JP2024509806A - A porous carbon material from which impurities have been removed, a method for producing the same, a positive electrode for a lithium-sulfur battery containing the carbon material as a positive electrode active material, and a lithium-sulfur battery - Google Patents
A porous carbon material from which impurities have been removed, a method for producing the same, a positive electrode for a lithium-sulfur battery containing the carbon material as a positive electrode active material, and a lithium-sulfur battery Download PDFInfo
- Publication number
- JP2024509806A JP2024509806A JP2023552556A JP2023552556A JP2024509806A JP 2024509806 A JP2024509806 A JP 2024509806A JP 2023552556 A JP2023552556 A JP 2023552556A JP 2023552556 A JP2023552556 A JP 2023552556A JP 2024509806 A JP2024509806 A JP 2024509806A
- Authority
- JP
- Japan
- Prior art keywords
- carbon material
- porous carbon
- lithium
- sulfur
- positive electrode
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000003575 carbonaceous material Substances 0.000 title claims abstract description 157
- 239000012535 impurity Substances 0.000 title claims abstract description 80
- JDZCKJOXGCMJGS-UHFFFAOYSA-N [Li].[S] Chemical compound [Li].[S] JDZCKJOXGCMJGS-UHFFFAOYSA-N 0.000 title claims abstract description 63
- 239000007774 positive electrode material Substances 0.000 title claims abstract description 32
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 15
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 claims description 58
- NINIDFKCEFEMDL-UHFFFAOYSA-N Sulfur Chemical compound [S] NINIDFKCEFEMDL-UHFFFAOYSA-N 0.000 claims description 53
- 229910052717 sulfur Inorganic materials 0.000 claims description 52
- 239000011593 sulfur Substances 0.000 claims description 52
- 239000003792 electrolyte Substances 0.000 claims description 39
- -1 Denka black Substances 0.000 claims description 33
- 239000002131 composite material Substances 0.000 claims description 29
- 239000002904 solvent Substances 0.000 claims description 27
- GJEAMHAFPYZYDE-UHFFFAOYSA-N [C].[S] Chemical compound [C].[S] GJEAMHAFPYZYDE-UHFFFAOYSA-N 0.000 claims description 24
- 239000012528 membrane Substances 0.000 claims description 18
- 238000000926 separation method Methods 0.000 claims description 17
- RTZKZFJDLAIYFH-UHFFFAOYSA-N ether Substances CCOCC RTZKZFJDLAIYFH-UHFFFAOYSA-N 0.000 claims description 14
- XTHFKEDIFFGKHM-UHFFFAOYSA-N Dimethoxyethane Chemical compound COCCOC XTHFKEDIFFGKHM-UHFFFAOYSA-N 0.000 claims description 12
- 239000011737 fluorine Substances 0.000 claims description 12
- 229910052731 fluorine Inorganic materials 0.000 claims description 12
- 229910003002 lithium salt Inorganic materials 0.000 claims description 12
- 159000000002 lithium salts Chemical class 0.000 claims description 12
- YCKRFDGAMUMZLT-UHFFFAOYSA-N Fluorine atom Chemical compound [F] YCKRFDGAMUMZLT-UHFFFAOYSA-N 0.000 claims description 11
- 239000002041 carbon nanotube Substances 0.000 claims description 10
- 229910021393 carbon nanotube Inorganic materials 0.000 claims description 10
- 150000001875 compounds Chemical class 0.000 claims description 10
- 229910021389 graphene Inorganic materials 0.000 claims description 10
- 239000011148 porous material Substances 0.000 claims description 9
- 238000000034 method Methods 0.000 claims description 8
- 239000006229 carbon black Substances 0.000 claims description 7
- 239000011261 inert gas Substances 0.000 claims description 7
- 239000003273 ketjen black Substances 0.000 claims description 7
- 239000000203 mixture Substances 0.000 claims description 7
- 125000000524 functional group Chemical group 0.000 claims description 5
- 229910002804 graphite Inorganic materials 0.000 claims description 5
- 239000010439 graphite Substances 0.000 claims description 5
- 238000010926 purge Methods 0.000 claims description 4
- 229920000049 Carbon (fiber) Polymers 0.000 claims description 3
- 239000006230 acetylene black Substances 0.000 claims description 3
- 239000004917 carbon fiber Substances 0.000 claims description 3
- 239000006231 channel black Substances 0.000 claims description 3
- 239000006232 furnace black Substances 0.000 claims description 3
- 239000006233 lamp black Substances 0.000 claims description 3
- 239000006234 thermal black Substances 0.000 claims description 3
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 claims description 2
- 230000000052 comparative effect Effects 0.000 description 33
- 229910052744 lithium Inorganic materials 0.000 description 24
- WHXSMMKQMYFTQS-UHFFFAOYSA-N Lithium Chemical compound [Li] WHXSMMKQMYFTQS-UHFFFAOYSA-N 0.000 description 19
- 229910052799 carbon Inorganic materials 0.000 description 19
- 230000007423 decrease Effects 0.000 description 16
- 238000002411 thermogravimetry Methods 0.000 description 16
- 229920001021 polysulfide Polymers 0.000 description 14
- 239000005077 polysulfide Substances 0.000 description 14
- 150000008117 polysulfides Polymers 0.000 description 14
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 12
- 230000002829 reductive effect Effects 0.000 description 12
- 239000004020 conductor Substances 0.000 description 9
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 8
- 229910052751 metal Inorganic materials 0.000 description 7
- 239000002184 metal Substances 0.000 description 7
- 230000008901 benefit Effects 0.000 description 6
- 238000002474 experimental method Methods 0.000 description 6
- 239000000126 substance Substances 0.000 description 6
- 239000010936 titanium Substances 0.000 description 6
- HBBGRARXTFLTSG-UHFFFAOYSA-N Lithium ion Chemical compound [Li+] HBBGRARXTFLTSG-UHFFFAOYSA-N 0.000 description 5
- KDLHZDBZIXYQEI-UHFFFAOYSA-N Palladium Chemical compound [Pd] KDLHZDBZIXYQEI-UHFFFAOYSA-N 0.000 description 5
- 229910045601 alloy Inorganic materials 0.000 description 5
- 239000000956 alloy Substances 0.000 description 5
- 239000011230 binding agent Substances 0.000 description 5
- 239000000835 fiber Substances 0.000 description 5
- 229910001416 lithium ion Inorganic materials 0.000 description 5
- 229910052759 nickel Inorganic materials 0.000 description 5
- 238000007086 side reaction Methods 0.000 description 5
- 239000010935 stainless steel Substances 0.000 description 5
- 229910001220 stainless steel Inorganic materials 0.000 description 5
- SECXISVLQFMRJM-UHFFFAOYSA-N N-Methylpyrrolidone Chemical compound CN1CCCC1=O SECXISVLQFMRJM-UHFFFAOYSA-N 0.000 description 4
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 description 4
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 4
- 229910052782 aluminium Inorganic materials 0.000 description 4
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 4
- 238000006243 chemical reaction Methods 0.000 description 4
- 238000000921 elemental analysis Methods 0.000 description 4
- 239000002245 particle Substances 0.000 description 4
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical compound [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 description 4
- 229910052709 silver Inorganic materials 0.000 description 4
- 239000004332 silver Substances 0.000 description 4
- 229910052719 titanium Inorganic materials 0.000 description 4
- 230000004580 weight loss Effects 0.000 description 4
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 3
- 229910000733 Li alloy Inorganic materials 0.000 description 3
- 239000002033 PVDF binder Substances 0.000 description 3
- 239000004698 Polyethylene Substances 0.000 description 3
- 239000002202 Polyethylene glycol Substances 0.000 description 3
- 239000004743 Polypropylene Substances 0.000 description 3
- 239000006182 cathode active material Substances 0.000 description 3
- 239000011651 chromium Substances 0.000 description 3
- 229920001940 conductive polymer Polymers 0.000 description 3
- 229910052802 copper Inorganic materials 0.000 description 3
- 239000010949 copper Substances 0.000 description 3
- 238000000354 decomposition reaction Methods 0.000 description 3
- 230000008021 deposition Effects 0.000 description 3
- 238000007599 discharging Methods 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- 239000011888 foil Substances 0.000 description 3
- 239000011521 glass Substances 0.000 description 3
- 239000010410 layer Substances 0.000 description 3
- 239000001989 lithium alloy Substances 0.000 description 3
- 239000004745 nonwoven fabric Substances 0.000 description 3
- 229920000573 polyethylene Polymers 0.000 description 3
- 229920001223 polyethylene glycol Polymers 0.000 description 3
- 229920000642 polymer Polymers 0.000 description 3
- 229920000098 polyolefin Polymers 0.000 description 3
- 229920001155 polypropylene Polymers 0.000 description 3
- 229920002981 polyvinylidene fluoride Polymers 0.000 description 3
- 239000000843 powder Substances 0.000 description 3
- 230000008569 process Effects 0.000 description 3
- 230000014233 sulfur utilization Effects 0.000 description 3
- HCBRSIIGBBDDCD-UHFFFAOYSA-N 1,1,2,2-tetrafluoro-3-(1,1,2,2-tetrafluoroethoxy)propane Chemical compound FC(F)C(F)(F)COC(F)(F)C(F)F HCBRSIIGBBDDCD-UHFFFAOYSA-N 0.000 description 2
- DHKHKXVYLBGOIT-UHFFFAOYSA-N 1,1-Diethoxyethane Chemical compound CCOC(C)OCC DHKHKXVYLBGOIT-UHFFFAOYSA-N 0.000 description 2
- VYZAMTAEIAYCRO-UHFFFAOYSA-N Chromium Chemical compound [Cr] VYZAMTAEIAYCRO-UHFFFAOYSA-N 0.000 description 2
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 2
- 229920002943 EPDM rubber Polymers 0.000 description 2
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 2
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 2
- KFZMGEQAYNKOFK-UHFFFAOYSA-N Isopropanol Chemical compound CC(C)O KFZMGEQAYNKOFK-UHFFFAOYSA-N 0.000 description 2
- 229920003171 Poly (ethylene oxide) Polymers 0.000 description 2
- 241000156302 Porcine hemagglutinating encephalomyelitis virus Species 0.000 description 2
- 229910006404 SnO 2 Inorganic materials 0.000 description 2
- 239000000853 adhesive Substances 0.000 description 2
- 230000001070 adhesive effect Effects 0.000 description 2
- 238000004458 analytical method Methods 0.000 description 2
- 239000006227 byproduct Substances 0.000 description 2
- 210000004027 cell Anatomy 0.000 description 2
- 239000001913 cellulose Substances 0.000 description 2
- 229920002678 cellulose Polymers 0.000 description 2
- 229910052804 chromium Inorganic materials 0.000 description 2
- 239000011248 coating agent Substances 0.000 description 2
- 239000011247 coating layer Substances 0.000 description 2
- 238000000576 coating method Methods 0.000 description 2
- 238000012790 confirmation Methods 0.000 description 2
- 230000006866 deterioration Effects 0.000 description 2
- 238000011161 development Methods 0.000 description 2
- 229910001873 dinitrogen Inorganic materials 0.000 description 2
- 239000002612 dispersion medium Substances 0.000 description 2
- 238000001035 drying Methods 0.000 description 2
- 229920001971 elastomer Polymers 0.000 description 2
- 239000002001 electrolyte material Substances 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 238000011156 evaluation Methods 0.000 description 2
- 239000000945 filler Substances 0.000 description 2
- 239000006260 foam Substances 0.000 description 2
- 239000010931 gold Substances 0.000 description 2
- 229910052741 iridium Inorganic materials 0.000 description 2
- 230000001678 irradiating effect Effects 0.000 description 2
- AMXOYNBUYSYVKV-UHFFFAOYSA-M lithium bromide Chemical compound [Li+].[Br-] AMXOYNBUYSYVKV-UHFFFAOYSA-M 0.000 description 2
- KWGKDLIKAYFUFQ-UHFFFAOYSA-M lithium chloride Chemical compound [Li+].[Cl-] KWGKDLIKAYFUFQ-UHFFFAOYSA-M 0.000 description 2
- 238000011068 loading method Methods 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- 238000005259 measurement Methods 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 239000007773 negative electrode material Substances 0.000 description 2
- 239000012299 nitrogen atmosphere Substances 0.000 description 2
- 238000007254 oxidation reaction Methods 0.000 description 2
- 229910052763 palladium Inorganic materials 0.000 description 2
- 229910052697 platinum Inorganic materials 0.000 description 2
- 229920003207 poly(ethylene-2,6-naphthalate) Polymers 0.000 description 2
- 239000011112 polyethylene naphthalate Substances 0.000 description 2
- 229920001343 polytetrafluoroethylene Polymers 0.000 description 2
- 239000004810 polytetrafluoroethylene Substances 0.000 description 2
- 238000012827 research and development Methods 0.000 description 2
- 239000005060 rubber Substances 0.000 description 2
- 150000003839 salts Chemical class 0.000 description 2
- 239000002002 slurry Substances 0.000 description 2
- 238000003860 storage Methods 0.000 description 2
- 150000003464 sulfur compounds Chemical class 0.000 description 2
- ZUHZGEOKBKGPSW-UHFFFAOYSA-N tetraglyme Chemical compound COCCOCCOCCOCCOC ZUHZGEOKBKGPSW-UHFFFAOYSA-N 0.000 description 2
- 238000012546 transfer Methods 0.000 description 2
- 229910052725 zinc Inorganic materials 0.000 description 2
- 239000011701 zinc Substances 0.000 description 2
- JOROOXPAFHWVRW-UHFFFAOYSA-N 1,1,1,2,3,3-hexafluoro-3-(2,2,3,3,3-pentafluoropropoxy)propane Chemical compound FC(F)(F)C(F)C(F)(F)OCC(F)(F)C(F)(F)F JOROOXPAFHWVRW-UHFFFAOYSA-N 0.000 description 1
- DOESGSGKEZIPFW-UHFFFAOYSA-N 1,1,1,2,3,3-hexafluoro-3-(2,2,3,3-tetrafluoropropoxy)propane Chemical compound FC(F)C(F)(F)COC(F)(F)C(F)C(F)(F)F DOESGSGKEZIPFW-UHFFFAOYSA-N 0.000 description 1
- DEYAWNMYIUDQER-UHFFFAOYSA-N 1-(1,1,2,2-tetrafluoroethoxy)propane Chemical compound CCCOC(F)(F)C(F)F DEYAWNMYIUDQER-UHFFFAOYSA-N 0.000 description 1
- YZWVMKLQNYGKLJ-UHFFFAOYSA-N 1-[2-[2-(2-ethoxyethoxy)ethoxy]ethoxy]-2-methoxyethane Chemical compound CCOCCOCCOCCOCCOC YZWVMKLQNYGKLJ-UHFFFAOYSA-N 0.000 description 1
- DMECHFLLAQSVAD-UHFFFAOYSA-N 1-ethoxy-1,1,2,3,3,3-hexafluoropropane Chemical compound CCOC(F)(F)C(F)C(F)(F)F DMECHFLLAQSVAD-UHFFFAOYSA-N 0.000 description 1
- RRQYJINTUHWNHW-UHFFFAOYSA-N 1-ethoxy-2-(2-ethoxyethoxy)ethane Chemical compound CCOCCOCCOCC RRQYJINTUHWNHW-UHFFFAOYSA-N 0.000 description 1
- CNJRPYFBORAQAU-UHFFFAOYSA-N 1-ethoxy-2-(2-methoxyethoxy)ethane Chemical compound CCOCCOCCOC CNJRPYFBORAQAU-UHFFFAOYSA-N 0.000 description 1
- KIAMPLQEZAMORJ-UHFFFAOYSA-N 1-ethoxy-2-[2-(2-ethoxyethoxy)ethoxy]ethane Chemical compound CCOCCOCCOCCOCC KIAMPLQEZAMORJ-UHFFFAOYSA-N 0.000 description 1
- CAQYAZNFWDDMIT-UHFFFAOYSA-N 1-ethoxy-2-methoxyethane Chemical compound CCOCCOC CAQYAZNFWDDMIT-UHFFFAOYSA-N 0.000 description 1
- AIPBKZUVKDTCOC-UHFFFAOYSA-N 2-(1,1,2,2-tetrafluoroethoxy)propane Chemical compound CC(C)OC(F)(F)C(F)F AIPBKZUVKDTCOC-UHFFFAOYSA-N 0.000 description 1
- OBAYXRZHJPDDHB-UHFFFAOYSA-N 2-methyl-1-(1,1,2,2-tetrafluoroethoxy)propane Chemical compound CC(C)COC(F)(F)C(F)F OBAYXRZHJPDDHB-UHFFFAOYSA-N 0.000 description 1
- HYDWALOBQJFOMS-UHFFFAOYSA-N 3,6,9,12,15-pentaoxaheptadecane Chemical compound CCOCCOCCOCCOCCOCC HYDWALOBQJFOMS-UHFFFAOYSA-N 0.000 description 1
- WSQZNZLOZXSBHA-UHFFFAOYSA-N 3,8-dioxabicyclo[8.2.2]tetradeca-1(12),10,13-triene-2,9-dione Chemical compound O=C1OCCCCOC(=O)C2=CC=C1C=C2 WSQZNZLOZXSBHA-UHFFFAOYSA-N 0.000 description 1
- 229920002134 Carboxymethyl cellulose Polymers 0.000 description 1
- 229910000925 Cd alloy Inorganic materials 0.000 description 1
- IAZDPXIOMUYVGZ-UHFFFAOYSA-N Dimethylsulphoxide Chemical compound CS(C)=O IAZDPXIOMUYVGZ-UHFFFAOYSA-N 0.000 description 1
- 229910018091 Li 2 S Inorganic materials 0.000 description 1
- 229910003003 Li-S Inorganic materials 0.000 description 1
- 229910001216 Li2S Inorganic materials 0.000 description 1
- 229910010238 LiAlCl 4 Inorganic materials 0.000 description 1
- 229910015015 LiAsF 6 Inorganic materials 0.000 description 1
- 229910015044 LiB Inorganic materials 0.000 description 1
- 229910013063 LiBF 4 Inorganic materials 0.000 description 1
- 229910013372 LiC 4 Inorganic materials 0.000 description 1
- 229910013684 LiClO 4 Inorganic materials 0.000 description 1
- 229910013870 LiPF 6 Inorganic materials 0.000 description 1
- 229910012097 LiSbF Inorganic materials 0.000 description 1
- XOBKSJJDNFUZPF-UHFFFAOYSA-N Methoxyethane Chemical compound CCOC XOBKSJJDNFUZPF-UHFFFAOYSA-N 0.000 description 1
- ZOKXTWBITQBERF-UHFFFAOYSA-N Molybdenum Chemical compound [Mo] ZOKXTWBITQBERF-UHFFFAOYSA-N 0.000 description 1
- ZMXDDKWLCZADIW-UHFFFAOYSA-N N,N-Dimethylformamide Chemical compound CN(C)C=O ZMXDDKWLCZADIW-UHFFFAOYSA-N 0.000 description 1
- 229920000459 Nitrile rubber Polymers 0.000 description 1
- 239000004696 Poly ether ether ketone Substances 0.000 description 1
- 229930182556 Polyacetal Natural products 0.000 description 1
- 239000004952 Polyamide Substances 0.000 description 1
- 239000004695 Polyether sulfone Substances 0.000 description 1
- 239000004642 Polyimide Substances 0.000 description 1
- 229920000265 Polyparaphenylene Polymers 0.000 description 1
- 239000004721 Polyphenylene oxide Substances 0.000 description 1
- 239000004734 Polyphenylene sulfide Substances 0.000 description 1
- 239000004372 Polyvinyl alcohol Substances 0.000 description 1
- KJTLSVCANCCWHF-UHFFFAOYSA-N Ruthenium Chemical compound [Ru] KJTLSVCANCCWHF-UHFFFAOYSA-N 0.000 description 1
- 241000872198 Serjania polyphylla Species 0.000 description 1
- 229920002472 Starch Polymers 0.000 description 1
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 description 1
- 239000004699 Ultra-high molecular weight polyethylene Substances 0.000 description 1
- HCHKCACWOHOZIP-UHFFFAOYSA-N Zinc Chemical compound [Zn] HCHKCACWOHOZIP-UHFFFAOYSA-N 0.000 description 1
- BEKPOUATRPPTLV-UHFFFAOYSA-N [Li].BCl Chemical compound [Li].BCl BEKPOUATRPPTLV-UHFFFAOYSA-N 0.000 description 1
- 230000002411 adverse Effects 0.000 description 1
- 229910052783 alkali metal Inorganic materials 0.000 description 1
- 150000001340 alkali metals Chemical class 0.000 description 1
- 150000001336 alkenes Chemical class 0.000 description 1
- 229910052787 antimony Inorganic materials 0.000 description 1
- 238000013459 approach Methods 0.000 description 1
- 229910021383 artificial graphite Inorganic materials 0.000 description 1
- 229910052790 beryllium Inorganic materials 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 229910052792 caesium Inorganic materials 0.000 description 1
- 229910052791 calcium Inorganic materials 0.000 description 1
- 125000004432 carbon atom Chemical group C* 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 229920001577 copolymer Polymers 0.000 description 1
- 239000013078 crystal Substances 0.000 description 1
- 210000001787 dendrite Anatomy 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 229940019778 diethylene glycol diethyl ether Drugs 0.000 description 1
- SBZXBUIDTXKZTM-UHFFFAOYSA-N diglyme Chemical compound COCCOCCOC SBZXBUIDTXKZTM-UHFFFAOYSA-N 0.000 description 1
- 238000003487 electrochemical reaction Methods 0.000 description 1
- 239000008151 electrolyte solution Substances 0.000 description 1
- 238000004146 energy storage Methods 0.000 description 1
- 150000002170 ethers Chemical class 0.000 description 1
- 125000001153 fluoro group Chemical group F* 0.000 description 1
- SGAMQLNREKTWEK-UHFFFAOYSA-N fluoro(fluoromethoxy)methane Chemical compound FCOCF SGAMQLNREKTWEK-UHFFFAOYSA-N 0.000 description 1
- 229920001973 fluoroelastomer Polymers 0.000 description 1
- KGPPDNUWZNWPSI-UHFFFAOYSA-N flurotyl Chemical compound FC(F)(F)COCC(F)(F)F KGPPDNUWZNWPSI-UHFFFAOYSA-N 0.000 description 1
- 229910052730 francium Inorganic materials 0.000 description 1
- 229910052732 germanium Inorganic materials 0.000 description 1
- 239000003365 glass fiber Substances 0.000 description 1
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 1
- 229910052737 gold Inorganic materials 0.000 description 1
- 229920001903 high density polyethylene Polymers 0.000 description 1
- 239000004700 high-density polyethylene Substances 0.000 description 1
- 125000004356 hydroxy functional group Chemical group O* 0.000 description 1
- 229910052738 indium Inorganic materials 0.000 description 1
- 230000002401 inhibitory effect Effects 0.000 description 1
- 239000011810 insulating material Substances 0.000 description 1
- GKOZUEZYRPOHIO-UHFFFAOYSA-N iridium atom Chemical compound [Ir] GKOZUEZYRPOHIO-UHFFFAOYSA-N 0.000 description 1
- 229910052742 iron Inorganic materials 0.000 description 1
- 230000002427 irreversible effect Effects 0.000 description 1
- 229910052745 lead Inorganic materials 0.000 description 1
- 229920000092 linear low density polyethylene Polymers 0.000 description 1
- 239000004707 linear low-density polyethylene Substances 0.000 description 1
- 239000007791 liquid phase Substances 0.000 description 1
- HSZCZNFXUDYRKD-UHFFFAOYSA-M lithium iodide Inorganic materials [Li+].[I-] HSZCZNFXUDYRKD-UHFFFAOYSA-M 0.000 description 1
- 229920001684 low density polyethylene Polymers 0.000 description 1
- 239000004702 low-density polyethylene Substances 0.000 description 1
- 229910052749 magnesium Inorganic materials 0.000 description 1
- 239000002609 medium Substances 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- 229910052750 molybdenum Inorganic materials 0.000 description 1
- 239000011733 molybdenum Substances 0.000 description 1
- 229910021382 natural graphite Inorganic materials 0.000 description 1
- 239000012811 non-conductive material Substances 0.000 description 1
- 239000005486 organic electrolyte Substances 0.000 description 1
- 239000003960 organic solvent Substances 0.000 description 1
- 150000002898 organic sulfur compounds Chemical class 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- 229920001483 poly(ethyl methacrylate) polymer Polymers 0.000 description 1
- 229920003229 poly(methyl methacrylate) Polymers 0.000 description 1
- 229920002239 polyacrylonitrile Polymers 0.000 description 1
- 229920002647 polyamide Polymers 0.000 description 1
- 229920001748 polybutylene Polymers 0.000 description 1
- 239000004417 polycarbonate Substances 0.000 description 1
- 229920000515 polycarbonate Polymers 0.000 description 1
- 229920000728 polyester Polymers 0.000 description 1
- 229920006393 polyether sulfone Polymers 0.000 description 1
- 229920002530 polyetherether ketone Polymers 0.000 description 1
- 229920000139 polyethylene terephthalate Polymers 0.000 description 1
- 239000005020 polyethylene terephthalate Substances 0.000 description 1
- 229920001721 polyimide Polymers 0.000 description 1
- 229920006324 polyoxymethylene Polymers 0.000 description 1
- 229920006380 polyphenylene oxide Polymers 0.000 description 1
- 229920000069 polyphenylene sulfide Polymers 0.000 description 1
- 229920002689 polyvinyl acetate Polymers 0.000 description 1
- 239000011118 polyvinyl acetate Substances 0.000 description 1
- 229920002451 polyvinyl alcohol Polymers 0.000 description 1
- 229920000915 polyvinyl chloride Polymers 0.000 description 1
- 239000004800 polyvinyl chloride Substances 0.000 description 1
- 229920001289 polyvinyl ether Polymers 0.000 description 1
- 229920000131 polyvinylidene Polymers 0.000 description 1
- 229920002717 polyvinylpyridine Polymers 0.000 description 1
- 229920000036 polyvinylpyrrolidone Polymers 0.000 description 1
- 239000001267 polyvinylpyrrolidone Substances 0.000 description 1
- 235000013855 polyvinylpyrrolidone Nutrition 0.000 description 1
- 229910052700 potassium Inorganic materials 0.000 description 1
- 125000001436 propyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])[H] 0.000 description 1
- 230000009257 reactivity Effects 0.000 description 1
- 238000006722 reduction reaction Methods 0.000 description 1
- 239000004627 regenerated cellulose Substances 0.000 description 1
- 230000027756 respiratory electron transport chain Effects 0.000 description 1
- 238000005096 rolling process Methods 0.000 description 1
- 229910052701 rubidium Inorganic materials 0.000 description 1
- 229910052707 ruthenium Inorganic materials 0.000 description 1
- 229910052710 silicon Inorganic materials 0.000 description 1
- 239000008107 starch Substances 0.000 description 1
- 235000019698 starch Nutrition 0.000 description 1
- 229910052712 strontium Inorganic materials 0.000 description 1
- 229920003048 styrene butadiene rubber Polymers 0.000 description 1
- 238000006467 substitution reaction Methods 0.000 description 1
- 229920005608 sulfonated EPDM Polymers 0.000 description 1
- TXEYQDLBPFQVAA-UHFFFAOYSA-N tetrafluoromethane Chemical compound FC(F)(F)F TXEYQDLBPFQVAA-UHFFFAOYSA-N 0.000 description 1
- 229910052718 tin Inorganic materials 0.000 description 1
- OGIDPMRJRNCKJF-UHFFFAOYSA-N titanium oxide Inorganic materials [Ti]=O OGIDPMRJRNCKJF-UHFFFAOYSA-N 0.000 description 1
- YFNKIDBQEZZDLK-UHFFFAOYSA-N triglyme Chemical compound COCCOCCOCCOC YFNKIDBQEZZDLK-UHFFFAOYSA-N 0.000 description 1
- WFKWXMTUELFFGS-UHFFFAOYSA-N tungsten Chemical compound [W] WFKWXMTUELFFGS-UHFFFAOYSA-N 0.000 description 1
- 229910052721 tungsten Inorganic materials 0.000 description 1
- 239000010937 tungsten Substances 0.000 description 1
- 229920000785 ultra high molecular weight polyethylene Polymers 0.000 description 1
- 238000009736 wetting Methods 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B32/00—Carbon; Compounds thereof
- C01B32/05—Preparation or purification of carbon not covered by groups C01B32/15, C01B32/20, C01B32/25, C01B32/30
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/05—Accumulators with non-aqueous electrolyte
- H01M10/052—Li-accumulators
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/05—Accumulators with non-aqueous electrolyte
- H01M10/056—Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
- H01M10/0564—Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
- H01M10/0566—Liquid materials
- H01M10/0568—Liquid materials characterised by the solutes
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/05—Accumulators with non-aqueous electrolyte
- H01M10/056—Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
- H01M10/0564—Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
- H01M10/0566—Liquid materials
- H01M10/0569—Liquid materials characterised by the solvents
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/362—Composites
- H01M4/366—Composites as layered products
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/38—Selection of substances as active materials, active masses, active liquids of elements or alloys
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/58—Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
- H01M4/583—Carbonaceous material, e.g. graphite-intercalation compounds or CFx
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01P—INDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
- C01P2002/00—Crystal-structural characteristics
- C01P2002/08—Intercalated structures, i.e. with atoms or molecules intercalated in their structure
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01P—INDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
- C01P2002/00—Crystal-structural characteristics
- C01P2002/80—Crystal-structural characteristics defined by measured data other than those specified in group C01P2002/70
- C01P2002/88—Crystal-structural characteristics defined by measured data other than those specified in group C01P2002/70 by thermal analysis data, e.g. TGA, DTA, DSC
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01P—INDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
- C01P2006/00—Physical properties of inorganic compounds
- C01P2006/12—Surface area
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01P—INDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
- C01P2006/00—Physical properties of inorganic compounds
- C01P2006/40—Electric properties
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M2004/021—Physical characteristics, e.g. porosity, surface area
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M2004/026—Electrodes composed of, or comprising, active material characterised by the polarity
- H01M2004/028—Positive electrodes
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M2300/00—Electrolytes
- H01M2300/0017—Non-aqueous electrolytes
- H01M2300/0025—Organic electrolyte
- H01M2300/0028—Organic electrolyte characterised by the solvent
- H01M2300/0034—Fluorinated solvents
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M2300/00—Electrolytes
- H01M2300/0017—Non-aqueous electrolytes
- H01M2300/0025—Organic electrolyte
- H01M2300/0028—Organic electrolyte characterised by the solvent
- H01M2300/0037—Mixture of solvents
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
Landscapes
- Chemical & Material Sciences (AREA)
- General Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- Inorganic Chemistry (AREA)
- Engineering & Computer Science (AREA)
- Manufacturing & Machinery (AREA)
- Organic Chemistry (AREA)
- Physics & Mathematics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Composite Materials (AREA)
- Battery Electrode And Active Subsutance (AREA)
- Secondary Cells (AREA)
- Carbon And Carbon Compounds (AREA)
Abstract
前処理を通じて水分などの不純物が除去された多孔性の炭素材をリチウム‐硫黄電池用正極に適用することで電池の充電過電圧問題を改善させることができる、不純物が除去された多孔性炭素材、この製造方法、前記炭素材を正極活物質で含むリチウム‐硫黄電池用正極及びリチウム‐硫黄電池が開示される。前記多孔性炭素材は、比表面積が200ないし1,700m2/gで、マイクロ波を利用した前処理を通じて不純物が除去されたことを特徴とする。A porous carbon material from which impurities such as moisture have been removed through pretreatment can be applied to a positive electrode for a lithium-sulfur battery to improve the charging overvoltage problem of a battery. This manufacturing method, a positive electrode for a lithium-sulfur battery, and a lithium-sulfur battery including the carbon material as a positive electrode active material are disclosed. The porous carbon material has a specific surface area of 200 to 1,700 m2/g, and is characterized in that impurities are removed through pretreatment using microwaves.
Description
本出願は2021年12月16日付韓国特許出願第10‐2021‐0180557号及び2022年11月15日付韓国特許出願第10‐2022‐0152348号に基づく優先権の利益を主張し、該当韓国特許出願の文献に開示されている全ての内容は本明細書の一部として組み込まれる。 This application claims the benefit of priority based on Korean Patent Application No. 10-2021-0180557 dated December 16, 2021 and Korean Patent Application No. 10-2022-0152348 dated November 15, 2022, and the corresponding Korean patent application All contents disclosed in the literature are incorporated herein by reference.
本発明は不純物が除去された多孔性炭素材、この製造方法、前記炭素材を正極活物質で含むリチウム‐硫黄電池用正極及びリチウム‐硫黄電池に係り、より詳細には、前処理を通じて水分などの不純物が除去された多孔性炭素材をリチウム‐硫黄電池用正極に適用することで電池の充電過電圧問題を改善させることができる、不純物が除去された多孔性炭素材、この製造方法、前記炭素材を正極活物質で含むリチウム‐硫黄電池用正極及びリチウム‐硫黄電池に関する。 The present invention relates to a porous carbon material from which impurities have been removed, a method for producing the same, a positive electrode for a lithium-sulfur battery, and a lithium-sulfur battery containing the carbon material as a positive electrode active material. The porous carbon material from which impurities have been removed can be applied to a positive electrode for lithium-sulfur batteries to improve the charging overvoltage problem of batteries. The present invention relates to a positive electrode for a lithium-sulfur battery and a lithium-sulfur battery containing a positive electrode active material.
エネルギー保存技術に対する関心が段々高くなるにつれ、携帯電話、タブレット(tablet)、ラップトップ(laptop)及びカムコーダー、ひいては電気自動車(EV)及びハイブリッド電気自動車(HEV)のエネルギーまで適用分野が拡大されながら、電気化学素子に対する研究及び開発が徐々に増大されている。電気化学素子はこのような側面で最も注目を浴びている分野で、その中でも充放電可能なリチウム‐硫黄電池のような二次電池の開発は関心の的になっていて、最近はこのような電池を開発するにあたり、容量密度及び比エネルギーを向上させるために、新しい電極と電池の設計に対する研究開発につながっている。 As interest in energy storage technology increases, the field of application is expanding to include energy for mobile phones, tablets, laptops, camcorders, and even electric vehicles (EVs) and hybrid electric vehicles (HEVs). Research and development on electrochemical devices is gradually increasing. Electrochemical devices are the field that is attracting the most attention in this aspect, and among them, the development of secondary batteries such as rechargeable and dischargeable lithium-sulfur batteries has been the focus of attention, and recently there has been a Batteries development has led to research and development into new electrode and battery designs to improve capacity density and specific energy.
このような電気化学素子、その中でリチウム‐硫黄電池(Li‐S battery)は高いエネルギー密度(理論容量)を持ち、リチウムイオン電池を代替することができる次世代二次電池として脚光を浴びている。このようなリチウム‐硫黄電池内では、放電の際に硫黄の還元反応とリチウムメタルの酸化反応が起きて、この時、硫黄は環構造のS8より線形構造のリチウムポリスルフィド(Lithium Polysulfide、LiPS)を形成するようになって、このようなリチウム‐硫黄電池はポリスルフィドが完全にLi2Sに還元されるまで段階的放電電圧を示すことが特徴である。 Among these electrochemical devices, lithium-sulfur batteries (Li-S batteries) have high energy density (theoretical capacity) and are attracting attention as next-generation secondary batteries that can replace lithium-ion batteries. There is. In such a lithium-sulfur battery, a reduction reaction of sulfur and an oxidation reaction of lithium metal occur during discharge, and at this time, sulfur is converted into lithium polysulfide (LiPS), which has a linear structure, rather than S8 , which has a ring structure. Such a lithium-sulfur battery is characterized by a gradual discharge voltage until the polysulfide is completely reduced to Li2S .
しかし、リチウム‐硫黄電池の商業化において最大の障害物は寿命として、充放電過程中、充電/放電効率(Efficiency)が減って電池の寿命が退化するようになる。このようなリチウム‐硫黄電池の寿命が退化する原因としては、電解質の副反応(電解質の分解による副産物の堆積)、リチウムメタルの不安定性(リチウム負極上にデンドライトが成長してショート発生)及び正極副産物の堆積(正極からのリチウムポリスルフィド湧出)などで多様である。 However, the biggest obstacle in the commercialization of lithium-sulfur batteries is the battery life.During the charging/discharging process, the charging/discharging efficiency decreases and the battery life deteriorates. The causes of this deterioration in the life of lithium-sulfur batteries include side reactions of the electrolyte (deposition of byproducts due to decomposition of the electrolyte), instability of lithium metal (dendrites grow on the lithium negative electrode, causing short circuits), and cathode damage. There are various causes such as by-product deposition (lithium polysulfide seepage from the positive electrode).
すなわち、硫黄系列の化合物を正極活物質で使用し、リチウムのようなアルカリ金属を負極活物質で使用する電池において、充放電の際にリチウムポリスルフィドの湧出及びシャトル現象が発生し、リチウムポリスルフィドが負極に伝達されてリチウム‐硫黄電池の容量が減少され、これによってリチウム‐硫黄電池は寿命が減少されて反応性が減少する大きな問題点を持っている。すなわち、正極で湧出されたポリスルフィドは有機電解液への溶解度が高いため、電解質を通じて負極の方へ望まない移動(PS shuttling)が起きることがあって、その結果、正極活物質の非可逆的損失による容量減少、及び副反応によるリチウムメタル表面への硫黄粒子の蒸着による電池寿命の減少が発生するようになる。 In other words, in a battery that uses a sulfur-based compound as a positive electrode active material and an alkali metal such as lithium as a negative electrode active material, lithium polysulfide gushes out and shuttles phenomenon occurs during charging and discharging, and lithium polysulfide becomes a negative electrode active material. As a result, the capacity of the lithium-sulfur battery is reduced, and the lithium-sulfur battery has major problems in that its lifespan is shortened and its reactivity is reduced. That is, since the polysulfides expelled from the positive electrode have high solubility in the organic electrolyte, unwanted movement (PS shuttling) may occur through the electrolyte toward the negative electrode, resulting in irreversible loss of the positive electrode active material. This results in a decrease in capacity due to oxidation, and a decrease in battery life due to deposition of sulfur particles on the lithium metal surface due to side reactions.
一方、リチウム‐硫黄電池が約400Wh/kg以上または600Wh/L以上の高いエネルギー密度を構築するためには、高ローディング(約4.0mAh/cm2以上)、低気孔率(約60%以下)の条件でも駆動可能な電解質及び正極活物質システムが必要である。すなわち、このようなリチウム‐硫黄電池の挙動は電解質によって大きく変わることがあって、正極の硫黄(sulfur)が電解質にリチウムポリスルフィド(LiPS)の形態で湧出されて出る場合の電解質をカソライト(Catholyte)といい、硫黄がリチウムポリスルフィドの形態でほとんど湧出されない場合の電解質をSSE(sparingly solvating electrolyte)という。既存のカソライト(Catholyte)システムを活用するリチウム‐硫黄電池は、Li2Sx形態を持つ中間生成物(intermediate polysulfide)の生成を通じた液相反応に依存するので(catholyte type)、硫黄の高い理論放電容量(1,675mAh/g)を充分に活用することができず、反ってポリスルフィドの湧出による電池の退化で電池寿命が急減する問題点を持っている。 On the other hand, in order for lithium-sulfur batteries to have a high energy density of about 400 Wh/kg or more or 600 Wh/L or more, high loading (about 4.0 mAh/cm2 or more) and low porosity (about 60% or less) are required. An electrolyte and cathode active material system that can be operated under these conditions is required. In other words, the behavior of such a lithium-sulfur battery can vary greatly depending on the electrolyte, and when the sulfur in the positive electrode is leached into the electrolyte in the form of lithium polysulfide (LiPS), the electrolyte is a catholyte. An electrolyte in which almost no sulfur is extracted in the form of lithium polysulfide is called SSE (sparingly solvating electrolyte). Lithium-sulfur batteries that utilize existing catholyte systems rely on liquid-phase reactions through the production of intermediate polysulfide in the form of Li 2 S The problem is that the discharge capacity (1,675 mAh/g) cannot be fully utilized, and the life of the battery is rapidly reduced due to deterioration of the battery due to the outflow of polysulfide.
一方、最近ポリスルフィドの湧出を抑制することができるSSE(sparingly solvating electrolyte)電解質システムが開発され、特に200ないし1,700m2/gの高い比表面積(BET Specific surface area)を持つ炭素材を硫黄の担持体で適用する時、硫黄の理論放電容量の90%以上を活用することができることを確認した。しかし、このような炭素材の場合、高い比表面積によって水分などの不純物も相対的に多く含まれているので、電極副反応が大きくなって充電過電圧現象が発生し、これによって活用度が低くなる問題がある。このような問題を解決するために、当業界では高い比表面積の炭素材を炉(furnace)で熱処理しているが、この場合、所要時間が長く、効果的な不純物の除去に困難がある。 On the other hand , recently, an SSE (sparingly solvating electrolyte) electrolyte system that can suppress the outflow of polysulfides has been developed. It was confirmed that more than 90% of the theoretical discharge capacity of sulfur can be utilized when applied as a carrier. However, in the case of such carbon materials, because of their high specific surface area, they also contain a relatively large amount of impurities such as water, which increases electrode side reactions and causes charging overvoltage, which reduces the efficiency of use. There's a problem. To solve this problem, in the art, carbon materials with a high specific surface area are heat treated in a furnace, but this takes a long time and makes it difficult to effectively remove impurities.
したがって、SSE電解質システムを利用しながらも、高い比表面積を持つ炭素材に含まれた水分などの不純物を効果的に取り除くことで充電過電圧問題を改善することができる方案が要求される。 Therefore, there is a need for a method that can improve the charging overvoltage problem by effectively removing impurities such as water contained in a carbon material having a high specific surface area while using an SSE electrolyte system.
したがって、本発明の目的は、前処理を通じて水分などの不純物が除去された多孔性の炭素材をリチウム‐硫黄電池用正極に適用することで電池の充電過電圧問題を改善させることができる、不純物が除去された多孔性炭素材、この製造方法、前記炭素材を正極活物質で含むリチウム‐硫黄電池用正極及びリチウム‐硫黄電池を提供することである。 Therefore, an object of the present invention is to improve the charging overvoltage problem of a lithium-sulfur battery by applying a porous carbon material from which impurities such as moisture have been removed through pretreatment to a positive electrode for a lithium-sulfur battery. The object of the present invention is to provide a porous carbon material that has been removed, a method for producing the same, a positive electrode for a lithium-sulfur battery, and a lithium-sulfur battery containing the carbon material as a positive electrode active material.
前記目的を達成するために、本発明は、比表面積が200ないし1,700m2/gで、マイクロ波を利用した前処理を通じて不純物が除去された多孔性炭素材を提供する。 To achieve the above object, the present invention provides a porous carbon material having a specific surface area of 200 to 1,700 m 2 /g and having impurities removed through pretreatment using microwaves.
また、本発明は、(a)比表面積が200ないし1,700m2/gである多孔性炭素材を密閉容器に入れた後、不活性ガスを注入してパージングする段階;及び(b)前記多孔性炭素材にマイクロ波を印加する段階;を含む不純物が除去された多孔性炭素材の製造方法を提供する。 The present invention also provides the steps of (a) putting a porous carbon material having a specific surface area of 200 to 1,700 m 2 /g into a closed container and then purging it by injecting an inert gas; Provided is a method for producing a porous carbon material from which impurities are removed, including the step of applying microwaves to the porous carbon material.
また、本発明は、前記不純物が除去された多孔性炭素材に硫黄が担持された硫黄‐炭素複合体を正極活物質で含むリチウム‐硫黄電池用正極を提供する。 Further, the present invention provides a positive electrode for a lithium-sulfur battery, which includes, as a positive electrode active material, a sulfur-carbon composite in which sulfur is supported on a porous carbon material from which the impurities have been removed.
また、本発明は、前記リチウム‐硫黄電池用正極;負極;これらの間に介在される分離膜;及びフッ素系エーテル化合物を含む第1溶媒、グライム系化合物を含む第2溶媒及びリチウム塩を含む電解質;を含むリチウム‐硫黄電池を提供する。 The present invention also provides a positive electrode for the lithium-sulfur battery; a negative electrode; a separation membrane interposed between these; and a first solvent containing a fluorine-based ether compound, a second solvent containing a glyme-based compound, and a lithium salt. A lithium-sulfur battery is provided including: an electrolyte;
本発明による不純物が除去された多孔性炭素材、この製造方法、前記炭素材を正極活物質で含むリチウム‐硫黄電池用正極及びリチウム‐硫黄電池によると、前処理を通じて水分などの不純物が除去された多孔性の炭素材をリチウム‐硫黄電池用正極に適用することで電池の充電過電圧問題を改善させることができる。また、前記不純物が除去された多孔性炭素材を正極活物質で含むリチウム‐硫黄電池用正極を既存カソライト(Catholyte) 電解質システム(放電容量:~1,200mAh/gs)ではないSSE(sparingly solvating electrolyte)電解質システム(放電容量~1,600mAh/gs)に組み合わせることで、硫黄の理論放電容量(1,675mAh/g)を90%以上活用することができ、また、エネルギー密度が約400Wh/kg以上または600Wh/L以上と高く維持される長所を持つ。 According to the porous carbon material from which impurities are removed, the manufacturing method thereof, the positive electrode for a lithium-sulfur battery, and the lithium-sulfur battery containing the carbon material as a positive electrode active material according to the present invention, impurities such as moisture are removed through pretreatment. By applying this porous carbon material to the positive electrode for lithium-sulfur batteries, it is possible to improve the charging overvoltage problem of batteries. In addition, the positive electrode for lithium-sulfur batteries, which includes a porous carbon material from which the impurities have been removed as a positive electrode active material, is a cathode that is not an existing catholyte electrolyte system (discharge capacity: ~1,200 mAh/gs). ) By combining with an electrolyte system (discharge capacity ~ 1,600mAh/gs), more than 90% of the theoretical discharge capacity of sulfur (1,675mAh/g) can be utilized, and the energy density is approximately 400Wh/kg or more. Or, it has the advantage of being maintained at a high level of 600Wh/L or more.
以下、本発明を詳しく説明する。 The present invention will be explained in detail below.
本発明による多孔性炭素材は、比表面積が200ないし1,700m2/gで、マイクロ波を利用した前処理を通じて不純物が除去されたことを特徴とする。 The porous carbon material according to the present invention has a specific surface area of 200 to 1,700 m 2 /g, and is characterized by having impurities removed through pretreatment using microwaves.
リチウム‐硫黄電池が約400Wh/kg以上または600Wh/L以上の高いエネルギー密度を構築するためには、高ローディング(約4.0mAh/cm2以上)、低気孔率(約60%以下)条件でも駆動可能な電解質及び正極活物質システムが必要である。そして、このような電解質システムとして、正極の硫黄(sulfur)が電解質にリチウムポリスルフィド(LiPS)の形態で湧出されて出る場合の電解質(カソライト(Catholyte))の問題点を補完した(すなわち、ポリスルフィドの湧出を抑制させることができる)SSE(sparingly solvating electrolyte)電解質システムが開発された。そして、特に200ないし1,700m2/gの高い比表面積(BET Specific surface area)を持つ炭素材を硫黄の担持体として正極活物質で適用し、これをSSE電解質システムに組み合わせれば、硫黄の理論放電容量の90%以上を活用することができることを確認した(すなわち、硫黄利用率が90%以上ということで、前記「硫黄利用率」とは具体的に硫黄の重さ当たり理論容量である1,675mAh/g対比該当電池の正極に含まれる硫黄元素の重さ(gram)当たり放電容量(mAh)の割合であって、例えば、リチウム‐硫黄電池の正極内に存在する硫黄元素の重さ当たり放電容量が1,600mAh/gである場合の硫黄利用率は95.5%(1,600/1,675)である)。 In order for a lithium-sulfur battery to achieve a high energy density of approximately 400 Wh/kg or more or 600 Wh/L or more, it is necessary to use high loading (approximately 4.0 mAh/ cm2 or more) and low porosity (approximately 60% or less) conditions. A drivable electrolyte and cathode active material system is required. This electrolyte system compensates for the problem of electrolyte (catholyte), where sulfur from the positive electrode is extracted into the electrolyte in the form of lithium polysulfide (LiPS). A sparingly solvating electrolyte (SSE) electrolyte system has been developed that can suppress seepage. In addition, if a carbon material with a particularly high specific surface area (BET Specific surface area) of 200 to 1,700 m 2 /g is applied as a positive electrode active material as a sulfur support, and this is combined with an SSE electrolyte system, sulfur It was confirmed that more than 90% of the theoretical discharge capacity can be utilized (that is, the sulfur utilization rate is 90% or more, and the above "sulfur utilization rate" specifically refers to the theoretical capacity per weight of sulfur. The ratio of discharge capacity (mAh) per weight (gram) of sulfur element contained in the positive electrode of the relevant battery compared to 1,675mAh/g, for example, the weight of sulfur element present in the positive electrode of a lithium-sulfur battery. When the per discharge capacity is 1,600mAh/g, the sulfur utilization rate is 95.5% (1,600/1,675)).
しかし、このような炭素材の場合、高い比表面積によって水分などの不純物(具体的には、炭素材に含有された水分及び炭素材の内部及び表面に存在する不要な官能基などのその他不純物)もまた相対的に多く含まれているので、電極副反応が大きくなって充電過電圧現象が発生し、これによって活用度が低くなる問題がある。このような問題を解決するために、当業界では高い比表面積の炭素材を炉(furnace)で熱処理しているが、この場合所要時間が長く、効果的な不純物の除去が困難である。 However, in the case of such carbon materials, impurities such as moisture due to their high specific surface area (specifically, moisture contained in the carbon materials and other impurities such as unnecessary functional groups existing inside and on the surface of the carbon materials) Since it is also contained in a relatively large amount, electrode side reactions become large and a charging overvoltage phenomenon occurs, resulting in a problem of low utilization. To solve this problem, in the art, carbon materials with high specific surface areas are heat treated in a furnace, but this takes a long time and makes it difficult to effectively remove impurities.
よって、本出願人はSSE電解質システムを利用しながらも、高い比表面積を持つ炭素材に含まれた水分などの不純物をマイクロ波を利用した前処理を通じて効果的に取り除くことで、高い比表面積を持つ炭素材の活用度を高めた。また、炭素材が硫黄を担持する能力を改善させることで均一な正極活物質の製造を可能とさせ、これによって充電過電圧問題を改善した。 Therefore, while using the SSE electrolyte system, the applicant has developed a carbon material with a high specific surface area by effectively removing impurities such as moisture contained in the carbon material through pretreatment using microwaves. Increased utilization of carbon materials. In addition, by improving the ability of the carbon material to support sulfur, it became possible to manufacture a uniform positive electrode active material, thereby improving the charging overvoltage problem.
本発明のように、高い比表面積を持つ多孔性炭素材にマイクロ波を印加する(または、照射する)前処理をすれば、既存のような熱伝達ではなく、エネルギー伝達(energy transfer)によって早い昇温及び中断が可能である。特に、多孔性炭素材に入射されたエネルギーが熱エネルギーに切り換わる収率が高いため、不純物を取り除くのに要される時間が短いなど、既存に比べて効率が高いという長所を持つ。 As in the present invention, if a porous carbon material with a high specific surface area is pre-treated by applying (or irradiating) microwaves, it can be quickly processed by energy transfer rather than by conventional heat transfer. Temperature increases and interruptions are possible. In particular, because the energy input into the porous carbon material is converted into thermal energy at a high rate, it takes less time to remove impurities, making it more efficient than existing methods.
一方、本発明が多孔性炭素材にマイクロ波を印加して炭素材に含有された不純物を取り除くことにあるが、多孔性炭素材と別途の他の物質(例えば、硫黄(sulfur))が複合化された状態でマイクロ波を印加すれば炭素材に含有された不純物の選択的除去が不可能である。例えば、多孔性炭素材と硫黄が複合化された硫黄‐炭素複合体にマイクロ波を印加する場合には、硫黄まで気化、揮発されるため、炭素材に含まれた不純物のみを取り除くことが不可能である。これは、マイクロ波を印加した時炭素の昇温速度が硫黄より速く、炭素の温度が上昇する時発生するエネルギーを周辺の硫黄に伝達するようになって、この時炭素に含有された不純物が除去される前の低い温度から硫黄が気化されるためである。 On the other hand, the present invention is to remove impurities contained in the carbon material by applying microwaves to the porous carbon material, but when the porous carbon material and another substance (for example, sulfur) are combined If microwaves are applied in a carbonized state, it is impossible to selectively remove impurities contained in the carbon material. For example, when microwaves are applied to a sulfur-carbon composite made of a porous carbon material and sulfur, the sulfur is also vaporized and volatilized, so it is difficult to remove only the impurities contained in the carbon material. It is possible. This is because when microwaves are applied, the rate of temperature rise of carbon is faster than that of sulfur, and the energy generated when the temperature of carbon rises is transferred to the surrounding sulfur, and at this time impurities contained in carbon are This is because sulfur is vaporized at low temperatures before being removed.
本発明の多孔性炭素材は、前述したように、比表面積が200ないし1,700m2/gで、マイクロ波を利用した前処理を通じて不純物が除去されたことを特徴とする。前記多孔性炭素材を電池分野ではない他の分野に使用する場合には、比表面積が前記範囲を脱してもマイクロ波を利用した前処理で不純物が除去されたら特に制限しない。しかし、硫黄の理論放電容量の90%以上を活用するためにSSE電解質システムを利用するリチウム‐硫黄電池においては、前記範囲内の比表面積を持つ炭素材を使用すれば、電池の性能を極大化させることができる。また、前記多孔性炭素材の気孔体積は1.5cm3/g以上であってもよい。もし、前記多孔性炭素材の気孔体積が1.5cm3/g未満であれば、硫黄の担持量が減少して高エネルギー密度電池の具現が難しいことがある。 As described above, the porous carbon material of the present invention has a specific surface area of 200 to 1,700 m 2 /g, and is characterized by having impurities removed through pretreatment using microwaves. When the porous carbon material is used in fields other than the battery field, there are no particular restrictions even if the specific surface area falls outside the above range as long as impurities are removed by pretreatment using microwaves. However, in lithium-sulfur batteries that utilize an SSE electrolyte system to utilize more than 90% of the theoretical discharge capacity of sulfur, using a carbon material with a specific surface area within the above range maximizes battery performance. can be done. Further, the porous carbon material may have a pore volume of 1.5 cm 3 /g or more. If the pore volume of the porous carbon material is less than 1.5 cm 3 /g, the amount of sulfur supported may be reduced, making it difficult to realize a high energy density battery.
そして、マイクロ波が印加される対象炭素材としては、例えば、炭素ナノチューブ;グラフェン(特に、multilayer graphene flake、MGF);グラファイト;カーボンブラック、アセチレンブラック、ケッチェンブラック、デンカブラック、サーマルブラック、チャンネルブラック、ファーネスブラック、ランプブラックなどのカーボンブラック;炭素繊維;またはこれらの中で2種以上が含まれた混合物;であってもよい。 Examples of carbon materials to which microwaves are applied include carbon nanotubes; graphene (especially multilayer graphene flake, MGF); graphite; carbon black, acetylene black, Ketjen black, Denka black, thermal black, and channel black. , carbon black such as furnace black and lamp black; carbon fiber; or a mixture containing two or more of these.
また、前記マイクロ波を利用した前処理は、下記数式1によるMPPTが2,000ないし10,000W*s/gの条件でマイクロ波を多孔性炭素材に印加することを特徴とする。 Further, the pretreatment using microwaves is characterized in that microwaves are applied to the porous carbon material under the condition that MPPT is 2,000 to 10,000 W*s/g according to Equation 1 below.
[数式1]
MPPT(W*s/g)=マイクロ波電力(Microwave Power)(W)×時間(Times)(s)/炭素材質量(g)
[Formula 1]
MPPT (W*s/g) = Microwave Power (W) x Time (s)/Carbon material mass (g)
前記数式1において、時間(Times)はマイクロ波が印加される秒単位時間として10秒を超過する。そして、前記多孔性炭素材は粉末(Powder)性状であることが好ましい。 In Equation 1, the time (Times) exceeds 10 seconds as the time in seconds during which the microwave is applied. Preferably, the porous carbon material is in powder form.
ただし、マイクロ波が印加される以前の炭素材のそれぞれは、炭素を除いて含む水分及び官能基などのその他不純物の含量が違うため、前記数式1のMPPT(W*s/g)値も相違である。 However, each carbon material before microwave application differs in the content of other impurities such as water and functional groups other than carbon, so the MPPT (W*s/g) value in Formula 1 above also differs. It is.
一実施様態として、前記炭素ナノチューブのMPPT値は2,000ないし10,000W*s/gであるが、約2,800W*s/gを超える場合には、それ以上不純物の除去が行われないため、実益がないことがある。そして、前記炭素ナノチューブのMPPT値が2,000W*s/g未満であれば不純物の除去が不可能であるか不十分であるため、充電過電圧改善を目的とする本発明の趣旨を達成しにくく、前記炭素ナノチューブのMPPT値が10,000W*s/gを超える場合には発火につながることがある。 In one embodiment, the carbon nanotubes have an MPPT value of 2,000 to 10,000 W*s/g, and if the MPPT value exceeds about 2,800 W*s/g, no further impurity removal is performed. Therefore, there may be no real benefit. If the MPPT value of the carbon nanotube is less than 2,000 W*s/g, it is impossible or insufficient to remove impurities, making it difficult to achieve the purpose of the present invention, which is to improve charging overvoltage. If the MPPT value of the carbon nanotube exceeds 10,000 W*s/g, it may lead to ignition.
前記グラフェン(特に、multilayer graphene flake、MGF)のMPPT値も2,000ないし10,000W*s/gであるが、約5,300W*s/gを超える場合には、それ以上不純物の除去が行われないため実益がないことがある。そして、前記グラフェンのMPPT値が2,000W*s/g未満であれば不純物の除去が不可能であるか不十分でって充電過電圧改善を目的とする本発明の趣旨を達成しにくく、前記グラフェンのMPPT値が10,000W*s/gを超える場合には発火につながることがある。 The MPPT value of the graphene (especially multilayer graphene flake, MGF) is also 2,000 to 10,000 W*s/g, but if it exceeds about 5,300 W*s/g, it is difficult to remove impurities further. There may be no real benefit because it is not carried out. If the MPPT value of the graphene is less than 2,000 W*s/g, impurity removal is impossible or insufficient, making it difficult to achieve the purpose of the present invention, which is to improve charging overvoltage. If the MPPT value of graphene exceeds 10,000 W*s/g, it may lead to ignition.
前記カーボンブラックのMPPT値も2,000ないし10,000W*s/gであるが、約3,500W*s/gを超える場合には、それ以上不純物の除去が行われないため実益がないことがある。そして、前記カーボンブラックのMPPT値が2,000W*s/g未満であれば、不純物の除去が不可能であるか不十分であって充電過電圧改善を目的とする本発明の趣旨を達成しにくく、前記カーボンブラックのMPPT値が10,000W*s/gを超える場合には発火につながることがある。 The MPPT value of the carbon black is also 2,000 to 10,000 W*s/g, but if it exceeds about 3,500 W*s/g, there is no practical benefit because impurities are not removed any further. There is. If the MPPT value of the carbon black is less than 2,000 W*s/g, it is impossible or insufficient to remove impurities, making it difficult to achieve the purpose of the present invention, which is to improve charging overvoltage. If the MPPT value of the carbon black exceeds 10,000 W*s/g, it may lead to ignition.
前記ケッチェンブラックのMPPT値は2,000ないし10,000W*s/g、好ましくは5,000ないし9,900W*s/gであって、9,900W*s/gを超える場合には、それ以上不純物の除去が行われないため実益がないことがある。そして、前記ケッチェンブラックのMPPT値が2,000W*s/g未満であれば不純物の除去が不可能であるか不十分であって充電過電圧改善を目的とする本発明の趣旨を達成しにくく、前記ケッチェンブラックのMPPT値が10,000W*s/gを超える場合には発火につながることがある。よって、炭素材にマイクロ波を印加する時にはそれぞれの炭素材に当たるMPPTの範囲に合わせてマイクロ波エネルギーを与えなければならない。 The Ketjen black has an MPPT value of 2,000 to 10,000 W*s/g, preferably 5,000 to 9,900 W*s/g, and when it exceeds 9,900 W*s/g, There may be no practical benefit as impurities are not removed any further. If the MPPT value of the Ketjen black is less than 2,000 W*s/g, it is impossible or insufficient to remove impurities, making it difficult to achieve the purpose of the present invention, which is to improve charging overvoltage. If the MPPT value of the Ketjenblack exceeds 10,000 W*s/g, it may lead to ignition. Therefore, when applying microwaves to carbon materials, microwave energy must be applied in accordance with the range of MPPT applicable to each carbon material.
以上のような比表面積及び気孔体積を持ってマイクロ波が印加された多孔性の炭素材は、前記炭素材に含まれた総不純物の中で90ないし100%、好ましくは99ないし100%の不純物が除去されたことを特徴とする。前記不純物は水分を含むものであって、具体的には前記多孔性炭素材に含有された水分及び炭素材の内部と表面に存在する不要な官能基などのその他不純物を含むものを意味する。一方、前記のような高い比表面積の炭素材にマイクロ波を印加して不純物を取り除いても、保管時に水分が再吸湿されることは不可避であると言える。 The porous carbon material to which microwaves are applied having the specific surface area and pore volume as described above contains impurities of 90 to 100%, preferably 99 to 100% of the total impurities contained in the carbon material. is characterized in that it has been removed. The impurities include water, and specifically include water contained in the porous carbon material and other impurities such as unnecessary functional groups present inside and on the carbon material. On the other hand, even if impurities are removed by applying microwaves to the carbon material having a high specific surface area as described above, it is inevitable that moisture will be reabsorbed during storage.
一方、本発明と一緒に比表面積が高い多孔性炭素材にマイクロ波を利用した前処理をするようになれば(つまり、言い換えれば、リチウム‐硫黄電池の正極活物質に含まれる硫黄‐炭素複合体を製造する前に炭素材のみをマイクロ波処理すれば)、リチウム‐硫黄電池が駆動中に実際反応に参加する硫黄の含量を従来に比べて速くて正確に制御することもできる。例えば、硫黄とマイクロ波前処理をしない炭素材を70:30の重量比で混合した場合、炭素材内に不純物が5重量%の含量で含まれていれば実際硫黄と炭素材の重量比は70:28.5になる(すなわち、70:(30×0.95))。すなわち、リチウム‐硫黄電池の放電容量は電池内に含まれた硫黄の含量を基準にして計算するようになるが、本発明のように比表面積が高い炭素材にマイクロ波を利用した前処理をすれば、正極活物質に含まれた硫黄と炭素材の含量をより正確に把握することができる。すなわち、言い換えれば、前記多孔性炭素材に不純物がなくて、正極活物質に含まれた硫黄と炭素材の含量に誤差がない。 On the other hand, if a porous carbon material with a high specific surface area is pretreated using microwaves in conjunction with the present invention (in other words, the sulfur-carbon composite contained in the positive electrode active material of a lithium-sulfur battery) By subjecting only the carbon material to microwave treatment before manufacturing the battery, the amount of sulfur that actually participates in the reaction during operation of the lithium-sulfur battery can be controlled more quickly and accurately than before. For example, when sulfur and carbon material without microwave pretreatment are mixed at a weight ratio of 70:30, if impurities are contained in the carbon material at a content of 5% by weight, the actual weight ratio of sulfur and carbon material is It becomes 70:28.5 (that is, 70:(30×0.95)). In other words, the discharge capacity of a lithium-sulfur battery is calculated based on the content of sulfur contained in the battery, but as in the present invention, carbon material with a high specific surface area is pretreated using microwaves. In this way, the content of sulfur and carbon material contained in the positive electrode active material can be more accurately determined. In other words, there is no impurity in the porous carbon material, and there is no error in the content of sulfur and carbon material contained in the positive electrode active material.
次に、以上で説明した不純物が除去された多孔性炭素材の製造方法について説明する。前記不純物が除去された多孔性炭素材の製造方法は、(a)比表面積が200ないし1,700m2/gである多孔性炭素材を密閉容器に入れた後、不活性ガスを注入してパージングする段階、及び(b)前記多孔性炭素材にマイクロ波を印加する段階を含む。 Next, a method for manufacturing a porous carbon material from which the impurities described above are removed will be described. The method for producing a porous carbon material from which impurities have been removed includes (a) placing a porous carbon material having a specific surface area of 200 to 1,700 m 2 /g in a closed container, and then injecting an inert gas; and (b) applying microwaves to the porous carbon material.
前記密閉容器としては、ガラス容器(glass jar)など不活性ガスを注入しても密閉されてパージングが可能な通常の容器を例示することができる。そして、不活性ガスは、窒素(N2)などの一般的な不活性ガスであり、不活性ガスの注入条件には特別な制限がない。そして、前記(b)段階は下記数式1によるMPPTが2,000ないし10,000W*s/gの条件でマイクロ波を多孔性炭素材に印加することを特徴とする。 Examples of the airtight container include ordinary containers such as glass jars that can be sealed and purged even when an inert gas is injected therein. The inert gas is a general inert gas such as nitrogen ( N2 ), and there are no particular restrictions on the conditions for injecting the inert gas. The step (b) is characterized in that microwaves are applied to the porous carbon material under the condition that MPPT is 2,000 to 10,000 W*s/g according to Equation 1 below.
[数式1]
MPPT(W*s/g)=マイクロ波電力(Microwave Power)(W)×時間(Times)(s)/炭素材質量(g)
[Formula 1]
MPPT (W*s/g) = Microwave Power (W) x Time (s)/Carbon material mass (g)
前記数式1において、時間(Times)はマイクロ波が印加される秒単位時間として10秒を超過する。そして、前記多孔性炭素材は粉末(Powder)性状であることが好ましい。 In Equation 1, the time (Times) exceeds 10 seconds as the time in seconds during which the microwave is applied. Preferably, the porous carbon material is in powder form.
ただし、マイクロ波が印加される以前の炭素材のそれぞれは、炭素を除いて含む水分及び官能基などのその他不純物の含量が違うため、前記数式1のMPPT(W*s/g)値も相違することがある。これに関わる説明は、一実施様態として前述したものに代替する。 However, each carbon material before microwave application differs in the content of other impurities such as water and functional groups other than carbon, so the MPPT (W*s/g) value in Formula 1 above also differs. There are things to do. The explanation regarding this is an alternative to that described above as one embodiment.
続いて、本発明によるリチウム‐硫黄電池用正極について説明する。前記リチウム‐硫黄電池用正極は、前記不純物が除去された多孔性炭素材に硫黄が担持された硫黄‐炭素複合体を正極活物質で含む。 Next, a positive electrode for a lithium-sulfur battery according to the present invention will be explained. The positive electrode for a lithium-sulfur battery includes, as a positive electrode active material, a sulfur-carbon composite in which sulfur is supported on a porous carbon material from which the impurities have been removed.
前記リチウム‐硫黄電池用正極は、正極活物質、バインダー及び導電材などを含む。そして、前記正極活物質には以上で説明した不純物が除去された多孔性炭素材以外に、硫黄元素(Elemental sulfur、S8)、硫黄系列化合物またはこれらの混合物を含むことができ、前記硫黄系列化合物は具体的に、Li2Sn(n≧1)または有機硫黄化合物などであってもよい。そして、以上で説明したように、不純物が除去された多孔性炭素材と硫黄を含む(複合化した)硫黄‐炭素複合体((C2Sx)n:x=2.5~50、n≧2)を正極活物質として使用することが好ましい。 The positive electrode for a lithium-sulfur battery includes a positive active material, a binder, a conductive material, and the like. The positive electrode active material may include elemental sulfur (S 8 ), a sulfur-based compound, or a mixture thereof, in addition to the porous carbon material from which impurities have been removed, as described above. Specifically, the compound may be Li 2 Sn (n≧1) or an organic sulfur compound. As explained above, a sulfur-carbon composite ((C 2 S x ) n : x=2.5 to 50, n ≧2) is preferably used as the positive electrode active material.
前記硫黄‐炭素複合体はその粒子の大きさが1ないし100μmであってもよい。前記硫黄‐炭素複合体の粒子の大きさが1μm未満の場合、粒子間の抵抗が増えてリチウム‐硫黄電池の電極に過電圧が発生することがあって、100μmを超過する場合には単位重量当たり表面積が小くなって電極内の電解質とのウェッティング(wetting)面積及びリチウムイオンとの反応サイト(site)が減少するようになって、複合体の大きさ対比電子の伝達量が少なくなって反応が遅くなるため、電池の放電容量が減少されることがある。 The sulfur-carbon composite may have a particle size of 1 to 100 μm. If the particle size of the sulfur-carbon composite is less than 1 μm, the resistance between the particles may increase and overvoltage may occur at the electrode of the lithium-sulfur battery, and if it exceeds 100 μm, the As the surface area decreases, the wetting area with the electrolyte in the electrode and the reaction sites with lithium ions decrease, and the amount of electron transfer decreases relative to the size of the composite. Due to the slow reaction, the discharge capacity of the battery may be reduced.
前記硫黄(S)は正極活物質の総重量に対して60ないし90重量%、好ましくは65ないし85重量%、より好ましくは65ないし80重量%の含量で含まれることができる。前記硫黄が正極の総重量に対して60重量%未満で使われれば、電池のエネルギー密度が減少する問題が発生することがあって、90重量%を超過する含量で使われる場合には、電極内の導電性が低下して電極の安全性が落ちる問題点が発生することがある。 The sulfur (S) may be included in an amount of 60 to 90% by weight, preferably 65 to 85% by weight, and more preferably 65 to 80% by weight based on the total weight of the positive active material. If sulfur is used in an amount less than 60% by weight based on the total weight of the positive electrode, a problem may occur in which the energy density of the battery is reduced; if sulfur is used in an amount exceeding 90% by weight, the electrode Problems may arise in which the conductivity within the electrode decreases and the safety of the electrode decreases.
以上の硫黄と炭素材を含む正極活物質は、正極の総重量100重量部に対して80ないし99重量部、好ましくは90ないし95重量部で含まれることができる。前記正極活物質の含量が正極の総重量100重量部に対して80重量部未満であれば電池のエネルギー密度が減少する問題が発生することがあって、99重量部を超過する場合には電極内の導電性が低下し、電極の安定性が落ちる問題が発生することがある。 The above positive electrode active material containing sulfur and carbon material may be included in an amount of 80 to 99 parts by weight, preferably 90 to 95 parts by weight, based on 100 parts by weight of the total weight of the positive electrode. If the content of the positive electrode active material is less than 80 parts by weight based on 100 parts by weight of the total weight of the positive electrode, a problem may occur in which the energy density of the battery decreases, and if it exceeds 99 parts by weight, the electrode The problem may occur that the conductivity inside the electrode decreases and the stability of the electrode decreases.
前記正極に含まれるバインダーは正極活物質と導電材などの結合及び集電体に対する結合に助力する成分として、例えば、ポリフッ化ビニリデン(PVdF)、ポリフッ化ビニリデン‐ポリヘキサフルオロプロピレン共重合体(PVdF/HFP)、ポリビニルアセテート、ポリビニルアルコール、ポリビニルエーテル、ポリエチレン、ポリエチレンオキサイド、アルキル化ポリエチレンオキサイド、ポリプロピレン、ポリメチル(メト)アクリレート、ポリエチル(メト)アクリレート、ポリテトラフルオロエチレン(PTFE)、ポリ塩化ビニル、ポリアクリロニトリル、ポリビニルピリジン、ポリビニルピロリドン、スチレン‐ブタジエンゴム、アクリロニトリル‐ブタジエンゴム、エチレン‐プロピレン‐ジエンモノマー(EPDM)ゴム、スルホン化EPDMゴム、スチレン‐ブチレンゴム、フッ素ゴム、カルボキシメチルセルロース(CMC)、澱粉、ヒドロキシプロピルセルロース、再生セルロース、及びこれらの混合物からなる群から選択される1種以上を使用することができるが、必ずこれに限定されるものではない。 The binder contained in the positive electrode is a component that assists in bonding the positive electrode active material to the conductive material and to the current collector, such as polyvinylidene fluoride (PVdF), polyvinylidene fluoride-polyhexafluoropropylene copolymer (PVdF), etc. /HFP), polyvinyl acetate, polyvinyl alcohol, polyvinyl ether, polyethylene, polyethylene oxide, alkylated polyethylene oxide, polypropylene, polymethyl (meth) acrylate, polyethyl (meth) acrylate, polytetrafluoroethylene (PTFE), polyvinyl chloride, poly Acrylonitrile, polyvinylpyridine, polyvinylpyrrolidone, styrene-butadiene rubber, acrylonitrile-butadiene rubber, ethylene-propylene-diene monomer (EPDM) rubber, sulfonated EPDM rubber, styrene-butylene rubber, fluororubber, carboxymethyl cellulose (CMC), starch, hydroxy One or more types selected from the group consisting of propyl cellulose, regenerated cellulose, and mixtures thereof can be used, but the cellulose is not necessarily limited thereto.
前記バインダーは通常的に正極の総重量100重量部を基準にして1ないし50重量部、好ましくは3ないし15重量部で添加される。前記バインダーの含量が1重量部未満であれば正極活物質と集電体との接着力が不十分になることがあって、50重量部を超過すると接着力は向上するものの、その分正極活物質の含量が減少して電池容量が低くなることがある。 The binder is generally added in an amount of 1 to 50 parts by weight, preferably 3 to 15 parts by weight, based on 100 parts by weight of the total weight of the positive electrode. If the content of the binder is less than 1 part by weight, the adhesive force between the positive electrode active material and the current collector may be insufficient; if it exceeds 50 parts by weight, although the adhesive strength is improved, the positive electrode active material is The content of the substance may be reduced and the battery capacity may be lowered.
前記正極に含まれる導電材は、電池の内部環境で副反応を引き起こすことなく、当該電池に化学的変化を引き起こさずに優れる電気伝導性を持つものであれば特に制限されず、代表的には黒鉛または導電性炭素を使用することができ、例えば、天然黒鉛、人造黒鉛などの黒鉛;カーボンブラック、アセチレンブラック、ケッチェンブラック、デンカブラック、サーマルブラック、チャンネルブラック、ファーネスブラック、ランプブラックなどのカーボンブラック;結晶構造がグラフェンやグラファイトである炭素系物質;炭素ナノチューブ;炭素繊維、金属繊維などの導電性繊維;フッ化カーボン;アルミニウム粉末、ニッケル粉末などの金属粉末;酸化亜鉛、チタン酸カリウムなどの導電性ウィスカー;酸化チタンなどの導電性酸化物;及びポリフェニレン誘導体などの導電性高分子;を単独で、または2種以上混合して使用することができるが、必ずこれに限定されるものではない。 The conductive material contained in the positive electrode is not particularly limited as long as it has excellent electrical conductivity without causing side reactions in the internal environment of the battery and without causing chemical changes in the battery, and typically includes Graphite or conductive carbon can be used, for example graphite such as natural graphite, artificial graphite; carbon such as carbon black, acetylene black, Ketjen black, Denka black, thermal black, channel black, furnace black, lamp black, etc. Black: Carbon-based materials whose crystal structure is graphene or graphite; Carbon nanotubes; Conductive fibers such as carbon fibers and metal fibers; Carbon fluoride; Metal powders such as aluminum powder and nickel powder; Conductive whiskers; conductive oxides such as titanium oxide; and conductive polymers such as polyphenylene derivatives; can be used alone or in combination of two or more, but are not necessarily limited to this. .
前記導電材は通常的に正極全体重量100重量部を基準にして0.5ないし10重量部、好ましくは0.5ないし5重量部で添加されることができるが、本発明の正極には含まれないこともある。導電材の含量が10重量部を超過して多すぎると、相対的に正極活物質の量が少なくなって容量及びエネルギー密度が低下されることがある。正極に導電材を含ませる方法は大きく制限されず、正極活物質へのコーティングなど当分野に公知された通常の方法を利用することができる。また、必要に応じて、正極活物質に導電性の第2被覆層が付加されることによって前記のような導電材の添加を代わることもできる。 The conductive material is generally added in an amount of 0.5 to 10 parts by weight, preferably 0.5 to 5 parts by weight, based on 100 parts by weight of the entire positive electrode, but it is not included in the positive electrode of the present invention. Sometimes it doesn't work. If the content of the conductive material is too large, exceeding 10 parts by weight, the amount of the positive electrode active material may become relatively small, resulting in a decrease in capacity and energy density. The method of incorporating the conductive material into the positive electrode is not particularly limited, and any conventional method known in the art, such as coating the positive electrode active material, can be used. Further, if necessary, the addition of a conductive material as described above can be replaced by adding a conductive second coating layer to the positive electrode active material.
また、本発明の正極には、その膨脹を抑制する成分として充填剤が選択的に添加されることができる。このような充填剤は当該電池に化学的変化を引き起こさずに電極の膨脹を抑制することができるものであれば特に制限されず、例えば、ポリエチレン、ポリプロピレンなどのオレフィン系重合体;ガラス繊維、炭素繊維などの繊維状物質;などを使用することができる。 Further, a filler can be selectively added to the positive electrode of the present invention as a component for suppressing expansion thereof. Such fillers are not particularly limited as long as they can suppress the expansion of the electrodes without causing chemical changes in the battery, and include, for example, olefin polymers such as polyethylene and polypropylene; glass fibers, and carbon. Fibrous substances such as fibers; etc. can be used.
前記正極は、正極活物質、バインダー及び導電材などを分散媒(溶媒)に分散、混合させてスラリーを作って、これを正極集電体上に塗布した後、乾燥及び圧延することで製造されることができる。前記分散媒では、NMP(N‐methyl‐2‐pyrrolidone)、DMF(Dimethyl formamide)、DMSO(Dimethyl sulfoxide)、エタノール、イソプロパノール、水及びこれらの混合物を使用することができるが、必ずこれに限定されるものではない。 The positive electrode is manufactured by dispersing and mixing a positive electrode active material, a binder, a conductive material, etc. in a dispersion medium (solvent) to create a slurry, and coating the slurry on a positive electrode current collector, followed by drying and rolling. can be done. The dispersion medium may include NMP (N-methyl-2-pyrrolidone), DMF (dimethyl formamide), DMSO (dimethyl sulfoxide), ethanol, isopropanol, water, and mixtures thereof, but is not limited thereto. It's not something you can do.
前記正極集電体としては、白金(Pt)、金(Au)、パラジウム(Pd)、イリジウム(Ir)、銀(Ag)、ルテニウム(Ru)、ニッケル(Ni)、ステンレススチール(STS)、アルミニウム(Al)、モリブデン(Mo)、クロム(Cr)、カーボン(C)、チタン(Ti)、タングステン(W)、ITO(In doped SnO2)、FTO(F doped SnO2)、及びこれらの合金と、アルミニウム(Al)またはステンレススチールの表面にカーボン(C)、ニッケル(Ni)、チタン(Ti)または銀(Ag)を表面処理したものなどを使用することができるが、必ずこれに限定されるものではない。正極集電体の形態は、ホイル、フィルム、シート、打ち抜かれたもの、多孔質体、発泡体などの形態であってもよい。 The positive electrode current collector includes platinum (Pt), gold (Au), palladium (Pd), iridium (Ir), silver (Ag), ruthenium (Ru), nickel (Ni), stainless steel (STS), and aluminum. (Al), molybdenum (Mo), chromium (Cr), carbon (C), titanium (Ti), tungsten (W), ITO (In doped SnO 2 ), FTO (F doped SnO 2 ), and alloys thereof. , aluminum (Al) or stainless steel whose surface is treated with carbon (C), nickel (Ni), titanium (Ti), or silver (Ag) can be used, but it is certainly limited to these. It's not a thing. The positive electrode current collector may be in the form of a foil, film, sheet, punched object, porous body, foam, or the like.
最後に、本発明によるリチウム‐硫黄電池について説明する。前記リチウム‐硫黄電池は、以上で説明したリチウム‐硫黄電池用正極、負極、これらの間に介在される分離膜及びフッ素系エーテル化合物を含む第1溶媒、グライム系化合物を含む第2溶媒及びリチウム塩を含む電解質を含む。 Finally, the lithium-sulfur battery according to the present invention will be explained. The lithium-sulfur battery includes the above-described positive electrode for lithium-sulfur battery, a negative electrode, a separation membrane interposed between them, a first solvent containing a fluorine-based ether compound, a second solvent containing a glyme-based compound, and lithium. Contains electrolytes including salts.
本発明のリチウム‐硫黄電池は、SSE(sparingly solvating electrolyte)電解質システムを利用するが、200ないし1,700m2/gの高い比表面積(BET Specific surface area)を持つと同時にマイクロ波が印加されて不純物が除去された多孔性炭素材を正極活物質で含むものであって、硫黄の理論放電容量の90%以上、好ましくは94ないし100%活用することができると同時に、約400Wh/kg以上または600Wh/L以上の高いエネルギー密度を持つ。 The lithium-sulfur battery of the present invention utilizes an SSE (sparingly solvating electrolyte) electrolyte system, but has a high specific surface area (BET specific surface area) of 200 to 1,700 m 2 /g and at the same time microwave is applied. The cathode active material contains a porous carbon material from which impurities have been removed, and can utilize 90% or more, preferably 94 to 100%, of the theoretical discharge capacity of sulfur, and at the same time has a discharge capacity of approximately 400Wh/kg or more. It has a high energy density of 600Wh/L or more.
以下、本発明によるリチウム‐硫黄電池の電解質に含まれるフッ素系エーテル化合物を含む第1溶媒、グライム系化合物を含む第2溶媒及びリチウム塩それぞれについて具体的に説明する。 Hereinafter, the first solvent containing a fluorine-based ether compound, the second solvent containing a glyme-based compound, and the lithium salt contained in the electrolyte of the lithium-sulfur battery according to the present invention will be specifically explained.
前記第1溶媒はフッ素系エーテル化合物を含む電解質溶媒であって、ポリスルフィドの溶解及び溶媒分解抑制効果を持つことによって、電池のクーロン効率(coulombic efficiency;C.E.)などを向上させて窮極的には電池の寿命を向上させる役目をする。より具体的に、前記フッ素系エーテル化合物を含む第1溶媒は、フッ素置換によってアルケインを含む一般的な有機溶媒に比べて溶媒の構造安定性が優秀なので安定性がとても高い。これによって、これをリチウム‐硫黄電池の電解液に使用すれば、電解液の安定性を大きく向上させることができ、それによって、リチウム‐硫黄電池の寿命性能を向上させることができる。 The first solvent is an electrolyte solvent containing a fluorine-based ether compound, and has the effect of dissolving polysulfide and inhibiting solvent decomposition, thereby improving the coulombic efficiency (C.E.) of the battery, etc. plays a role in improving battery life. More specifically, the first solvent containing the fluorine-based ether compound has excellent structural stability as compared to general organic solvents containing alkenes due to fluorine substitution, and therefore has very high stability. Therefore, if this is used as an electrolyte of a lithium-sulfur battery, the stability of the electrolyte can be greatly improved, thereby improving the life performance of the lithium-sulfur battery.
前記フッ素系エーテル化合物の例としては、1,1,2,2‐テトラフルオロエチル2,2,3,3‐テトラフルオロプロピルエーテル(1,1,2,2‐tetrafluoroethyl2,2,3,3‐tetrafluoropropyl ether、TTE)、ビス(フルオロメチル)エーテル、2‐フルオロメチルエーテル、ビス(2,2,2‐トリフルオロエチル)エーテル、プロピル1,1,2,2‐テトラフルオロエチルエーテル、イソプロピル1,1,2,2‐テトラフルオロエチルエーテル、1,1,2,2‐テトラフルオロエチルイソブチルエーテル、1,1,2,3,3,3‐ヘキサフルオロプロピルエチルエーテル、1H,1H,2’H,3H‐デカフルオロジプロピルエーテル及び1H,1H,2’H‐パーフルオロジプロピルエーテルからなる群から選択される1種以上のヒドロフルオロエーテル系(HFE type)化合物を挙げることができる。 Examples of the fluorine-based ether compounds include 1,1,2,2-tetrafluoroethyl 2,2,3,3-tetrafluoropropyl ether (1,1,2,2-tetrafluoroethyl2,2,3,3- tetrafluoropropyl ether, TTE), bis(fluoromethyl) ether, 2-fluoromethyl ether, bis(2,2,2-trifluoroethyl) ether, propyl 1,1,2,2-tetrafluoroethyl ether, isopropyl 1, 1,2,2-tetrafluoroethyl ether, 1,1,2,2-tetrafluoroethyl isobutyl ether, 1,1,2,3,3,3-hexafluoropropylethyl ether, 1H,1H,2'H , 3H-decafluorodipropyl ether, and 1H, 1H, 2'H-perfluorodipropyl ether.
前記第2溶媒は、グライム系化合物を含む(ただし、フッ素は含まない)電解質溶媒として、リチウム塩を溶解して電解液がリチウムイオン伝導度を持つようにするだけでなく、正極活物質である硫黄を湧出させてリチウムと電気化学的反応をスムーズに進行させる役目をする。 The second solvent is an electrolyte solvent containing a glyme-based compound (but not fluorine), which not only dissolves lithium salt so that the electrolyte has lithium ion conductivity, but also serves as a positive electrode active material. Its role is to generate sulfur and facilitate the electrochemical reaction with lithium.
前記グライム系化合物の具体的な例としては、ジメトキシエタン、ジエトキシエタン、メトキシエトキシエタン、ジエチレングリコールジメチルエーテル、ジエチレングリコールジエチルエーテル、ジエチレングリコールメチルエチルエーテル、トリエチレングリコールジメチルエーテル、トリエチレングリコールジエチルエーテル、トリエチレングリコールメチルエチルエーテル、テトラエチレングリコールジメチルエーテル、テトラエチレングリコールジエチルエーテル、テトラエチレングリコールメチルエチルエーテル、ポリエチレングリコールジメチルエーテル、ポリエチレングリコールジエチルエーテル及びポリエチレングリコールメチルエチルエーテルからなる群から選択される1種以上を挙げることができるが、これに限定されるものではなく、この中でジメトキシエタンの使用が好ましい。 Specific examples of the glyme-based compounds include dimethoxyethane, diethoxyethane, methoxyethoxyethane, diethylene glycol dimethyl ether, diethylene glycol diethyl ether, diethylene glycol methyl ethyl ether, triethylene glycol dimethyl ether, triethylene glycol diethyl ether, and triethylene glycol methyl. One or more selected from the group consisting of ethyl ether, tetraethylene glycol dimethyl ether, tetraethylene glycol diethyl ether, tetraethylene glycol methyl ethyl ether, polyethylene glycol dimethyl ether, polyethylene glycol diethyl ether, and polyethylene glycol methyl ethyl ether can be mentioned. However, it is not limited thereto, and among these, dimethoxyethane is preferably used.
前記リチウム塩は、イオン伝導性を増加させるために使われる電解質塩として、当業界で通常的に使用するものであれば制限せずに使われることができる。前記リチウム塩の具体的な例としては、LiCl、LiBr、LiI、LiClO4、LiBF4、LiB10Cl10、LiPF6、LiCF3SO3、LiCF3CO2、LiC4BO8、LiAsF6、LiSbF6、LiAlCl4、CH3SO3Li、CF3SO3Li、(CF3SO2)2NLi、(C2F5SO2)2NLi、(SO2F)2NLi、(CF3SO2)3CLi、クロロボランリチウム、炭素数4以下の低級脂肪族カルボン酸リチウム、テトラフェニルホウ酸リチウム及びリチウムイミドからなる群から選択される1種以上を例示することができる。 The lithium salt may be used without any limitation as long as it is commonly used in the art as an electrolyte salt used to increase ionic conductivity. Specific examples of the lithium salt include LiCl, LiBr, LiI, LiClO 4 , LiBF 4 , LiB 10 Cl 10 , LiPF 6 , LiCF 3 SO 3 , LiCF 3 CO 2 , LiC 4 BO 8 , LiAsF 6 , LiSbF. 6 , LiAlCl 4 , CH 3 SO 3 Li, CF 3 SO 3 Li, (CF 3 SO 2 ) 2 NLi, (C 2 F 5 SO 2 ) 2 NLi, (SO 2 F) 2 NLi, (CF 3 SO 2 ) 3 One or more selected from the group consisting of CLi, chloroborane lithium, lower aliphatic lithium carboxylate having 4 or less carbon atoms, tetraphenylborate lithium, and lithium imide can be exemplified.
前記リチウム塩の濃度はイオン伝導度などを考慮して決定されることができ、例えば、0.1ないし2M、好ましくは0.5ないし1M、より好ましくは0.5ないし0.75Mであってもよい。前記リチウム塩の濃度が前記範囲未満である場合、電池駆動に適したイオン伝導度の確保が難しいことがあって、前記範囲を超過する場合には電解質の粘度が増加してリチウムイオンの移動性が低下されるか、リチウム塩自体の分解反応が増加して電池の性能が低下されることがある。 The concentration of the lithium salt can be determined by considering ionic conductivity, and is, for example, 0.1 to 2M, preferably 0.5 to 1M, more preferably 0.5 to 0.75M. Good too. If the concentration of the lithium salt is less than the above range, it may be difficult to ensure ionic conductivity suitable for battery operation, and if it exceeds the above range, the viscosity of the electrolyte increases and the mobility of lithium ions is reduced. or the decomposition reaction of the lithium salt itself may increase, resulting in a decrease in battery performance.
以上のような第1溶媒、第2溶媒及びリチウム塩を含む電解質において、前記リチウム塩、第2溶媒及び第1溶媒のモル比は1:0.5~3:4.1~15であってもよい。また、本発明の一実施形態として、前記リチウム塩、第2溶媒及び第1溶媒のモル比は、1:2:4~13または1:3:3~10または1:4:5~10であってもよいなど、本発明のリチウム‐硫黄電池に含まれる電解質には、フッ素系エーテル化合物を含む第1溶媒が、グライム系化合物を含む第2溶媒に比べて高い含量比で含まれるということである。このように、フッ素系エーテル化合物を含む第1溶媒が、グライム系化合物を含む第2溶媒に比べて高い含量比で含まれる場合、ポリスルフィドの生成を抑制して硫黄の理論容量に近い電池容量の具現を可能にして、電池使用による電池容量の減少を抑制する側面で利点があるため、なるべくフッ素系エーテル化合物を含む第1溶媒が、グライム系化合物を含む第2溶媒に比べて高い含量比で含まれるように設定することが好ましい。 In the electrolyte containing the first solvent, second solvent, and lithium salt as described above, the molar ratio of the lithium salt, the second solvent, and the first solvent is 1:0.5 to 3:4.1 to 15. Good too. In one embodiment of the present invention, the molar ratio of the lithium salt, the second solvent, and the first solvent is 1:2:4 to 13, 1:3:3 to 10, or 1:4:5 to 10. The electrolyte contained in the lithium-sulfur battery of the present invention may contain a first solvent containing a fluorine-based ether compound at a higher content ratio than a second solvent containing a glyme-based compound. It is. In this way, when the first solvent containing a fluorine-based ether compound is contained in a higher content ratio than the second solvent containing a glyme-based compound, the formation of polysulfides is suppressed and the battery capacity approaches the theoretical capacity of sulfur. Since this is advantageous in terms of suppressing the decrease in battery capacity due to battery use, it is preferable that the first solvent containing the fluorine-based ether compound has a higher content ratio than the second solvent containing the glyme-based compound. It is preferable to set it so that it is included.
本発明のリチウム‐硫黄電池に含まれる負極はリチウム系金属で、リチウム系金属の一側に集電体をさらに含むことができる。前記集電体は負極集電体が使われることができる。前記負極集電体は電池に化学的変化を引き起こさずに高い導電性を持つものであれば特に制限せず、銅、アルミニウム、ステンレススチール、亜鉛、チタン、銀、パラジウム、ニッケル、鉄、クロム、これらの合金及びこれらの組み合わせからなる群から選択されることができる。前記ステンレススチールは、カーボン、ニッケル、チタンまたは銀で表面処理されることができ、前記合金ではアルミニウム‐カドミウム合金を使用することができ、その他にも焼成炭素、導電材で表面処理された非伝導性高分子または伝導性高分子などを使用することもできる。一般に、負極集電体としては銅薄板を適用する。 The negative electrode included in the lithium-sulfur battery of the present invention is a lithium-based metal, and may further include a current collector on one side of the lithium-based metal. The current collector may be a negative current collector. The negative electrode current collector is not particularly limited as long as it has high conductivity without causing chemical changes in the battery, and may include copper, aluminum, stainless steel, zinc, titanium, silver, palladium, nickel, iron, chromium, It can be selected from the group consisting of these alloys and combinations thereof. The stainless steel can be surface treated with carbon, nickel, titanium or silver, the alloy can be an aluminum-cadmium alloy, as well as calcined carbon, non-conductive surface treated with a conductive material. A conductive polymer or a conductive polymer can also be used. Generally, a thin copper plate is used as the negative electrode current collector.
また、その形態は表面に微細な凹凸が形成された/未形成されたフィルム、シート、ホイル、ネット、多孔質体、発泡体、不織布体など多様な形態が使われることができる。また、前記負極集電体は3ないし50μmの厚さ範囲のものを適用する。前記負極集電体の厚さが3μm未満であれば集電効果が落ちて、その一方、厚さが50μmを超過すればセルをフォールディング(folding)して組み立てる場合に加工性が低下する問題点がある。 In addition, various forms such as a film, sheet, foil, net, porous body, foam, non-woven fabric, etc., with or without fine irregularities formed on the surface can be used. In addition, the negative electrode current collector may have a thickness of 3 to 50 μm. If the thickness of the negative electrode current collector is less than 3 μm, the current collection effect will be reduced, while if the thickness exceeds 50 μm, the processability will be reduced when the cell is assembled by folding. There is.
前記リチウム系金属はリチウムまたはリチウム合金であってもよい。この時、リチウム合金はリチウムと合金化可能な元素を含み、具体的に、リチウムとSi、Sn、C、Pt、Ir、Ni、Cu、Ti、Na、K、Rb、Cs、Fr、Be、Mg、Ca、Sr、Sb、Pb、In、Zn、Ba、Ra、Ge及びAlからなる群から選択される1種以上との合金であってもよい。 The lithium-based metal may be lithium or a lithium alloy. At this time, the lithium alloy contains elements that can be alloyed with lithium, specifically, lithium and Si, Sn, C, Pt, Ir, Ni, Cu, Ti, Na, K, Rb, Cs, Fr, Be, It may be an alloy with one or more selected from the group consisting of Mg, Ca, Sr, Sb, Pb, In, Zn, Ba, Ra, Ge, and Al.
前記リチウム系金属はシートまたはホイルの形態であってもよく、場合によって、集電体上にリチウムまたはリチウム合金が乾式工程によって蒸着またはコーティングされた形態であるか、または粒子状の金属及び合金が湿式工程などによって蒸着またはコーティングされた形態であってもよい。 The lithium-based metal may be in the form of a sheet or a foil, and in some cases, lithium or a lithium alloy may be vapor-deposited or coated on a current collector by a dry process, or particulate metals and alloys may be formed. The material may be deposited or coated using a wet process.
前記正極と負極との間には通常的な分離膜が介在されることができる。前記分離膜は電極を物理的に分離する機能を持つ物理的な分離膜であって、通常の分離膜で使われるものであれば特に制限せずに使用可能であり、特に電解液のイオン移動に対して低抵抗でありながら電解液の含湿能力に優れるものが好ましい。 A conventional separation membrane may be interposed between the positive electrode and the negative electrode. The separation membrane is a physical separation membrane that has the function of physically separating the electrodes, and can be used without any particular restrictions as long as it is used in ordinary separation membranes. It is preferable to use a material that has a low resistance to moisture and has an excellent ability to moisturize the electrolytic solution.
また、前記分離膜は正極と負極を互いに分離または絶縁させながら正極と負極の間にリチウムイオンの輸送ができるようにする。このような分離膜は多孔性で非伝導性または絶縁性の物質からなることができる。前記分離膜はフィルムのような独立的な部材であるか、または正極及び/または負極に付加されたコーティング層であってもよい。 Further, the separator separates or insulates the positive electrode and the negative electrode from each other, and allows lithium ions to be transported between the positive electrode and the negative electrode. Such separation membranes can be made of porous, non-conductive or insulating materials. The separator may be an independent member such as a film, or a coating layer added to the positive electrode and/or the negative electrode.
前記分離膜として使われることができるポリオレフィン系多孔性膜の例としては、高密度ポリエチレン、線形低密度ポリエチレン、低密度ポリエチレン、超高分子量ポリエチレンのようなポリエチレン、ポリプロピレン、ポリブチレン、ポリペンテンなどのポリオレフィン系高分子をそれぞれ単独でまたはこれらを混合した高分子で形成した膜を挙げることができる。前記分離膜として使われることができる不織布の例としては、ポリフェニレンオキサイド(polyphenyleneoxide)、ポリイミド(polyimide)、ポリアミド(polyamide)、ポリカーボネート(polycarbonate)、ポリエチレンテレフタレート(polyethyleneterephthalate)、ポリエチレンナフタレート(polyethylenenaphthalate)、ポリブチレンテレフタレート(polybutyleneterephthalate)、ポリフェニレンスルフィド(polyphenylenesulfide)、ポリアセタール(polyacetal)、ポリエーテルスルホン(polyethersulfone)、ポリエーテルエーテルケトン(polyetheretherketone)、ポリエステル(polyester)などをそれぞれ単独でまたはこれらを混合した高分子で形成した不織布が可能であり、このような不織布は多孔性ウェブ(web)を形成する繊維の形として、長繊維で構成されたスパンボンド(spunbond)またはメルトブローン(meltblown)形態を含む。 Examples of polyolefin-based porous membranes that can be used as the separation membrane include polyethylenes such as high-density polyethylene, linear low-density polyethylene, low-density polyethylene, ultra-high molecular weight polyethylene, polyolefins such as polypropylene, polybutylene, and polypentene. Examples include a film formed of a single polymer or a mixture of polymers. Examples of nonwoven fabrics that can be used as the separation membrane include polyphenylene oxide, polyimide, polyamide, polycarbonate, and polyethylene terephthalate. alate), polyethylene naphthalate, polyethylene naphthalate, butylene terephthalate, polyphenylene sulfide, polyacetal, polyether sulfone, polyether ether ketone Made of polymers such as herketone, polyester, etc., each alone or a mixture of these. Such nonwoven fabrics include spunbond or meltblown forms composed of long fibers as the form of fibers forming the porous web.
前記分離膜の厚さは特に制限されないが、1ないし100μmの範囲が好ましく、より好ましくは5ないし50μmの範囲である。前記分離膜の厚さが1μm未満の場合は機械的物性を維持することができず、100μmを超過する場合には前記分離膜が抵抗層として作用するようになって電池の性能が低下する。前記分離膜の気孔の大きさ及び気孔率は特に制限されないが、気孔の大きさは0.1ないし50μmで、気孔率は10ないし95%であることが好ましい。前記分離膜の気孔の大きさが0.1μm未満であるか、気孔率が10%未満であれば分離膜が抵抗層として作用するようになって、気孔の大きさが50μmを超過したり気孔率が95%を超過する場合には機械的物性を維持することができない。 The thickness of the separation membrane is not particularly limited, but is preferably in the range of 1 to 100 μm, more preferably in the range of 5 to 50 μm. If the thickness of the separation membrane is less than 1 μm, mechanical properties cannot be maintained, and if it exceeds 100 μm, the separation membrane acts as a resistance layer, resulting in a decrease in battery performance. Although the pore size and porosity of the separation membrane are not particularly limited, it is preferable that the pore size is 0.1 to 50 μm and the porosity is 10 to 95%. If the pore size of the separation membrane is less than 0.1 μm or the porosity is less than 10%, the separation membrane acts as a resistance layer, and if the pore size exceeds 50 μm or the porosity is less than 10%, the separation membrane acts as a resistance layer. If the ratio exceeds 95%, mechanical properties cannot be maintained.
以上のような正極、負極、分離膜及び電解質を含む本発明のリチウム‐硫黄電池は、正極を負極と対面させてその間に分離膜を介在した後、電解液を注入する工程を通じて製造されることができる。 The lithium-sulfur battery of the present invention, which includes the positive electrode, negative electrode, separator, and electrolyte, is manufactured through a process in which the positive electrode faces the negative electrode, a separator is interposed therebetween, and then an electrolyte is injected. I can do it.
一方、本発明によるリチウム‐硫黄電池は、小型デバイスの電源で使われる電池セルに適用されることは勿論、中大型デバイスの電源である電池モジュールの単位電池で特に適合に使われることができる。このような側面において、本発明はまた2個以上のリチウム‐硫黄電池が電気的に連結(直列または並列)されて含まれた電池モジュールを提供する。前記電池モジュールに含まれるリチウム‐硫黄電池の数量は、電池モジュールの用途及び容量などを考慮して多様に調節されることができることは勿論である。さらに、本発明は当分野の通常的な技術に基づいて前記電池モジュールを電気的に連結した電池パックを提供する。前記電池モジュール及び電池パックは、パワーツール(Power Tool);電気車(Electric Vehicle、EV)、ハイブリッド電気車(Hybrid Electric Vehicle、HEV)、及びプラグインハイブリッド電気車(Plug‐in Hybrid Electric Vehicle、PHEV)を含む電気車;電気トラック;電気商用車;または電力保存用システムの中でいずれか一つ以上の中大型デバイス電源として利用可能であるが、必ずこれに限定されるものではない。ただし、本発明のリチウム‐硫黄電池は都心航空運送手段(Urban Air Mobility、UAM)に利用される航空機用バッテリーであることが好ましい。 Meanwhile, the lithium-sulfur battery according to the present invention can be used not only as a battery cell used as a power source for small devices, but also as a unit battery of a battery module that is a power source for medium and large devices. In this aspect, the present invention also provides a battery module including two or more lithium-sulfur batteries electrically connected (in series or in parallel). Of course, the number of lithium-sulfur batteries included in the battery module can be variously adjusted in consideration of the usage and capacity of the battery module. Further, the present invention provides a battery pack in which the battery modules are electrically connected based on the conventional technology in the art. The battery module and battery packs are power tools; electric vehicles (ELECTRIC VEHICLE, EV), hybrid electrical vehicles (HYBRID ELECTRIC VEHICLE, HEV), and plug -in highbrid electric vehicles (PLUG). -In Hybrid Eleechnology Vehicle, PHEV ); electric trucks; electric commercial vehicles; However, the lithium-sulfur battery of the present invention is preferably an aircraft battery used in urban air mobility (UAM).
以下、本発明の理解を助けるために好ましい実施例を提示するが、下記実施例は本発明を例示するものに過ぎず、本発明の範疇及び技術思想の範囲内で多様な変更及び修正が可能であることは当業者において自明なことであり、このような変更及び修正が添付された特許請求範囲に属することも当然である。 Hereinafter, preferred embodiments will be presented to help understand the present invention. However, the following embodiments are merely illustrative of the present invention, and various changes and modifications can be made within the scope of the scope and technical idea of the present invention. It is obvious to those skilled in the art that such changes and modifications are within the scope of the appended claims.
[実施例1~8、比較例1~4]多孔性炭素材の製造
多孔性炭素材をガラス容器(glass jar)に入れた後、窒素ガスを注入して1分間パージングを進行し、続いて多孔性炭素材にマイクロ波を照射した。この時、実施例1ないし8及び比較例1ないし4で使われた多孔性炭素材はそれぞれ以下のとおりであった。そして、実施例1ないし8及び比較例1ないし4で使われたそれぞれの単位炭素材が受けるマイクロ波エネルギー値(MPPT)は下記表1で示す。
[Examples 1 to 8, Comparative Examples 1 to 4] Production of porous carbon material
After the porous carbon material was placed in a glass jar, nitrogen gas was injected and purging was performed for 1 minute, and then the porous carbon material was irradiated with microwaves. At this time, the porous carbon materials used in Examples 1 to 8 and Comparative Examples 1 to 4 were as follows. The microwave energy values (MPPT) received by each unit carbon material used in Examples 1 to 8 and Comparative Examples 1 to 4 are shown in Table 1 below.
‐実施例1、実施例5、比較例1:比表面積が270m2/gである炭素ナノチューブ
‐実施例2、実施例6、比較例2:比表面積が1,600m2/gである多重層グラフェンフレーク
‐実施例3、実施例7、比較例3:比表面積が1,550m2/gであるカーボンブラック
‐実施例4、実施例8、比較例4:比表面積が1,350m2/gであるケッチェンブラック
- Example 1, Example 5, Comparative Example 1: Carbon nanotubes with a specific surface area of 270 m 2 /g - Example 2, Example 6, Comparative Example 2: Multilayer with a specific surface area of 1,600 m 2 /g Graphene flakes - Example 3, Example 7, Comparative Example 3: Carbon black with a specific surface area of 1,550 m 2 /g - Example 4, Example 8, Comparative Example 4: Specific surface area of 1,350 m 2 /g Ketjenbrack is
[比較例5]多孔性炭素材
実施例1、実施例5及び比較例1で使われたものと同一な比表面積が270m2/gである炭素ナノチューブを準備した。すなわち、前記実施例1ないし8及び比較例1ないし4と違って炭素材にマイクロ波を照射しなかった。
[Comparative Example 5] Porous carbon material
Carbon nanotubes having a specific surface area of 270 m 2 /g, which were the same as those used in Example 1, Example 5, and Comparative Example 1, were prepared. That is, unlike Examples 1 to 8 and Comparative Examples 1 to 4, the carbon material was not irradiated with microwaves.
[実験例1]多孔性炭素材に含有された不純物の除去率評価
前記実施例1ないし8及び比較例1ないし4で製造された多孔性炭素材それぞれから除去された不純物の含量を測定し、その結果を下記表2に示す。すなわち、炭素材に含有された不純物の含量がマイクロ波を照射した以後、どれぐらい減少されたのかについて確認した。そして、測定には0.1mg測定単位を持つ精密はかり(モデル:ML204T/00、製造社:Mettler Toledo)を利用した。
[Experiment Example 1] Evaluation of removal rate of impurities contained in porous carbon material
The content of impurities removed from each of the porous carbon materials prepared in Examples 1 to 8 and Comparative Examples 1 to 4 was measured, and the results are shown in Table 2 below. That is, it was confirmed how much the content of impurities contained in the carbon material was reduced after irradiation with microwaves. A precision scale (model: ML204T/00, manufacturer: Mettler Toledo) with a 0.1 mg measurement unit was used for the measurement.
前記のように実施例1ないし8及び比較例1ないし4で製造された多孔性炭素材のそれぞれから除去された不純物の含量を測定した結果、前記表1で表されたように、単位炭素材が受けるマイクロ波エネルギー値を2,000ないし10,000W*s/gで設定した実施例1ないし8の多孔性炭素材は不純物が完全に除去されたことを確認することができた。一方、単位炭素材が受けるマイクロ波エネルギー値を2,000W*s/g未満で設定した比較例1ないし3の多孔性炭素材は不純物の除去が不十分であることが分かった。また、単位炭素材が受けるマイクロ波エネルギー値が10,000W*s/gを超過するように設定した比較例4の場合、不純物は実施例1ないし8と同様に完全に除去されたが発火現象も一緒に発生した。 As a result of measuring the content of impurities removed from each of the porous carbon materials manufactured in Examples 1 to 8 and Comparative Examples 1 to 4 as described above, as shown in Table 1 above, the unit carbon material It was confirmed that impurities were completely removed from the porous carbon materials of Examples 1 to 8, in which the microwave energy received by the porous carbon materials was set at 2,000 to 10,000 W*s/g. On the other hand, it was found that the removal of impurities was insufficient in the porous carbon materials of Comparative Examples 1 to 3 in which the microwave energy value received by the unit carbon material was set at less than 2,000 W*s/g. In addition, in the case of Comparative Example 4 in which the microwave energy value received by the unit carbon material was set to exceed 10,000 W*s/g, impurities were completely removed as in Examples 1 to 8, but ignition occurred. also occurred together.
[実験例2]熱重量分析(TGA)を通じた不純物除去有無の確認
前記実施例1で製造された多孔性炭素材の不純物除去有無を確認するために、比較例5の多孔性炭素材(マイクロ波未処理)とともにTGA分析(10℃/minの昇温条件(R.T~500℃)、窒素雰囲気)を実施した。
[Experiment Example 2] Confirmation of impurity removal through thermogravimetric analysis (TGA)
In order to confirm whether or not impurities were removed from the porous carbon material produced in Example 1, TGA analysis (10°C/min temperature increase condition (R .T~500°C), nitrogen atmosphere).
図1は本発明の一実施例及び比較例による多孔性炭素材の不純物除去有無を確認するためのTGA分析グラフである。前記実施例1で製造された多孔性炭素材と比較例5の多孔性炭素材をTGA分析した結果、単位炭素材が受けるマイクロ波エネルギー値を2,000ないし10,000W*s/gで設定した実施例1の多孔性炭素材は、図1に示されたようにマイクロ波を照射していない比較例5の多孔性炭素材に比べて温度増加による重量減少が著しく少なく表れることを確認することができた。よって、多孔性炭素材に2,000ないし10,000W*s/gのマイクロ波エネルギー値を付与すれば、水分などの不純物が除去されることが分かる(一方、図1で100℃まで重量減少が起きる理由は、炭素材保管の際に水分が吸湿されたことに起因したことである)。 FIG. 1 is a TGA analysis graph for confirming whether impurities are removed from porous carbon materials according to an example of the present invention and a comparative example. As a result of TGA analysis of the porous carbon material manufactured in Example 1 and the porous carbon material of Comparative Example 5, the microwave energy value received by a unit carbon material was set at 2,000 to 10,000 W*s/g. As shown in FIG. 1, the porous carbon material of Example 1, which was subjected to the irradiation, showed significantly less weight loss due to temperature increase than the porous carbon material of Comparative Example 5, which was not irradiated with microwaves. I was able to do that. Therefore, it can be seen that impurities such as moisture are removed by applying microwave energy of 2,000 to 10,000 W*s/g to the porous carbon material (on the other hand, in Figure 1, the weight decreases up to 100°C). The reason for this is that moisture is absorbed during storage of carbon materials).
[実験例3]元素分析(EA)を通じた不純物除去有無の確認
前記実施例1で製造された多孔性炭素材の不純物除去有無を確認するために、比較例5の多孔性炭素材(マイクロ波未処理)とともに元素分析機(モデル:Flash 2000、製造社:Thermo ScientificTM)でEA分析を実施し、その結果を下記表3に示す。
[Experiment Example 3] Confirmation of impurity removal through elemental analysis (EA)
In order to confirm whether or not impurities were removed from the porous carbon material manufactured in Example 1, the porous carbon material of Comparative Example 5 (untreated with microwave) was used with an elemental analyzer (model: Flash 2000, manufacturer: Thermo EA analysis was performed using Scientific ™ ) and the results are shown in Table 3 below.
前記実施例1で製造された多孔性炭素材と比較例5の多孔性炭素材をEA分析した結果、単位炭素材が受けるマイクロ波エネルギー値を2,000ないし10,000W*s/gで設定した実施例1の多孔性炭素材は、水分などの不純物除去によって炭素(C)の含量が増加したことを確認することができた。 As a result of EA analysis of the porous carbon material manufactured in Example 1 and the porous carbon material of Comparative Example 5, the microwave energy value received by a unit carbon material was set at 2,000 to 10,000 W*s/g. It was confirmed that the carbon (C) content of the porous carbon material of Example 1 was increased by removing impurities such as moisture.
[比較例6]硫黄‐炭素複合体の製造
マイクロ波処理されていない比較例5の炭素ナノチューブと硫黄(S)を75:25の重量比で混合した後、乾燥させて硫黄‐炭素複合体を製造し、続いて、前記製造された硫黄‐炭素複合体をガラス容器(glass jar)に入れた後、窒素ガスを注入して1分間パージングを進行した状態でマイクロ波を照射(MPPT:2,160W*s/g)した。
[Comparative Example 6] Production of sulfur-carbon composite
The carbon nanotubes of Comparative Example 5 that were not subjected to microwave treatment and sulfur (S) were mixed at a weight ratio of 75:25 and then dried to prepare a sulfur-carbon composite, and then the prepared sulfur- After the carbon composite was placed in a glass jar, nitrogen gas was injected and purging was performed for 1 minute, followed by microwave irradiation (MPPT: 2,160 W*s/g).
[実験例4]マイクロ波の照射時間による温度プロファイル評価
前記実施例1で製造された多孔性炭素材と前記比較例6で製造された硫黄‐炭素複合体にマイクロ波(MPPT:2,160W*s/g)を照射する間に時間経過による温度をそれぞれThermocouple(306 data logger、Conrad Electronics、Hirschau、Germany)で測定し、その結果を図2に示す。図2は多孔性炭素材と硫黄‐炭素複合体に同一条件のマイクロ波を照射する時の時間による温度プロファイルを示すグラフである。
[Experiment example 4] Temperature profile evaluation based on microwave irradiation time
While the porous carbon material manufactured in Example 1 and the sulfur-carbon composite manufactured in Comparative Example 6 were irradiated with microwaves (MPPT: 2,160 W*s/g), the temperature was changed over time. Each was measured with a Thermocouple (306 data logger, Conrad Electronics, Hirschau, Germany), and the results are shown in FIG. FIG. 2 is a graph showing a temperature profile over time when a porous carbon material and a sulfur-carbon composite are irradiated with microwaves under the same conditions.
前記実施例1の多孔性炭素材と比較例6の硫黄‐炭素複合体にマイクロ波を照射しながら5秒単位で温度を測定した結果、図2に示されたように、多孔性炭素材(実施例1)の昇温速度が硫黄‐炭素複合体(比較例6)の昇温速度に比べて非常に速いことを確認することができた。すなわち、マイクロ波を照射した時、炭素の昇温速度が硫黄より速くて炭素の温度上昇が先に行われ、炭素の温度が上昇する時発生するエネルギーが硫黄に伝達されて硫黄が気化されるエネルギーに変換され、この時、炭素に含有された不純物が除去される以前の低い温度から硫黄が気化される。 The temperature of the porous carbon material of Example 1 and the sulfur-carbon composite of Comparative Example 6 was measured every 5 seconds while irradiating microwaves. As shown in FIG. It was confirmed that the temperature increase rate of Example 1) was much faster than that of the sulfur-carbon composite (Comparative Example 6). In other words, when irradiated with microwaves, the temperature of carbon rises faster than sulfur, so the temperature of carbon rises first, and the energy generated when the temperature of carbon rises is transferred to sulfur, causing sulfur to vaporize. It is converted into energy, and at this time, sulfur is vaporized from the low temperature before the impurities contained in the carbon are removed.
言い換えれば、同一なMPPT条件でマイクロ波を照射する時、前記多孔性炭素材(実施例1)の場合はマイクロ波の照射30秒経過時点を基準にして約400℃まで上昇して炭素材内の不純物が除去される。一方、硫黄‐炭素複合体(比較例6)はマイクロ波の照射30秒経過時点を基準にして約200℃(硫黄の揮発が急激に起きる温度)として炭素材内の不純物とともに硫黄まで揮発される。よって、硫黄‐炭素複合体(比較例6)自体にマイクロ波を印加するようになれば、炭素材内の不純物のみを選択的に取り除くことが不可能なだけでなく、反って硫黄の損失までもたらして電池性能に悪影響を及ぼすしかない。よって、マイクロ波を炭素材に印加しても、硫黄と複合化された状態ではない炭素材自体にのみ印加して本発明の目的を達成することができることが分かる。 In other words, when microwave irradiation is performed under the same MPPT conditions, in the case of the porous carbon material (Example 1), the temperature rises to approximately 400°C based on the point at which 30 seconds have elapsed since microwave irradiation. impurities are removed. On the other hand, the sulfur-carbon composite (Comparative Example 6) was heated to about 200°C (temperature at which sulfur volatilization occurs rapidly) after 30 seconds of microwave irradiation, and sulfur was volatilized along with impurities in the carbon material. . Therefore, if microwaves were applied to the sulfur-carbon composite (Comparative Example 6) itself, it would not only be impossible to selectively remove only the impurities within the carbon material, but it would also warp and cause loss of sulfur. This has no choice but to adversely affect battery performance. Therefore, it can be seen that even if microwaves are applied to the carbon material, the object of the present invention can be achieved by applying microwaves only to the carbon material itself, which is not in a composite state with sulfur.
[実験例5]熱重量分析(TGA)
前記実験例2で熱重量分析(TGA)を通じて実施例1の多孔性炭素材から水分などの不純物が除去されることを確認したことがある。そして、これとの比較及び対照のために、前記比較例6の硫黄‐炭素複合体に対してもTGA分析(10℃/minの昇温条件(R.T~500℃)、窒素雰囲気)を実施した。
[Experiment Example 5] Thermogravimetric analysis (TGA)
In Experimental Example 2, it was confirmed through thermogravimetric analysis (TGA) that impurities such as water were removed from the porous carbon material of Example 1. For comparison and contrast, the sulfur-carbon composite of Comparative Example 6 was also subjected to TGA analysis (10°C/min temperature increase condition (RT~500°C), nitrogen atmosphere). carried out.
図3は本発明の一実施例による多孔性炭素材と比較例による硫黄‐炭素複合体に対してTGA分析を実施して温度増加による重量減少度合いを示すTGA分析グラフである。前記実施例1の多孔性炭素材と比較例6の硫黄‐炭素複合体をTGA分析した結果、図3に示されたように、実施例1の多孔性炭素材は比較例6の硫黄‐炭素複合体に比べて温度増加による重量減少が著しく少なく表れることを確認することができる。これは、前記実験例4で説明したように、多孔性炭素材(実施例1)と硫黄‐炭素複合体(比較例6)に同一なMPPT条件でマイクロ波を照射しても、硫黄‐炭素複合体(比較例6)は炭素材内の不純物とともに硫黄まで揮発されることに起因する。 FIG. 3 is a TGA analysis graph showing the degree of weight loss due to temperature increase obtained by performing TGA analysis on a porous carbon material according to an embodiment of the present invention and a sulfur-carbon composite according to a comparative example. As a result of TGA analysis of the porous carbon material of Example 1 and the sulfur-carbon composite of Comparative Example 6, as shown in FIG. It can be confirmed that the weight loss due to temperature increase is significantly less than that of the composite. As explained in Experimental Example 4 above, even if the porous carbon material (Example 1) and the sulfur-carbon composite (Comparative Example 6) were irradiated with microwaves under the same MPPT conditions, the sulfur-carbon This is due to the fact that in the composite (Comparative Example 6), sulfur is volatilized along with impurities in the carbon material.
すなわち、本実験結果を通じても、硫黄‐炭素複合体内の炭素材に含有された不純物のみを選択的に取り除くことが不可能であるうえ、反って硫黄の損失までもたらして電池性能に悪影響を及ぼすしかないことを確認することができる。よって、マイクロ波を炭素材に印加しても硫黄と複合化された状態ではない炭素材自体にのみ印加して本発明の目的を達成することができることが分かる。 In other words, even through the results of this experiment, it is not possible to selectively remove only the impurities contained in the carbon material in the sulfur-carbon composite, and the impurities can only warp and cause loss of sulfur, which has a negative effect on battery performance. I can confirm that it is not. Therefore, it can be seen that even if microwaves are applied to the carbon material, the object of the present invention can be achieved by applying microwaves only to the carbon material itself, which is not in a composite state with sulfur.
Claims (15)
[数式1]
MPPT(W*s/g)=マイクロ波電力(Microwave Power)(W)×時間(Times)(s)/炭素材質量(g)
前記数式1において、時間(Times)はマイクロ波が印加される秒単位時間として10秒を超過する。 The pretreatment using microwaves is characterized in that microwaves are applied to the porous carbon material under the condition that MPPT is 2,000 W*s/g to 10,000 W*s/g according to the following formula 1. Porous carbon material according to claim 1:
[Formula 1]
MPPT (W*s/g) = Microwave Power (W) x Time (s)/Carbon material mass (g)
In Equation 1, the time (Times) exceeds 10 seconds as the time in seconds during which the microwave is applied.
(b)前記多孔性炭素材にマイクロ波を印加する段階;を含む、不純物が除去された多孔性炭素材の製造方法。 (a) putting a porous carbon material with a specific surface area of 200 to 1,700 m 2 /g into a closed container and then purging it by injecting an inert gas; and (b) applying microwaves to the porous carbon material. A method for producing a porous carbon material from which impurities have been removed, the method comprising: applying an impurity.
[数式1]
MPPT(W*s/g)=マイクロ波電力(Microwave Power)(W)×時間(Times)(s)/炭素材質量(g)
前記数式1において、時間(Times)はマイクロ波が印加される秒単位時間として10秒を超過する。 9. The step (b) is characterized in that microwaves are applied to the porous carbon material under the condition that MPPT is 2,000 W*s/g to 10,000 W*s/g according to the following equation 1. Method for producing porous carbon material from which impurities are removed:
[Formula 1]
MPPT (W*s/g) = Microwave Power (W) x Time (s)/Carbon material mass (g)
In Equation 1, the time (Times) exceeds 10 seconds as the time in seconds during which the microwave is applied.
Applications Claiming Priority (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR10-2021-0180557 | 2021-12-16 | ||
KR20210180557 | 2021-12-16 | ||
KR1020220152348A KR20230091775A (en) | 2021-12-16 | 2022-11-15 | Porous carbon material from which impurities are removed, method for preparing the same, positive electrode for a lithium-sulfur battery and lithium-sulfur battery comprising the carbon material as a positive electrode active material |
KR10-2022-0152348 | 2022-11-15 | ||
PCT/KR2022/018700 WO2023113283A1 (en) | 2021-12-16 | 2022-11-24 | Porous carbon material having impurities removed therefrom, preparation method therefor, cathode for lithium-sulfur battery including carbon material as cathode active material, and lithium-sulfur battery |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2024509806A true JP2024509806A (en) | 2024-03-05 |
Family
ID=86772971
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2023552556A Pending JP2024509806A (en) | 2021-12-16 | 2022-11-24 | A porous carbon material from which impurities have been removed, a method for producing the same, a positive electrode for a lithium-sulfur battery containing the carbon material as a positive electrode active material, and a lithium-sulfur battery |
Country Status (4)
Country | Link |
---|---|
US (1) | US20240150178A1 (en) |
EP (1) | EP4273967A1 (en) |
JP (1) | JP2024509806A (en) |
WO (1) | WO2023113283A1 (en) |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR101964068B1 (en) * | 2014-11-03 | 2019-04-01 | 주식회사 엘지화학 | Method for preparing conductive material, conductive material prepared thereby and lithium secondary battery comprising the same |
KR102006727B1 (en) * | 2016-11-02 | 2019-08-02 | 주식회사 엘지화학 | Sulfur-carbon composite and lithium-sulfur battery including the same |
KR20200136656A (en) * | 2019-05-28 | 2020-12-08 | 주식회사 엘지화학 | Sulfur-carbon composite, preparation method thereof and lithium-sulfur battery comprising the same |
KR20220152348A (en) | 2021-05-08 | 2022-11-15 | 이준원 | A compressed sprayer capable of matching pesticide dilution ratios |
-
2022
- 2022-11-24 US US18/281,236 patent/US20240150178A1/en active Pending
- 2022-11-24 WO PCT/KR2022/018700 patent/WO2023113283A1/en active Application Filing
- 2022-11-24 JP JP2023552556A patent/JP2024509806A/en active Pending
- 2022-11-24 EP EP22907752.4A patent/EP4273967A1/en active Pending
Also Published As
Publication number | Publication date |
---|---|
US20240150178A1 (en) | 2024-05-09 |
WO2023113283A1 (en) | 2023-06-22 |
EP4273967A1 (en) | 2023-11-08 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US9843045B2 (en) | Negative electrode active material and method for producing the same | |
KR102201335B1 (en) | An active material for an anode, an anode comprising the same and an electrochemical device comprising the same | |
US20140087268A1 (en) | Carbon-silicon composite, method of preparing the same, and anode active material including the carbon-silicon composite | |
TW201539850A (en) | Porous silicon-based anode active material, method for preparing the same, and lithium secondary battery comprising the same | |
JP7387884B2 (en) | Electrolyte for lithium secondary batteries and lithium secondary batteries containing the same | |
US12087967B2 (en) | Functional separator, manufacturing method therefor, and lithium secondary battery comprising same | |
US20220393242A1 (en) | Electrolyte for lithium secondary battery, and lithium secondary battery comprising same | |
KR20220043310A (en) | Lithium-sulfur battery with high energy density | |
EP4044316A1 (en) | Electrolyte for lithium secondary battery and lithium secondary battery comprising same | |
EP4148853A1 (en) | Electrolyte for lithium secondary battery and lithium secondary battery comprising same | |
KR20220157294A (en) | Lithium-sulfur battery with improved cycle life performance | |
JP2024509806A (en) | A porous carbon material from which impurities have been removed, a method for producing the same, a positive electrode for a lithium-sulfur battery containing the carbon material as a positive electrode active material, and a lithium-sulfur battery | |
JP7389244B2 (en) | Electrolyte for lithium secondary batteries and lithium secondary batteries containing the same | |
US20240178438A1 (en) | Lithium-sulfur battery | |
JP7506196B2 (en) | Lithium-sulfur batteries with improved cycle life performance | |
KR20230091775A (en) | Porous carbon material from which impurities are removed, method for preparing the same, positive electrode for a lithium-sulfur battery and lithium-sulfur battery comprising the carbon material as a positive electrode active material | |
US20230163360A1 (en) | Electrolyte and lithium secondary battery comprising same | |
EP4386919A1 (en) | Lithium-sulfur battery having high energy density | |
JP7367218B2 (en) | Positive electrode for lithium secondary battery, manufacturing method thereof, and lithium secondary battery including the positive electrode | |
CN116964784A (en) | Impurity-removed porous carbon material, method for producing same, positive electrode for lithium-sulfur battery comprising carbon material as positive electrode active material, and lithium-sulfur battery | |
KR20240094422A (en) | Porous carbon material, method for preparing the same, positive electrode for a lithium secondary battery and lithium secondary battery comprising the carbon material as a positive electrode active material | |
JP2024509235A (en) | Lithium-sulfur batteries with improved energy density and power output | |
KR20230153299A (en) | Lithium-sulfur battery with high energy density | |
KR20230084764A (en) | Positive electrode for lithium secondary battery and lithium secondary battery comprising the same | |
KR20230111331A (en) | Electrolyte for lithium-sulfur battery and lithium-sulfur battery comprising same |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20230830 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20240911 |