエフェクタ60502の回転のパラメータは、インピーダンス測定値に加えて、エンドエフェクタ60502の発射状態に基づいて選択され得る(60408)。代替的に、エンドエフェクタ60502の回転のパラメータは、エンドエフェクタ60502の発射状態のみに基づいて選択することができる。特定の例では、エンドエフェクタ60502の回転のパラメータは、異なる発射状態に関連付けられた異なる値に調節される。例えば、制御回路760は、未発射状態のエンドエフェクタ60502の回転のパラメータの第1の値を選択し、部分発射状態のエンドエフェクタ60502の回転のパラメータの第2の値を選択し、及び/又は完全発射状態のエンドエフェクタ60502の回転のパラメータの第3の値を選択するように構成され得る。特定の事例では、第1の値は、第2の値よりも大きい。特定の事例では、第3の値は第2の値よりも大きい。
エンドエフェクタ60502の発射状態は、1つ又は2つ以上のセンサのセンサ信号に基づいて制御回路760によって検出することができる(60404)。例えば、位置センサ784(図163)からのセンサ信号は、エンドエフェクタ60502からのステープルの発射をもたらすために、モータ754によって移動可能な駆動部材(例えば、Iビーム764)の位置を示すことができる。駆動部材の位置は、エンドエフェクタ60502の異なる発射状態に相関され得る。
様々な事例では、エンドエフェクタ60502によって把持された組織の組織インピーダンス測定は、図204のプロセス60400に関連して先に説明したように、エンドエフェクタ60502の過回転又は意図しない回転によって引き起こされる組織張力を評価するのに有用であり得る。長手方向軸60005を中心としたエンドエフェクタ60502の回転は、長手方向スロット60535の第1の側上の第1の組織部分上の張力を増加させる一方で、長手方向スロット60535の第1の側の反対側の第2の側上の第2の組織部分上の張力を低減させる。その結果、第1の組織部分の第1の組織厚さを低減させることができ、第2の組織部分の第2の組織厚さを増加させることができる。更に、組織厚さの変化は、組織部分の流体含有量の変化による第1及び第2の組織部分の組織インピーダンスの変化を伴ってもよい。
図205は、本開示の少なくとも1つの態様による、エンドエフェクタの検出された過回転に基づいて、外科用器具のエンドエフェクタの回転のパラメータを調節するための制御プログラム又は論理構成を図示するプロセス60600の論理フロー図である。様々な事例では、プロセス60600は、例えば、エンドエフェクタ1300、60002、60502などの任意の好適なエンドエフェクタを含む、例えば、外科用器具1000、60000などの任意の好適な外科用器具によって実装され得る。しかしながら、簡潔にするために、プロセス60600の以下の説明は、例えば、外科用器具60000及びエンドエフェクタ60502におけるその実装に焦点を当てる。特定の事例では、メモリ68008は、プロセッサ68002によって実行されると、プロセッサ68002にプロセス60600の1つ又は2つ以上の態様を行わせるプログラム命令を記憶する。
プロセス60600は、エンドエフェクタの長手方向スロットの第1の側の第1の組織部分の第1の組織パラメータを測定すること(60601)と、エンドエフェクタの長手方向スロットの第2の側の第2の組織部分の第2の組織パラメータを測定すること(60602)と、第1の組織パラメータと第2の組織パラメータとの間の関係に基づいてエンドエフェクタの回転のパラメータを調節すること(60603)と、を含む。第1及び第2の組織パラメータは、例えば、組織インピーダンス又は組織厚さであり得る。
制御回路760は、エンドエフェクタ60502によって把持された第1の組織部分及び第2の組織部分の組織インピーダンスを監視するように構成され得る。例えば、制御回路760は、RFエネルギー源794に、電極アセンブリ60526、60536の間、及び電極アセンブリ60527、60537の間に治療量以下の信号を通過させてもよい。次いで、制御回路760は、治療量以下の信号に基づいて、第1の組織部分の第1の組織インピーダンス及び第2の組織部分の第2の組織インピーダンスを計算することができる。更に、制御回路760は、第1及び第2の組織インピーダンスの間の差に基づいて、エンドエフェクタ60502の回転のパラメータを調節するように構成され得る。特定の例では、制御回路760は、第1の組織インピーダンスと第2の組織インピーダンスとの間の差が所定の閾値以上である場合に、エンドエフェクタの回転を遅くする、非アクティブ化する、又は逆転させるように構成され得る。
上記に加えて、検出された障害物を回避又は緩和するために、回転位置、回転距離、回転速度、回転時間、及び/又は回転方向を含む、エンドエフェクタ60502の回転の1つ又は2つ以上のパラメータに対して様々な調節を行うことができる。様々な態様では、制御回路760は、回転障害物の検出に応答して、エンドエフェクタ60502の回転のパラメータを調節するように構成され得る。制御回路760は、例えば、エンドエフェクタ60502の回転をもたらすモータの電流引き込みが所定の閾値以上である場合に、回転障害物を検出するように構成され得る。
様々な態様では、制御回路760は、予測分析を行って、臨床医によって要求された移動に基づいて、以前に検出された障害物に到達するかどうかを評価するように構成することができる。更に、制御回路760は、要求された移動がエンドエフェクタを障害物に到達させることになると決定された場合、例えば、ディスプレイ711を通じてアラートを発するように、及び/又はエンドエフェクタ60502の更なる回転を捕らえるように構成されてもよい。特定の事例では、以前に検出された障害物は、例えば、最大回転角度などのシステム制約の形態であってもよく、最大回転角度は、要求された移動が順守される場合に到達又は超過する所定の最大回転角度であってもよい。
主に図189を参照すると、エンドエフェクタ60502は、カートリッジ60530とアンビル60520との間に把持された組織にハイブリッド組織治療サイクルを適用するように構成され得る。ハイブリッド組織治療サイクルは、RFエネルギー段階及びステープル留め段階を含み、これらは、エンドエフェクタ60502の長さに沿って組織部分に別々に又は連続的に適用することができる。ハイブリッド組織治療サイクルでは、電極アセンブリ60526、60527、60536、60537によって把持された組織にRFエネルギーを印加することができる。RFエネルギーゾーンは、例えば、電極アセンブリ60526、60527、60536、60537のセグメント化電極によって協働して画定されてもよい。更に、ハイブリッド組織治療サイクルはまた、ステープルポケット60521、60522の列によって変形されるステープルキャビティ60531、60532の列から、把持された組織内にステープルを配備することを含む。ステープル留めゾーンは、ステープルキャビティ60531、60532及び対応するステープルポケット60521、60522によって協働して画定されてもよい。エンドエフェクタ60502の場合、RFゾーンは、電極アセンブリ60526、60527、60536、60537、ステープルキャビティ60531、60532の列、及びステープルポケット60521、60522の列の構成に起因して、ステープル留めゾーンの部分によって横方向に取り囲まれる。
図206は、例えば、ハイブリッド組織治療サイクルにおいて、エンドエフェクタ60502によって把持された組織の組織部分にRFエネルギー段階及びステープル留め段階を協働して適用するための制御プログラム又は論理構成を図示するプロセス60700の論理フロー図である。特定の事例では、RFエネルギー段階を利用して、ステープル留め段階における欠陥を緩和、相殺、補償、及び/又はオフセットすることができる。他の事例では、ステープル留め段階は、RFエネルギー段階における欠陥を緩和、相殺、補償、及び/又はオフセットするために利用されてもよい。
様々な事例では、プロセス60700は、例えば、エンドエフェクタ1300、60002、60502などの任意の好適なエンドエフェクタを含む、例えば、外科用器具1000、60000などの任意の好適な外科用器具によって実装され得る。しかしながら、簡潔にするために、プロセス60700の以下の説明は、例えば、外科用器具60000及びエンドエフェクタ60502におけるその実装に焦点を当てる。特定の事例では、メモリ68008は、プロセッサ68002によって実行されると、プロセッサ68002にプロセス60700の1つ又は2つ以上の態様を行わせるプログラム命令を記憶する。
示される例では、プロセス60700は、組織パラメータを検出すること(60701)を含む。組織パラメータは、例えば、エンドエフェクタ60502によって把持された組織の組織厚さであり得る。プロセス60700は、カートリッジパラメータを検出すること(60702)を更に含む。カートリッジパラメータは、例えば、エンドエフェクタ60502のステープルキャビティ60531、60532の列内に格納されたステープルのステープル高さであり得る。加えて、プロセス60700は、カートリッジパラメータ及び組織パラメータに基づいて、組織を封止するための高周波(RF)エネルギー治療を選択すること(60703)を含む。
プロセス60700は、RFエネルギー段階を利用して、例えば、エンドエフェクタ60502によって把持された組織の組織厚さと、例えば、カートリッジ60530のステープル高さとの間の不一致を補償し得る。この不一致は、把持された組織が、カートリッジ60530のステープル高さによって首尾よく収め入れられ得るよりも厚い場合に生じ得る。そのような事例では、RFエネルギー段階を利用して、エンドエフェクタ60502のRFゾーンを越えてエンドエフェクタ60502の組織ステープル留めゾーン内に加温又は乾燥させることによって、把持された組織を薄くし、カートリッジ60530のステープル高さによってうまく収め入れられ得る組織厚さをもたらすことができる。
他の実施形態では、組織厚さとステープル高さとの間の不一致は、ステープル高さが高すぎることに起因して、把持された組織が、カートリッジ60530をステープル留めすることに成功し得るよりも薄いときに生じ得る。その結果、成形されたステープルは、組織を効果的に封止するのに十分な圧縮を印加することができない場合がある。そのような事例では、RFエネルギー段階は、RFゾーンを越えて組織を通る熱拡散を拡大し、ステープルが高すぎて組織を効果的に封止することができない組織部分のエネルギー封止を支持するためにステープル留めに入るように調節することができる。代替的に、RFゾーンを超える熱拡散が、把持された組織の厚さを、ステープル留めに成功し得る厚さ未満に低減し得る事例では、RFエネルギー段階は、RFゾーンを超える熱拡散を最小化又は防止するように調節され得る。
様々な事例では、熱拡散の調節は、例えば、RFエネルギーの電力レベル及び/又はアクティブ化時間などのRFエネルギー段階の1つ又は2つ以上のパラメータを調節することによって達成することができる。特定の事例では、RFエネルギー段階のパラメータの調節は、電極アセンブリ60526、60527、60536、60537の個々のセグメント化電極又はセグメント化電極のサブセットに適用することができる。
特定の事例では、組織の厚さは、例えば、組織インピーダンスに基づいて決定することができる。先に説明したように、制御回路760は、例えば、電極アセンブリ60526、60527、60536、60536を利用して、RFエネルギー源794に、把持された組織を通して1つ又は2つ以上の治療量以下の信号を通過させることによって、組織インピーダンスを決定するように構成され得る。次いで、組織インピーダンスと組織厚さとの間の相関に基づいて組織厚さを決定することができ、この相関は、例えば、メモリ回路86006などの記憶媒体内に記憶することができる。相関は、例えば、表、方程式、又はデータベースを含む任意の好適な形態で記憶され得る。他の実施形態では、組織厚さは、把持された組織に当接するカートリッジ60530とアンビル60520との間の間隙を測定することによって決定され得る。間隙は、例えば、センサ788のうちの1つ又は2つ以上によって測定されることができ、組織厚さを表す。
特定の事例では、ステープル高さ、及びカートリッジ60530の他のパラメータは、例えば、メモリ回路などの記憶媒体内に記憶することができ、メモリ回路は、カートリッジ60530上又は内にローカルで存在することができる。制御回路760は、カートリッジ605030の記憶媒体に呼び掛け、カートリッジパラメータを検出する(60702)ように構成することができる。
特定の実施形態では、ハイブリッド組織治療サイクルのステープル留め段階は、例えば、RFエネルギー段階における欠陥を緩和、相殺、補償、及び/又はオフセットするために利用されてもよい。図207は、例えば、ハイブリッド組織治療サイクルにおいて、エンドエフェクタ60502によって把持された組織の組織部分にRFエネルギー段階及びステープル留め段階を協働して適用するための制御プログラム又は論理構成を図示するプロセス60710の論理フロー図である。
様々な事例では、プロセス60710は、例えば、エンドエフェクタ1300、60002、60502などの任意の好適なエンドエフェクタを含む、例えば、外科用器具1000、60000などの任意の好適な外科用器具によって実装され得る。しかしながら、簡潔にするために、プロセス60710の以下の説明は、例えば、外科用器具60000及びエンドエフェクタ60502におけるその実装に焦点を当てる。特定の事例では、メモリ68008は、プロセッサ68002によって実行されると、プロセッサ68002にプロセス60710の1つ又は2つ以上の態様を行わせるプログラム命令を記憶する。
示される例では、プロセス60710は、ハイブリッド組織治療サイクルのRF段階において、例えば、組織を封止するために、エンドエフェクタ60502によって把持された組織に治療エネルギーを印加すること(60711)を含む。制御回路760は、ハイブリッド組織治療サイクルの所定のパラメータに従って、把持された組織の1つ又は2つ以上の組織部分に治療エネルギーを印加するために、RFエネルギー源794に、電極アセンブリ60526、60527、60536、60536のうちの1つ又は2つ以上のセグメント化電極をアクティブ化させるように構成され得る。
上記に加えて、プロセス60710は、把持された組織における組織封止のムラを検出すること(60712)を含む。組織封止のムラは、例えば、以前に発射されたステープルの存在に起因し得る短絡による不適切な組織封止であり得る。特定の例では、制御回路760は、RFエネルギー源794に、治療量以下の信号の形態であり得る1つ又は2つ以上の呼掛け信号を、把持された組織の異なる組織部分に通過させて、組織封止におけるムラを検出するように構成され得る。治療量以下の信号は、例えば、電極アセンブリ60526、60527、60536、60536のセグメント化電極の対の間を通過することができる。異なる組織部分の組織インピーダンスは、RFエネルギー段階に続いて決定され得る。不適切な組織封止は、適切な封止に関連するものとは異なる組織インピーダンス特徴を含むので、組織部分における組織封止のムラの検出は、例えば、そのような部分の決定された組織インピーダンスを所定の閾値と比較することによって達成され得る。
上記に加えて、プロセス60700は、組織封止のムラを補償するために、ステープル留めパラメータを調節すること(60713)を含み得る。特定の事例では、ステープル留めパラメータを調節することは、カートリッジ60530とアンビル60520との間の組織間隙を調節することを含む。特定の事例では、ステープル留めパラメータを調節することは、例えば、把持された組織の組織圧縮、又はエンドエフェクタの閉鎖負荷を調節することを含む。制御回路760は、閉鎖及び発射が別々に駆動される場合に、モータアセンブリに、例えば、Iビーム764又は閉鎖駆動部3800などの閉鎖ドライバによってエンドエフェクタに印加されfる閉鎖負荷を増加又は減少させるように構成されてもよい。
特定の事例では、ステープル留めパラメータを調節することは、カートリッジ60530の成形されたステープルのステープル高さを調節することを含む。特定の事例では、ステープル留めパラメータを調節することは、成形ステープル高さを微調節するために発射速度を調節することを含む。制御回路760は、モータアセンブリに、発射ドライバ(例えば、Iビーム764)の速度を増加又は減少させて成形ステープル高さを調節して、組織封止のムラを補償するように構成され得る。
一例では、制御回路760は、例えば、第1の組織インピーダンスと所定の閾値又は閾値範囲との比較に基づいて、セグメント化電極60536a、60526aの間の第1の組織部分における不適切な封止を検出するように構成することができる。第1の組織インピーダンスは、セグメント化電極60536b、60526cの間に第1の治療量以下の信号を通過させることによって測定することができる。更に、制御回路760は、例えば、第2の組織インピーダンスと所定の閾値又は閾値範囲との比較に基づいて、セグメント化電極60536b、60526cの間の第2の組織部分における適切な封止を検出するように構成することもできる。第2の組織インピーダンスは、セグメント化電極60536b、60526cの間に第2の治療量以下の信号を通過させることによって測定することができる。
更に、制御回路760は、組織部分における組織封止の妥当性に基づいて、組織部分における発射ドライバ(例えば、Iビーム)の発射速度を選択するように構成することができる。したがって、制御回路760は、不適切な組織封止を有する第1の組織部分における発射ドライバ(例えば、Iビーム)の第1の発射速度と、適切な組織封止を有する第2の組織部分における発射ドライバ(例えば、Iビーム)の第2の発射速度と、を選択するように構成され得、第1の発射速度は、例えば、第2の発射速度未満である。特定の事例では、制御回路760は、不適切な組織封止を有する組織部分においてステープルの発射を休止するように構成され得る。
様々な態様では、ハイブリッド組織治療サイクルは、RFエネルギー段階とステープル留め段階とを交互に行うことによって、エンドエフェクタ60502によって把持された組織の別個の組織部分に適用することができる。RFエネルギー段階は、RFエネルギー段階の印加中に組織内にステープルが存在する場合に起こり得る回路短絡状態を回避するために、ステープル留め段階に先行し得る。換言すれば、ステープル留め段階は、RFエネルギー段階に続いてもよい。
特定の事例では、RFエネルギーは、近位組織部分、例えば、電極アセンブリ60536a、60526aの間の組織部分に印加される。次いで、ステープルは、第1の組織部分を通して発射ドライバを前進させることによって、ステープルキャビティ60221、60222の列から近位組織部分の中へ発射される。次いで、発射ドライバは、RFエネルギーが近位組織部分、例えば、電極アセンブリ60536b、60526bの間の組織部分に印加されるまで休止される。第2の組織部分へのRFエネルギーの印加に続いて、発射ドライバの移動は、第2の組織部分を通して発射ドライバを前進させるように再アクティブ化され、それによって、ステープルキャビティ60231、60232の列から第2の組織部分の中へステープルを発射する。把持された組織の全ての組織部分が治療されるまで、追加の組織部分に対してRF段階とステープル留め段階とを交互に繰り返すことができる。
ここで図208~図210を参照すると、外科用器具60000は、エネルギーとステープル留めモダリティ又は段階との組み合わせを使用して組織を封止するように構成されている。外科用器具60000’は、例えば、外科用器具1000、60000などの他の外科用器具と多くの点で類似しており、簡潔にするために本明細書では繰り返さない。例えば、外科用器具60000’は、エンドエフェクタ60002’と、関節運動アセンブリ60008と、シャフトアセンブリ60004と、ハウジングアセンブリ60006と、を含む。
上記に加えて、外科用器具60000’は主に、電極アセンブリ60036に関連付けられた電気配線において外科用器具60000と異なる。外科用器具60000’は、電極アセンブリ60036のための2つの別々のRF戻り経路60801、60802を画定する電気配線を備えるが、外科用器具60000では、電極アセンブリ60036のための単一のRF戻り経路60801を画定する電気配線を備える。簡潔にするために、以下の説明は、外科用器具60000’のデュアルRF戻り経路60801、60802に焦点を当てる。
示される例では、ステープルカートリッジ60030’は、ステープルカートリッジ60030’の近位壁内に画定された近位電気接点60803を含む。図208に最もよく示されているように、ステープルカートリッジ60030’がエンドエフェクタ60002’のカートリッジチャネル60040内に適切に挿入されると、板ばね接点60804が近位電気接点60803に接続されている。追加の配線が板ばね接点60804から近位に延在して、電気アセンブリ60036を、例えば、制御回路760及び/又はRFエネルギー源794などの近位電子機器に接続する。
上記に加えて、RF戻り経路60801は、電極アセンブリ60036から、フレックス回路60041から近位に延在し、カートリッジデッキ60047を貫通し、近位電気接点60803で終端する。同様に、RF戻り経路60802は、電極アセンブリ60036から、フレックス回路60041から近位に延在し、カートリッジデッキ60047を貫通し、近位電気接点60803で終端する。しかしながら、RF戻り経路60802は、図209に示されるように、エンドエフェクタ60002’が閉鎖構成又は部分的閉鎖構成にあるとき、エンドエフェクタ60002’のアンビル60020’の絶縁された戻りパッドによって架橋されるように構成されている間隙60805を備える。
したがって、RF戻り経路60802は、間隙60508がアンビル60020’の絶縁された戻りパッドによって架橋されるまで開放したままである。特定の事例では、RF戻り経路60801、60802は同時に利用され、冗長性を通じて適切な接続を保証する。他の事例では、RF戻り経路60801、60802は、エンドエフェクタ600の第1及び第2の電気要素をそれぞれ、例えば、RFエネルギー源794及び/又は制御回路760などの近位電子機器に別々に接続するための別々の電気経路を画定する。そのような事例では、図210に示されるように、第1のRF戻り経路60801を介して接続された第1の電気要素は、アンビル60020’が開放構成又は部分的開放構成のままである間にアクティブ化させることができ、第2のRF戻り経路60802を介して接続された第2の電気要素は、アンビル60020’が閉鎖構成のままである間にのみアクティブ化させることができる。
図211は、エンドエフェクタ(例えば、エンドエフェクタ60502)によって把持された組織への治療信号の印加を協働して制御し、エンドエフェクタの機能を制御するための制御プログラム又は論理構成を図示する、プロセス60850の論理フロー図である。機能は、エンドエフェクタの関節運動、エンドエフェクタの回転、組織の周りでのエンドエフェクタの閉鎖、及び組織内へのステープルの発射のうちの少なくとも1つを含む。様々な事例では、プロセス60850は、任意の好適なRFエネルギー源(例えば、RFエネルギー源794)、及び例えば、エンドエフェクタ1300、60002、60502などの任意の好適なエンドエフェクタを含む、例えば、外科用器具1000、60000などの任意の好適な外科用器具によって実装され得る。しかしながら、簡潔にするために、プロセス60850の以下の説明は、例えば、RFエネルギー源794、外科用器具60000、及びエンドエフェクタ60502を含む、外科用システムにおけるその実施に焦点を当てる。
先に説明したように、エンドエフェクタ60502は、エンドエフェクタ60502のジョーの一方又は両方の閉鎖運動において組織を把持するように構成されている。更に、エンドエフェクタ60502はまた、把持された組織に組織治療サイクルを適用するように構成されている。組織治療サイクルは、RFエネルギー源794が治療信号を組織に通過させて、組織を封止するように構成されているRFエネルギー段階と、ステープルが発射ストロークにおいてカートリッジ60530から組織内に配備される、ステープル留め段階と、を含む。
示される例では、プロセス60850は、把持された組織への治療信号の印加における不足を示す通信信号をRFエネルギー源794から受信すること(60851)と、不足に対処するために通信信号に基づいてエンドエフェクタ60502の機能を調節すること(60852)と、を含む。機能は、エンドエフェクタの関節運動、エンドエフェクタの回転、組織の周りでのエンドエフェクタの閉鎖、及び組織内へのステープルの発射のうちの少なくとも1つを含む。
不足は、例えば、治療信号を介して把持された組織の効果的な組織封止を完了するための電力不足であり得る。電力不足は、エンドエフェクタ60502のジョーによって組織に印加される圧力が不十分であることに起因し得る。不適切な圧力は、把持された組織中の流体の量を変化させ得、これは、RFエネルギー源794の安全能力を超えて効果的な封止を完成するために必要とされる電力を変化させることによって、把持された組織を通る治療信号の適切な伝達を妨げるレベルまで組織インピーダンスを変化させ得る。
RFエネルギー源794は、例えば、把持された組織のインピーダンスに基づいて、電力不足を検出してもよい。本明細書の他の箇所でより詳細に説明するように、RFエネルギー源794は、電極アセンブリ60526、60527、50536、50536の反対側セグメント化電極の間の組織部分の組織インピーダンスを測定することができる。次いで、組織インピーダンスを閾値と比較して、効果的な組織封止のために十分な電力が利用可能であるかどうかを決定することができる。閾値は、例えば、メモリ回路などの記憶媒体内に記憶することができる。特定の事例では、比較は、RFエネルギー源794における処理ユニットによって実行することができる。次いで、通信信号を制御回路760に送信して、比較の結果を通信することができる。他の事例では、通信信号は、測定された組織インピーダンスの値を表し得る。そのような事例では、比較は制御回路760によって行われ、閾値は、例えば、メモリ回路68008内に記憶され得る。
いずれにしても、電力不足が検出された場合、制御回路760は、エンドエフェクタ60502の1つ又は2つ以上の機能を調節して(60852)、ジョーによって組織上に印加される圧力を変化させるように構成することができ、これにより、把持された組織内の流体レベルが変化し、これにより組織インピーダンスが変化する。組織インピーダンスの変化が不足に対処する場合(60853)、制御回路760は、組織への治療信号の印加を許可する(60804)。
少なくとも1つの例では、プロセス60850の様々な態様は、制御回路760を介して実行され得る。特定の事例では、メモリ68008は、プロセッサ68002によって実行されると、プロセッサ68002に、例えば、エンドエフェクタ60502の機能を調節すること(60852)など、プロセス60800の1つ又は2つ以上の態様を行わせるプログラム命令を記憶する。制御回路760は、1つ又は2つ以上のモータアセンブリに、エンドエフェクタ60502の関節運動及び/又は回転の程度を変化させて、エンドエフェクタ60502によって把持された組織に印加される圧力を調節して、不足に対処し(60853)得る。追加的に、又は代替的に、制御回路760は、モータアセンブリにエンドエフェクタ60502のジョーの一方又は両方を移動させて、閉鎖駆動部(例えば、Iビーム764、閉鎖駆動部3800)の駆動力を調節してもよく、閉鎖駆動部は、エンドエフェクタ60502によって把持された組織に印加されたクランプ圧力を調節して、不足に対処する(60853)。追加的に、又は代替的に、制御回路760は、不足に対処する(60853)ために、Iビーム764の運動のパラメータを調節するモータアセンブリであってもよい。
主に図212を参照すると、特定の事例では、対処されるべき不足は、治療信号の印加ではなく、エンドエフェクタ機能にあり得る。一例では、不足は、エンドエフェクタ機能を行うための電力不足であり得る。先に説明したように、エンドエフェクタ機能は、例えば、バッテリの形態であり得る、例えば、エネルギー源762(図163)などのローカルエネルギー源によって電力供給され得る、1つ又は2つ以上のモータアセンブリによって駆動される。例えば、ローカルエネルギー源762の充電レベルが、エンドエフェクタ機能のうちの1つ又は2つ以上を完了するための電力要件未満である場合、電力不足が生じ得る場合。
図212は、エンドエフェクタ(例えば、エンドエフェクタ60502)によって把持された組織への治療信号の印加を協働して制御し、組織治療サイクルの適用においてエンドエフェクタの機能を制御するための制御プログラム又は論理構成を図示する、プロセス60900の別の論理フロー図である。より具体的には、プロセス60900は、例えば、エンドエフェクタ閉鎖を完了するための局所的な電力不足などのエンドエフェクタ機能の不足に対処することに焦点を当てる。
様々な事例では、プロセス60850は、任意の好適なRFエネルギー源(例えば、RFエネルギー源794)、及び例えば、エンドエフェクタ1300、60002、60502などの任意の好適なエンドエフェクタを含む、例えば、外科用器具1000、60000などの任意の好適な外科用器具によって実装され得る。しかしながら、簡潔にするために、プロセス60850の以下の説明は、例えば、RFエネルギー源794、外科用器具60000、及びエンドエフェクタ60502を含む、外科用システムにおけるその実施に焦点を当てる。特定の事例では、メモリ68008は、プロセッサ68002によって実行されると、プロセッサ68002にプロセス60900の1つ又は2つ以上の態様を行わせるプログラム命令を記憶する。
示される例では、プロセス60900は、エンドエフェクタ60502の閉鎖を完了するための電力不足に起因して最適な閉鎖閾値を下回る、エンドエフェクタ60502によって把持された組織へのRFエネルギーの印加に関連する。RFエネルギー源794は、治療信号を組織に通過させることによって、電極アセンブリ60526、60527、60536、60536のうちの1つ又は2つ以上にRFエネルギーを組織に印加させるように構成することができる。プロセス60900は、エンドエフェクタ60502の閉鎖をもたらすように構成されているモータアセンブリに電力を供給するように構成されているローカルエネルギー源(例えば、エネルギー源794)の充電レベルを検出すること(60901)を含む。プロセス60900は、局所エネルギー源の充電レベルに基づいて、治療信号のパラメータを調節すること(60902)を更に含む。
特定の事例では、制御回路760は、ローカルエネルギー源762の充電レベルを監視するように構成されている。少なくとも1つの例では、制御回路760は、充電レベルを監視するために充電メータを用いる。充電レベルが、例えば、エンドエフェクタの閉鎖などのエンドエフェクタ機能に関連付けられた所定の閾値未満である場合、制御回路は、RFエネルギー源794に治療信号のパラメータを調節させて、エンドエフェクタの閉鎖に関与するモータアセンブリが閉鎖機能を完全に完了することができないことを補償し得る。特定の事例では、治療信号の調節されたパラメータは電力である。制御回路760は、例えば、ローカルエネルギー源の充電レベルが所定の閾値未満であると決定したことに応答して、RFエネルギー源794に治療信号の電力レベルを増加させるように構成することができる。
エネルギー封止、感知、及びそれらのためのアルゴリズム
図1~図13に関連して上述したような外科用器具1000は、図213~図233に関連して後述するような様々なアルゴリズムの制御下でのエネルギー封止及び感知のために適合かつ構成され得る。外科用器具1000は、エネルギー送達システム1900と、電気エネルギーで組織を封止し、エンドエフェクタ1300のジョー1310、1320内の短絡を感知するためのアルゴリズムを実行するように構成されている、制御回路と、を備える。特に、以下の説明は、概して、エンドエフェクタ1300のジョー1310、1320内のRF短絡を検出し、エネルギー送達システム1900からのシステムRF電力レベル(非アクティブ化を含む)を決定し、エンドエフェクタ1300のジョー1310、1320内の電極1925のどの部分が通電されるかを決定し、外科用器具1000の制御システムと通信しているディスプレイ1190によって、外科用器具1000の状態及び外科用器具1000内で何が起こっているかの説明をユーザに示すためのアルゴリズムを対象とする。外科用器具1000の制御回路によって実行され得る様々なアルゴリズムを説明する前に、説明は、まず、エネルギー封止及び感知動作のためにアルゴリズムが実行される電気/電子動作環境の説明に移る。
図213は、本開示の少なくとも1つの態様による、様々な機能を行うためにアクティブ化され得る複数のモータ40602、40606を備える、図1~図13に関連して説明した外科用器具1000のための制御システム40600を示す。外科用器具1000は、この文脈において本開示の範囲を限定することなく、異なる構成を有する電子制御回路を備え得ることが理解されるであろう。特定の事例では、第1のモータ40602は、第1の機能を行うためにアクティブ化することができ、第2のモータ40606は、第2の機能を行うためにアクティブ化することができ、以下同様である。特定の事例では、制御システム40600の複数のモータ40602、40606は個々にアクティブ化されて、エンドエフェクタにおいて発射運動、閉鎖運動、及び/又は関節運動を生じさせることができる。発射運動、閉鎖運動、及び/又は関節運動は、例えばシャフトアセンブリを介してエンドエフェクタに伝達することができる。
特定の態様では、制御システム40600は、発射モータ40602を含んでもよい。発射モータ40602は、具体的にはナイフ要素を変位させるために、モータ40602によって生成された発射運動をエンドエフェクタに伝達するように構成することができる、発射モータ駆動アセンブリ40604に動作可能に連結されてもよい。特定の事例では、モータ40602によって生成される発射運動によって、例えば、ステープルをステープルカートリッジから、エンドエフェクタによって把持された組織内へと配備し、かつ/又はナイフ要素の切刃を前進させて、把持された組織を切断してもよい。ナイフ要素は、モータ40602の方向を逆転させることによって後退させられ得る。
特定の態様では、制御システム40600は、例えば、関節運動モータ40606を含んでもよい。関節運動モータ40606は、関節運動モータ40606によって生成された関節運動をエンドエフェクタに伝達するように構成することができる、関節運動モータ駆動アセンブリ40608に動作可能に結合されてもよい。特定の事例では、関節運動によって、例えば、エンドエフェクタがシャフトに対して関節運動することができる。
上述したように、制御システム40600は、様々な独立機能を行うように構成されてもよい、複数のモータを含んでもよい。特定の態様では、制御システム40600の複数のモータ40602、40606は、他のモータが停止したままで、個々に又は別個にアクティブ化して、1つ又は2つ以上の機能を行わせることができる。例えば、関節運動モータ40606を起動して、発射モータ40602が停止したままで、エンドエフェクタを関節運動させることができる。代替的に、発射モータ40602を起動させて、関節運動モータ40606が停止した状態を維持している間に、複数のステープルを発射させ、及び/又は切刃を前進させることができる。
モータ40602、40606の各々は、モータのシャフト上の出力トルクを測定するためのトルクセンサを備えてもよい。エンドエフェクタ上の力は、ジョーの外側の力センサによって、又はジョーを作動させるモータのトルクセンサなどによって、任意の従来の様式で感知されてもよい。
様々な態様では、図213に示されるように、制御システム40600は、発射モータ40602を駆動するための第1のモータドライバ40626と、関節運動モータ40606を駆動するための第2のモータドライバ40632と、を備え得る。他の態様では、単一のモータドライバを用いて、発射モータ40602及び関節運動モータ40606を駆動することができる。一態様では、モータドライバ40626、40632は各々、1つ又は2つ以上のHブリッジ電界効果トランジスタ(field effect transistor、FET)を備えることができる。発射モータドライバ40626は、例えば、マイクロコントローラ40578(「コントローラ」又は「制御回路」)からの入力に基づいて、電源40628から発射モータ40602に伝達される電力を変調することができる。特定の事例では、マイクロコントローラ40578は、上述したように、例えば、発射モータ40602がマイクロコントローラ40578に結合された状態で、発射モータ40602によって引き出される電流を決定するために用いることができる。
特定の態様では、マイクロコントローラ40578は、マイクロプロセッサ40622(「プロセッサ」)と、プロセッサ40622に結合された1つ又は2つ以上の非一時的コンピュータ可読媒体又はメモリユニット40624(「メモリ」)と、を含むことができる。特定の態様では、メモリ40624は、様々なプログラム命令を記憶することができ、それが実行されると、プロセッサ40622に、本明細書に記載される複数の機能及び/又は計算を実施させることができる。特定の態様では、メモリユニット40624のうちの1つ又は2つ以上が、例えば、プロセッサ40622に連結されてもよい。
特定の事例では、電源40628を用いて、例えばマイクロコントローラ40578に電力を供給してもよい。特定の事例では、電源40628は、例えばリチウムイオン電池などの電池(又は「電池パック」若しくは「電源パック」)を含んでもよい。特定の事例では、電池パックは、制御システム40600に電力を供給するため、ハンドルに解除可能に装着されるように構成されてもよい。直列で接続された多数の電池セルを、電源40628として使用してもよい。特定の事例では、電源628は、例えば、交換可能及び/又は再充電可能であってもよい。
様々な事例では、プロセッサ40622は、発射モータドライバ40626を制御して、発射モータ40602の位置、回転方向、及び/又は速度を制御することができる。同様に、プロセッサ40622は、関節運動モータドライバ40632を制御して、関節運動モータ40606の位置、回転方向、及び/又は速度を制御することができる。特定の態様では、プロセッサ40622は、プロセッサ40622に結合された発射又は関節運動モータ40602、40606を停止及び/又は使用不能にするように、モータドライバ40626、40632に信号伝達することができる。「プロセッサ」という用語は、本明細書で使用されるとき、任意の好適なマイクロプロセッサ、マイクロコントローラ、又は、コンピュータの中央処理装置(central processing unit、CPU)の機能を1つの集積回路又は最大で数個の集積回路上で統合した他の基本コンピューティングデバイスを含むと理解されるべきである。プロセッサ40622は、デジタルデータを入力として受理し、メモリ40624内に記憶された命令に従ってそのデータを処理し、結果を出力として提供する、多目的のプログラム可能デバイスである。これは、内部メモリを有するので、逐次的デジタル論理の一例である。プロセッサ40622は、二進数法で表される数字及び記号で動作する。他の態様では、コントローラ40578又は制御回路は、プログラマブルロジックデバイス(PLD)、フィールドプログラマブルゲートアレイ(FPGA)、ディスクリートロジック、又は他のハードウェア回路、ソフトウェア、及び/又はファームウェア、又は以下の説明で説明する機能を行うための他の機械実行可能命令などのアナログ又はデジタル回路を備え得る。
一態様では、プロセッサ40622は、Texas Instruments製のARM Cortexの商品名で知られているものなど、任意のシングルコア又はマルチコアプロセッサであってもよい。特定の態様では、マイクロコントローラ40578は、例えばTexas Instrumentsから入手可能なLM 4F230H5QRであってもよい。少なくとも1つの実施例では、Texas InstrumentsのLM4F230H5QRは、製品データシートで容易に利用可能な機能の中でもとりわけ、最大40MHzの256KBのシングルサイクルフラッシュメモリ若しくは他の不揮発性メモリのオンチップメモリ、性能を40MHz超に改善するためのプリフェッチバッファ、32KBのシングルサイクルSRAM、StellarisWare(登録商標)ソフトウェアを搭載した内部ROM、2KBのEEPROM、1つ又は2つ以上のPWMモジュール、1つ又は2つ以上のQEIアナログ、12個のアナログ入力チャネルを備える1つ又は2つ以上の12ビットADCを含むARM Cortex-M4Fプロセッサコアである。他のマイクロコントローラが、制御システム40600とともに使用するのに容易に代用されてもよい。したがって、本開示は、この文脈に限定されるべきではない。
特定の態様では、メモリ40624は、プロセッサ40622に結合可能な制御システム40600の発射及び関節運動モータ40602、40606の各々を制御するためのプログラム命令を含んでもよい。例えば、メモリ40624は、発射モータ40602及び関節運動モータ40606を制御するためのプログラム命令を含んでもよい。そのようなプログラム命令は、プロセッサ40622に、外科用器具又はツールのアルゴリズム又は制御プログラムからの入力に従って、発射機能、閉鎖機能、及び関節運動機能を制御させることができる。
特定の態様では、コントローラ40578は、RF発生器40574と、エンドエフェクタ内に配置された複数の電極40500とに、マルチプレクサ40576を介して結合されてもよい。RF発生器40574は、双極又は単極RFエネルギーを個別に又は組み合わせて供給するように構成されている。一態様では、RF発生器40574は、各電極40500のための器具の遠位部分内の直列電流制限要素Zを用いて、セグメント化RF電極40500を駆動するように構成されている。RF発生器40574は、セグメント化電極40550の出力電流、電圧、電力、及びインピーダンス特徴を監視することによって、電極40500と戻り経路40510との間の短絡を感知するように構成されてもよい。一態様では、RF発生器40574は、短絡が検出されたときに、短絡した電極40500を通る電流を能動的に制限するか、又は電流の方向を短絡した電極40500の周りに変えるように構成することができる。この機能はまた、マルチプレクサ40576などの切り替え素子と組み合わせてコントローラ40578によって達成されてもよい。方向転換又は電流制限機能は、検出された短絡又は電極40500の不規則性に応答して、RF発生器40574によって制御され得る。RF発生器40574がディスプレイを備えている場合、RF発生器40574は、制約された電極40500が検出されたときにユーザに情報を表示することができ、短絡の感知が取り外されたときに電流に対する制約を取り除くことができる。RF発生器40574は、組織溶接動作が継続する際に、又は組織溶接動作の開始時に、感知機能及び制限機能に関与することができる。一態様では、RF発生器40574は、独立型発生器であってもよい。別の態様では、RF発生器40574は、外科用器具ハウジング内に内蔵されてもよい。
一態様では、RF発生器は、短絡又は他の組織抵抗、インピーダンス、又は不規則性に基づいて、外科用器具1000のエンドエフェクタ1300に印加されるエネルギーモダリティ(単極/双極)RFを適合させるように構成されてもよい。RF単極/双極エネルギーモダリティは、RF発生器40574によって、又はコントローラ40578によって、マルチプレクサ40576等の切り替え要素と組み合わせて、適合されてもよい。一態様では、本開示は、単極又は双極RFエネルギーを印加するように構成されているデュアルエネルギーモードRFエンドカッター外科用器具1000を提供する。更に、RF発生器40574は、RF発生器40574又はコントローラ40578のいずれかによって検出された組織インピーダンス状態に基づいて、各単極又は双極RFエネルギーモダリティの電力レベル及びパーセンテージを調節するように構成することができる。エネルギーモダリティ調節機能は、双極RFエネルギーモダリティと単極RFエネルギーモダリティとの間で切り替えること、双極RFエネルギーモダリティと単極RFエネルギーモダリティとを混合すること、又は特定の電極セグメント405001~4を混合することを含み得る。一態様では、独立して制御される電極セグメント405001~4は、グループとして、又はセグメント405001~4毎に個々の電極として、一緒に切り替えることができる。
ここで図239も参照すると、様々な態様では、デュアルエネルギーモードRFエンドカッター外科用器具1000は、それらの本体に沿って可変導電性を有するステープル44300とともに用いられ得る。一態様では、可変導電性ステープル44300は、導電性である変形可能な脚部44304、44306などのステープル44300の一部分と、変形可能な脚部44304、44306とは異なる導電性を有するクラウン44320などのステープル44300の一部分と、を備え得る。ステープル44300の導電率は、ステープル44300がデュアルモードRFエネルギー/ステープル留め複合外科用器具1000のRF電極40500と戻り経路40510との間の短絡状態で把持されるとき、ステープル44300の可変導電率が、ステープル44300が一方の電極40500を他方に短絡させることを防止するために有利に利用され得るように、その幾何形状又は材料組成に基づいて異なり得る。一態様では、ステープル44300の導電率は、ステープル44300の温度、ステープル44300を通る電流、又は高い絶縁破壊係数を有するステープル44300の一部分に基づいてもよい。
一態様では、複合エネルギーステープラ外科用器具1000のための外科用ステープル44300は、基部44301を画定するクラウン44302と、基部44301の各端部から延在する第1及び第2の変形可能な脚部44304、44306と、を備える。基部44301の少なくとも第1の部分上に配置された第1の導電性材料、及び基部44301の少なくとも第2の部分上に配置された第2の導電性材料。第1の導電性材料の導電率は、第2の導電性材料の導電率とは異なる。一態様では、第1の導電性材料及び第2の導電性材料は同じであり、導電率は、基部44301の第1の部分及び第2の部分上に堆積された第1の導電性材料及び第2の導電性材料の異なる幾何形状に基づいて異なる。一態様では、第1の導電性材料及び第2の導電性材料は異なる組成を有し、導電率は、基部44301の第1の部分及び第2の部分上に堆積された第1の導電性材料及び第2の導電性材料の異なる組成に基づいて異なる。一態様では、第1の導電性材料及び第2の導電性材料は、異なる導電性を提供するために、同様の幾何形状及び異なる材料組成を有する。
図213に戻って参照すると、他の態様では、コントローラ40578は、特定の設定で使用されるべきプログラム命令をプロセッサ40622にアラートするために、1つ又は2つ以上の機構及び/又はセンサに結合され得る。例えば、センサは、エンドエフェクタの発射、閉鎖、及び関節運動に関連するプログラム命令を使用するようにプロセッサ40622に警報することができる。一態様では、メモリ40624は、プロセッサ40622に、1つ又は2つ以上の電極406234を監視することによって、エンドエフェクタにおけるRF短絡を検出させるための実行可能命令を記憶してもよい。別の態様では、メモリ40624は、プロセッサ40622に(非アクティブ化を含む)RF電力レベルを決定させるための実行可能命令を記憶し得る。他の態様では、メモリ40624は、プロセッサ40622に、電極40500のどの部分が通電されるかを決定させ、コントローラ40578に結合されたディスプレイ40625を介して、なぜ何が起こっているかをユーザに示させるための実行可能命令を記憶することができる。
一態様では、メモリ40624は、実行されると、プロセッサ40622に、エンドエフェクタ内の短絡を検出させ、コントローラ40578によって電極40500を予測させ、それに応答して、RF発生器40574によって生成されたRFエネルギーのRFエネルギー経路を適合させる実行可能命令を含んでもよい。一態様では、電極40500は、各電極について制御システム40600の遠位部分内に直列電流制限要素を有するセグメント化RF電極であってもよい。セグメント化電極の態様は、図214~図217に関連して後述する。他の態様では、メモリ40624は、プロセッサ40622に電極40500と戻り経路40510との間の短絡を感知させるための実行可能命令を記憶することができる。他の態様では、メモリ40624は、実行されると、プロセッサ40622に、短絡が検出されたときに短絡した電極40500を通る電流を能動的に制限させるか、又は電流の方向を短絡した電極40500の周りに変える実行可能命令を記憶することができる。様々な態様では、方向転換又は電流制限は、検出された短絡又は電極40500不規則性に応答して、コントローラ40578又はRF発生器40574によって行われる。様々な態様では、コントローラ40578は、電極40574が制約されたときを検出することができ、ディスプレイ40625を介してその情報をユーザに表示することができる。様々な態様では、電流制約機能は、短絡の感知が取り外されるときに取り外され得る。様々な態様では、感知及び制限機能は、組織溶接プロセスが継続する際に、又は組織溶接プロセスの開始時に関与させることができる。
様々な態様では、治療エネルギーを印加する前に、コントローラ40578は、電極40500の間又は電極40500と戻り電極40510との間の短絡を走査するための初期スクリーニングを提供するように、治療レベルよりも低いレベルで、電極40500アレイに事前封止エネルギーサイクルを印加してもよい。マルチプレクサ40576は、障害が存在するかどうかを決定するために、低レベル信号を送出することによって、電極40500アレイを通して循環し得る。これはRF発生器405774に報告される可能性がある。内蔵システムは、次いで、故障又は短絡が存在するチャネルを除外し、RF発生器40574がその出力を外科用器具1000に適合させる必要なく、残りのチャネルを通して循環することができる。一態様では、コイルは、提案されるエネルギー経路内の既存のステープルの存在を決定するために、小型金属検出器として用いられてもよい。この例では、システムは受動的であり、組織に電流を流さない。
特定の態様では、コントローラ40578は、様々なセンサに結合され得る。センサは、例えば、スイッチの位置を感知するために用いることができる位置センサを備えてもよい。したがって、プロセッサ40622は、例えば、センサを介してスイッチが第1の位置にあることを検出すると、エンドエフェクタのナイフの発射と関連付けられたプログラム命令を使用することができ、プロセッサ40622は、例えば、センサを介してスイッチが第2の位置にあることを検出すると、アンビルの閉鎖と関連付けられたプログラム命令を使用することができ、プロセッサ40622は、例えば、センサを介してスイッチが第3の位置又は第4の位置にあることを検出すると、エンドエフェクタの関節運動と関連付けられたプログラム命令を使用することができる。
追加のセンサは、ベースRF波形上のACリップルを測定し、電流Δdi/dtを測定するためのアーク検出センサを含むが、これに限定されない。他のセンサは、可視、赤外線(infrared、IR)、又は電磁スペクトルの他の部分における特定の周波数又は波長を監視するための光学検出器及び/又は腹腔鏡カメラを含む。一態様では、負の増分抵抗及びRFアーク温度を検出するためのセンサをコントローラ40578に結合することができる。他のセンサは、湿度、大気圧、温度、又はそれらの組み合わせを測定するための環境センサを含む。
図214は、本開示の少なくとも1つの態様による、図6に示される電極1925が、ジョー40524の下面(すなわち、動作中に組織に面するジョー40524の表面)上の回路基板40570又は他のタイプの好適な基板上に配置された複数対のセグメント化RF電極40500で構成されている、図1~図13に記載される外科用器具1000のためのエンドエフェクタのジョー40524を示す。セグメント化RF電極40500の様々な対は、RF源(又は発生器)40574によって通電される。マルチプレクサ40576は、コントローラ40578の制御下で、必要に応じてRFエネルギーをセグメント化RF電極40500の様々な対に分配することができる。様々な態様によれば、RF源40574、マルチプレクサ40576、及びコントローラ40578は、図1及び図6に関連して説明したように、シャフト1200及び関節運動継手1400を通って外科用器具1000のエンドエフェクタ1300内に延在するエネルギー送達システム1900内に位置し得る。RFエネルギーは、電極40500と、RF発生器40574に戻る戻り経路40510との間に結合される。
図214に示されるセグメント化電極40500の対の例では、回路基板40570は、マルチプレクサ40576とセグメント化電極40500の様々な対との間の電気的接続を提供する、複数の層を備えることができる。例えば、回路基板40570は、セグメント化電極40500の対への接続を提供する複数の層を含むことができる。一例では、最上層は、セグメント化電極40500の最も近接する対への接続を提供することができる。中間層は、セグメント化電極40500の中間対への接続を提供することができ、最下層は、セグメント化電極40500の最も遠位の対への接続を提供することができる。しかしながら、セグメント化電極40500の対の構成は、この文脈に限定されない。
図215は、本開示の少なくとも1つの態様による、多層回路基板40570を示す。図215は、ジョー40524の断面端面図を示す。ステープルポケット50584に隣接する回路基板40570は、3つの導電層405801~3を備え、それらの間に絶縁層405821~4を有し、様々な層405801~3がどのように積層されてマルチプレクサ40576に戻って接続され得るかを示す。
図6に示されるように、エンドエフェクタ1300内に複数のRF電極40500を有する利点は、電極40500の短絡を引き起こし得る、以前の器具発射又は外科的処置から組織内に残された金属ステープル線又は他の導電性物体の場合、そのような短絡状況は、RF発生器40574、マルチプレクサ40576、及び/又はコントローラ40578によって検出され得、エネルギーは、それに応答して、短絡又はエネルギー経路の適応に適切な様式で変調され得ることである。
図216は、本開示の少なくとも1つの態様による、ジョー40524内のナイフスロット40516の両側のセグメント化電極40500が異なる長さを有することを示す。示される例では、4つの共線セグメント化電極が存在するが、最遠位電極40500、40500は長さが10mmであり、2つの近位電極40500、40500は長さが20mmである。より短い遠位電極40500、40500を有することは、組織に印加される治療エネルギーを集中させるという利点を提供し得る。
図217は、本開示の少なくとも1つの態様による、複数のセグメント化電極40500を備えるエンドエフェクタの断面図である。図217の例に示されるように、セグメント化電極40500は、エンドエフェクタの上側ジョー40524(又はアンビル)上に配置される。示される例では、アクティブセグメント化電極40500は、ナイフスロット40516に隣接して位置付けられている。ジョー40524の金属アンビル部分は、戻り電極として機能し得る。絶縁体40504は、セラミックで作製されてもよく、セグメント化電極40500を金属ジョー40524から絶縁する。
図218は、本開示の少なくとも1つの態様による、RF電極40500の複数の対が、各電極のためのエンドエフェクタの遠位部分内に直列電流制限要素Zを含む、図1~図13及び図214に記載される外科用器具1000のためのエンドエフェクタのジョー40524を示す。電流制限素子Zは、マルチプレクサ40576と直列に概略的に示されているが、電極素子が配置される回路基板40570上に配置されてもよい。したがって、コントローラ40578又はRF発生器40574は、電極40500と戻り経路40510との間の短絡を感知し、短絡が検出されたときに、短絡した電極40500を通る電流を能動的に制限するか、又は電流の方向を短絡した電極40500の周りに変更するように構成することができる。一態様では、方向転換又は電流制限は、検出された短絡又は電極の不規則性に応答して、外科用器具1000(図1~図13)内のコントローラ40578電子機器、又はRF発生器40574によって行われる。一態様では、コントローラ40578又はRF発生器40574は、電極40500が制約されたときを検出することができ、ディスプレイ40625(図213)上でその情報をユーザに表示することができる。一態様では、電流に対する制約は、短絡の感知が取り外されるときに取り外される。一態様では、感知及び制限は、組織溶接プロセスが継続する際に、又は組織溶接プロセスの開始時に関与させることができる。
RF短絡検出方法及びそのためのシステム
図1~図13を参照すると、本開示は、ここで、エンドエフェクタ1300のジョー1310、1320におけるRF短絡を検出し、RF電力レベル(非アクティブ化を含む)を決定し、電極1925のどの部分が通電されているかを決定し、ディスプレイ1190を介してなぜ何が起こっているかをユーザに示すためのシステム及び方法の説明に移る。本システム及び方法は、アルゴリズム的区別を用いてエンドエフェクタ1300のジョー1310、1320内のRF短絡を検出することと、外科用器具1000を監視することによってRFアーチングを検出することと、を含む。1つの一般的な態様では、システム及び方法は、エンドエフェクタ1300のジョー1310、1320内に把持された低インピーダンス組織と、電極1925と戻り電極1590によって画定された戻り経路との間の金属短絡とのアルゴリズム的区別によって、エンドエフェクタ1300内のRF短絡を検出することを含む。短絡リスクの外科医への検出/警告は、ディスプレイ1190を介してユーザに提供される。アルゴリズムは、発射前に低電力探査パルスを利用し、ジョー1310、1320内の許容不能な量の金属と比較して、クリップ/ステープル及び許容可能なものを区別することができる。
上記の図213~図218及び以下の図219~図234も参照して、アルゴリズム的区別を用いてエンドエフェクタ1300のジョー1310、1320におけるRF短絡を検出し、外科用器具1000を監視することによってRFアーチングを検出するためのシステム及び方法を、図213に示す外科用器具1000の制御システム40600、図213~図218に関連して説明したセグメント化電極40500、及び図219~図232に示すグラフ表現に関連して説明する。最後に、本方法は、図233及び図234に関連して説明する方法41900、42000に関連して更に説明する。
1つの一般的な態様では、本開示は、コントローラ40578による電極1925及び/又はセグメント化電極40500の短絡を検出及び予測し、並びにそれに応答したエネルギー経路の適合させるための、システム40600並びに方法41900を提供する。一態様では、セグメント化RF電極40500は、例えば、とりわけ、各電極405001~4について、器具1000のジョー40524の遠位部分内に直列電流制限要素Z(図218)を備えてもよい。別の態様では、コントローラ40578は、電極1925と戻り電極1590によって画定される戻り経路との間、又は電極40500と戻り経路40510との間の短絡を感知するように構成されている。更に別の態様では、コントローラ40578は、短絡が検出されたときに、短絡した電極1925、40500を通る電流を能動的に制限するか、又は電流の方向を短絡した電極1925、40500の周りに変えるように構成することができる。更に別の態様では、コントローラ40578又はRF発生器40574は、検出された短絡又は電極不規則性に応答して、短絡した電極要素を通る電流の方向を変えるか又は短絡した電極要素を通る電流を制限するように構成され得る。更に別の態様では、コントローラ40578は、電極1925、40500が制約されたときを検出するように構成されてもよく、ディスプレイ1190、40625を介してその情報をユーザに表示することができる。更に、更に別の態様では、コントローラ40578は、短絡の感知が取り外されたとき、電流に対する制約を取り除くように構成され得る。更に、更に別の態様では、コントローラ40578は、組織溶接プロセスが継続する際に、又は組織溶接プロセスの開始時に、短絡感知及び電流制限を関与させるように構成されてもよい。
アルゴリズム的区別
図1~図13及び図213~図228Dを参照して、本開示は、ここで、低インピーダンス組織状態と、電極1925と戻り経路電極1590との間又は電極40500と戻り経路40510との間の金属短絡との間のアルゴリズム的区別の一態様の説明に移る。短絡を検出すると、コントローラ40578は、外科医に短絡リスクの警告を提供する。アルゴリズムは、発射前に低電力探査パルスを利用し、許容不能な量の金属と比較して、許容可能なクリップ/ステープルを区別し、エネルギー制御調節を引き起こすジョー1320、40524内の金属の検出を行う。
図219~図222は、低インピーダンス組織状態と、電極1925、40500と戻り経路電極1590、40510との間の金属短絡との間のアルゴリズム的区別を示すために、電極1925又はセグメント化電極40500に印加される低電力探査パルス波形41000(例えば、電流、電力、電圧、及びインピーダンス)の様々なグラフ表現を示す。図219は、本開示の少なくとも1つの態様による、電極1925、40500及び戻り経路電極1590、40510を短絡させる金属物体を検出するために、コントローラ40578の制御下でRF発生器40574によって電極1925、40500に印加される探査パルス波形41000のグラフ表現である。特に、図219は、電極1925、40500と戻り経路電極1590、40510との間の短絡を引き起こす場に位置する金属ステープルを含む肝臓組織においてRF封止エネルギーを発射又はアクティブ化する前の低電力探査パルス波形41000の適用を図示する。探査パルス波形41000は、図220の詳細図に示される、短絡事象の前及びその間に電極1925、40500と戻り経路電極1590、40510との間で測定された、パルス電流波形41002、パルス電力波形41004、パルス電圧波形41006、及びパルスインピーダンス波形41008を含む。
図220は、本開示の少なくとも1つの態様による、短絡事象中に電極1925、40500に印加された探査パルス波形41000の詳細図である。探査パルス波形4100は、エンドエフェクタ1300のジョー1320(40524)、1310の間に把持された組織を封止するために治療用RFエネルギーを発射又は送達する前に印加される。示されるように、短絡事象期間中、パルス電流波形41002は、最大値(例えば、imax≧3A)まで増加し、同時に、パルス電力波形41004は、最小値(例えば、pmin≦2W)まで減少し、パルス電圧波形41006は、最小値(例えば、vmin≦0.6V)まで減少し、パルスインピーダンス波形41008は、最小値(例えば、Zmin≦0.2オーム)まで減少する。一態様では、短絡検出アルゴリズムは、探査エネルギーパルスを印加し、パルス波形41002、41004、41006、41008の値を監視し、それらを所定の値と比較して、エンドエフェクタ1300のジョー1320(40524)、1310の間に短絡が存在するかどうかを決定する。次いで、アルゴリズムは、探査パルス波形41000が、エンドエフェクタ1300のジョー1320(40524)、1310の間に把持された短絡又は低インピーダンス組織によるものであるかどうかを決定する。
図221は、本開示の少なくとも1つの態様による、エンドエフェクタ1300のジョー1320(40524)、1310の間に把持された組織を封止するために治療用RFエネルギーを発射又は送達する前に電極1925、40500に印加される探査パルス波形41010のグラフ表示である。探査パルス波形41010は、電極1925、40500と戻り電極1590、40510との間に短絡が存在することなく、低インピーダンス組織に印加される。低インピーダンス組織探査パルス波形41010は、電流波形41012、電力波形41014、電圧波形41016、及びインピーダンス波形41018を含む。
図222は、本開示の少なくとも1つの態様による、約2Ωのインピーダンスを有する組織に印加されるパルスインピーダンス波形41018を示す詳細図である。低組織インピーダンスは、約1Ω~3Ωの範囲であることが決定されている。図221に示されるように、低インピーダンス組織に印加される探査パルス電流波形41012の値は、約2.8Aに増加するが、探査パルス電圧波形41016は、約5Vに低下し、探査パルス電力波形41014は、約20Wに低下する。RF発生器40574の試験は、組織インピーダンスZ<1Ωを、約2Ω及び1Ω~3Ωの範囲として識別された低インピーダンス組織インピーダンスと比較して、短絡として識別した。
図213~図222を参照すると、一態様では、本開示は、組織封止(溶接)サイクルを開始する前にエンドエフェクタのジョー50524における短絡を検出する方法を提供する。したがって、メモリ40624は、プロセッサ40622によって実行されると、プロセッサ40622に、RF発生器40574を制御させて、図219~図222に示されるような一連のサイクル前探査パルスを発生させて、エンドエフェクタのジョー40524に短絡があるかどうか、又はジョー40524と接触している組織が低インピーダンスを有するかどうかを決定させる、実行可能命令を記憶する。プロセッサ40622の制御下で、RF発生器40574は、エネルギーアクティブ化サイクルの開始時に、ジョー40524の遠位端部(ノーズ)に位置する電極40500に、非治療用RFエネルギーレベルのパルスを送達する。ノーズパルスは、外科医には検出不能で、アクティブ化シーケンスの一部分である。一態様では、パルス/検出期間は、持続時間が0.1~1.0秒の範囲で選択することができる。他の態様では、パルス/検出期間は、持続時間が0.5秒未満である。
他の態様では、プロセッサ40622の制御下で、RF発生器40574は、短絡検出特異性を提供するために、エネルギーアクティブ化の開始時に非治療エネルギーレベルを有するノーズパルスを生成する。一態様では、RF発生器40574は、全てのアクティブ/戻り電極40500に同時に印加される単一のパルスを生成する。別の態様では、RF発生器40574は、検出された短絡の周囲を封止するために治療モードにあるときにアクティブ/戻り電極40500の極めて特異的な標的化を可能にするように、各々がアクティブ/戻り電極40500のセグメントの異なる組み合わせを有する複数のパルスを生成する。
依然として図213~図222を参照すると、一態様では、本開示は、組織封止サイクル中にエンドエフェクタのジョー50524における短絡を検出する方法を提供する。組織封止サイクル内のジョー50524における短絡の検出は、ステープル/クリップが組織によって保護され、かつ組織封止サイクルが開始するまで短絡が生じない場合に必要であり得る。そのような組織保護されたステープル/クリップは、上述したような封止サイクル前のノーズパルスを使用して検出不能である。この態様では、制御システム40600のコントローラ40578は、1つ又は2つ以上の電極セグメント40500~40500のアクティブ化を管理するためにリアルタイムで反応するように構成されている。したがって、メモリ40624は、プロセッサ40622によって実行されると、プロセッサ40622に、RF発生器40574を制御させて、連続非パルスエネルギーを発生させ、電極40500に印加させ、電流、電力、電圧、及び/又はインピーダンスのリアルタイムレート変化又はリアルタイムレベル閾値を決定させる、実行可能命令を記憶してもよい。一態様では、プロセッサ40622は、減少した電圧、インピーダンス、及び/又は電力を検出するように構成されている。別の態様では、プロセッサ40622は、増加した電流を検出するように構成されている。
様々な他の態様では、メモリ40624は、プロセッサ40622によって実行されると、プロセッサ40622に、エネルギー流に基づかない代替の検出技術を実行させる、実行可能命令を記憶してもよい。一態様では、セグメント化熱電対は、各アクティブ電極及び/又は戻り電極40500の場所に位置してもよく、プロセッサ40622は、各熱電対の温度を読み取り、かつセグメント化電極40500の場所における熱シグネチャを用いて、短絡の存在を決定するように構成されている。
本開示の別の代替の検出態様では、コイルピックアップは、各アクティブ電極及び/又は戻り電極40500の場所に位置してもよく、プロセッサ40622は、電極40500セグメントによる電気出力から誘導される磁場を検出するように構成されている。コイルは、提案されるエネルギー経路内の既存のステープルの存在を決定するために、小型金属検出器として用いられてもよい。コイル検出システムは受動的であり、短絡の検出を可能にするために組織に電流を流すことを実際に含む。
本開示の別の代替の検出態様では、ジョー40524において短絡が発生したかどうかを感知するために、単一周波数検出器が用いられる。一態様では、単一周波数検出器は、超低周波数(very low frequency、VLF)インダクタンス又は抵抗を検出するために2つのコイルを備える。別の態様では、単一周波数検出器は、送信機能及び受信機能の両方のために1つのコイルを利用するパルス誘導(pulse induction、PI)を用い、塩水環境において良好である。更に別の態様では、単一周波数検出器は、2つのコイルを備え、ビート周波数発振(beat frequency oscillation、BFO)を検出するように構成されている。
本開示の別の代替の検出態様では、ジョー40524において短絡が発生したかどうかを感知するために、複数周波数検出器が用いられる。一態様では、複数周波数検出器は、短い深度周波数(浅いターゲット)又は長い深度周波数(深いターゲット)に構成され得る。
本開示の別の代替の検出態様では、背景環境(組織、流体)の望ましくない信号を取り外すために、バランスデバイスが用いられ得る。一態様では、バランスデバイスは、手動又は自動調節を用いることができる。自動調節では、バランスデバイスが最良のバランス設定を決定する。一態様では、バランスデバイスは、周囲環境の現在の状態に基づいてバランスデバイスが連続的に調節する追跡調節を提供する。
本開示の別の代替の検出態様では、ステープル材料は、ショーツの特定の識別のために選択され得る。一態様では、ステープル材料組成物は、製造業者に固有のものとすることができる。この技術は、特定の競合ステープルを識別するために用いられ得る。
本開示の別の代替の検出態様では、コイルは、水平及び/又は垂直に位置付けられてもよく、信号における利得/損失は、コイルに対する異物の位置に依存する。一態様では、各コイルは、デッキ又は回路基板40570上の各電極40500を取り囲むように位置付けられる。別の態様では、コイルは、電極40500を囲繞するプラスチックカートリッジ壁内に位置付けられ/成形されてもよい。
様々な他の態様では、メモリ40624は、プロセッサ40622によって実行されると、プロセッサ40622に、パルスエネルギー印加においてデータに呼び掛けることによって、完全短絡の前に短絡を予測させる、実行可能命令を記憶してもよい。一態様では、パルス化は、短絡に対する反応に対する短絡の予測を可能にすることができる。一態様では、エネルギープロファイルは、エネルギーの連続印加ではなくパルス印加であってもよい。パルス化は、サイクル全体にわたって繰り返しエネルギーを増加させる必要があることに基づいて、非パルス化エネルギー技術よりも余分な情報層を提供することができる。
図223~図228Dは、図219~図222に関連して説明したように、場内に金属ステープルを含む肝臓組織におけるエネルギーアクティブ化のいくつかの例を示す。図223は、電極1925、40500及び戻り経路電極1590、40510を短絡させる金属物体を検出するために、コントローラ40578の制御下でRF発生器40574によって電極1925、40500に印加される探査パルス波形41100の第1の例のグラフ表現である。
図223は、本開示の少なくとも1つの態様による、電極1925、40500と戻り経路電極1590、40510との間の短絡を引き起こす場に位置する金属ステープルを含む肝臓組織においてRF封止エネルギーを発射又はアクティブ化する前の低電力探査パルス波形41100の第1の例の適用を図示する。探査パルス波形41100は、短絡事象の前及びその間に電極1925、40500と戻り経路電極1590、40510との間で測定された、パルス電流波形41102、パルス電力波形41104、パルス電圧波形41106、及びパルスインピーダンス波形41108を含む。
図224Aは、本開示の少なくとも1つの態様による、電極1925、40500と戻り経路電極1590、40510との間の短絡への遷移中の探査パルス波形41100のインピーダンス波形41108成分の詳細図である。示されるように、短絡事象の前に、インピーダンス41108は、短絡事象中に短絡インピーダンス41110に達する前に減少する。
図224Bは、本開示の少なくとも1つの態様による、電極1925、40500と戻り経路電極1590、40510との間の短絡への遷移中の探査パルス波形41100の電力波形41104成分の詳細図である。示されるように、短絡事象の前に、電力41104は、短絡事象中に短絡電力41112に達する前に減少する。
図224Cは、本開示の少なくとも1つの態様による、電極1925、40500と戻り経路電極1590、40510との間の短絡への遷移中の探査パルス波形41100の電圧波形41106成分の詳細図である。示されるように、短絡事象の前に、電圧41106は、短絡事象中に短絡電圧41114に達する前に減少する。
図224Dは、本開示の少なくとも1つの態様による、電極1925、40500と戻り経路電極1590、40510との間の短絡への遷移中の探査パルス波形41100の電流波形41102成分の詳細図である。示されるように、短絡事象の前に、電流41102は、短絡事象中に短絡電流41116に達する前に増加する。
図225は、本開示の少なくとも1つの態様による、電極1925、40500と戻り経路電極1590、40510との間の短絡を引き起こす場に位置する金属ステープルを含む肝臓組織においてRF封止エネルギーを発射又はアクティブ化する前の低電力探査パルス波形41200の第2の例の適用を図示する。探査パルス波形41200は、短絡事象の前及びその間に電極1925、40500と戻り経路電極1590、40510との間で測定された、パルス電流波形41202、パルス電力波形41204、パルス電圧波形41206、及びパルスインピーダンス波形41208を含む。
図226Aは、本開示の少なくとも1つの態様による、電極1925、40500と戻り経路電極1590、40510との間の短絡への遷移中の探査パルス波形41200のインピーダンス波形41208成分の詳細図である。示されるように、短絡事象の前に、インピーダンス41208は、短絡事象中に短絡インピーダンス41210に達する前に減少する。
図226Bは、本開示の少なくとも1つの態様による、電極1925、40500と戻り経路電極1590、40510との間の短絡への遷移中の探査パルス波形41200の電力波形41204成分の詳細図である。示されるように、短絡事象の前に、電力41204は、短絡事象中に短絡電力41212に達する前に減少する。
図226Cは、本開示の少なくとも1つの態様による、電極1925、40500と戻り経路電極1590、40510との間の短絡への遷移中の探査パルス波形41200の電圧波形41206成分の詳細図である。示されるように、短絡事象の前に、電圧41206は、短絡事象中に短絡電圧41214に達する前に減少する。
図226Dは、本開示の少なくとも1つの態様による、電極1925、40500と戻り経路電極1590、40510との間の短絡への遷移中の探査パルス波形41200の電流波形41202成分の詳細図である。示されるように、短絡事象の前に、電流41202は、短絡事象中に短絡電流41216に達する前に増加する。
図227は、本開示の少なくとも1つの態様による、電極1925、40500と戻り経路電極1590、40510との間の短絡を引き起こす場に位置する金属ステープルを含む肝臓組織においてRF封止エネルギーを発射又はアクティブ化する前の低電力探査パルス波形41300の第2の例の適用を図示する。探査パルス波形41200は、短絡事象の前及びその間に電極1925、40500と戻り経路電極1590、40510との間で測定された、パルス電流波形41302、パルス電力波形41304、パルス電圧波形41306、及びパルスインピーダンス波形41308を含む。
図228Aは、本開示の少なくとも1つの態様による、電極1925、40500と戻り経路電極1590、40510との間の短絡への遷移中の探査パルス波形41300のインピーダンス波形41308成分の詳細図である。示されるように、短絡事象の前に、インピーダンス41308は、短絡事象中に短絡インピーダンス41310に達する前に減少する。
図228Bは、本開示の少なくとも1つの態様による、電極1925、40500と戻り経路電極1590、40510との間の短絡への遷移中の探査パルス波形41300の電力波形41304成分の詳細図である。示されるように、短絡事象の前に、電力41304は、短絡事象中に短絡電力41312に達する前に増加する。
図228Cは、本開示の少なくとも1つの態様による、電極1925、40500と戻り経路電極1590、40510との間の短絡への遷移中の探査パルス波形41300の電圧波形41306成分の詳細図である。示されるように、短絡事象の前に、電圧41306は、短絡事象中に短絡電圧41314に達する前に減少する。
図228Dは、電極1925、40500と戻り経路電極1590、40510との間の短絡への遷移中の探査パルス波形41300の電流波形41302成分の詳細図である。示されるように、短絡事象の前に、電流41302は、短絡事象中に短絡電流41316に達する前に増加する。
一態様では、探査波形は傾斜を画定する。コントローラ40578は、実際のパルス傾斜を指定されたパルス傾斜と比較するように構成され得る。エネルギー印加の各パルスは、指定されたパルス傾斜を有する。コントローラ40578は、実際のパルス傾斜が、予め定義された電圧、電流、又はインピーダンス探査波形についての指定されたパルス傾斜とは異なるとき、短絡リスクを識別するように構成され得る。一態様では、コントローラ40578は、現在のパルスデータを、例えば、移動平均などを含む前のパルスのパルスデータと比較するように構成され得る。前述のように、コントローラ40578は、電圧、インピーダンス、若しくは電力の減少を検出すること、又は電流の増加を検出することによって、短絡リスクを識別し得る。
一態様では、コントローラ40578は、電極40500、又は電極405001~4のセグメントを監視して、エンドエフェクタ1300のジョー1310、1320(40524)における予測又は実際の短絡状態に基づいて、短絡リスクのレベルを決定するように構成されてもよい。コントローラ40578は、クリップ/ステープルを、許容不能な量の金属とは対照的に許容可能な短絡状態、及びエンドエフェクタ1300のジョー1310、1320(40524)内の金属物体の場所と区別するように構成され得る。
短絡のより高いリスクは、エンドエフェクタ1300のジョー1310、1320(40524)の封止ゾーン内のクリップ、ステープル、及び未知の金属物体を区別することによって、コントローラ40578によって決定され得る。しかしながら、コントローラ40578は、抵抗を測定することによってクリップを区別するように構成されてもよく、クリップは、ステープルと比較したクリップ内の金属の量に基づいて、より低い抵抗(マイクロオーム)を有する。コントローラ40578は、ステープルと比較して、より低い抵抗に基づいて、クリップがより低い温度を有する可能性が最も高い電極405001~4セグメント温度を測定するように構成され得る。一態様では、ジョーの異なる場所で温度を測定するために、セグメント化熱電対がエンドエフェクタのジョー内に組み込まれてもよい。一態様では、クリップインピーダンス傾斜は、ステープルインピーダンス傾斜とは異なり、コントローラ40578は、差を決定するように構成されてもよい。例えば、クリップ及びステープルは、短絡のリスクを決定するためにコントローラ40578によって監視され得る異なる誘導性又は容量性リアクタンスを有する。一態様では、コントローラ40578は、セグメント化電極405001~4の2つ又はそれ以上の隣接するセグメントの間の短絡を検出して、クリップ又は複数のステープルを示すように構成されてもよい。他の態様では、コントローラ40578は、セグメント化電極405001~4内のセグメントの25%超にわたって分布する短絡を検出するように構成することができる。
RF封止経路が最適でない経路、すなわち、オフセット封止経路と比較して反対の封止経路を通って画定されるとき、コントローラ40578によってより低いリスクが決定され得る。他の態様では、双極密閉と単極密閉との間の切り替えは、短絡のより低いリスクを提示する。したがって、コントローラ40578は、外科用器具が双極封止から単極封止に切り替わるときの短絡のより低いリスクを評価するように構成され得る。また、封止ゾーンに位置するステープルは、封止ゾーンにおける既知の金属物体の存在と同様に、短絡のより低いリスクを提示する。また、ステープルが外科用器具1000などの特定のRF/エンドカッターデバイスに固有の金属で作製されている場合、より低いリスクが決定され得る。そのような事例では、コントローラ40578は、外科用器具1000が既知の固有の金属の存在にどのように応答するかを区別するように構成され得る。
エンドエフェクタ1300のジョー1310、1320(40524)における短絡状態の検出時に、コントローラ40578は、可聴、視覚、触覚、又はこれらの組み合わせであり得る1つ又は2つ以上のユーザインターフェースを通して、短絡リスクのアラートを外科医に出力するように構成され得る。一態様では、コントローラ40578は、ディスプレイ40625上に警告を出力することができる。短絡リスクの存在を外科医に通信することに加えて、コントローラ40578は、リスクの場所、リスクレベル、リスクに応答したデバイス変更を識別及び通知し、かつ/又は外科医アクションの推奨を提供するように構成されてもよい。他の態様では、コントローラ40578は、集約された情報を単純なはい/いいえ、良好/不良、発射準備完了などの種類の簡潔通信に通信するように構成され得る。他の態様では、コントローラ40578は、外科医に通信せず、むしろ、短絡事象又は選別の潜在的リスクを適切に管理するように構成されてもよい。
RFアーク放電検出
一態様では、コントローラ40578は、電極40500、又は電極405001~4のセグメントを監視して、RFアーク放電を検出するように構成することができる。アーク検出は、コントローラ40578が外科用器具1000の動作及び機能性を監視することによって実装され得る。潜在的なアーク検出/リスク因子は、ベースRF波形上の過剰なACリップルを含む。したがって、一態様では、コントローラ40578又はRF発生器40574は、ベースRF波形上の過剰なACリップルを監視するように構成され得る。別の態様では、コントローラ40578は、RF電流を測定し、増加する電流Δdi/dtを測定することによって潜在的なアーク検出/リスクを決定するように構成されてもよい。加えて、又は代替的に、コントローラ40578は、光学測定を行うために光学検出器を用いることによってコロナグローを監視するように構成されてもよい。一態様では、光学的測定は、腹腔鏡カメラを使用し、可視、赤外線(IR)、又は電磁スペクトルの他の部分内の特定の周波数を監視して行われてもよい。一態様では、そのような光学測定技術は、外科用ハブアーキテクチャへの統合であり得る。他のRFアーク放電検出技術は、アーク温度が上昇するにつれて電気抵抗を減少させる負の増分抵抗を検出するようにコントローラ40578を構成することを含むが、これに限定されない。コントローラ40578がコントローラ40578の構成において考慮され得るRFアーク放電を引き起こすか又は悪化させ得る他の環境要因は、湿度、大気圧、温度、又はこれらの組み合わせを測定するために、コントローラに結合された様々なセンサを監視することを含む。潜在的な測定ツールとしては、外科用器具1000又はエンドエフェクタ1300上のプローブ、手術室で行われるか若しくは外科用ハブに結合された他のデバイス又は測定値、腹腔鏡などが挙げられる。
次に、RFアーク放電に関連する電気パラメータを図示するいくつかのプロットについて説明する。図229は、本開示の少なくとも1つの態様による、インピーダンス41402、電圧41406、及び電流41408対時間(t)のグラフ図示41400である。アーク点41410の時点で、過剰なdi/dt(電流対時間)は、急峻な上昇気流41408対時間(t)勾配41412をもたらし、インピーダンスの急速な減少-dZ/dt(負のインピーダンス対時間)は、急峻な下降インピーダンス41402対時間(t)勾配41414をもたらす。これは、電気アークを生成する負の増分抵抗と称することができる。一態様では、前述のように、コントローラ40578は、電流41408対時間(t)勾配41412(di/dt)、インピーダンス41402対時間勾配41414(-dZ/dt)、又はそれらの組み合わせのいずれかを監視して、電気アークのリスクの発生を予測するように構成され得る。
図230は、本開示の少なくとも1つの態様による、電流41502及び電圧41506の波形に対する、0.8cm面積内の1.8cm間隙にわたる電気アーク放電電荷41505のグラフ図示41500である。示されるように、電流41502は、アーク放電電荷41505が上昇し始めるまで急速に増加する。電圧41506は急速に上昇し、電流41502は低下する。アーク放電後、電圧41506は急速に低下し、電流41502は0まで減少する。
図231は、本開示の少なくとも1つの態様による、電流(アンペア)が水平軸に沿っており、かつ電圧(ボルト)が垂直軸に沿っている、電圧対電流の関数としての放電レジームのグラフ図示41600である。示されるように、放電は、暗レジーム41620で開始し、グロー放電レジーム41622に遷移し、次いで、アーク放電レジーム41624に遷移する。暗放電レジーム41620では、電圧曲線は、背景イオン化41602から飽和レジーム41604を通ってコロナ領域61608に遷移する。グロー放電レジーム41622において、電圧41610は、破壊電圧点に到達した後に低下し、正常グロー41618領域から異常グロー領域に遷移する。電圧41612は、アーク放電レジーム41624に遷移するまで上昇し、その時点で、電圧41614が急速に低下し、最初に非熱アークを、次いで熱アークを生成する、グローからアークへの遷移がある。
図232は、本開示の少なくとも1つの態様による、様々な組織タイプのインピーダンス(オーム)の関数としての電力(ワット)のグラフ図示41700である。電流41702が低インピーダンス組織に印加されるとき、電力41704は比較的低い。組織インピーダンスが増加し始めると、電力41704は、インピーダンスが約1000オームに達するまで増加する。この時点で、電力41704は、組織インピーダンスの増加とともに指数関数的に減少し始める。示されるように、非導電性溶液中の前立腺組織41706の組織インピーダンスは、エネルギーが印加されるとき、約10オーム~約1500オームの範囲内である。肝臓及び筋肉組織41708のインピーダンスは、エネルギーが印加されると、約500オーム~約1900オームの範囲にある。エネルギーが印加されるとき、腸組織41710のインピーダンスは、約1200オーム~約2400オームの範囲にある。胆嚢組織41712のインピーダンスは、エネルギーが印加されるとき、約1700オーム~約3000オームの範囲にある。エネルギーが印加されるとき、腸間膜大網組織41714のインピーダンスは、約2600オーム~約3600オームの範囲である。エネルギーが印加されるとき、脂肪、瘢痕、又は癒着組織41716のインピーダンスは、約3000オーム~約4000オームの範囲内である。
様々な態様では、コントローラ40578は、電気アーク放電をリアルタイムで検出するように構成され得る。複数の周波数が、図232に示されるように、組織状態を検出するために用いられてもよい。リアルタイムでの電気アーク放電のリアルタイム検出は、診断を加速することができ、例えば、図232に示されるように、異なる組織のための組織環境(圧力、含水量)におけるリアルタイム診断を提供するように構成することができる。
図233は、本開示の少なくとも1つの態様による、外科用器具1000(図1~図6及び図213~図218参照)のエンドエフェクタ1300のジョー1310、1320(40524)内の短絡を検出する方法41900の論理フロー図である。図6及び図213~図218も参照すると、方法41900によれば、メモリ40624は、実行されると、プロセッサ40622に方法41900を実行させる、実行可能命令のセットを記憶することができる。方法41900によれば、プロセッサ40622は、RF発生器40574に、エンドエフェクタ1300のジョー1320(40524)内に位置する電極40500に治療量以下の電気信号を印加させて(41902)、短絡を検出させる。ジョー1320が単一の長手方向電極1925を備える場合、RF発生器40574は、治療量以下の電気信号を単一の長手方向電極1925に直接印加することができる。ジョー40524がセグメント化電極40500を備える場合、プロセッサ40622は、マルチプレクサ40576を通してセグメント化電極40500のうちの1つを選択し、次いで、RF発生器40574に、選択された電極40500に治療量以下の電気信号を印加させる。治療量以下の電気信号は、エンドエフェクタ1300内に把持された組織に対していかなる治療効果も引き起こすことなく、電極1925(40500)と戻り電極1590(40510)との間の短絡を検出するために使用される信号であることを理解されたい。
方法41900によれば、治療量以下の電気信号を印加した後にプロセッサ40622によって受信された信号に基づいて、プロセッサ40622は、電極1925(40500)が戻り電極1590(40510)に短絡しているかどうかを決定する(41904)。電極1925(40500)が短絡されていない場合、方法41900はNO経路に沿って継続し、プロセッサ40622は、RF発生器40574に治療用RF電気エネルギーを電極1925(40500)に印加させる(41918)。対照的に、電極1925(40500)が短絡している場合、方法41900は、「はい」経路に沿って継続し、プロセッサ40622は、短絡した電極1925(40500)を通る電流を修正する。一態様では、プロセッサ40622は、短絡した電極1925(40500)を通る電流を制限する(41906)。一態様では、ジョー1320が単一の電極1925を備える場合、プロセッサ40622は、RF発生器40574に出力電流を制限させる(41906)。別の態様では、ジョー40524がセグメント化電極40500を備える場合、プロセッサ40622は、マルチプレクサ40576を通して、電流経路の方向を、遠位電極セグメントに結合された電流リミッタZを通して短絡した電極40500の周りに選択的に変える(41908)。いずれの場合も、プロセッサ40622は、ディスプレイ40625に、検出された短絡した電極1925(40500)に関する情報を外科医又は外科チームの他のメンバーに表示させる(41910)。
方法41900によれば、プロセッサ40622は、電極1925(40500)が依然として短絡しているかどうかを決定する(41912)。電極1925(40500)が依然として短絡している場合、方法41900は、「はい」経路に沿って継続し、プロセッサ40622は、短絡した電極1925(40500)に印加される電流を制限する(41906)か、又は電流の方向を変える(41908)ことを継続する。電極1925(40500)がもはや短絡されていない場合、方法41900は、「いいえ」分岐に沿って継続し、プロセッサ40622は、電極1925(40500)を通る電流制限制約を取り除く(41914)か、又は電極1925(40500)の周りへの電流方向転換を取り除く(41918)。次いで、プロセッサ40622は、RF発生器40574に治療用RF電気エネルギーを電極1925(40500)に印加させる(41918)。
図234は、本開示の少なくとも1つの態様による、外科用器具1000(図1~図6及び図213~図218参照)のエンドエフェクタ1300のジョー1310、1320(40524)内の短絡を検出する方法42000の論理フロー図である。図6及び図213~図218も参照すると、方法42000によれば、メモリ40624は、実行されると、プロセッサ40622に方法42000を実行させる、実行可能命令のセットを記憶することができる。方法42000によれば、プロセッサ40622は、マルチプレクサ40576にセグメント化電極40500のアレイ内の電極405001~4を選択させる(42002)。プロセッサ40622は、RF発生器40574に、エンドエフェクタ1300のジョー40524内に位置する選択された電極405001~4に治療量以下の電気信号を印加させて(42004)、短絡を検出させる。
方法42000によれば、治療量以下の電気信号を印加した後にプロセッサ40622によって受信された信号に基づいて、プロセッサ40622は、選択された電極405001~4が戻り電極40510に短絡しているかどうかを決定する(42006)。選択された電極405001~4が短絡していない場合、方法42000は、「いいえ」経路に沿って継続し、プロセッサ40622は、マルチプレクサ40576を通して電極アレイ40500内の次の電極405001~4を選択し(42008)、次いで、全てのセグメント化電極405001~4が短絡について試験されるまで、新たに選択された電極405001~4を試験する。選択された電極405001~4のうちのいずれか1つが短絡している場合、方法42000は、「はい」経路に沿って継続し、プロセッサ40622は、短絡した電極405001~4を通る電流を修正する。一態様では、プロセッサ40622は、マルチプレクサ40576を通して、短絡された電極405001~4を通る電流を選択的に修正し、短絡された選択された電極405001~4を通る電流を制限する(42010)か、又は電流の方向を短絡された電極405001~4の周りに変え(42012)、これにより、RF発生器40574は、選択された電極405001~4に治療用RF電気エネルギーを印加する(41918)。一態様では、プロセッサ40622は、マルチプレクサ40576を通して、遠位電極セグメントに結合された電流リミッタZを通して、電流経路の方向を短絡した電極40500の周りに変える(41908)。いずれの場合も、プロセッサ40622は、ディスプレイ40625に、検出された短絡した電極405001~4に関する情報を外科医又は外科チームの他のメンバーに表示させる(42014)。
方法42000によれば、プロセッサ40622は、選択された電極405001~4が依然として短絡しているかどうかを決定する(42016)。選択された電極405001~4が依然として短絡している場合、方法42000は、「はい」経路に沿って継続し、プロセッサ40622は、短絡した選択された電極405001~4への電流を制限すること(42010)又は電流の方向を変えること(42012)を継続する。選択された電極405001~4がもはや短絡されていない場合、方法42000は、「いいえ」分岐に沿って継続し、プロセッサ40622は、選択された電極405001~4を通る電流制限制約を取り除く(42018)か、又は選択された電極405001~4の周りの電流方向転換を取り除く(42020)。次いで、プロセッサ40622は、RF発生器40574に、選択された電極405001~4に治療用RF電気エネルギーを印加させる(42022)。
様々な態様では、プロセッサ40622は、図233で説明したように電極1925(40500)が戻り電極1590(40510)に短絡しているかどうか(42006)を決定するか、又は図219~図228Dで説明した技術を使用して、図234で説明したように、選択された電極405001~4が戻り電極40510に短絡しているかどうか(42006)を決定する。例えば、図219~図222を参照すると、プロセッサ40622は、短絡した電極を低インピーダンス組織から区別するように構成されてもよい。一態様では、219~220を参照すると、プロセッサ40622は、RF発生器40574を制御して、一連の探査パルス波形41000を電極1925(40500)に印加する。一態様では、探査パルスは、エンドエフェクタ1300のジョー1320(40524)、1310の間に把持された組織を封止するために治療用RFエネルギーを発射又は送達する前に印加される。プロセッサ40622は、探査波形41000を監視しており、パルス電流波形41002が最大値(例えば、imax≧3A)まで増加し、同時に、パルス電力波形41004が最小値(例えば、pmin≦2W)まで減少し、パルス電圧波形41006が最小値(例えば、vmin≦0.6V)まで減少し、パルスインピーダンス波形41008が1オーム未満の最小値(例えば、Zmin≦0.2オーム)まで減少するとき、電極1925(40500)が短絡していると決定する。プロセッサ40622は、組織インピーダンスが約1Ω~3Ωの範囲内にあるとき、図221~図222に関連して説明したように、短絡した電極1925(40500)を低インピーダンス組織から区別する。図221に示されるように、低インピーダンス組織に印加される探査パルス電流波形41012の値は、約2.8Aに増加するが、探査パルス電圧波形41016は、約5Vに低下し、探査パルス電力波形41014は、約20Wに低下する。RF発生器40574の試験は、組織インピーダンスZ<1Ωを、約2Ω及び1Ω~3Ωの範囲として識別された低インピーダンス組織インピーダンスと比較して、短絡として識別した。
デュアルエネルギーモダリティ複合外科用器具
図1~図6及び図213~図218を参照すると、一態様では、外科用器具1000は、切り替え可能/混合可能なエネルギーモダリティを有するデュアルエネルギーモダリティ複合エネルギーデバイスとして構成されてもよい。コントローラ40578は、短絡又は他の組織抵抗、インピーダンス、又は不規則性に基づいて、エネルギーモダリティ(単極/双極)RFエンドカッターを適合させるように構成されている。一態様では、外科用器具1000のRFエンドカッターは、単極又は双極RFエネルギーをセグメント化電極40500に印加するように構成されてもよい。一態様では、各エネルギーモダリティの電力レベル及びパーセンテージは、コントローラ40578によって検出される低抵抗組織状態に基づいて調節されてもよい。前述のように、コントローラ40578は、実行可能命令を記憶するメモリ40624と、命令を実行してエネルギーモダリティを調節するように構成されているプロセッサ40622と、を備える。一態様では、プロセッサ40622は、エネルギーモダリティを双極RFから単極RFに交換して、2つのエネルギーモダリティを混合するか、又は特定の電極セグメント405001~4のみを混合するように構成されてもよい。一態様では、プロセッサ40622は、電極セグメント405001~4を独立して制御して、グループとして、又はセグメント毎に個々の電極セグメント405001~4として、一緒に切り替えるように構成することができる。
図213~図228Dに関連して説明するように、コントローラ40578は、エネルギーモダリティを制御又は切り替える際に使用するために、短絡事象と低インピーダンス組織事象との間の差を決定するように構成されてもよい。一態様では、コントローラ40578は、金属接触によるセグメント化電極405001~4の短絡を防止するために、エネルギーモダリティを混合又は切り替えるように構成されてもよい。一態様では、コントローラ40578は、電極405001~4のセグメントが、エンドエフェクタ1300のジョー1310、1320(40524)内の金属ステープルの存在によって、又はジョー1310、1320(40524)が互いに物理的に接触することによって短絡していることを決定するように構成されてもよい。短絡事象が存在すると決定すると、コントローラ40578は、まず、エネルギーモダリティを混合し、次いで、エネルギーモダリティの混合が、図229~図232に関連して上記で説明したように、アーク放電(例えば、スパーク)閾値を下回る短絡事象を解決しない場合、エネルギーモダリティを双極から単極に切り替える。
一態様では、例えば、コントローラ40578が、単極及び双極戻り経路40510が同時に開放されていると決定した場合、エネルギーは、所望のエネルギーモダリティ経路を迂回し得る、最小抵抗の経路を取るであろうため、混合は、所望のように生じないであろう。したがって、プロセッサ40622は、エネルギーモダリティ戻り経路が同時に開放されないように、必要に応じて単極/双極エネルギー経路間で切り替えるように、マルチプレクサ40576を選択的に制御するように構成されてもよい。プロセッサ40622は、アクティブ切り替えが行われている時間にエネルギーモダリティを混合することを考慮することができる。
一態様では、プロセッサ40622は、以下の技術によって、双極と単極との間でアクティブ切り替え(エネルギーモダリティ混合)を交互に行ってもよい。双極通電中、プロセッサ40622は、マルチプレクサ40576を通して、双極エネルギー戻り経路40510を開放し、全ての電極405001~4がオンにされ、任意の短絡した電極405001~4がオフにされる。単極通電中、プロセッサ40622は、マルチプレクサ40576を通して、単極戻り経路を開放し、短絡されたアクティブ電極405001~4のみがオンにされる。別の態様では、単極通電中、プロセッサ40622は、マルチプレクサ40576を通して、全ての電極405501~4がオンにされた状態で、単極戻り経路を開放する。
別の態様では、プロセッサ40622は、感知された組織インピーダンス制限に基づいて、エネルギーモダリティ又はバランスを調節するように構成されてもよい。プロセッサ40622は、エンドエフェクタ1300のジョー1310、1320(40524)内に把持された組織のパラメータを感知して、ジョー1310、1320(40524)内の組織内に導電性要素又は他の金属物体が位置するかどうかを呼び掛けるように構成されてもよい。図213~図228Dに関連して上で考察したように、コントローラ40578は、プレエネルギーアクティブ化サイクル中に非治療エネルギーのいくつかの探査パルス波形を電極405001~4に印加するように構成されてもよい。探査パルスは、組織を封止するために治療用RFエネルギーを発射又は送達する前に印加されてもよい。RF探査パルス波形は、電極405001~4を通して送信される複数の高周波を含んでもよい。戻り信号を用いて、電気外科的切断、高周波療法、乾燥、又は時間ベースなどの所望の切断/凝固のタイプを含む、様々な組織パラメータを決定してもよい。一態様では、プロセッサ40622は、図232に関連して上述したように、インピーダンス読み取り値を用いて組織タイプを決定することができる。一態様では、初期電力設定は、既知の組織パラメータに基づいてもよく、後続電力設定は、例えば、組織インピーダンスの測定値又は読み取り値に基づいて適合されてもよい。
一態様では、組織パラメータは、強誘電性セラミック材料を利用して感知されてもよい。強誘電性は、外部電界(E)の印加によって反転することができる自発電気分極(P)を有する特定の材料の特徴である。強誘電性セラミック材料による自発電気分極の3つの例が図235~図237に示されている。図235は、本開示の少なくとも態様による、分極(P)が外部電界(E)の線形41802関数である誘電分極プロット41800を示す。図236は、本開示の少なくとも態様による、分極(P)が外部電界(E)の非線形41822関数であり、原点において負から正の分極への鋭い遷移を呈する、常誘電分極プロット41820を示す。図237は、本開示の少なくとも態様による、分極(P)が原点の周りでヒステリシスを呈する外部電界(E)の非線形41842関数である強誘電分極プロット41840を示す。強誘電性セラミック材料の例としては、チタン酸バリウム、金属ワイヤが組み込まれたセラミック、又はステープル上に塗布されたセラミックコーティングが挙げられる。チタン酸バリウムは、7,000という高い誘電率値を有するセラミックである。狭い温度範囲にわたって、15,000という高い値が可能である。
図238は、本開示の少なくとも1つの態様による、外科用器具1000のエンドエフェクタ1300のジョー1310、1320(40524)中における短絡又はジョーに把持された組織タイプに起因してエネルギーモダリティを適合させる方法43000の論理フロー図である。図6及び図213~図218も参照すると、一態様では、プロセッサ40622は、マルチプレクサ40576を通してセグメント化電極40500のアレイ内の電極405001~4を選択する(43002)。事前エネルギーアクティブ化サイクルの間、プロセッサ40622は、RF発生器4074に、選択された電極405001~4に治療量以下の電気信号を印加させて(43004)、短絡した電極と、エンドエフェクタ1300のジョー1310、1320(40524)内に把持された低インピーダンス組織と、を区別する。治療量以下の電気信号を印加した後にプロセッサ40622によって受信された測定パラメータに基づいて、プロセッサ40622は、選択された電極405001~4が短絡しているかどうかを決定する(43006)。
方法43000によれば、選択された電極405001~4が短絡している場合、方法43000は、「はい」経路に沿って進み、プロセッサ40622は、RF発生器40574に単極RFエネルギーと双極RFエネルギーとを混合させる(43008)。混合単極及び双極RFエネルギーを印加する期間の後、プロセッサ40622は、選択された電極405001~4が依然として短絡しているかどうかを決定する(43010)。選択された電極405001~4が依然として短絡している場合、方法43000は、「はい」経路に沿って進み、プロセッサ40622は、マルチプレクサ40576を通してRF発生器40574の出力エネルギーを単極RFエネルギーと双極RFエネルギーとの間で切り替え(43012)、選択された電極が依然として短絡しているかどうかを決定し続ける(43010)。
方法43000によれば、プロセッサ40622が、選択された電極405001~4がもはや短絡していないと決定したとき(43006、43010)、方法43000は、「いいえ」経路に沿って進み、プロセッサ40622は、エンドエフェクタ1300のジョー1310、1320(40524)内に把持された組織のパラメータを感知する(43014)。図232に関連して上述したように、プロセッサ40622は、インピーダンス又は他の測定されたパラメータなどの感知された組織パラメータに基づいて、組織のタイプを決定する(43016)。図33に関連して説明したように、非導電性溶液中の前立腺組織41706の組織インピーダンスは、エネルギーが印加されるとき、約10オーム~約1500オームの範囲内である。肝臓及び筋肉組織41708のインピーダンスは、エネルギーが印加されると、約500オーム~約1900オームの範囲にある。エネルギーが印加されるとき、腸組織41710のインピーダンスは、約1200オーム~約2400オームの範囲にある。胆嚢組織41712のインピーダンスは、エネルギーが印加されるとき、約1700オーム~約3000オームの範囲にある。エネルギーが印加されるとき、腸間膜大網組織41714のインピーダンスは、約2600オーム~約3600オームの範囲である。エネルギーが印加されるとき、脂肪、瘢痕、又は癒着組織41716のインピーダンスは、約3000オーム~約4000オームの範囲内である。組織のタイプが決定されると(43016)、プロセッサ40622は、組織タイプに基づいて切断/凝固のための好適な処置を決定し(443018)、決定された切断/凝固処置を組織に適用する(43200)。
したがって、方法4300の実行中及びRF単極又は双極RFエネルギーの印加中、プロセッサ40622は、各エネルギーモダリティの電力レベル及び/又はパーセンテージを制御し、検出された低抵抗組織状態に基づいて各エネルギーモダリティの電力レベル及びパーセンテージを調節する。プロセッサ40622は、双極と単極との間で切り替えること、2つのエネルギーモダリティを混合すること、又は電極セグメント405001~4のサブセットを混合することによって、エネルギーモダリティを調節してもよい。他の態様では、プロセッサ40622は、電極セグメント405001~4を独立して制御して、グループとして、又はセグメント毎に個々のプロセスとして、一緒に切り替えるように構成されている。
前のステープルラインからのRF短絡に対する制御された反応
図239は、本開示の少なくとも1つの態様による、基部44301を画定するクラウン44302と、基部44301の各端部から延在する変形可能な脚部44304、44306と、を備える、ステープル44300を示す。上記と同様に、ステープルカートリッジ凹部は、脚部44304、44306がステープラカートリッジに接触するときに、それらを案内及び/又は変形させるように構成され得る。一態様では、クラウン44302は、基部44301上に配置された材料44303を含み、材料は、基部44301上にオーバーモールド又はコーティングされ得る。以下でより詳細に考察するように、材料44303は、例えば、電気絶縁材料、ステープル44300が加熱されるにつれて抵抗を増加させる可変電気抵抗を有する材料、又は可変抵抗感熱材料などの材料から構成することができ、これらの各々は以下で詳細に説明する。これらの態様の少なくとも1つにおいて、材料44303は、基部44301及び変形可能な脚部44304、44306を備える単一の連続ワイヤの周りに形成されてもよい。他の態様では、変形可能な脚部44304、44306は、材料44303に埋め込まれた別々の変形可能な部材を含むことができる。更に、様々な態様では、基部44301を備えるワイヤは、上述の凹部及びアンビルを提供するように変形され得る。
一態様では、コントローラ40578は、前のステープルラインからのRF短絡によるステープル44300の制御された反応を監視するように構成されてもよい。一態様では、本開示は、ステープル44300とともに使用するためのRFエンドカッター外科用器具1000を提供し、ステープルは、その本体に沿って、及び一態様ではクラウン44302又はクラウン44302の基部44301部分に沿って、可変導電率を有する。一態様では、ステープル44300は、第1の導電率を有する部分と、第2の導電率を有する別の部分と、を備えてもよく、第1の導電率と第2の導電率とは異なる。一態様では、ステープル44300の導電性は、形状又は材料の態様に基づいて異なっていてもよい。例えば、ステープル44300が、RFエンドカッター外科用器具1000などのエネルギー/ステープル留め組み合わせデバイスのRF電極40524と戻り経路40510との間の短絡状態で把持されるとき、可変導電率は、ステープル44300が電極40500を互いに短絡させることを防止する。様々な他の態様では、ステープル44300の導電性は、ステープル44300の温度、ステープル44300を通る電流、又は高い絶縁破壊係数を有するステープル44300の一部分(基部44301若しくはクラウン44302の他の部分など)に基づいてもよい。
様々な態様では、本開示は、ステープル44300の導電性を修正又は調節することによって短絡の可能性を最小限に抑えるための様々なステープル構成を提供する。一態様では、ステープル44300は、ステープル44300の非屈曲可能クラウン44302部分が電気的に絶縁されて、エンドエフェクタ1300が組織に埋め込まれた以前に配備されたステープル44300にわたってクランプされている間に次の発射が短絡をもたらす可能性を最小限に抑えるように構成されてもよい。一態様では、ステープル44300の屈曲不可能なクラウン44302部分は、短絡を最小限に抑えるために、電気絶縁材料から形成されてもよいか、又は吸収性ポリマーを含んでもよい。他の態様では、吸収性絶縁材料は、エンドエフェクタ1300のカートリッジスタック内のドライバを排除するために、ドライバとしての役割を兼ねてもよい。
本開示の様々な態様では、ステープル44300のクラウン4132部分又は全体は、電気絶縁材料で形成された電気絶縁部分を備えてもよいか、又はステープル44300の基部44301上にオーバー成形された電気絶縁材料44303を備えてもよい。一態様では、電気絶縁材料44303は、ステープル44300のクラウン44302又は基部44301の上にオーバー成形されてもよい。一態様では、電気絶縁材料44303は、0.0005インチ~0.0015インチの範囲、典型的には約0.001インチの厚さを有するコーティングの形態で、ステープル44300にオーバー成形又は塗布されてもよい。一態様では、ステープル44300は、Vikrylという一般名で知られている材料と同様のラクチド及びグリコリドコポリマー+カルシウムステアレートコーティングを用いて、ステープル44300のクラウン44302部分又は基部部分44301上にオーバー成形されてもよい。コーティング材料44303の厚さは、0.0005インチ~0.0015インチの範囲であってもよく、典型的には、約0.001インチであってもよい。
本開示の様々な態様では、ステープル44300のクラウン44302部分又はステープル44300全体は、例えば、DuPontによって開発された一般名Kaptonで知られるポリイミドフィルムなどのポリイミド材料44303に浸漬又はコーティングされてもよい。ポリイミドは、短絡に抵抗する高い絶縁耐力を提供する。ステープル44300をコーティング又は浸漬するための好適な候補である様々なポリイミド材料44303は、参照することによって本明細書に組み込まれる、MEDICAL IMPLANTS MADE OF WEAR-RESISTANT,HIGH-PERFORMANCE POLYIMIDE,PROCESS OF MAKING SAME AND MEDICAL USE OF SAMEと題された米国特許第6,686,437号に記載されている。ステープル44300を浸漬又はコーティングするための他のポリイミド材料は、限定ではないが、一般名パリレンCで知られるポリマーを含み、パリレンCは、約6800Vの高い絶縁耐力を有し、蒸着によって適用されてもよい。
本開示の様々な態様では、ステープル44300のクラウン44302部分若しくは基部44301部分、又はステープル44300全体は、強誘電性セラミック材料44303を含んでもよい。強誘電体材料44303は、例えば、図235~図237に説明されているように、外部電界の印加によって反転させることができる自発電気分極を有するものとして特徴付けることができる。一態様では、金属検出器コイルは、電極1925、40500を備えるジョー1320(40524)に対向するエンドエフェクタ1300のジョー1310内に埋め込まれてもよい。この構成では、埋め込まれた金属検出器コイルが通電されて、ステープル内に電界を誘導し、強誘電体材料の分極変化を引き起こすことができる。強誘電材料の分極変化は、ステープル44300の導電性を低下させ、それによってステープル44300が短絡するのを防止する。他の強誘電体材料44303は、チタン酸バリウム及びチタン酸ジルコン酸鉛を含むが、これらに限定されない。チタン酸バリウムは、約7,000という高い誘電率値を有するセラミック材料44303である。狭い温度範囲にわたって、15,000という高い誘電率値を達成可能であり得る。
本開示の様々な態様では、ステープル44300のクラウン44302部分、又は基部44301部分、又は全体は、イソブテンの重合によって調製される有機ポリマーのクラスであるポリイソブテン材料44303を含み得る。用いられ得るポリイソブテン材料44303の例は、「CROSSLINKABLE POLYISOBUTYLENE-BASED POLYMERS AND MEDICAL DEVICES CONTAINING THE SAME」と題された米国特許第8,927,660号に記載されている。
様々な態様では、本開示は、以前の発射によるステープルの短絡を最小限に抑えるために、温度が上昇するにつれて電気抵抗率が増加するように、温度依存性である電気抵抗を有するワイヤ材料から作製されたステープル44300を提供する。したがって、ステープルワイヤが短絡状態に置かれると、その温度は上昇する。温度の上昇は、ステープルワイヤの電気抵抗率を増加させる。したがって、一態様では、ステープル44300は、可変電気抵抗として特徴付けられてもよく、抵抗は、ステープルが短絡状態にあるときにステープルの温度が上昇するにつれて増加する。この特徴は、例えば、抵抗温度デバイス(resistance temperature device、RTD)を作製するために使用される材料、又は金属の抵抗/温度関係を用いる任意の金属/材料などの金属/材料ハイブリッドからステープルワイヤを作製することによって実現され得る。したがって、可変電気抵抗ステープルは、例えば、セラミックコアの周りに巻かれたある長さのワイヤから作製されてもよい。温度抵抗ワイヤは、例えば、白金、ニッケル、又は銅などの材料から作製されてもよい。材料の温度/抵抗関係を使用して、短絡条件下でその温度が上昇するにつれてステープル44300の電気抵抗を増加させることができる。温度抵抗ワイヤは、材料の保護層内に収容されてもよい。
様々な態様では、本開示は、以前の発射によるステープルの短絡を最小限に抑えるために、ステープルワイヤの温度に基づいてその電気抵抗を増加させる、ステープルワイヤ材料を提供する。可変抵抗感熱ステープル44300は、本明細書に記載されるRFエンドカッター外科用器具1000において用いられ得る。一態様では、温度抵抗ワイヤ材料は、電気抵抗が温度の関数として増加する正の温度係数を有する金属合金で作製されてもよい。したがって、短絡状態下でステープル44300が加熱されると、短絡の影響を最小限に抑えるためにステープルワイヤの電気抵抗が増加する。加えて、ステープルワイヤ材料は、ステープルの材料特性を有する。ステープルワイヤ材料は、金属ワイヤが熱くなるにつれて金属ワイヤの電流に対する抵抗が増加する電球フィラメントと同様であってもよく、したがって、金属ワイヤは短絡及び溶融しない。一態様では、ステープルワイヤは、例えば、コバルト-ニッケル-クロム-モリブデン-タングステン-鉄合金であってもよい。
2011年12月6日に発行された米国特許第8,070,034号、発明の名称「SURGICAL STAPLER WITH ANGLED STAPLE BAYS」、2018年12月4日に発行された米国特許第10,143,474号、発明の名称「SURGICAL STAPLER」、及び2009年11月3日に発行された米国特許第7,611,038号、発明の名称「DIRECTIONALLY BIASED STAPLE AND ANVIL ASSEMBLY FOR FORMING THE STAPLE」の開示全体が、参照により本明細書に組み込まれる。
2013年4月23日に発行された米国特許第8,424,735号、発明の名称「VARIABLE COMPRESSION SURGICAL FASTENER CARTRIDGE」、2010年5月25日に発行された米国特許第7,722,610号、発明の名称「MULTIPLE COIL STAPLE AND STAPLE APPLIER」、及び2011年11月15日に発行された米国特許第8,056,789号、発明の名称「STAPLE AND FEEDER BELT CONFIGURATIONS FOR SURGICAL STAPLER」の開示全体は、参照により本明細書に組み込まれる。
2005年1月18日に発行された米国特許第6,843,403号、名称「SURGICAL CLAMPING,CUTTING AND STAPLING DEVICE」の開示全体が、参照により本明細書に組み込まれる。
2011年12月6日に発行された米国特許第8,070,034号、発明の名称「SURGICAL STAPLER WITH ANGLED STAPLE BAYS」、2018年12月4日に発行された米国特許第10,143,474号、発明の名称「SURGICAL STAPLER」、及び2009年11月3日に発行された米国特許第7,611,038号、発明の名称「DIRECTIONALLY BIASED STAPLE AND ANVIL ASSEMBLY FOR FORMING THE STAPLE」の開示全体が、参照により本明細書に組み込まれる。2013年4月23日に発行された米国特許第8,424,735号、発明の名称「VARIABLE COMPRESSION SURGICAL FASTENER CARTRIDGE」、2010年5月25日に発行された米国特許第7,722,610号、発明の名称「MULTIPLE COIL STAPLE AND STAPLE APPLIER」、及び2011年11月15日に発行された米国特許第8,056,789号、発明の名称「STAPLE AND FEEDER BELT CONFIGURATIONS FOR SURGICAL STAPLER」の開示全体は、参照により本明細書に組み込まれる。2005年1月18日に発行された米国特許第6,843,403号、名称「SURGICAL CLAMPING,CUTTING AND STAPLING DEVICE」の開示全体が、参照により本明細書に組み込まれる。
本明細書に記載される外科用器具システムは、ステープルの配置及び変形に関連して説明されてきたが、本明細書に記載されている実施形態は、そのように限定されない。例えば、クランプ又はタックなど、ステープル以外の締結具を配置する様々な実施形態が想到される。更に、組織を封止するための任意の好適な手段を利用する、様々な実施形態も想到される。例えば、様々な実施形態によるエンドエフェクタは、組織を加熱して封止するよう構成されている電極を備えることができる。同様に、例えば、特定の実施形態によるエンドエフェクタは、組織を封止するために振動エネルギーを印加することができる。
以下の開示の内容全体が参照により本明細書に組み込まれる。
-1995年4月4日発行の米国特許第5,403,312号、発明の名称「ELECTROSURGICAL HEMOSTATIC DEVICE」、
-2006年2月21日発行の米国特許第7,000,818号、発明の名称「SURGICAL STAPLING INSTRUMENT HAVING SEPARATE DISTINCT CLOSING AND FIRING SYSTEMS」、
-2008年9月9日発行の米国特許第7,422,139号、発明の名称「MOTOR-DRIVEN SURGICAL CUTTING AND FASTENING INSTRUMENT WITH TACTILE POSITION FEEDBACK」、
-2008年12月16日発行の米国特許第7,464,849号、発明の名称「ELECTRO-MECHANICAL SURGICAL INSTRUMENT WITH CLOSURE SYSTEM AND ANVIL ALIGNMENT COMPONENTS」、
-2010年3月2日発行の米国特許第7,670,334号、発明の名称「SURGICAL INSTRUMENT HAVING AN ARTICULATING END EFFECTOR」、
-2010年7月13日発行の米国特許第7,753,245号、発明の名称「SURGICAL STAPLING INSTRUMENTS」、
-2013年3月12日発行の米国特許第8,393,514号、発明の名称「SELECTIVELY ORIENTABLE IMPLANTABLE FASTENER CARTRIDGE」、
-米国特許出願第11/343,803号、発明の名称「SURGICAL INSTRUMENT HAVING RECORDING CAPABILITIES」(現在は、米国特許第7,845,537号)、
-2008年2月14日出願の米国特許出願第12/031,573号、発明の名称「SURGICAL CUTTING AND FASTENING INSTRUMENT HAVING RF ELECTRODES」、
-2008年2月15日出願の米国特許出願第12/031,873号、発明の名称「END EFFECTORS FOR A SURGICAL CUTTING AND STAPLING INSTRUMENT」(現在は、米国特許第7,980,443号)、
-米国特許出願第12/235,782号、発明の名称「MOTOR-DRIVEN SURGICAL CUTTING INSTRUMENT」(現在は、米国特許第8,210,411号)、
-米国特許出願第12/235,972号、発明の名称「MOTORIZED SURGICAL INSTRUMENT」(現在は、米国特許第9,050,083号)。
-米国特許出願第12/249,117号、発明の名称「POWERED SURGICAL CUTTING AND STAPLING APPARATUS WITH MANUALLY RETRACTABLE FIRING SYSTEM」(現在は、米国特許第8,608,045号)、
-2009年12月24日出願の米国特許出願第12/647,100号、発明の名称「MOTOR-DRIVEN SURGICAL CUTTING INSTRUMENT WITH ELECTRIC ACTUATOR DIRECTIONAL CONTROL ASSEMBLY」(現在は、米国特許第8,220,688号)、
-2012年9月29日出願の米国特許出願第12/893,461号、発明の名称「STAPLE CARTRIDGE」、(現在は、米国特許第8,733,613号)、
-2011年2月28日出願の米国特許出願第13/036,647号、発明の名称「SURGICAL STAPLING INSTRUMENT」、(現在は、米国特許第8,561,870号)、
-米国特許出願第13/118,241号、発明の名称「SURGICAL STAPLING INSTRUMENTS WITH ROTATABLE STAPLE DEPLOYMENT ARRANGEMENTS」(現在は、米国特許第9,072,535号)、
-2012年6月15日出願の米国特許出願第13/524049号、発明の名称「ARTICULATABLE SURGICAL INSTRUMENT COMPRISING A FIRING DRIVE」(現在は、米国特許第9,101,358号)、
-2013年3月13日出願の米国特許出願第13/800,025号、発明の名称「STAPLE CARTRIDGE TISSUE THICKNESS SENSOR SYSTEM」(現在は、米国特許第9,345,481号)、
2013年3月13日出願の米国特許出願第13/800,067号、発明の名称「STAPLE CARTRIDGE TISSUE THICKNESS SENSOR SYSTEM」(現在は、米国特許出願公開第2014/0263552号)、
-2006年1月31日出願の米国特許出願公開第2007/0175955号、発明の名称「SURGICAL CUTTING AND FASTENING INSTRUMENT WITH CLOSURE TRIGGER LOCKING MECHANISM」、及び
-2010年4月22日出願の米国特許出願公開第2010/0264194号、発明の名称「SURGICAL STAPLING INSTRUMENT WITH AN ARTICULATABLE END EFFECTOR」(現在は、米国特許第8,308,040号)。
実施例1-外科用システムであって、RFエネルギー源と、外科用器具と、を含み、外科用発生器が、外科用器具に無線周波数(RF)電力を供給するように構成されており、外科用器具が、第1のジョー、間に組織を把持するように閉鎖運動において第2のジョーに対して移動可能な第2のジョー、並びにステープルポケットの列及び第1の電極アセンブリを含むアンビル、を含む、エンドエフェクタを含み、第1の電極アセンブリが、第1のセグメント化電極の列を含む、外科用システム。エンドエフェクタは、カートリッジを更に含み、カートリッジは、カートリッジデッキと、カートリッジデッキ内に画定されたステープルキャビティの列であって、発射運動においてステープルポケットの列に接して変形可能なステープルを含む、ステープルキャビティの列と、第2の電極アセンブリであって、第2の電極アセンブリが、第2のセグメント化電極の列を含み、RFエネルギー源が、第1の電極アセンブリ及び第2の電極アセンブリのうちの少なくとも1つに、RF治療エネルギーを組織に適用させるように構成されている、第2の電極アセンブリと、を含む、カートリッジ本体を含む。外科用器具は、エンドエフェクタに動作可能に連結されたモータアセンブリであって、組織の周りでのエンドエフェクタの閉鎖及び組織内へのステープルの発射のうちの少なくとも1つをもたらすように構成されている、モータアセンブリと、モータアセンブリにエンドエフェクタの機能を実行させるように構成されている制御回路であって、機能が、エンドエフェクタの回転、エンドエフェクタの関節運動、組織の周りのエンドエフェクタの閉鎖、及び組織内へのステープルの発射のうちの少なくとも1つを含み、制御回路及びRFエネルギー源が、RF治療エネルギーの適用及びエンドエフェクタの機能を協調的に制御するように構成されている、制御回路と、を更に含む。
実施例2-制御回路が、組織への治療エネルギーの適用における検出された不足に基づいて、エンドエフェクタの機能のパラメータを調整するように構成されている、実施例1に記載の外科用システム。
実施例3-不足が、治療エネルギーによる組織の効果的な組織封止を完了するための電力不足である、実施例1又は2に記載の外科用システム。
実施例4-制御回路が、組織のインピーダンスを監視することによって不足を検出するように構成されている、実施例1、2、又は3に記載の外科用システム。
実施例5-制御回路が、所定の閾値に基づいて電力不足を検出するように構成されている、実施例1、2、3、又は4に記載の外科用システム。
実施例6-パラメータが、力パラメータである、実施例1、2、3、4、又は5に記載の外科用システム。
実施例7-パラメータを調整することが、第1のジョーに適用される閉鎖力を変更することを含む、実施例1、2、3、4、5、又は6に記載の外科用システム。
実施例8-パラメータを調整することが、エンドエフェクタによって組織に適用される閉鎖圧力を調整することを含む、実施例1、2、3、4、5、6、又は7に記載の外科用システム。
実施例9-パラメータを調節することが、エンドエフェクタの関節運動の程度を変更することを含む、実施例1、2、3、4、5、6、7、又は8に記載の外科用システム。
実施例10-外科用器具が、モータアセンブリに連結された発射駆動部を備え、パラメータを調整することが、発射駆動部の発射速度を変更することを含む、実施例1、2、3、4、5、6、7、8、又は9に記載の外科用システム。
実施例11-外科用システムであって、RFエネルギー源と、外科用器具であって、外科用発生器が、外科用器具に無線周波数(RF)電力を供給するように構成されており、外科用器具が、エンドエフェクタであって、第1のジョー、間に組織を把持するように閉鎖運動において第2のジョーに対して移動可能な第2のジョー、アンビルであって、ステープルポケットの列と、第1のセグメント化電極の列を含む第1の電極アセンブリと、を含む、アンビル、並びにカートリッジであって、カートリッジが、カートリッジデッキと、カートリッジデッキ内に画定されたステープルキャビティの列であって、発射運動においてステープルポケットの列に接して変形可能なステープルを含む、ステープルキャビティの列と、第2の電極アセンブリであって、第2の電極アセンブリが、第2のセグメント化電極の列を含み、RFエネルギー源が、第1の電極アセンブリ及び第2の電極アセンブリのうちの少なくとも1つに、治療信号を組織に適用させるように構成されている、第2の電極アセンブリと、を含む、カートリッジ、を含むエンドエフェクタを含む、外科用システム。外科用器具は、エンドエフェクタに動作可能に連結されたモータアセンブリであって、組織の周りでのエンドエフェクタの閉鎖及び組織内へのステープルの発射のうちの少なくとも1つをもたらすように構成されている、モータアセンブリと、制御回路であって、組織への治療信号の適用の不足を示すRFエネルギー源からの通信信号を受信し、通信信号に基づいてエンドエフェクタの機能を調整するように構成されており、機能が、エンドエフェクタの回転、エンドエフェクタの関節運動、組織の周りでのエンドエフェクタの閉鎖、及び組織内へのステープルの発射のうちの少なくとも1つを含む、制御回路と、を更に含む。
実施例12-不足が、治療信号による組織の効果的な組織封止を完了するための電力不足である、実施例11に記載の外科用システム。
実施例13-制御回路が、不足に基づいてエンドエフェクタの機能のパラメータを調整するように構成されている、実施例11又は12に記載の外科用システム。
実施例14-パラメータが、力パラメータである、実施例13に記載の外科用システム。
実施例15-パラメータを調節することが、第1のジョーに適用される閉鎖力を変更することを含む、実施例13又は14に記載の外科用システム。
実施例16-パラメータを調節することが、エンドエフェクタによって組織に適用される閉鎖圧力を調整することを含む、実施例13、14、又は15に記載の外科用システム。
実施例17-パラメータを調節することが、エンドエフェクタの関節運動の程度を変更することを含む、実施例13、14、15、又は16に記載の外科用システム。
実施例18-外科用器具が、モータアセンブリに連結された発射駆動部を備え、パラメータを調整することが、発射駆動部の発射速度を変更することを含む、実施例13、14、15、16、又は17に記載の外科用システム。
実施例19-外科用システムであって、RFエネルギー源と、外科用器具であって、外科用発生器が、外科用器具に無線周波数(RF)電力を供給するように構成されており、外科用器具が、エンドエフェクタであって、第1のジョー、間に組織を把持するように閉鎖運動において第2のジョーに対して移動可能な第2のジョー、アンビルであって、ステープルポケットの列と、第1のセグメント化電極の列を含む第1の電極アセンブリと、を含む、アンビル、並びにカートリッジであって、カートリッジが、カートリッジデッキと、カートリッジデッキ内に画定されたステープルキャビティの列であって、発射運動においてステープルポケットの列に接して変形可能なステープルを含む、ステープルキャビティの列と、第2の電極アセンブリであって、第2の電極アセンブリが、第2のセグメント化電極の列を含み、RFエネルギー源が、第1の電極アセンブリ及び第2の電極アセンブリのうちの少なくとも1つに、治療サインを組織に適用させるように構成されている、第2の電極アセンブリと、を含む、カートリッジ、を含むエンドエフェクタを含む、外科用システム。外科用器具は、エンドエフェクタに動作可能に連結されたモータアセンブリであって、組織の周りでのエンドエフェクタの閉鎖及び組織内へのステープルの発射のうちの少なくとも1つをもたらすように構成されている、モータアセンブリと、モータアセンブリに電力を供給して、組織の周りでのエンドエフェクタの閉鎖及び組織内へのステープルの発射のうちの少なくとも1つをもたらすように構成されているバッテリと、制御回路であって、所定の閾値未満のバッテリの電力レベルを検出し、RFエネルギー源に、バッテリの電力レベルに基づいて治療エネルギーのパラメータを調整させるように構成されている、制御回路と、を更に含む。
実施例20-第1のパラメータが、電圧であり、制御回路が、電圧を増加させるように構成されている、実施例19に記載の外科用システム。
特定の実施形態とともに本明細書で様々なデバイスについて説明したが、それらの実施形態に対して修正及び変更が実施されてもよい。特定の特徴、構造又は特性を、1つ又は2つ以上の実施形態で、任意の好適な様式で組み合わせてもよい。したがって、一実施形態に関して図示又は説明される特定の特徴、構造、又は特性は、無制限に1つ又は2つ以上の他の実施形態の特徴、構造、又は特性と全て、あるいは、部分的に組み合わせてもよい。また、材料が特定の構成要素に関して開示されているが、他の材料が使用されてもよい。更に、様々な実施形態に従って、所与の機能を実行するために、単一の構成要素を複数の構成要素に置き換えてもよく、また複数の構成要素を単一の構成要素に置き換えてもよい。以上の説明及び以下の特許請求の範囲は、そのような修正及び変形形態を全て包含することが意図される。
本明細書に開示されるデバイスは、1回の使用後に廃棄されるように設計することができ、又は複数回使用されるように設計することができる。しかしながら、いずれの場合も、デバイスは少なくとも1回の使用後に再利用のために再調整され得る。再調整には、デバイスの分解工程、それに続くデバイスの特定の部品の洗浄工程又は交換工程、及びその後のデバイスの再組立工程の任意の組み合わせを含むことができるが、これらに限定されない。具体的には、再調整の施設及び/又は外科チームは、デバイスを分解することができ、デバイスの特定の部品を洗浄及び/又は交換した後、デバイスをその後の使用のために再組立することができる。当業者であれば、デバイスの再調整が、分解、洗浄/交換、及び再組立のための様々な技術を利用できることを理解するであろう。このような技術の使用、及び結果として得られる再調整されたデバイスは、全て本出願の範囲内にある。
本明細書に開示のデバイスは、手術前に処理され得る。最初に、新品又は使用済みの器具が入手され、必要に応じて洗浄されてもよい。次いで器具を滅菌することができる。1つの滅菌技術では、器具は、プラスチックバッグ又はTYVEKバッグなど、閉鎖され密封された容器に入れられる。次いで、容器及び器具を、ガンマ線、x線、及び/又は高エネルギー電子などの、容器を透過し得る放射線野に置くことができる。放射線は、器具上及び容器内の細菌を死滅させることができる。この後、滅菌済みの器具を滅菌容器内で保管することができる。密封容器は、医療施設で開封されるまで、器具を滅菌状態に保つことができる。デバイスはまた、ベータ線、ガンマ線、エチレンオキシド、過酸化水素プラズマ、及び/又は水蒸気が挙げられるが、これらに限定されない、当該技術分野で既知の任意の他の技術を用いて滅菌され得る。
代表的な設計を有するものとして本発明について記載してきたが、本発明は、本開示の趣旨及び範囲内で更に修正されてもよい。したがって、本出願は、その一般的な原理を使用して本発明の任意の変形、使用、又は適合を網羅することを意図している。
上記の詳細な説明は、ブロック図、フロー図及び/又は実施例を用いて、デバイス及び/又はプロセスの様々な形態について記載してきた。そのようなブロック図、フロー図及び/又は実施例が1つ又は2つ以上の機能及び/又は動作を含む限り、当業者に理解されたいこととして、そのようなブロック図、フロー図及び/又は実施例に含まれる各機能及び/又は動作は、多様なハードウェア、ソフトウェア、ファームウェア又はこれらの事実上の任意の組み合わせによって、個々にかつ/又は集合的に実装することができる。当業者には、本明細書で開示される形態のうちのいくつかの態様の全部又は一部が、1台又は2台以上のコンピュータ上で稼働する1つ又は2つ以上のコンピュータプログラムとして(例えば、1台又は2台以上のコンピュータシステム上で稼働する1つ又は2つ以上のプログラムとして)、1つ又は2つ以上のプロセッサ上で稼働する1つ又は2つ以上のプログラムとして(例えば、1つ又は2つ以上のマイクロプロセッサ上で稼働する1つ又は2つ以上のプログラムとして)、ファームウェアとして、又はこれらの実質的に任意の組み合わせとして集積回路上で等価に実装することができ、回路を設計すること、並びに/又はソフトウェア及び/若しくはファームウェアのコードを記述することは、本開示を鑑みれば当業者の技能の範囲内に含まれることが理解されよう。加えて、当業者には理解されることとして、本明細書に記載した主題の機構は、多様な形態で1つ又は2つ以上のプログラム製品として配布されることが可能であり、本明細書に記載した主題の具体的な形態は、配布を実際に実行するために使用される信号搬送媒体の特定のタイプにかかわらず適用される。
様々な開示された態様を実施するように論理をプログラムするために使用される命令は、ダイナミックランダムアクセスメモリ(DRAM)、キャッシュ、フラッシュメモリ又は他のストレージなどのシステム内メモリに記憶され得る。更に、命令は、ネットワークを介して、又は他のコンピュータ可読媒体によって配布され得る。したがって、機械可読媒体としては、機械(例えば、コンピュータ)によって読み出し可能な形態で情報を記憶又は送信するための任意の機構が挙げられ得るが、フロッピーディスケット、光ディスク、コンパクトディスク、読み出し専用メモリ(CD-ROM)、並びに磁気光学ディスク、読み出し専用メモリ(ROM)、ランダムアクセスメモリ(RAM)、消去可能プログラマブル読み出し専用メモリ(EPROM)、電気的消去可能プログラマブル読み出し専用メモリ(EEPROM)、磁気若しくは光カード、フラッシュメモリ又は、電気的、光学的、音響的、若しくは他の形態の伝播信号(例えば、搬送波、赤外線信号、デジタル信号など)を介してインターネットを介した情報の送信に使用される有形機械可読ストレージに限定されない。したがって、非一時的コンピュータ可読媒体としては、機械(例えば、コンピュータ)によって読み出し可能な形態で電子命令又は情報を記憶又は送信するのに好適な任意のタイプの有形機械可読媒体が挙げられる。
本明細書の任意の態様で使用されるとき、「制御回路」という用語は、例えば、ハードワイヤード回路、プログラマブル回路(例えば、1つ又は2つ以上の個々の命令処理コアを含むコンピュータプロセッサ、処理ユニット、プロセッサ、マイクロコントローラ、マイクロコントローラユニット、コントローラ、デジタル信号プロセッサ(DSP)、プログラマブル論理デバイス(PLD)、プログラマブル論理アレイ(PLA)、又はフィールドプログラマブルゲートアレイ(FPGA))、状態機械回路、プログラマブル回路によって実行される命令を記憶するファームウェア、及びこれらの任意の組み合わせを指すことができる。制御回路は、集合的に又は個別に、例えば、集積回路(IC)、特定用途向け集積回路(ASIC)、システムオンチップ(SoC)、デスクトップコンピュータ、ラップトップコンピュータ、タブレットコンピュータ、サーバ、スマートフォンなどの、より大きなシステムの一部を形成する回路として具現化され得る。したがって、本明細書で使用されるとき、「制御回路」は、少なくとも1つの個別の電気回路を有する電気回路、少なくとも1つの集積回路を有する電気回路、少なくとも1つの特定用途向け集積回路を有する電気回路、コンピュータプログラムによって構成された汎用コンピューティングデバイス(例えば、本明細書で説明したプロセス及び/若しくはデバイスを少なくとも部分的に実行するコンピュータプログラムによって構成された汎用コンピュータ、又は本明細書で説明したプロセス及び/若しくはデバイスを少なくとも部分的に実行するコンピュータプログラムによって構成されたマイクロプロセッサ)を形成する電気回路、メモリデバイス(例えば、ランダムアクセスメモリの形態)を形成する電気回路及び/又は通信デバイス(例えばモデム、通信スイッチ、又は光-電気設備)を形成する電気回路を含むが、これらに限定されない。当業者は、本明細書で述べた主題が、アナログ形式若しくはデジタル形式、又はこれらのいくつかの組み合わせで実装されてもよいことを認識するであろう。
本開示の1つ又は2つ以上の態様で使用されるように、マイクロコントローラは、一般に、メモリと、メモリに動作可能に結合されたマイクロプロセッサ(「プロセッサ」)とを備え得る。プロセッサは、例えば、モータの位置及び速度を制御するのに一般的に利用されるモータドライバの回路を制御し得る。特定の事例では、プロセッサは、例えば、モータを停止及び/又は無効化するように、モータドライバに信号伝達することができる。特定の事例では、マイクロコントローラは、例えばTexas Instrumentsから入手可能なLM 4F230H5QRであってもよい。少なくとも一例では、Texas InstrumentsのLM4F230H5QRは、製品データシートから容易に入手可能な他の機構の中でも、最大40MHz、256KBの単一サイクルフラッシュメモリ若しくは他の不揮発性メモリのオンチップメモリと、40MHz超の性能を改善するためのプリフェッチバッファと、32KBの単一サイクルシリアルランダムアクセスメモリ(SRAM)と、StellarisWare(登録商標)ソフトウェアを搭載した内部読み取り専用メモリ(ROM)と、2KBの電気的消去可能なプログラマブル読み取り専用メモリ(EEPROM)と、1つ又は2つ以上のパルス幅変調(PWM)モジュールと、1つ又は2つ以上のアナログ直交エンコーダ入力部(QEI)と、12個のアナログ入力チャネルを備えた、1つ又は2つ以上の12ビットアナログデジタル変換器(ADC)と、を備える、ARM Cortex-M4Fプロセッサコアである。
プロセッサという用語は、本明細書で使用されるとき、任意の好適なマイクロプロセッサ、又は、コンピュータの中央処理装置(CPU)の機能を1つの集積回路又は最大で数個の集積回路に組み込んだ、他の基本コンピューティングデバイスを含むと理解されるべきである。プロセッサは、デジタルデータを入力として受理し、メモリに記憶された命令に従ってそのデータを処理し、結果を出力として提供する、多目的のプログラマブルデバイスである。これは、内部メモリを有するので、逐次的デジタル論理の一例である。プロセッサは、二進数法で表される数字及び記号で動作する。少なくとも1つの事例では、プロセッサは、Texas Instruments製のARM Cortexの商品名で知られているものなど、任意のシングルコア又はマルチコアプロセッサであってもよい。それにもかかわらず、マイクロコントローラ及び安全プロセッサに好適な他の置換品も制限なく用いることができる。
本明細書の任意の態様で使用されるとき、「論理」という用語は、前述の動作のいずれかを実施するように構成されたアプリケーション、ソフトウェア、ファームウェア、及び/又は回路を指し得る。ソフトウェアは、非一時的コンピュータ可読記憶媒体上に記録されたソフトウェアパッケージ、コード、命令、命令セット、及び/又はデータとして具現化されてもよい。ファームウェアは、メモリデバイス内のコード、命令、若しくは命令セット、及び/又はハードコードされた(例えば、不揮発性の)データとして具現化されてもよい。
本明細書の任意の態様で使用されるとき、「構成要素」、「システム」、「モジュール」などという用語は、ハードウェア、ハードウェアとソフトウェアとの組み合わせ、ソフトウェア、又は実行中のソフトウェアのいずれかであるコンピュータ関連エンティティを指すことができる。
本明細書の任意の態様で使用されるとき、「アルゴリズム」とは、所望の結果につながるステップの自己無撞着シーケンスを指し、「ステップ」とは、必ずしも必要ではないが、記憶、転送、組み合わせ、比較、及び別様に操作されることが可能な電気信号又は磁気信号の形態をとることができる物理量及び/又は論理状態の操作を指す。これらの信号を、ビット、値、要素、記号、文字、用語、番号などとして言及することが一般的な扱い方である。これらの及び類似の用語は、適切な物理量と関連付けられてもよく、また単に、これらの量及び/又は状態に適用される便利な標識である。
ネットワークとしては、パケット交換ネットワークが挙げられ得る。通信デバイスは、選択されたパケット交換ネットワーク通信プロトコルを使用して、互いに通信することができる。1つの例示的な通信プロトコルとしては、送信制御プロトコル/インターネットプロトコル(Transmission Control Protocol/Internet Protocol、TCP/IP)を使用して通信を可能にすることができるイーサネット通信プロトコルを挙げることができる。イーサネットプロトコルは、Institute of Electrical and Electronics Engineers(IEEE)によって発行された2008年12月発行の表題「IEEE802.3 Standard」、及び/又は本規格の後のバージョンのイーサネット規格に準拠するか、又は互換性があり得る。代替的に又は追加的に、通信デバイスは、X.25通信プロトコルを使用して互いに通信することができる。X.25通信プロトコルは、International Telecommunication Union-Telecommunication Standardization Sector(ITU-T)によって公布された規格に準拠するか、又は互換性があり得る。代替的に又は追加的に、通信デバイスは、フレームリレー通信プロトコルを使用して互いに通信することができる。フレームリレー通信プロトコルは、Consultative Committee for International Telegraph and Telephone(CCITT)及び/又はthe American National Standards Institute(ANSI)によって公布された規格に準拠するか、又は互換性があり得る。代替的に又は追加的に、送受信機は、非同期転送モード(ATM)通信プロトコルを使用して互いに通信することが可能であり得る。ATM通信プロトコルは、ATM Forumによって「ATM-MPLS Network Interworking 2.0」という題で2001年8月に公開されたATM規格及び/又は本規格の後のバージョンに準拠するか、又は互換性があり得る。当然のことながら、異なる及び/又は後に開発されたコネクション型ネットワーク通信プロトコルは、本明細書で等しく企図される。
本明細書の任意の態様で使用されるように、例えば、データ信号の無線通信又は無線転送などの無線送信は、1つ又は2つ以上の送受信機を含むデバイスによって達成され得る。送受信機には、セルラモデム、無線メッシュネットワーク送受信機、Wi-Fi(登録商標)送受信機、低電力ワイドエリア(LPWA)送受信機、及び/又は近距離無線通信送受信機(NFC)を含むことができるが、これらに限定されない。デバイスは、携帯電話、センサシステム(例えば、環境、位置、運動など)及び/又はセンサネットワーク(有線及び/又は無線)、コンピューティングシステム(例えば、サーバ、ワークステーションコンピュータ、デスクトップコンピュータ、ラップトップコンピュータ、タブレットコンピュータ(例えば、iPad(登録商標)及びGalaxyTab(登録商標)など)、超携帯型コンピュータ、超モバイルコンピュータ、ネットブックコンピュータ、及び/又はサブノートコンピュータなどを含むことができるか、又はこれらと通信するように構成することができる。本開示の少なくとも1つの態様では、デバイスのうちの1つはコーディネータノードであってもよい。
送受信機は、それぞれの汎用非同期送受信機(UART)を介してプロセッサからシリアル送信データを受信して、シリアル送信データをRF搬送波上に変調して送信RF信号を生成し、それぞれのアンテナを介して送信RF信号を送信するように構成され得る。送受信機(単数又は複数)は、対応するアンテナを介してシリアル受信データで変調されたRF搬送波を含む受信RF信号を受信し、シリアル受信データを抽出するために受信RF信号を復調し、プロセッサに提供するためにシリアル受信データを対応するUARTに提供するように更に構成することができる。各RF信号は、関連する搬送波周波数及び関連するチャネル帯域幅を有する。チャネル帯域幅は、搬送波周波数、送信データ、及び/又は受信データに関連付けられている。各RF搬送波周波数及びチャネル帯域幅は、送受信機(複数可)の動作周波数範囲(複数可)に関連する。各チャネル帯域幅は、送受信機(複数可)が順守し得る無線通信規格及び/又はプロトコルに更に関連する。換言すれば、各送受信機は、選択された無線通信規格及び/又はプロトコル、例えば、Wi-Fi(登録商標)のためのIEEE 802.11a/b/g/n及び/又はZigbeeルーティングを使用する無線メッシュネットワークのためのIEEE 802.15.4の実装に対応し得る。
1つ又は2つ以上の駆動システム又は駆動アセンブリは、本明細書に説明されるように、1つ又は2つ以上の電気モータを採用する。様々な形態では、電気モータは、例えば、DCブラシ付き駆動モータであってもよい。他の構成では、モータとしては、ブラシレスモータ、コードレスモータ、同期モータ、ステッパモータ、又は任意の他の好適な電気モータが挙げられ得る。電気モータは、1つの形態にて取り外し可能な電源パックを備え得る電源により、給電され得る。電池はそれぞれ、例えば、リチウムイオン(「LI」)又は他の好適な電池を含み得る。電気モータは、例えば、ギア減速機アセンブリと動作可能にインターフェース接続する回転可能シャフトを含むことができる。特定の事例では、使用の際、電源によって提供される電圧極性によって電気モータを時計方向に動作させることができるが、電池によって電気モータに印加される電圧極性は、電気モータを反時計方向に動作させるために反転させることができる。様々な態様では、マイクロコントローラは、パルス幅変調制御信号を介してモータドライバを通じて電気モータを制御する。モータドライバは、電気モータの速度を時計回り方向又は反時計回り方向のいずれかに調整するように構成することができる。モータドライバはまた、電子モータ制動モード、定速モード、電子クラッチモード、及び制御電流作動モードを含む複数の動作モード間で切り替わるように構成されている。電子制動モードでは、駆動モータ200の2つの端子が短絡され、生成された逆EMFが電気モータの回転に対抗して、より速い停止及びより高い位置精度を可能にする。
別段の明確な定めがない限り、前述の開示から明らかなように、前述の開示全体を通じて、「処理すること(processing)」、「計算すること(computing)」、「算出すること(calculating)」、「判定すること(determining)」、「表示すること(displaying)」などの用語を使用する考察は、コンピュータシステムのレジスタ及びメモリ内で物理(電子的)量として表現されるデータを、コンピュータシステムのメモリ若しくはレジスタ又は他のそのような情報記憶、送信、若しくは表示デバイス内で物理量として同様に表現される他のデータへと操作し変換する、コンピュータシステム又は類似の電子計算デバイスのアクション及び処理を指していることが理解されよう。
1つ又は2つ以上の構成要素が、本明細書中で、「ように構成される(configured to)」、「ように構成可能である(configurable to)」、「動作可能である/ように動作する(operable/operative to)」、「適合される/適合可能である(adapted/adaptable)」、「ことが可能である(able to)」、「準拠可能である/準拠する(conformable/conformed to)」などと言及され得る。当業者は、「ように構成される」は、一般に、文脈上他の意味に解釈すべき場合を除き、アクティブ状態の構成要素及び/又は非アクティブ状態の構成要素及び/又はスタンバイ状態の構成要素を包含し得ることを理解するであろう。
当業者は、一般に、本明細書で使用され、かつ特に添付の特許請求の範囲(例えば、添付の特許請求の範囲の本文)で使用される用語は、概して「オープンな」用語として意図されるものである(例えば、「含む(including)」という用語は、「~を含むが、それらに限定されない(including but not limited to)」と解釈されるべきであり、「有する(having)」という用語は「~を少なくとも有する(having at least)」と解釈されるべきであり、「含む(includes)」という用語は「~を含むが、それらに限定されない(includes but is not limited to)」と解釈されるべきであるなど)ことを理解するであろう。更に、導入された請求項記載(introduced claim recitation)において特定の数が意図される場合、かかる意図は当該請求項中に明確に記載され、またかかる記載がない場合は、かかる意図は存在しないことが、当業者には理解されるであろう。例えば、理解を助けるものとして、後続の添付の特許請求の範囲は、「少なくとも1つの(at least one)」及び「1つ又は2つ以上の(one or more)」という導入句を、請求項記載を導入するために含むことがある。しかしながら、かかる句の使用は、「a」又は「an」という不定冠詞によって請求項記載を導入した場合に、たとえ同一の請求項内に「1つ又は2つ以上の」又は「少なくとも1つの」といった導入句及び「a」又は「an」という不定冠詞が含まれる場合であっても、かかる導入された請求項記載を含むいかなる特定の請求項も、かかる記載事項を1つのみ含む請求項に限定されると示唆されるものと解釈されるべきではない(例えば、「a」及び/又は「an」は通常、「少なくとも1つの」又は「1つ又は2つ以上の」を意味するものと解釈されるべきである)。定冠詞を使用して請求項記載を導入する場合にも、同様のことが当てはまる。
加えて、導入された請求項記載において特定の数が明示されている場合であっても、かかる記載は、典型的には、少なくとも記載された数を意味するものと解釈されるべきであることが、当業者には認識されるであろう(例えば、他に修飾語のない、単なる「2つの記載事項」という記載がある場合、一般的に、少なくとも2つの記載事項、若しくは2つ又はそれ以上の記載事項を意味する)。更に、「A、B及びCなどのうちの少なくとも1つ」に類する表記が使用される場合、一般に、かかる構文は、当業者がその表記を理解するであろう意味で意図されている(例えば、「A、B及びCのうちの少なくとも1つを有するシステム」は、限定するものではないが、Aのみ、Bのみ、Cのみ、AとBの両方、AとCの両方、BとCの両方及び/又はAとBとCの全てなどを有するシステムを含む)。「A、B又はCなどのうちの少なくとも1つ」に類する表記が用いられる場合、一般に、かかる構文は、当業者がその表記を理解するであろう意味で意図されている(例えば、「A、B、又はCのうちの少なくとも1つを有するシステム」は、限定するものではないが、Aのみ、Bのみ、Cのみ、AとBの両方、AとCの両方、BとCの両方及び/又はAとBとCの全てなどを有するシステムを含む)。更に、典型的には、2つ又はそれ以上の選択的な用語を表すあらゆる選言的な語及び/又は句は、文脈上他の意味に解釈すべき場合を除いて、明細書内であろうと、請求の範囲内であろうと、あるいは図面内であろうと、それら用語のうちの1つ、それらの用語のうちのいずれか、又はそれらの用語の両方を含む可能性を意図すると理解されるべきであることが、当業者には理解されよう。例えば、「A又はB」という句は、典型的には、「A」又は「B」又は「A及びB」の可能性を含むものと理解されよう。
添付の特許請求の範囲に関して、当業者は、本明細書における引用した動作は一般に、任意の順序で実施され得ることを理解するであろう。また、様々な動作のフロー図がシーケンス(複数可)で示されているが、様々な動作は、示されたもの以外の順序で実施されてもよく、又は同時に実施されてもよいことが理解されるべきである。かかる代替の順序付けの例は、文脈上他の意味に解釈すべき場合を除いて、重複、交互配置、割り込み、再順序付け、増加的、予備的、追加的、同時、逆又は他の異なる順序付けを含んでもよい。更に、「~に応答する(responsive to)」、「~に関連する(related to)」といった用語、又は他の過去時制の形容詞は、一般に、文脈上他の意味に解釈すべき場合を除き、かかる変化形を除外することが意図されるものではない。
「一態様」、「態様」、「例示」、「一例示」などへの任意の参照は、その態様に関連して記載される特定の特徴部、構造又は特性が少なくとも1つの態様に含まれると意味することは特記に値する。したがって、本明細書の全体を通じて様々な場所に見られる語句「一態様では」、「態様では」、「例示では」及び「一例示では」は、必ずしも全てが同じ態様を指すものではない。更に、特定の特徴、構造、又は特性は、1つ又は2つ以上の態様において任意の好適な様態で組み合わせることができる。
本明細書では、特に指示がない限り、本開示で使用される「約」又は「およそ」という用語は、特に指定されない限り、当業者によって決定される特定の値に対する許容誤差を意味し、これは、値が測定又は決定される方法に部分的に依存する。ある特定の実施形態では、「約」又は「およそ」という用語は、1、2、3、又は4つの標準偏差を意味する。ある特定の実施形態では、「約」又は「およそ」という用語は、所与の値又は範囲の50%、20%、15%、10%、9%、8%、7%、6%、5%、4%、3%、2%、1%、0.5%、又は0.05%以内を意味する。
本明細書においては、別途示されない限り、全ての数値パラメータは、全ての場合において、「約」なる語により先行及び修飾されているものとして理解すべきであり、かかる数値パラメータは、パラメータの数値を求めるために用いられる基礎となる測定法に固有の変動特性を有するものである。少なくとも、特許請求の範囲の範囲に対して均等論の適用を制限する試みとしてではなく、本明細書に記載される各数値パラメータは、報告された有効数字を考慮し、通常の四捨五入の手法を適用することにより、少なくとも解釈されるべきである。
また、本明細書に記載される任意の数値範囲は、記載された範囲内に包含される全ての部分範囲を含む。例えば、「1~10」の範囲には、記載された最小値である1と記載された最大値である10との間(かつ最小値と最大値を含む)の全ての部分範囲、すなわち、1以上の最小値及び10以下の最大値を有する全ての部分範囲が含まれる。同様に、本明細書に記載される全ての範囲は、記載された範囲の終点を含む。例えば、「1~10」の範囲は、終点1及び10を含む。本明細書に記載されるあらゆる最大の数値限界は、これに包含される全てのより小さい数値限界を含むことを意図し、本明細書に記載されるあらゆる最小の数値限界は、これに包含される全てのより大きい数値限界を含むことを意図している。したがって、出願人は、明示的に記載された範囲内に包含されるあらゆる明示的に記載された部分範囲を含むように、特許請求の範囲を含む本明細書を補正する権利を有するものである。全てのそのような範囲は、本来、本明細書中に記載されている。
本明細書で参照され、かつ/又は任意の出願データシートに列挙される任意の特許出願、特許、非特許刊行物、又は他の開示資料は、組み込まれる資料が本明細書と矛盾しない範囲で、参照により本明細書に組み込まれる。それ自体、また必要な範囲で、本明細書に明瞭に記載される開示は、参照により本明細書に組み込まれるあらゆる矛盾する記載に優先するものとする。参照により本明細書に組み込まれると言及されているが、現行の定義、見解、又は本明細書に記載される他の開示内容と矛盾するあらゆる内容、又はそれらの部分は、組み込まれた内容と現行の開示内容との間に矛盾が生じない範囲においてのみ、組み込まれるものとする。
要約すると、本明細書に記載した構想を用いる結果として得られる多くの利益が記載されてきた。1つ又は2つ以上の形態の上述の記載は、例示及び説明を目的として提示されているものである。包括的であることも、開示された厳密な形態に限定することも意図されていない。上記の教示を鑑みて、修正又は変形が可能である。1つ又は2つ以上の形態は、原理及び実際の応用について例示し、それによって、様々な形態を様々な修正例とともに、想到される特定の用途に適するものとして当業者が利用することを可能にするようにするために、選択及び記載されたものである。本明細書とともに提示される特許請求の範囲が全体的な範囲を定義することが意図される。
〔実施の態様〕
(1) 外科用システムであって、
RFエネルギー源と、
外科用器具であって、外科用発生器が、前記外科用器具に無線周波数(RF)電力を供給するように構成されており、前記外科用器具が、
エンドエフェクタであって、
第1のジョー、
間に組織を把持するように閉鎖運動において前記第2のジョーに対して移動可能な第2のジョー、
アンビルであって、
ステープルポケットの列と、
第1の電極アセンブリであって、前記第1の電極アセンブリが第1のセグメント化電極の列を含む、第1の電極アセンブリと、を含む、アンビル、
カートリッジであって、前記カートリッジが、
カートリッジデッキと、
前記カートリッジデッキ内に画定されたステープルキャビティの列であって、発射運動において前記ステープルポケットの列に接して変形可能なステープルを含む、ステープルキャビティの列と、
第2の電極アセンブリであって、前記第2の電極アセンブリが、第2のセグメント化電極の列を含み、前記RFエネルギー源が、前記第1の電極アセンブリ及び前記第2の電極アセンブリのうちの少なくとも1つに、RF治療エネルギーを前記組織に印加させるように構成されている、第2の電極アセンブリと、を含むカートリッジ本体を含む、カートリッジ、を含む、エンドエフェクタ、
前記エンドエフェクタに動作可能に連結されたモータアセンブリであって、前記モータアセンブリが、前記組織の周りでの前記エンドエフェクタの閉鎖及び前記組織への前記ステープルの発射のうちの少なくとも1つをもたらすように構成されている、モータアセンブリ、並びに
前記モータアセンブリに前記エンドエフェクタの機能を実行させるように構成されている制御回路であって、前記機能が、前記エンドエフェクタの回転、前記エンドエフェクタの関節運動、前記組織の周りの前記エンドエフェクタの閉鎖、及び前記組織内への前記ステープルの発射のうちの少なくとも1つを含み、前記制御回路及び前記RFエネルギー源が、前記RF治療エネルギーの印加及び前記エンドエフェクタの前記機能を協調的に制御するように構成されている、制御回路、を含む、外科用器具と、を含む、外科用システム。
(2) 前記制御回路が、前記組織への前記治療エネルギーの前記印加における検出された不足に基づいて、前記エンドエフェクタの前記機能のパラメータを調整するように構成されている、実施態様1に記載の外科用システム。
(3) 前記不足が、前記治療エネルギーによる前記組織の効果的な組織封止を完了するための電力不足である、実施態様1に記載の外科用システム。
(4) 前記制御回路が、前記組織のインピーダンスを監視することによって前記不足を検出するように構成されている、実施態様3に記載の外科用システム。
(5) 前記制御回路が、所定の閾値に基づいて前記電力不足を検出するように構成されている、実施態様3に記載の外科用システム。
(6) 前記パラメータが、力パラメータである、実施態様3に記載の外科用システム。
(7) 前記パラメータを調整することが、前記第1のジョーに適用される閉鎖力を変更することを含む、実施態様3に記載の外科用システム。
(8) 前記パラメータを調整することが、前記エンドエフェクタによって前記組織に適用される閉鎖圧力を調整することを含む、実施態様3に記載の外科用システム。
(9) 前記パラメータを調整することが、前記エンドエフェクタの関節運動の程度を変更することを含む、実施態様3に記載の外科用システム。
(10) 前記外科用器具が、前記モータアセンブリに連結された発射駆動部を備え、前記パラメータを調整することが、前記発射駆動部の発射速度を変更することを含む、実施態様3に記載の外科用システム。
(11) 外科用システムであって、
RFエネルギー源と、
外科用器具であって、外科用発生器が、前記外科用器具に無線周波数(RF)電力を供給するように構成されており、前記外科用器具が、
エンドエフェクタであって、
第1のジョー、
間に組織を把持するように閉鎖運動において前記第2のジョーに対して移動可能な第2のジョー、
アンビルであって、
ステープルポケットの列と、
第1の電極アセンブリであって、前記第1の電極アセンブリが第1のセグメント化電極の列を含む、第1の電極アセンブリと、を含む、アンビル、
カートリッジであって、前記カートリッジが、
カートリッジデッキと、
前記カートリッジデッキ内に画定されたステープルキャビティの列であって、発射運動において前記ステープルポケットの列に接して変形可能なステープルを含む、ステープルキャビティの列と、
第2の電極アセンブリであって、前記第2の電極アセンブリが、第2のセグメント化電極の列を含み、前記RFエネルギー源が、前記第1の電極アセンブリ及び前記第2の電極アセンブリのうちの少なくとも1つに、治療信号を前記組織に印加させるように構成されている、第2の電極アセンブリと、を含むカートリッジ本体を含む、カートリッジ、を含む、エンドエフェクタ、
前記エンドエフェクタに動作可能に連結されたモータアセンブリであって、前記モータアセンブリが、前記組織の周りでの前記エンドエフェクタの閉鎖及び前記組織への前記ステープルの発射のうちの少なくとも1つをもたらすように構成されている、モータアセンブリ、並びに
制御回路であって、
前記組織への前記治療信号の印加の不足を示す前記RFエネルギー源からの通信信号を受信し、
前記通信信号に基づいて前記エンドエフェクタの機能を調整するように構成されており、前記機能が、前記エンドエフェクタの回転、前記エンドエフェクタの関節運動、前記組織の周りでの前記エンドエフェクタの閉鎖、及び前記組織内への前記ステープルの発射のうちの少なくとも1つを含む、制御回路、を含む、外科用器具と、を含む、外科用システム。
(12) 前記不足が、前記治療信号による前記組織の効果的な組織封止を完了するための電力不足である、実施態様11に記載の外科用システム。
(13) 前記制御回路が、前記不足に基づいて前記エンドエフェクタの前記機能のパラメータを調整するように構成されている、実施態様11に記載の外科用システム。
(14) 前記パラメータが、力パラメータである、実施態様13に記載の外科用システム。
(15) 前記パラメータを調整することが、前記第1のジョーに適用される閉鎖力を変更することを含む、実施態様13に記載の外科用システム。
(16) 前記パラメータを調整することが、前記エンドエフェクタによって前記組織に適用される閉鎖圧力を調整することを含む、実施態様13に記載の外科用システム。
(17) 前記パラメータを調整することが、前記エンドエフェクタの関節運動の程度を変更することを含む、実施態様13に記載の外科用システム。
(18) 前記外科用器具が、前記モータアセンブリに連結された発射駆動部を備え、前記パラメータを調整することが、前記発射駆動部の発射速度を変更することを含む、実施態様13に記載の外科用システム。
(19) 外科用システムであって、
RFエネルギー源と、
外科用器具であって、外科用発生器が、前記外科用器具に無線周波数(RF)電力を供給するように構成されており、前記外科用器具が、
エンドエフェクタであって、
第1のジョー、
間に組織を把持するように閉鎖運動において前記第2のジョーに対して移動可能な第2のジョー、
アンビルであって、
ステープルポケットの列と、
第1の電極アセンブリであって、前記第1の電極アセンブリが第1のセグメント化電極の列を含む、第1の電極アセンブリと、を含む、アンビル、
カートリッジであって、前記カートリッジが、
カートリッジデッキと、
前記カートリッジデッキ内に画定されたステープルキャビティの列であって、発射運動において前記ステープルポケットの列に接して変形可能なステープルを含む、ステープルキャビティの列と、
第2の電極アセンブリであって、前記第2の電極アセンブリが、第2のセグメント化電極の列を含み、前記RFエネルギー源が、前記第1の電極アセンブリ及び前記第2の電極アセンブリのうちの少なくとも1つに、治療サインを前記組織に印加させるように構成されている、第2の電極アセンブリと、を含むカートリッジ本体を含む、カートリッジ、を含む、エンドエフェクタ、
前記エンドエフェクタに動作可能に連結されたモータアセンブリであって、前記モータアセンブリが、前記組織の周りでの前記エンドエフェクタの閉鎖及び前記組織への前記ステープルの発射のうちの少なくとも1つをもたらすように構成されている、モータアセンブリ、
前記モータアセンブリに電力を供給して、前記組織の周りでの前記エンドエフェクタの前記閉鎖及び前記組織内への前記ステープルの前記発射のうちの前記少なくとも1つをもたらすように構成されているバッテリ、並びに
制御回路であって、
所定の閾値未満の前記バッテリの電力レベルを検出し、
前記RFエネルギー源に、前記バッテリの前記電力レベルに基づいて前記治療エネルギーのパラメータを調整させるように構成されている、制御回路、を含む、外科用器具と、を含む、外科用システム。
(20) 前記第1のパラメータが、電圧であり、前記制御回路が、前記電圧を増加させるように構成されている、実施態様19に記載の外科用システム。

Claims (20)

  1. 外科用システムであって、
    RFエネルギー源と、
    外科用器具であって、外科用発生器が、前記外科用器具に無線周波数(RF)電力を供給するように構成されており、前記外科用器具が、
    エンドエフェクタであって、
    第1のジョー、
    間に組織を把持するように閉鎖運動において前記第2のジョーに対して移動可能な第2のジョー、
    アンビルであって、
    ステープルポケットの列と、
    第1の電極アセンブリであって、前記第1の電極アセンブリが第1のセグメント化電極の列を含む、第1の電極アセンブリと、を含む、アンビル、
    カートリッジであって、前記カートリッジが、
    カートリッジデッキと、
    前記カートリッジデッキ内に画定されたステープルキャビティの列であって、発射運動において前記ステープルポケットの列に接して変形可能なステープルを含む、ステープルキャビティの列と、
    第2の電極アセンブリであって、前記第2の電極アセンブリが、第2のセグメント化電極の列を含み、前記RFエネルギー源が、前記第1の電極アセンブリ及び前記第2の電極アセンブリのうちの少なくとも1つに、RF治療エネルギーを前記組織に印加させるように構成されている、第2の電極アセンブリと、を含むカートリッジ本体を含む、カートリッジ、を含む、エンドエフェクタ、
    前記エンドエフェクタに動作可能に連結されたモータアセンブリであって、前記モータアセンブリが、前記組織の周りでの前記エンドエフェクタの閉鎖及び前記組織への前記ステープルの発射のうちの少なくとも1つをもたらすように構成されている、モータアセンブリ、並びに
    前記モータアセンブリに前記エンドエフェクタの機能を実行させるように構成されている制御回路であって、前記機能が、前記エンドエフェクタの回転、前記エンドエフェクタの関節運動、前記組織の周りの前記エンドエフェクタの閉鎖、及び前記組織内への前記ステープルの発射のうちの少なくとも1つを含み、前記制御回路及び前記RFエネルギー源が、前記RF治療エネルギーの印加及び前記エンドエフェクタの前記機能を協調的に制御するように構成されている、制御回路、を含む、外科用器具と、を含む、外科用システム。
  2. 前記制御回路が、前記組織への前記治療エネルギーの前記印加における検出された不足に基づいて、前記エンドエフェクタの前記機能のパラメータを調整するように構成されている、請求項1に記載の外科用システム。
  3. 前記不足が、前記治療エネルギーによる前記組織の効果的な組織封止を完了するための電力不足である、請求項1に記載の外科用システム。
  4. 前記制御回路が、前記組織のインピーダンスを監視することによって前記不足を検出するように構成されている、請求項3に記載の外科用システム。
  5. 前記制御回路が、所定の閾値に基づいて前記電力不足を検出するように構成されている、請求項3に記載の外科用システム。
  6. 前記パラメータが、力パラメータである、請求項3に記載の外科用システム。
  7. 前記パラメータを調整することが、前記第1のジョーに適用される閉鎖力を変更することを含む、請求項3に記載の外科用システム。
  8. 前記パラメータを調整することが、前記エンドエフェクタによって前記組織に適用される閉鎖圧力を調整することを含む、請求項3に記載の外科用システム。
  9. 前記パラメータを調整することが、前記エンドエフェクタの関節運動の程度を変更することを含む、請求項3に記載の外科用システム。
  10. 前記外科用器具が、前記モータアセンブリに連結された発射駆動部を備え、前記パラメータを調整することが、前記発射駆動部の発射速度を変更することを含む、請求項3に記載の外科用システム。
  11. 外科用システムであって、
    RFエネルギー源と、
    外科用器具であって、外科用発生器が、前記外科用器具に無線周波数(RF)電力を供給するように構成されており、前記外科用器具が、
    エンドエフェクタであって、
    第1のジョー、
    間に組織を把持するように閉鎖運動において前記第2のジョーに対して移動可能な第2のジョー、
    アンビルであって、
    ステープルポケットの列と、
    第1の電極アセンブリであって、前記第1の電極アセンブリが第1のセグメント化電極の列を含む、第1の電極アセンブリと、を含む、アンビル、
    カートリッジであって、前記カートリッジが、
    カートリッジデッキと、
    前記カートリッジデッキ内に画定されたステープルキャビティの列であって、発射運動において前記ステープルポケットの列に接して変形可能なステープルを含む、ステープルキャビティの列と、
    第2の電極アセンブリであって、前記第2の電極アセンブリが、第2のセグメント化電極の列を含み、前記RFエネルギー源が、前記第1の電極アセンブリ及び前記第2の電極アセンブリのうちの少なくとも1つに、治療信号を前記組織に印加させるように構成されている、第2の電極アセンブリと、を含むカートリッジ本体を含む、カートリッジ、を含む、エンドエフェクタ、
    前記エンドエフェクタに動作可能に連結されたモータアセンブリであって、前記モータアセンブリが、前記組織の周りでの前記エンドエフェクタの閉鎖及び前記組織への前記ステープルの発射のうちの少なくとも1つをもたらすように構成されている、モータアセンブリ、並びに
    制御回路であって、
    前記組織への前記治療信号の印加の不足を示す前記RFエネルギー源からの通信信号を受信し、
    前記通信信号に基づいて前記エンドエフェクタの機能を調整するように構成されており、前記機能が、前記エンドエフェクタの回転、前記エンドエフェクタの関節運動、前記組織の周りでの前記エンドエフェクタの閉鎖、及び前記組織内への前記ステープルの発射のうちの少なくとも1つを含む、制御回路、を含む、外科用器具と、を含む、外科用システム。
  12. 前記不足が、前記治療信号による前記組織の効果的な組織封止を完了するための電力不足である、請求項11に記載の外科用システム。
  13. 前記制御回路が、前記不足に基づいて前記エンドエフェクタの前記機能のパラメータを調整するように構成されている、請求項11に記載の外科用システム。
  14. 前記パラメータが、力パラメータである、請求項13に記載の外科用システム。
  15. 前記パラメータを調整することが、前記第1のジョーに適用される閉鎖力を変更することを含む、請求項13に記載の外科用システム。
  16. 前記パラメータを調整することが、前記エンドエフェクタによって前記組織に適用される閉鎖圧力を調整することを含む、請求項13に記載の外科用システム。
  17. 前記パラメータを調整することが、前記エンドエフェクタの関節運動の程度を変更することを含む、請求項13に記載の外科用システム。
  18. 前記外科用器具が、前記モータアセンブリに連結された発射駆動部を備え、前記パラメータを調整することが、前記発射駆動部の発射速度を変更することを含む、請求項13に記載の外科用システム。
  19. 外科用システムであって、
    RFエネルギー源と、
    外科用器具であって、外科用発生器が、前記外科用器具に無線周波数(RF)電力を供給するように構成されており、前記外科用器具が、
    エンドエフェクタであって、
    第1のジョー、
    間に組織を把持するように閉鎖運動において前記第2のジョーに対して移動可能な第2のジョー、
    アンビルであって、
    ステープルポケットの列と、
    第1の電極アセンブリであって、前記第1の電極アセンブリが第1のセグメント化電極の列を含む、第1の電極アセンブリと、を含む、アンビル、
    カートリッジであって、前記カートリッジが、
    カートリッジデッキと、
    前記カートリッジデッキ内に画定されたステープルキャビティの列であって、発射運動において前記ステープルポケットの列に接して変形可能なステープルを含む、ステープルキャビティの列と、
    第2の電極アセンブリであって、前記第2の電極アセンブリが、第2のセグメント化電極の列を含み、前記RFエネルギー源が、前記第1の電極アセンブリ及び前記第2の電極アセンブリのうちの少なくとも1つに、治療サインを前記組織に印加させるように構成されている、第2の電極アセンブリと、を含むカートリッジ本体を含む、カートリッジ、を含む、エンドエフェクタ、
    前記エンドエフェクタに動作可能に連結されたモータアセンブリであって、前記モータアセンブリが、前記組織の周りでの前記エンドエフェクタの閉鎖及び前記組織への前記ステープルの発射のうちの少なくとも1つをもたらすように構成されている、モータアセンブリ、
    前記モータアセンブリに電力を供給して、前記組織の周りでの前記エンドエフェクタの前記閉鎖及び前記組織内への前記ステープルの前記発射のうちの前記少なくとも1つをもたらすように構成されているバッテリ、並びに
    制御回路であって、
    所定の閾値未満の前記バッテリの電力レベルを検出し、
    前記RFエネルギー源に、前記バッテリの前記電力レベルに基づいて前記治療エネルギーのパラメータを調整させるように構成されている、制御回路、を含む、外科用器具と、を含む、外科用システム。
  20. 前記第1のパラメータが、電圧であり、前記制御回路が、前記電圧を増加させるように構成されている、請求項19に記載の外科用システム。
JP2023566615A 2021-04-30 2022-04-27 エンドエフェクタ機能及び治療エネルギーの適用を協調的に制御するように構成されている外科用システム Pending JP2024517746A (ja)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US17/246,118 2021-04-30
US17/246,118 US20220346861A1 (en) 2021-04-30 2021-04-30 Surgical systems configured to cooperatively control end effector function and application of therapeutic energy
PCT/IB2022/053889 WO2022229860A1 (en) 2021-04-30 2022-04-27 Surgical systems configured to cooperatively control end effector function and application of therapeutic energy

Publications (1)

Publication Number Publication Date
JP2024517746A true JP2024517746A (ja) 2024-04-23

Family

ID=81585767

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2023566615A Pending JP2024517746A (ja) 2021-04-30 2022-04-27 エンドエフェクタ機能及び治療エネルギーの適用を協調的に制御するように構成されている外科用システム

Country Status (6)

Country Link
US (1) US20220346861A1 (ja)
EP (1) EP4171415A1 (ja)
JP (1) JP2024517746A (ja)
CN (1) CN117715601A (ja)
BR (1) BR112023022614A2 (ja)
WO (1) WO2022229860A1 (ja)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11298128B2 (en) 2017-06-28 2022-04-12 Cilag Gmbh International Surgical system couplable with staple cartridge and radio frequency cartridge, and method of using same
US11918275B2 (en) 2021-04-30 2024-03-05 Cilag Gmbh International Electrosurgical adaptation techniques of energy modality for combination electrosurgical instruments based on shorting or tissue impedance irregularity
US11944295B2 (en) 2021-04-30 2024-04-02 Cilag Gmbh International Surgical instrument comprising end effector with longitudinal sealing step
US11826043B2 (en) 2021-04-30 2023-11-28 Cilag Gmbh International Staple cartridge comprising formation support features
US11931035B2 (en) 2021-04-30 2024-03-19 Cilag Gmbh International Articulation system for surgical instrument
US11857184B2 (en) 2021-04-30 2024-01-02 Cilag Gmbh International Surgical instrument comprising a rotation-driven and translation-driven tissue cutting knife
US11617579B2 (en) * 2021-06-29 2023-04-04 Covidien Lp Ultra low profile surgical stapling instrument for tissue resections

Family Cites Families (166)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3187308A (en) 1961-07-03 1965-06-01 Gen Electric Information storage system for microwave computer
US3157308A (en) 1961-09-05 1964-11-17 Clark Mfg Co J L Canister type container and method of making the same
US5403312A (en) 1993-07-22 1995-04-04 Ethicon, Inc. Electrosurgical hemostatic device
US6315184B1 (en) 1999-06-02 2001-11-13 Powermed, Inc. Stapling device for use with an electromechanical driver device for use with anastomosing, stapling, and resecting instruments
US20040267310A1 (en) 2000-10-20 2004-12-30 Racenet David C Directionally biased staple and anvil assembly for forming the staple
US6686437B2 (en) 2001-10-23 2004-02-03 M.M.A. Tech Ltd. Medical implants made of wear-resistant, high-performance polyimides, process of making same and medical use of same
US6988649B2 (en) 2003-05-20 2006-01-24 Ethicon Endo-Surgery, Inc. Surgical stapling instrument having a spent cartridge lockout
US7143923B2 (en) 2003-05-20 2006-12-05 Ethicon Endo-Surgery, Inc. Surgical stapling instrument having a firing lockout for an unclosed anvil
US6978921B2 (en) 2003-05-20 2005-12-27 Ethicon Endo-Surgery, Inc. Surgical stapling instrument incorporating an E-beam firing mechanism
US7044352B2 (en) 2003-05-20 2006-05-16 Ethicon Endo-Surgery, Inc. Surgical stapling instrument having a single lockout mechanism for prevention of firing
US7722610B2 (en) 2005-06-02 2010-05-25 Tyco Healthcare Group Lp Multiple coil staple and staple applier
US7670334B2 (en) 2006-01-10 2010-03-02 Ethicon Endo-Surgery, Inc. Surgical instrument having an articulating end effector
US20070175955A1 (en) 2006-01-31 2007-08-02 Shelton Frederick E Iv Surgical cutting and fastening instrument with closure trigger locking mechanism
US7464849B2 (en) 2006-01-31 2008-12-16 Ethicon Endo-Surgery, Inc. Electro-mechanical surgical instrument with closure system and anvil alignment components
US7422139B2 (en) 2006-01-31 2008-09-09 Ethicon Endo-Surgery, Inc. Motor-driven surgical cutting fastening instrument with tactile position feedback
US7845537B2 (en) 2006-01-31 2010-12-07 Ethicon Endo-Surgery, Inc. Surgical instrument having recording capabilities
US8408439B2 (en) 2007-06-22 2013-04-02 Ethicon Endo-Surgery, Inc. Surgical stapling instrument with an articulatable end effector
US7753245B2 (en) 2007-06-22 2010-07-13 Ethicon Endo-Surgery, Inc. Surgical stapling instruments
US8561870B2 (en) 2008-02-13 2013-10-22 Ethicon Endo-Surgery, Inc. Surgical stapling instrument
US8636736B2 (en) * 2008-02-14 2014-01-28 Ethicon Endo-Surgery, Inc. Motorized surgical cutting and fastening instrument
US7980443B2 (en) 2008-02-15 2011-07-19 Ethicon Endo-Surgery, Inc. End effectors for a surgical cutting and stapling instrument
US7926691B2 (en) 2008-04-14 2011-04-19 Tyco Healthcare Group, L.P. Variable compression surgical fastener cartridge
US9050083B2 (en) 2008-09-23 2015-06-09 Ethicon Endo-Surgery, Inc. Motorized surgical instrument
US8210411B2 (en) 2008-09-23 2012-07-03 Ethicon Endo-Surgery, Inc. Motor-driven surgical cutting instrument
US8608045B2 (en) 2008-10-10 2013-12-17 Ethicon Endo-Sugery, Inc. Powered surgical cutting and stapling apparatus with manually retractable firing system
US8070034B1 (en) 2009-05-29 2011-12-06 Cardica, Inc. Surgical stapler with angled staple bays
US8056789B1 (en) 2009-06-03 2011-11-15 Cardica, Inc. Staple and feeder belt configurations for surgical stapler
JP5602859B2 (ja) 2009-08-21 2014-10-08 カーディアック ペースメイカーズ, インコーポレイテッド ポリイソブチレンベースの架橋性ポリマーおよびそれを含有する医療機器
US8986302B2 (en) 2009-10-09 2015-03-24 Ethicon Endo-Surgery, Inc. Surgical generator for ultrasonic and electrosurgical devices
US8220688B2 (en) 2009-12-24 2012-07-17 Ethicon Endo-Surgery, Inc. Motor-driven surgical cutting instrument with electric actuator directional control assembly
US8733613B2 (en) 2010-09-29 2014-05-27 Ethicon Endo-Surgery, Inc. Staple cartridge
US8752699B2 (en) 2010-09-30 2014-06-17 Ethicon Endo-Surgery, Inc. Implantable fastener cartridge comprising bioabsorbable layers
US9072535B2 (en) 2011-05-27 2015-07-07 Ethicon Endo-Surgery, Inc. Surgical stapling instruments with rotatable staple deployment arrangements
US9101358B2 (en) 2012-06-15 2015-08-11 Ethicon Endo-Surgery, Inc. Articulatable surgical instrument comprising a firing drive
US9307986B2 (en) 2013-03-01 2016-04-12 Ethicon Endo-Surgery, Llc Surgical instrument soft stop
US20140263552A1 (en) 2013-03-13 2014-09-18 Ethicon Endo-Surgery, Inc. Staple cartridge tissue thickness sensor system
US9888919B2 (en) 2013-03-14 2018-02-13 Ethicon Llc Method and system for operating a surgical instrument
US9629629B2 (en) 2013-03-14 2017-04-25 Ethicon Endo-Surgey, LLC Control systems for surgical instruments
US10149680B2 (en) 2013-04-16 2018-12-11 Ethicon Llc Surgical instrument comprising a gap setting system
US20150272557A1 (en) 2014-03-26 2015-10-01 Ethicon Endo-Surgery, Inc. Modular surgical instrument system
US9826977B2 (en) 2014-03-26 2017-11-28 Ethicon Llc Sterilization verification circuit
US20150272582A1 (en) 2014-03-26 2015-10-01 Ethicon Endo-Surgery, Inc. Power management control systems for surgical instruments
US9844369B2 (en) 2014-04-16 2017-12-19 Ethicon Llc Surgical end effectors with firing element monitoring arrangements
US9724094B2 (en) 2014-09-05 2017-08-08 Ethicon Llc Adjunct with integrated sensors to quantify tissue compression
US10188385B2 (en) 2014-12-18 2019-01-29 Ethicon Llc Surgical instrument system comprising lockable systems
US10245027B2 (en) 2014-12-18 2019-04-02 Ethicon Llc Surgical instrument with an anvil that is selectively movable about a discrete non-movable axis relative to a staple cartridge
US9987000B2 (en) 2014-12-18 2018-06-05 Ethicon Llc Surgical instrument assembly comprising a flexible articulation system
US9844374B2 (en) 2014-12-18 2017-12-19 Ethicon Llc Surgical instrument systems comprising an articulatable end effector and means for adjusting the firing stroke of a firing member
US10117649B2 (en) 2014-12-18 2018-11-06 Ethicon Llc Surgical instrument assembly comprising a lockable articulation system
US9844375B2 (en) 2014-12-18 2017-12-19 Ethicon Llc Drive arrangements for articulatable surgical instruments
US10085748B2 (en) 2014-12-18 2018-10-02 Ethicon Llc Locking arrangements for detachable shaft assemblies with articulatable surgical end effectors
US9993258B2 (en) 2015-02-27 2018-06-12 Ethicon Llc Adaptable surgical instrument handle
US10045779B2 (en) 2015-02-27 2018-08-14 Ethicon Llc Surgical instrument system comprising an inspection station
US10180463B2 (en) 2015-02-27 2019-01-15 Ethicon Llc Surgical apparatus configured to assess whether a performance parameter of the surgical apparatus is within an acceptable performance band
US9901342B2 (en) 2015-03-06 2018-02-27 Ethicon Endo-Surgery, Llc Signal and power communication system positioned on a rotatable shaft
US9895148B2 (en) 2015-03-06 2018-02-20 Ethicon Endo-Surgery, Llc Monitoring speed control and precision incrementing of motor for powered surgical instruments
US10617412B2 (en) 2015-03-06 2020-04-14 Ethicon Llc System for detecting the mis-insertion of a staple cartridge into a surgical stapler
US9993248B2 (en) 2015-03-06 2018-06-12 Ethicon Endo-Surgery, Llc Smart sensors with local signal processing
US9924961B2 (en) 2015-03-06 2018-03-27 Ethicon Endo-Surgery, Llc Interactive feedback system for powered surgical instruments
US10052044B2 (en) 2015-03-06 2018-08-21 Ethicon Llc Time dependent evaluation of sensor data to determine stability, creep, and viscoelastic elements of measures
US10687806B2 (en) 2015-03-06 2020-06-23 Ethicon Llc Adaptive tissue compression techniques to adjust closure rates for multiple tissue types
US9808246B2 (en) 2015-03-06 2017-11-07 Ethicon Endo-Surgery, Llc Method of operating a powered surgical instrument
US10245033B2 (en) 2015-03-06 2019-04-02 Ethicon Llc Surgical instrument comprising a lockable battery housing
US10045776B2 (en) 2015-03-06 2018-08-14 Ethicon Llc Control techniques and sub-processor contained within modular shaft with select control processing from handle
US10441279B2 (en) 2015-03-06 2019-10-15 Ethicon Llc Multiple level thresholds to modify operation of powered surgical instruments
US10143474B2 (en) 2015-05-08 2018-12-04 Just Right Surgical, Llc Surgical stapler
US10178992B2 (en) 2015-06-18 2019-01-15 Ethicon Llc Push/pull articulation drive systems for articulatable surgical instruments
US10194973B2 (en) 2015-09-30 2019-02-05 Ethicon Llc Generator for digitally generating electrical signal waveforms for electrosurgical and ultrasonic surgical instruments
US10292704B2 (en) 2015-12-30 2019-05-21 Ethicon Llc Mechanisms for compensating for battery pack failure in powered surgical instruments
US10265068B2 (en) 2015-12-30 2019-04-23 Ethicon Llc Surgical instruments with separable motors and motor control circuits
US10368865B2 (en) 2015-12-30 2019-08-06 Ethicon Llc Mechanisms for compensating for drivetrain failure in powered surgical instruments
US10588625B2 (en) 2016-02-09 2020-03-17 Ethicon Llc Articulatable surgical instruments with off-axis firing beam arrangements
US11213293B2 (en) 2016-02-09 2022-01-04 Cilag Gmbh International Articulatable surgical instruments with single articulation link arrangements
US10258331B2 (en) 2016-02-12 2019-04-16 Ethicon Llc Mechanisms for compensating for drivetrain failure in powered surgical instruments
US11224426B2 (en) 2016-02-12 2022-01-18 Cilag Gmbh International Mechanisms for compensating for drivetrain failure in powered surgical instruments
US20170231628A1 (en) 2016-02-12 2017-08-17 Ethicon Endo-Surgery, Llc Mechanisms for compensating for drivetrain failure in powered surgical instruments
US10448948B2 (en) 2016-02-12 2019-10-22 Ethicon Llc Mechanisms for compensating for drivetrain failure in powered surgical instruments
US10682136B2 (en) 2016-04-01 2020-06-16 Ethicon Llc Circular stapling system comprising load control
US10531874B2 (en) 2016-04-01 2020-01-14 Ethicon Llc Surgical cutting and stapling end effector with anvil concentric drive member
US10314582B2 (en) 2016-04-01 2019-06-11 Ethicon Llc Surgical instrument comprising a shifting mechanism
US11284890B2 (en) 2016-04-01 2022-03-29 Cilag Gmbh International Circular stapling system comprising an incisable tissue support
USD826405S1 (en) 2016-06-24 2018-08-21 Ethicon Llc Surgical fastener
US10542979B2 (en) 2016-06-24 2020-01-28 Ethicon Llc Stamped staples and staple cartridges using the same
USD850617S1 (en) 2016-06-24 2019-06-04 Ethicon Llc Surgical fastener cartridge
USD822206S1 (en) 2016-06-24 2018-07-03 Ethicon Llc Surgical fastener
USD847989S1 (en) 2016-06-24 2019-05-07 Ethicon Llc Surgical fastener cartridge
US10980536B2 (en) 2016-12-21 2021-04-20 Ethicon Llc No-cartridge and spent cartridge lockout arrangements for surgical staplers
US20180168598A1 (en) 2016-12-21 2018-06-21 Ethicon Endo-Surgery, Llc Staple forming pocket arrangements comprising zoned forming surface grooves
US10537324B2 (en) 2016-12-21 2020-01-21 Ethicon Llc Stepped staple cartridge with asymmetrical staples
US10758229B2 (en) 2016-12-21 2020-09-01 Ethicon Llc Surgical instrument comprising improved jaw control
US10426471B2 (en) 2016-12-21 2019-10-01 Ethicon Llc Surgical instrument with multiple failure response modes
US20180168633A1 (en) 2016-12-21 2018-06-21 Ethicon Endo-Surgery, Llc Surgical stapling instruments and staple-forming anvils
US10603036B2 (en) 2016-12-21 2020-03-31 Ethicon Llc Articulatable surgical instrument with independent pivotable linkage distal of an articulation lock
US20180168615A1 (en) 2016-12-21 2018-06-21 Ethicon Endo-Surgery, Llc Method of deforming staples from two different types of staple cartridges with the same surgical stapling instrument
US20180168625A1 (en) 2016-12-21 2018-06-21 Ethicon Endo-Surgery, Llc Surgical stapling instruments with smart staple cartridges
US11134942B2 (en) 2016-12-21 2021-10-05 Cilag Gmbh International Surgical stapling instruments and staple-forming anvils
US10675026B2 (en) 2016-12-21 2020-06-09 Ethicon Llc Methods of stapling tissue
US10993715B2 (en) 2016-12-21 2021-05-04 Ethicon Llc Staple cartridge comprising staples with different clamping breadths
US10856868B2 (en) 2016-12-21 2020-12-08 Ethicon Llc Firing member pin configurations
US10687810B2 (en) 2016-12-21 2020-06-23 Ethicon Llc Stepped staple cartridge with tissue retention and gap setting features
US20180168609A1 (en) 2016-12-21 2018-06-21 Ethicon Endo-Surgery, Llc Firing assembly comprising a fuse
US10568626B2 (en) 2016-12-21 2020-02-25 Ethicon Llc Surgical instruments with jaw opening features for increasing a jaw opening distance
US10918385B2 (en) 2016-12-21 2021-02-16 Ethicon Llc Surgical system comprising a firing member rotatable into an articulation state to articulate an end effector of the surgical system
US10610224B2 (en) 2016-12-21 2020-04-07 Ethicon Llc Lockout arrangements for surgical end effectors and replaceable tool assemblies
US10945727B2 (en) 2016-12-21 2021-03-16 Ethicon Llc Staple cartridge with deformable driver retention features
US11419606B2 (en) 2016-12-21 2022-08-23 Cilag Gmbh International Shaft assembly comprising a clutch configured to adapt the output of a rotary firing member to two different systems
US11678881B2 (en) 2017-12-28 2023-06-20 Cilag Gmbh International Spatial awareness of surgical hubs in operating rooms
US20190201118A1 (en) 2017-12-28 2019-07-04 Ethicon Llc Display arrangements for robot-assisted surgical platforms
US11132462B2 (en) 2017-12-28 2021-09-28 Cilag Gmbh International Data stripping method to interrogate patient records and create anonymized record
US11672605B2 (en) 2017-12-28 2023-06-13 Cilag Gmbh International Sterile field interactive control displays
US20190201112A1 (en) 2017-12-28 2019-07-04 Ethicon Llc Computer implemented interactive surgical systems
US10892899B2 (en) 2017-12-28 2021-01-12 Ethicon Llc Self describing data packets generated at an issuing instrument
US11864728B2 (en) 2017-12-28 2024-01-09 Cilag Gmbh International Characterization of tissue irregularities through the use of mono-chromatic light refractivity
US20190206561A1 (en) 2017-12-28 2019-07-04 Ethicon Llc Data handling and prioritization in a cloud analytics network
US11069012B2 (en) 2017-12-28 2021-07-20 Cilag Gmbh International Interactive surgical systems with condition handling of devices and data capabilities
US11100631B2 (en) 2017-12-28 2021-08-24 Cilag Gmbh International Use of laser light and red-green-blue coloration to determine properties of back scattered light
US11076921B2 (en) 2017-12-28 2021-08-03 Cilag Gmbh International Adaptive control program updates for surgical hubs
US11432885B2 (en) 2017-12-28 2022-09-06 Cilag Gmbh International Sensing arrangements for robot-assisted surgical platforms
US11202570B2 (en) 2017-12-28 2021-12-21 Cilag Gmbh International Communication hub and storage device for storing parameters and status of a surgical device to be shared with cloud based analytics systems
US11464559B2 (en) * 2017-12-28 2022-10-11 Cilag Gmbh International Estimating state of ultrasonic end effector and control system therefor
US20190205567A1 (en) 2017-12-28 2019-07-04 Ethicon Llc Data pairing to interconnect a device measured parameter with an outcome
US10944728B2 (en) 2017-12-28 2021-03-09 Ethicon Llc Interactive surgical systems with encrypted communication capabilities
US20190201115A1 (en) 2017-12-28 2019-07-04 Ethicon Llc Aggregation and reporting of surgical hub data
US11166772B2 (en) 2017-12-28 2021-11-09 Cilag Gmbh International Surgical hub coordination of control and communication of operating room devices
US10932872B2 (en) 2017-12-28 2021-03-02 Ethicon Llc Cloud-based medical analytics for linking of local usage trends with the resource acquisition behaviors of larger data set
US20190201113A1 (en) 2017-12-28 2019-07-04 Ethicon Llc Controls for robot-assisted surgical platforms
US11969142B2 (en) 2017-12-28 2024-04-30 Cilag Gmbh International Method of compressing tissue within a stapling device and simultaneously displaying the location of the tissue within the jaws
US20190200906A1 (en) 2017-12-28 2019-07-04 Ethicon Llc Dual cmos array imaging
US11857152B2 (en) 2017-12-28 2024-01-02 Cilag Gmbh International Surgical hub spatial awareness to determine devices in operating theater
US11266468B2 (en) 2017-12-28 2022-03-08 Cilag Gmbh International Cooperative utilization of data derived from secondary sources by intelligent surgical hubs
US11410259B2 (en) 2017-12-28 2022-08-09 Cilag Gmbh International Adaptive control program updates for surgical devices
US10849697B2 (en) 2017-12-28 2020-12-01 Ethicon Llc Cloud interface for coupled surgical devices
US20190201140A1 (en) 2017-12-28 2019-07-04 Ethicon Llc Surgical hub situational awareness
US11419630B2 (en) 2017-12-28 2022-08-23 Cilag Gmbh International Surgical system distributed processing
US11179208B2 (en) 2017-12-28 2021-11-23 Cilag Gmbh International Cloud-based medical analytics for security and authentication trends and reactive measures
US20190206555A1 (en) 2017-12-28 2019-07-04 Ethicon Llc Cloud-based medical analytics for customization and recommendations to a user
US10966791B2 (en) 2017-12-28 2021-04-06 Ethicon Llc Cloud-based medical analytics for medical facility segmented individualization of instrument function
US10987178B2 (en) 2017-12-28 2021-04-27 Ethicon Llc Surgical hub control arrangements
US11471156B2 (en) 2018-03-28 2022-10-18 Cilag Gmbh International Surgical stapling devices with improved rotary driven closure systems
US11096688B2 (en) 2018-03-28 2021-08-24 Cilag Gmbh International Rotary driven firing members with different anvil and channel engagement features
US20190298353A1 (en) 2018-03-28 2019-10-03 Ethicon Llc Surgical stapling devices with asymmetric closure features
US11589865B2 (en) 2018-03-28 2023-02-28 Cilag Gmbh International Methods for controlling a powered surgical stapler that has separate rotary closure and firing systems
US11207067B2 (en) 2018-03-28 2021-12-28 Cilag Gmbh International Surgical stapling device with separate rotary driven closure and firing systems and firing member that engages both jaws while firing
US11278280B2 (en) 2018-03-28 2022-03-22 Cilag Gmbh International Surgical instrument comprising a jaw closure lockout
US11129611B2 (en) 2018-03-28 2021-09-28 Cilag Gmbh International Surgical staplers with arrangements for maintaining a firing member thereof in a locked configuration unless a compatible cartridge has been installed therein
US11219453B2 (en) 2018-03-28 2022-01-11 Cilag Gmbh International Surgical stapling devices with cartridge compatible closure and firing lockout arrangements
US10842492B2 (en) 2018-08-20 2020-11-24 Ethicon Llc Powered articulatable surgical instruments with clutching and locking arrangements for linking an articulation drive system to a firing drive system
US10912559B2 (en) 2018-08-20 2021-02-09 Ethicon Llc Reinforced deformable anvil tip for surgical stapler anvil
US20200054321A1 (en) 2018-08-20 2020-02-20 Ethicon Llc Surgical instruments with progressive jaw closure arrangements
US11045192B2 (en) 2018-08-20 2021-06-29 Cilag Gmbh International Fabricating techniques for surgical stapler anvils
US10779821B2 (en) 2018-08-20 2020-09-22 Ethicon Llc Surgical stapler anvils with tissue stop features configured to avoid tissue pinch
US11207065B2 (en) 2018-08-20 2021-12-28 Cilag Gmbh International Method for fabricating surgical stapler anvils
US10856870B2 (en) 2018-08-20 2020-12-08 Ethicon Llc Switching arrangements for motor powered articulatable surgical instruments
US11253256B2 (en) 2018-08-20 2022-02-22 Cilag Gmbh International Articulatable motor powered surgical instruments with dedicated articulation motor arrangements
US11291440B2 (en) 2018-08-20 2022-04-05 Cilag Gmbh International Method for operating a powered articulatable surgical instrument
US11039834B2 (en) 2018-08-20 2021-06-22 Cilag Gmbh International Surgical stapler anvils with staple directing protrusions and tissue stability features
US11083458B2 (en) 2018-08-20 2021-08-10 Cilag Gmbh International Powered surgical instruments with clutching arrangements to convert linear drive motions to rotary drive motions
US20200345359A1 (en) 2019-04-30 2020-11-05 Ethicon Llc Tissue stop for a surgical instrument
US11426251B2 (en) 2019-04-30 2022-08-30 Cilag Gmbh International Articulation directional lights on a surgical instrument
US11903581B2 (en) 2019-04-30 2024-02-20 Cilag Gmbh International Methods for stapling tissue using a surgical instrument
US11452528B2 (en) 2019-04-30 2022-09-27 Cilag Gmbh International Articulation actuators for a surgical instrument
US20200345356A1 (en) 2019-04-30 2020-11-05 Ethicon Llc Intelligent firing associated with a surgical instrument
US11432816B2 (en) 2019-04-30 2022-09-06 Cilag Gmbh International Articulation pin for a surgical instrument
US11471157B2 (en) 2019-04-30 2022-10-18 Cilag Gmbh International Articulation control mapping for a surgical instrument
US20200345357A1 (en) 2019-04-30 2020-11-05 Ethicon Llc Intelligent firing associated with a surgical instrument
US11648009B2 (en) 2019-04-30 2023-05-16 Cilag Gmbh International Rotatable jaw tip for a surgical instrument

Also Published As

Publication number Publication date
BR112023022614A2 (pt) 2024-02-06
CN117715601A (zh) 2024-03-15
US20220346861A1 (en) 2022-11-03
WO2022229860A1 (en) 2022-11-03
EP4171415A1 (en) 2023-05-03

Similar Documents

Publication Publication Date Title
JP2024515843A (ja) 長手方向封止段部を有するエンドエフェクタを備える外科用器具
JP2024517744A (ja) エネルギー感受性抵抗素子を有するエンドエフェクタを備える外科用器具
JP2024518343A (ja) 回転駆動及び並進駆動される組織切断ナイフを備える外科用器具
JP2024515841A (ja) ステープルドライバ及び安定支持体を備えるステープルカートリッジ
JP2024517746A (ja) エンドエフェクタ機能及び治療エネルギーの適用を協調的に制御するように構成されている外科用システム
JP2024515842A (ja) 閉鎖バー及び発射バーを備える外科用器具
JP2024518341A (ja) 成形支持特徴部を含むステープルカートリッジ
JP2024518342A (ja) 交換可能なエンドエフェクタ再装填
JP2024515845A (ja) カートリッジ及び組織パラメータに基づいて、組織への治療エネルギー適用を制御するように構成されている外科手術システム
JP2024515850A (ja) 複合電気外科器具とともに使用するための外科用ステープル
JP2024515844A (ja) 独立して作動可能なセグメント化電極を備える外科用器具
JP2024515848A (ja) 封止のための電気外科技術、短絡検出、及び電力レベルのシステム決定
JP2024515852A (ja) 外科用器具のためのシャフトシステム
US20220346858A1 (en) Method for operating a surgical instrument including segmented electrodes
JP2024516667A (ja) 短絡又は組織インピーダンス不規則性に基づく、組み合わせ電気外科用器具のためのエネルギーモダリティの電気外科用適合技法
JP2024515851A (ja) 外科用器具のための関節運動システム