JP2024509433A - Electric motor rotor and electric motor - Google Patents

Electric motor rotor and electric motor Download PDF

Info

Publication number
JP2024509433A
JP2024509433A JP2023553440A JP2023553440A JP2024509433A JP 2024509433 A JP2024509433 A JP 2024509433A JP 2023553440 A JP2023553440 A JP 2023553440A JP 2023553440 A JP2023553440 A JP 2023553440A JP 2024509433 A JP2024509433 A JP 2024509433A
Authority
JP
Japan
Prior art keywords
electric motor
magnetic
rotor
motor rotor
magnetic pole
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2023553440A
Other languages
Japanese (ja)
Inventor
葛梦
李文瑞
蘭海
武谷雨
▲ゴン▼黎明
Original Assignee
美的威霊電機技術(上海)有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 美的威霊電機技術(上海)有限公司 filed Critical 美的威霊電機技術(上海)有限公司
Publication of JP2024509433A publication Critical patent/JP2024509433A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/22Rotating parts of the magnetic circuit
    • H02K1/27Rotor cores with permanent magnets
    • H02K1/2786Outer rotors
    • H02K1/2787Outer rotors the magnetisation axis of the magnets being perpendicular to the rotor axis
    • H02K1/2789Outer rotors the magnetisation axis of the magnets being perpendicular to the rotor axis the rotor consisting of two or more circumferentially positioned magnets
    • H02K1/2791Surface mounted magnets; Inset magnets
    • H02K1/2792Surface mounted magnets; Inset magnets with magnets arranged in Halbach arrays
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/22Rotating parts of the magnetic circuit
    • H02K1/27Rotor cores with permanent magnets
    • H02K1/2786Outer rotors
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/12Stationary parts of the magnetic circuit
    • H02K1/18Means for mounting or fastening magnetic stationary parts on to, or to, the stator structures
    • H02K1/185Means for mounting or fastening magnetic stationary parts on to, or to, the stator structures to outer stators
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K21/00Synchronous motors having permanent magnets; Synchronous generators having permanent magnets
    • H02K21/12Synchronous motors having permanent magnets; Synchronous generators having permanent magnets with stationary armatures and rotating magnets
    • H02K21/22Synchronous motors having permanent magnets; Synchronous generators having permanent magnets with stationary armatures and rotating magnets with magnets rotating around the armatures, e.g. flywheel magnetos
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K29/00Motors or generators having non-mechanical commutating devices, e.g. discharge tubes or semiconductor devices
    • H02K29/03Motors or generators having non-mechanical commutating devices, e.g. discharge tubes or semiconductor devices with a magnetic circuit specially adapted for avoiding torque ripples or self-starting problems
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K2213/00Specific aspects, not otherwise provided for and not covered by codes H02K2201/00 - H02K2211/00
    • H02K2213/03Machines characterised by numerical values, ranges, mathematical expressions or similar information

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Permanent Field Magnets Of Synchronous Machinery (AREA)

Abstract

Figure 2024509433000001

本願は電気モータ回転子及び電気モータを提供し、前記電気モータ回転子は、回転子鉄心と、前記回転子鉄心の周方向に沿って設置され、前記回転子鉄心の周方向に複数の磁極を形成する複数の永久磁石であって、隣接する2つの磁極の磁化方向が逆であり、各前記磁極内の永久磁石の磁区配向とその磁極中心線とのなす挟角をαとしたとき、前記αが0度以上且つ40度以下であり、前記磁極の中央で磁束密度が高く、円周方向の両端に向かうにつれて磁束密度が徐々に低下する磁気特性が形成される、複数の永久磁石と、を備える。
【選択図】図1

Figure 2024509433000001

The present application provides an electric motor rotor and an electric motor, the electric motor rotor having a rotor core and a plurality of magnetic poles installed along the circumferential direction of the rotor core, and having a plurality of magnetic poles in the circumferential direction of the rotor core. When a plurality of permanent magnets are formed, in which two adjacent magnetic poles have opposite magnetization directions, and the included angle between the magnetic domain orientation of the permanent magnet in each magnetic pole and the magnetic pole center line is α, then a plurality of permanent magnets having a magnetic characteristic in which α is greater than or equal to 0 degrees and less than or equal to 40 degrees, and the magnetic flux density is high at the center of the magnetic pole, and the magnetic flux density gradually decreases toward both ends in the circumferential direction; Equipped with.
[Selection diagram] Figure 1

Description

本願は2021年3月15日に出願された、出願番号が202110278645.1である中国特許出願の優先権を主張し、その全ての内容を引用により本願に組み入れる。 This application claims priority to the Chinese patent application with application number 202110278645.1, filed on March 15, 2021, and the entire contents thereof are incorporated by reference into this application.

本願は電気モータの技術分野に関するものであり、特に、電気モータ回転子及び電気モータに関するものである。 TECHNICAL FIELD This application relates to the technical field of electric motors, and more particularly to electric motor rotors and electric motors.

工業生産や家庭用電気機器に広く使われる永久磁石電気モータは、回転子及び固定子を含む。電気モータの回転子に複数の固定子鉄心が設けられ、固定子鉄心に巻線が巻かれて三相巻線となる。従来の技術では、電気モータのうちの回転子電気モータの多くは表面磁石型の永久磁石電気モータ構造となっている。この構造では、永久磁石は通常、ラジアル着磁又はパラレル着磁が利用され、形成された永久磁石による回転子側及び固定子側の磁界が均一に分布し、電気モータのパワー密度は高くなく、電気モータの出力能力が限られる。 Permanent magnet electric motors, widely used in industrial production and household appliances, include a rotor and a stator. A rotor of an electric motor is provided with a plurality of stator cores, and windings are wound around the stator core to form a three-phase winding. In the prior art, most of the rotor electric motors of electric motors are surface magnet type permanent magnet electric motor structures. In this structure, the permanent magnets are usually radially magnetized or parallel magnetized, and the magnetic fields on the rotor side and stator side due to the formed permanent magnets are uniformly distributed, and the power density of the electric motor is not high. Electric motor output capacity is limited.

本発明の主な目的は、従来技術における電気モータのパワー密度の向上が困難であるという問題点を解決するための電気モータ回転子を提供することである。 The main object of the present invention is to provide an electric motor rotor to solve the problem that it is difficult to improve the power density of electric motors in the prior art.

上記の目的を達成するために、本願は電気モータ回転子を提案し、前記電気モータ回転子は、
回転子鉄心と、
前記回転子鉄心の周方向に沿って設置され、前記回転子鉄心の周方向に複数の磁極を形成する複数の永久磁石であって、隣接する2つの磁極の磁化方向が逆であり、各前記磁極内の永久磁石の磁区配向とその磁極中心線とのなす挟角をαとしたとき、前記αが0度以上且つ40度以下であり、磁極の中央で磁束密度が高く、円周方向の両端に向かうにつれて磁束密度が徐々に低下する磁気特性が形成される、複数の永久磁石と、を備える。
To achieve the above objective, this application proposes an electric motor rotor, the electric motor rotor comprising:
rotor core,
A plurality of permanent magnets are installed along the circumferential direction of the rotor core and form a plurality of magnetic poles in the circumferential direction of the rotor core, the magnetization directions of two adjacent magnetic poles are opposite, and each of the permanent magnets When α is the included angle between the magnetic domain orientation of the permanent magnet in the magnetic pole and the center line of the magnetic pole, α is greater than or equal to 0 degrees and less than 40 degrees, and the magnetic flux density is high at the center of the magnetic pole, and the magnetic flux density is high at the center of the magnetic pole. A plurality of permanent magnets are formed with magnetic characteristics in which the magnetic flux density gradually decreases toward both ends.

一実施例において、各前記磁極内の永久磁石の磁区配向は複数あり、各前記磁極内の永久磁石の複数の磁区配向とその磁極中心線とのなす挟角は、前記磁極中心線に近い位置から前記磁極中心線から離れた位置に向かって徐々に大きくなる。 In one embodiment, there are a plurality of magnetic domain orientations of the permanent magnets in each of the magnetic poles, and an included angle between the plurality of magnetic domain orientations of the permanent magnets in each of the magnetic poles and the magnetic pole center line is at a position close to the magnetic pole center line. It gradually becomes larger toward the position away from the magnetic pole center line.

一実施例において、前記磁極の数が8以上且つ20以下である場合、前記αの最大値は18度以上且つ40度以下である。 In one embodiment, when the number of magnetic poles is 8 or more and 20 or less, the maximum value of α is 18 degrees or more and 40 degrees or less.

一実施例において、前記磁極の数が20以上である場合、前記αの最大値は15度以上且つ35度以下である。 In one embodiment, when the number of magnetic poles is 20 or more, the maximum value of α is 15 degrees or more and 35 degrees or less.

一実施例において、各前記永久磁石の内面及び外面は何れも弧状である。 In one embodiment, both the inner and outer surfaces of each permanent magnet are arcuate.

一実施例において、各前記永久磁石の外面の円弧の直径は90mm~320mmの間であり、各前記永久磁石の前記回転子鉄心の軸方向に沿った高さは50mm以下であり、各前記永久磁石の前記回転子鉄心の径方向に沿った厚さは10mm以下である。 In one embodiment, the diameter of the circular arc on the outer surface of each of the permanent magnets is between 90 mm and 320 mm, the height of each of the permanent magnets along the axial direction of the rotor core is 50 mm or less, and The thickness of the magnet along the radial direction of the rotor core is 10 mm or less.

一実施例において、複数の前記永久磁石が前記回転子鉄心の内面に貼り付けられて固定されている。 In one embodiment, a plurality of the permanent magnets are affixed and fixed to the inner surface of the rotor core.

一実施例において、各前記永久磁石には、1つの前記磁極又は偶数個の前記磁極が形成されている。 In one embodiment, each permanent magnet is formed with one said magnetic pole or an even number of said magnetic poles.

一実施例において、偶数個の前記磁極は2個又は4個である。 In one embodiment, the even number of said magnetic poles is two or four.

本願はさらに、固定子と、回転軸と、上記の何れか一項に記載の電気モータ回転子とを備える電気モータを提案し、前記回転軸は、前記電気モータの回転する回転子鉄心に固定され、前記固定子は、前記回転子と同心であり、前記回転子の内側に嵌設されている。
有益な効果
The present application further proposes an electric motor comprising a stator, a rotating shaft, and the electric motor rotor according to any one of the above, wherein the rotating shaft is fixed to a rotating rotor core of the electric motor. The stator is concentric with the rotor and is fitted inside the rotor.
beneficial effects

本願の技術案によれば、複数の永久磁石を前記回転子鉄心の周方向に沿って設置することで、前記回転子鉄心の周方向に複数の磁極を形成し、隣接する2つの磁極の磁化方向が逆であり、各磁極内の永久磁石の磁区配向とその磁極中心線とのなす挟角をαとしたとき、αが0度以上且つ40度以下であり、磁極の中央で磁束密度が高く、円周方向の両端に向かうにつれて磁束密度が徐々に低下する磁気特性が形成される。この磁区方向の配置により、該電気モータ回転子を電気モータに適用すると、固定子と鎖交する磁束が増加し、(磁力線から分かるように)磁力線が磁極中心線へ向かって収束するため、磁極中心線付近では磁束密度が高く、周方向両端部では磁束密度が低いため、回転子内側近傍では磁界が強くなり、回転子外側では磁界が弱くなり、固定子と回転子との間の空隙磁界強度が増大し、回転子鉄心の飽和度が低下し、電気モータの出力トルクが増大し、電気モータのパワー密度が向上する。 According to the technical proposal of the present application, by installing a plurality of permanent magnets along the circumferential direction of the rotor core, a plurality of magnetic poles are formed in the circumferential direction of the rotor core, and two adjacent magnetic poles are magnetized. The directions are opposite, and when α is the included angle between the magnetic domain orientation of the permanent magnet in each magnetic pole and the center line of the magnetic pole, α is greater than or equal to 0 degrees and less than 40 degrees, and the magnetic flux density at the center of the magnetic pole is A magnetic property is formed in which the magnetic flux density is high and the magnetic flux density gradually decreases toward both ends in the circumferential direction. Due to this arrangement of magnetic domain directions, when the electric motor rotor is applied to an electric motor, the magnetic flux interlinking with the stator increases, and the magnetic field lines converge toward the magnetic pole center line (as seen from the magnetic field lines), so the magnetic poles The magnetic flux density is high near the centerline and low at both ends in the circumferential direction, so the magnetic field becomes stronger near the inside of the rotor and weaker outside the rotor, resulting in a magnetic field in the air gap between the stator and rotor. The strength is increased, the saturation of the rotor core is reduced, the output torque of the electric motor is increased, and the power density of the electric motor is improved.

本願の実施例及び従来技術の技術案をより明確に説明するために、以下では、実施例或いは従来技術の説明に必要とされる添付図面を簡単に紹介する。下記説明における添付図面は本願の一部の実施例に過ぎないことは明らかであって、当業者にとって、創造的な労働を行うことなく、これらの添付図面が示す構造により他の添付図面を得ることができる。 In order to more clearly explain the embodiments of the present application and the technical solutions of the prior art, the accompanying drawings necessary for explaining the embodiments or the prior art will be briefly introduced below. It is clear that the attached drawings in the following description are only some embodiments of the present application, and it is possible for a person skilled in the art to obtain other attached drawings according to the structure shown in these attached drawings without any creative effort. be able to.

本願の電気モータの固定子と回転子との組立構造の模式図である。FIG. 2 is a schematic diagram of an assembly structure of a stator and a rotor of the electric motor of the present application. 本願の電気モータの回転子と連結ブラケットとの組立構造の模式図である。FIG. 2 is a schematic diagram of an assembly structure of an electric motor rotor and a connection bracket according to the present application. 本願の電気モータの回転子における一対の磁極の磁化方向の配置模式図である。FIG. 2 is a schematic diagram illustrating the arrangement of the magnetization directions of a pair of magnetic poles in the rotor of the electric motor of the present application. 本願の電気モータの回転子の各永久磁石に1つの磁極が設けられている模式図である。1 is a schematic diagram in which each permanent magnet of the rotor of the electric motor of the present application is provided with one magnetic pole; FIG. 本願の電気モータの回転子の各永久磁石に2つの磁極が設けられている模式図である。1 is a schematic diagram in which each permanent magnet of the rotor of the electric motor of the present application is provided with two magnetic poles; FIG. 本願の電気モータの回転子の各永久磁石に4つの磁極が設けられている模式図である。FIG. 2 is a schematic diagram in which each permanent magnet of the rotor of the electric motor of the present application is provided with four magnetic poles; 本願の電気モータ回転子の永久磁石と従来の永久磁石とにより形成される電気モータの逆起電力FFTの比較模式図である。FIG. 2 is a schematic comparison diagram of back electromotive force FFT of an electric motor formed by a permanent magnet of the electric motor rotor of the present application and a conventional permanent magnet. 本願の電気モータ回転子の永久磁石と従来の永久磁石とで形成される電気モータの逆電位の各次の高調波の割合の比較模式図である。FIG. 2 is a schematic diagram comparing the ratio of harmonics of each order of reverse potential of an electric motor formed by a permanent magnet of the electric motor rotor of the present application and a conventional permanent magnet. 本願に係る電気モータの固定子板の一実施例の模式図である。FIG. 1 is a schematic diagram of an embodiment of a stator plate of an electric motor according to the present application. 本願に係る電気モータの固定子板の別の実施例の模式図である。3 is a schematic diagram of another embodiment of a stator plate of an electric motor according to the present application; FIG. 本願に係る電気モータの固定子板のさらに別の実施例の模式図である。FIG. 3 is a schematic diagram of yet another embodiment of a stator plate of an electric motor according to the present application. 本願に係る電気モータの固定子板のさらに別の一実施例の模式図である。FIG. 3 is a schematic diagram of yet another embodiment of a stator plate of an electric motor according to the present application. 本願の電気モータの固定子の構造模式図である。FIG. 2 is a schematic structural diagram of a stator of an electric motor according to the present application. 本願の電気モータ回転子のコイルの固定子ティース上での配置接続模式図である。FIG. 2 is a schematic diagram illustrating the arrangement and connection of coils of the electric motor rotor of the present application on stator teeth.

1 電気モータ回転子
11 永久磁石
12 回転子鉄心
2 固定子
21 固定子ティース
22 固定子ヨーク
221 外側固定子ヨーク
222 内側固定子ヨーク
25 固定子スロット
26 凸起
27 凹溝
3 コイル
4 連結ブラケット
1 Electric motor rotor 11 Permanent magnet 12 Rotor core 2 Stator 21 Stator teeth 22 Stator yoke 221 Outer stator yoke 222 Inner stator yoke 25 Stator slot 26 Convex 27 Concave groove 3 Coil 4 Connection bracket

添付図面を参照して、実施例と組み合わせて本願目的の実現、機能特徴及び長所をさらに説明する。 The realization of the objects, functional features and advantages of the present invention will be further explained in conjunction with the embodiments with reference to the accompanying drawings.

以下では、本願実施例における図面と組み合わせ、本願実施例における技術案を明確且つ完全に説明する。説明される実施例は本願の全ての実施例ではなく、本願の一部の実施例に過ぎないことは明らかである。本願における実施例に基づいて、当業者が創造的な労働を行うことなく得られる全ての他の実施例は、本願の保護する範囲に属す。 In the following, the technical solutions in the embodiments of the present application will be clearly and completely explained in combination with the drawings in the embodiments of the present application. It is clear that the described embodiments are not all embodiments of the present application, but only some embodiments of the present application. Based on the embodiments in this application, all other embodiments that can be obtained by a person skilled in the art without any creative effort fall within the protection scope of this application.

本願実施例での全ての方向性指示(例えば上、下、左、右、前、後...)は、当該方向性指示はある特定の姿勢(添付図面に示す)における各部品間の相対的位置関係、移動状況等を説明するためだけに用いられるのであって、もし当該特定の姿勢が変わる場合、当該方向性指示もそれに応じて変わることは、説明しておく必要がある。 All directional indications (for example, up, down, left, right, front, back...) in the embodiments of the present application are defined as It is necessary to explain that this is used only to explain the positional relationship, movement status, etc., and that if the specific posture changes, the directional instruction will also change accordingly.

また、本願実施例において「第一」、「第二」等に係る説明は説明のために利用されるだけであって、その相対的重要性を提示又は暗示する、或いは提示される技術的特徴の数を暗示的に指定するように理解すべきではない。これにより、「第一」、「第二」に限定された特徴は明示的或いは暗示的に少なくとも一つの当該特徴を含んでもよい。また、各実施例の技術案は互いに組み合わせることができる。ただし、当業者が実現できることはその前提である。技術案の組み合わせに矛盾が生じるか、実現できない場合には、このような技術案の組み合わせが存在せず、且つ本願が請求する保護範囲にないと理解すべきである。 Furthermore, in the Examples of the present application, explanations such as "first", "second", etc. are used only for explanation, and do not indicate or imply their relative importance, or are technical features to be presented. should not be understood as implicitly specifying the number of . Accordingly, the features limited to "first" and "second" may explicitly or implicitly include at least one of the features. Moreover, the technical solutions of each embodiment can be combined with each other. However, it is assumed that this can be realized by a person skilled in the art. If a combination of technical solutions is inconsistent or cannot be realized, it should be understood that such a combination of technical solutions does not exist and is not within the scope of protection claimed by the present application.

上記の目的を達成するために、本願は、電気モータ回転子を提案し、図1に示すように、前記電気モータ回転子は固定子2の外側に嵌設され、固定子2と同心になって、固定子2と協働して電気モータを形成する。図2に示すように、前記電気モータ回転子1は、環状構造である回転子鉄心12と、前記回転子鉄心12の周方向に沿って設置され、前記回転子鉄心12の周方向に複数の磁極(図3に一対の磁極における磁化方向の配置模式図が示され、図において、各永久磁石11には1つのみの磁極が設けられている)を形成する複数の永久磁石11であって、隣接する2つの磁極の磁化方向が逆であり、各前記磁極内の永久磁石11の磁区配向とその磁極中心線(磁極中心線は図3の点線直線に示され、磁区は図3~6における矢印に示される)とのなす挟角はαであり、磁極の中央で磁束密度が高く、円周方向の両端に向かうにつれて磁束密度が徐々に低下する磁気特性が形成されるように、前記αが0度以上且つ40度以下である複数の永久磁石と、を備える。図中の点線弧線で示すように、回転子鉄心内側近傍では磁界が強くなり、回転子鉄心外側では磁界が弱くなる。 To achieve the above objective, the present application proposes an electric motor rotor, as shown in FIG. 1, the electric motor rotor is fitted outside the stator 2 and is concentric with the stator 2. In cooperation with the stator 2, an electric motor is formed. As shown in FIG. 2, the electric motor rotor 1 includes a rotor core 12 having an annular structure, and a plurality of rotor cores installed along the circumferential direction of the rotor core 12. A plurality of permanent magnets 11 forming magnetic poles (FIG. 3 shows a schematic diagram of the arrangement of magnetization directions in a pair of magnetic poles, and in the figure, each permanent magnet 11 is provided with only one magnetic pole). , the magnetization directions of two adjacent magnetic poles are opposite, and the magnetic domain orientation of the permanent magnet 11 in each magnetic pole and its magnetic pole center line (the magnetic pole center line is shown by the dotted straight line in FIG. 3, and the magnetic domains are shown in FIGS. 3 to 6 The included angle between the magnetic poles (indicated by arrows in ) is α, and the above-mentioned A plurality of permanent magnets whose α is greater than or equal to 0 degrees and less than or equal to 40 degrees. As shown by the dotted arc line in the figure, the magnetic field becomes stronger near the inner side of the rotor core, and becomes weaker near the outer side of the rotor core.

なお、各永久磁石11には、1つの磁極が設けられていてもよく、複数の磁極が設けられていてもよい。複数の磁極が設けられている場合、各永久磁石11の磁極数は2、4、8等の偶数個である。図4には各永久磁石11に1つの磁極が設けられている模式図が、図5には各永久磁石11に2つの磁極が設けられている模式図が、図6には各永久磁石11に4つの磁極が設けられている模式図が示されている。隣接する2つの磁極の磁化方向が逆である。図3、図5に示すように、1対の磁極における磁化方向の配置模式図が示され、固定子2により形成される電流による磁界と相互作用力を発生可能な、永久磁石による磁界が形成される。 Note that each permanent magnet 11 may be provided with one magnetic pole or may be provided with a plurality of magnetic poles. When a plurality of magnetic poles are provided, the number of magnetic poles of each permanent magnet 11 is an even number such as 2, 4, or 8. 4 is a schematic diagram in which each permanent magnet 11 is provided with one magnetic pole, FIG. 5 is a schematic diagram in which each permanent magnet 11 is provided with two magnetic poles, and FIG. 6 is a schematic diagram in which each permanent magnet 11 is provided with two magnetic poles. A schematic diagram in which four magnetic poles are provided is shown. The magnetization directions of two adjacent magnetic poles are opposite. As shown in FIGS. 3 and 5, a schematic diagram of the arrangement of the magnetization direction in a pair of magnetic poles is shown, and a magnetic field is formed by a permanent magnet that can generate an interaction force with the magnetic field caused by the current generated by the stator 2. be done.

なお、磁区は図3~6の矢印で示すようであり、各永久磁石11は複数の磁区を有し、永久磁石11は、射出成形又はプレス成形により、完成された磁石を製造した後、特製の治具内で着磁したり、射出成形中に材料のランナー方向を制御して特定方向の磁区を形成したりするため、加工効率が高く、ロット生産の実現が比較的容易である。各永久磁石11内の磁区は複数の配向(図3~6における矢印で示す方向はすなわち磁区配向を示す)を有するが、複数の磁区からなる単一の永久磁石11から見て、隣接する2つの永久磁石11に現れる磁化方向はやはり逆である。各永久磁石11は弧状の内面と弧状の外面(例えば、半径が同じである円弧線分、又は中間が弧状で両端が直線である組み合わせ、又は半径が異なる2つの弧状線分の組み合わせなど)を有する。本実施例において、各永久磁石11の外面が回転子鉄心12の内側に貼り付けられて配置されているが、もちろん、他の実施例において、回転子鉄心12にスロットを設けて、永久磁石11をスロット内に固定してもよい。各前記永久磁石11の外面の円弧の直径は90mm~320mmの間であり、各前記永久磁石11の前記回転子鉄心12の軸方向に沿った高さは50mmより小さく、各前記永久磁石11の前記回転子鉄心12の径方向に沿った厚さは10mmより小さい。これにより、該電気モータ回転子電気モータに適用された場合、出力トルクが高く、性能上の要求を満たすとともに、コストが低い。本実施例により提案される電気モータ回転子は、洗濯機の電気モータに適用することができる。電気モータが高い出力トルクを有するため、洗濯機の強い動力を保証することができ、コストの低減に有利である。 The magnetic domains are as shown by the arrows in FIGS. 3 to 6, and each permanent magnet 11 has a plurality of magnetic domains, and the permanent magnet 11 is specially manufactured after manufacturing a completed magnet by injection molding or press molding. Because magnetic domains are formed in a specific direction by magnetizing within a jig or by controlling the runner direction of the material during injection molding, processing efficiency is high and lot production is relatively easy. The magnetic domains within each permanent magnet 11 have multiple orientations (the directions indicated by arrows in FIGS. 3 to 6 indicate the magnetic domain orientations), but when viewed from a single permanent magnet 11 consisting of multiple magnetic domains, two adjacent The magnetization directions appearing in the two permanent magnets 11 are also opposite. Each permanent magnet 11 has an arcuate inner surface and an arcuate outer surface (for example, an arcuate line segment with the same radius, a combination of an arcuate middle and a straight line at both ends, or a combination of two arcuate line segments with different radii). have In this embodiment, the outer surface of each permanent magnet 11 is attached to the inside of the rotor core 12, but of course, in other embodiments, slots are provided in the rotor core 12 so that the permanent magnets 11 may be fixed within the slot. The diameter of the circular arc of the outer surface of each permanent magnet 11 is between 90 mm and 320 mm, the height of each permanent magnet 11 along the axial direction of the rotor core 12 is less than 50 mm, and the height of each permanent magnet 11 along the axial direction of the rotor core 12 is less than 50 mm. The thickness of the rotor core 12 along the radial direction is less than 10 mm. Therefore, when applied to the electric motor rotor electric motor, the output torque is high, meets the performance requirements, and the cost is low. The electric motor rotor proposed in this embodiment can be applied to an electric motor of a washing machine. Since the electric motor has a high output torque, it can ensure strong power of the washing machine, which is advantageous for cost reduction.

本実施例において、各磁極内の永久磁石11の磁区配向とその磁極中心線とのなす挟角αが0度以上且つ40度以下であり、各磁極に対応する永久磁石11内の磁区には、一定の磁区配向変化の規則が存在する。図3~6に示すように、回転子鉄心12の周方向において、同一磁極内の角度αが一方側から他方側に向かって漸減してから漸増しており、各磁極内の磁区配向が概ね放射状になるように、各磁区の磁区配向が順に一定角度だけ回転するようにしてもよい。このような磁区配向の配置では、磁極の中央で磁束密度が高く、円周方向の両端に向かうにつれて磁束密度が徐々に低下する磁気特性が形成される。該電気モータ回転子が電気モータに適用されると、固定子と鎖交する磁束が増加し、(磁力線から分かるように)磁力線が磁極中心線へ向かって収束するため、磁極中心線付近では磁束密度が高く、周方向両端部では磁束密度が低いため、回転子鉄心内側近傍では磁界が強くなり、回転子鉄心外側では磁界が弱くなり、磁界が正弦分布を示す。従来の着磁方式と比べて、上記の着磁方式を利用すると、磁界の分布が正弦分布により近くなり、高調波含有率が低くなるため、コギングトルクとトルクリップルとを低減させて、電気モータ運転時の騒音を低減させるのに有利である。もちろん、磁力線を回転子の内側へ収束させればよく、同じ回転角度に従って磁区配向を設定しなくてもよい。αの最大値の範囲は磁極数に相関する。さらに別の実施例において、前記磁極の数が20以上である場合、前記αの最大値は15度以上且つ35度以下である。したがって、回転子鉄心内側近傍では磁界が強くなり、外側では磁界が弱くなることで、固定子と回転子との間の空隙磁界強度が増大し、回転子側の磁界の飽和度が低下し、電気モータの出力性能が向上し、パワー密度が増大する。また、その磁界分布が正弦分布により近くなり、高調波含有率がより低くなるため、コギングトルクとトルクリップルとを低減させることで、電気モータの振動騒音を低減させるのに有利である。別の実施例において、前記磁極の数が8以上且つ20以下である場合、前記αの最大値は18度以上且つ40度以下であり、例えば30度など、この範囲にある任意の数値であってもよく、具体的には必要に応じて設定することができる。 In this embodiment, the included angle α between the magnetic domain orientation of the permanent magnet 11 in each magnetic pole and the center line of the magnetic pole is 0 degrees or more and 40 degrees or less, and the magnetic domain in the permanent magnet 11 corresponding to each magnetic pole is , there exists a certain rule of magnetic domain orientation change. As shown in FIGS. 3 to 6, in the circumferential direction of the rotor core 12, the angle α within the same magnetic pole gradually decreases and then increases from one side to the other, and the magnetic domain orientation within each magnetic pole is generally The magnetic domain orientation of each magnetic domain may be sequentially rotated by a certain angle so as to be radial. In such a magnetic domain orientation arrangement, a magnetic characteristic is formed in which the magnetic flux density is high at the center of the magnetic pole and the magnetic flux density gradually decreases toward both ends in the circumferential direction. When the electric motor rotor is applied to an electric motor, the magnetic flux interlinking with the stator increases and the magnetic field lines converge toward the magnetic pole center line (as seen from the magnetic field lines), so the magnetic flux decreases near the magnetic pole center line. Since the density is high and the magnetic flux density is low at both ends in the circumferential direction, the magnetic field is strong near the inner side of the rotor core, and weaker near the outer side of the rotor core, and the magnetic field exhibits a sinusoidal distribution. Compared to the conventional magnetization method, when the above magnetization method is used, the magnetic field distribution becomes closer to a sinusoidal distribution and the harmonic content is lower, which reduces cogging torque and torque ripple, and improves the electric motor. This is advantageous in reducing noise during operation. Of course, it is only necessary to converge the lines of magnetic force to the inside of the rotor, and it is not necessary to set the magnetic domain orientation according to the same rotation angle. The range of the maximum value of α correlates with the number of magnetic poles. In yet another embodiment, when the number of magnetic poles is 20 or more, the maximum value of α is 15 degrees or more and 35 degrees or less. Therefore, the magnetic field becomes stronger near the inner side of the rotor core and weaker near the outer side, increasing the air gap magnetic field strength between the stator and rotor, and reducing the degree of saturation of the magnetic field on the rotor side. The output performance of electric motors is improved and the power density is increased. Furthermore, the magnetic field distribution becomes closer to a sine distribution and the harmonic content becomes lower, which is advantageous in reducing the vibration noise of the electric motor by reducing cogging torque and torque ripple. In another embodiment, when the number of magnetic poles is 8 or more and 20 or less, the maximum value of α is 18 degrees or more and 40 degrees or less, and may be any value within this range, such as 30 degrees. Specifically, it can be set as necessary.

本願はさらに、固定子2と、回転軸と、上記の電気モータ回転子とを備える電気モータを提案し、前記回転軸は、前記電気モータ回転子の回転子鉄心11に固定され、前記固定子は、前記回転子と同心であり、前記回転子の内側に嵌設されている。 The present application further proposes an electric motor comprising a stator 2, a rotating shaft, and the above-mentioned electric motor rotor, the rotating shaft being fixed to the rotor core 11 of the electric motor rotor, and the rotating shaft being fixed to the rotor core 11 of the electric motor rotor. is concentric with the rotor and fitted inside the rotor.

固定子2と電気モータ回転子1との間に間隔を置いて空隙(図示せず)が形成され、回転子鉄心12の内側の磁界が強化されるため、空隙部の磁気誘導強度が増大する。固定子2上のコイル3に電気が通されると、電気モータ回転子1上の強化された永久磁石による磁界と電流による磁界との間の相互作用力が増大し、電気モータのパワー密度が向上する。図7は、本実施例で提案された永久磁石11により、回転子の内側近傍では磁界が強くなり、外側では磁界が弱くなる磁界分布が形成された場合と、内側と外側とで均等に分布する磁界が形成された場合との、電気モータの逆起電力のFFTの比較模式図である。本願における永久磁石11を採用する場合、無負荷時の逆起電力基本波の振幅がより大きいことが分かり、これは、電気モータの出力能力がより強いことを示し、電気モータのパワー密度の向上に有利である。図8は、本実施例で提案された永久磁石11により、回転子の内側近傍では磁界が強くなり、外側では磁界が弱くなる磁界分布が形成された場合と、内側と外側とで均等に分布する磁界が形成された場合との、電気モータの逆起電力の各次の高調波の含有率の比較模式図である。本願の永久磁石11を採用すると、逆起電力のうち第5次、第7次の高調波が明らかに低下することが分かり、これは、回転子鉄心12の内側に向かう磁界分布が正弦分布により近くなることを示し、コギングトルクとトルクリップルとを低減させることで、振動騒音を低減させるのに有利である。また、回転子鉄心12は通常透磁性材料からなるが、本実施例においては、回転子鉄心12の外側に向かう磁界が小さいため、回転子1の磁気回路の飽和が回避され、電気モータ出力能力を向上させることができるほか、回転子鉄心12の損失も低減し、電気モータ効率をさらに向上させる。同じユニット電気モータ数の場合、本実施例で提案された回転子の極数の方がより高い電気モータ出力効率を実現できるため、ユニット電気モータ数の増大に依存せずにコギングトルクを低減することができ、製造工程では巻線の時間を短縮することができ、電気モータの製造や加工の難易度を低減する。 An air gap (not shown) is formed at a distance between the stator 2 and the electric motor rotor 1, and the magnetic field inside the rotor core 12 is strengthened, so that the magnetic induction strength in the air gap increases. . When the coil 3 on the stator 2 is energized, the interaction force between the magnetic field due to the reinforced permanent magnets on the electric motor rotor 1 and the magnetic field due to the current increases, and the power density of the electric motor increases. improves. FIG. 7 shows a case where the permanent magnet 11 proposed in this embodiment forms a magnetic field distribution in which the magnetic field is strong near the inside of the rotor and weak near the outside, and a case where the magnetic field is distributed evenly between the inside and outside of the rotor. FIG. 2 is a schematic diagram comparing FFT of a back electromotive force of an electric motor with a case where a magnetic field is formed. It can be seen that when the permanent magnet 11 in this application is adopted, the amplitude of the back electromotive force fundamental wave under no load is larger, which indicates that the output ability of the electric motor is stronger, and the power density of the electric motor is improved. advantageous to FIG. 8 shows a case where the permanent magnet 11 proposed in this embodiment forms a magnetic field distribution in which the magnetic field is strong near the inside of the rotor and weak near the outside, and a case where the magnetic field is distributed evenly between the inside and outside of the rotor. FIG. 4 is a schematic diagram comparing the content of harmonics of each order of the back electromotive force of the electric motor with a case where a magnetic field is formed. It was found that when the permanent magnet 11 of the present application is employed, the 5th and 7th harmonics of the back electromotive force are clearly reduced, and this is because the magnetic field distribution toward the inside of the rotor core 12 is sinusoidal. This is advantageous in reducing vibration noise by reducing cogging torque and torque ripple. Further, although the rotor core 12 is normally made of a magnetically permeable material, in this embodiment, since the magnetic field directed to the outside of the rotor core 12 is small, saturation of the magnetic circuit of the rotor 1 is avoided, and the electric motor output capacity is increased. In addition, the loss of the rotor core 12 is reduced, further improving the electric motor efficiency. For the same number of unit electric motors, the number of rotor poles proposed in this example can achieve higher electric motor output efficiency, so the cogging torque can be reduced without relying on an increase in the number of unit electric motors. In the manufacturing process, the winding time can be shortened, reducing the difficulty of manufacturing and processing electric motors.

固定子2は、透磁性材料からなる固定子板を含み、図9~図12に示すように、固定子板には環状の固定子ヨーク22が設けられ、固定子ティース21が、固定子ヨーク22の外径において外側に延在してなる。 The stator 2 includes a stator plate made of a magnetically permeable material, and as shown in FIGS. 9 to 12, the stator plate is provided with an annular stator yoke 22, and the stator teeth 21 are connected to the stator yoke. It extends outward at the outer diameter of 22.

固定子2は、複数の固定子板が積層されて形成され、複数の扇形ユニットが互いに突き合わされて固定子板が形成され、扇形ユニットの両端にそれぞれ凹溝27と凸起25とが設けられ、隣接する扇形ユニットの一端の凹溝27に凸起25が挿入されて固定子板が形成されている。あるいは、ラミネーションユニットは、固定子ヨーク22と複数の固定子ティース21とを有するベルト状の固定子ティースベルトが螺旋状に巻かれて形成されている。図12に示すように、固定子ヨーク22には間隔をおいて複数の切欠き28が設けられており、固定子ティース21と切欠き28とはそれぞれ前記固定子ティース21ベルト上の対向する両側に位置しており、切欠き27を設けることにより、ベルト状固定子ティースベルトを螺旋状に巻くことが容易になる。図12の破線と実線は、それぞれ2本の固定子ティースベルトを示している。実際の応用では、固定子を加工するための仕入れ材料は通常、ベルト状のプレス成形板であり、このような固定子ティースベルトを螺旋状に巻いて固定子を形成する方法は、プレス成形板の材料を節約して、プレス成形板によるスクラップがより少なくなり、コストの削減に有利である。隣接する2つの固定子ティース21の間に固定子スロット25が形成されている。一つの可能な実施例において、固定子スロット25と回転子極数との比は3:4であり、固定子ティース21にコイル3が巻設されて巻線が形成されている。前記固定子ティース21には、前記固定子ティース21の表面を包み込む絶縁層(図示せず)が設けられる。前記絶縁層は、絶縁薄膜、又は2つの絶縁ソケットを一体に被せ合わせる構造で、コイル3と固定子ティース21を絶縁する。固定子ティース21上でのコイル3の配置は、図14に示すように、固定子ヨーク22の周方向に隣接する3つの固定子ティース21上の巻線に、位相がそれぞれ120°異なる電流が通されて、3相巻線となっている。固定子スロット25と回転子極数との比が3:4であるので、各相の巻線の数は、ちょうど固定子ティース21の数の3分の1となる。ここで、回転子極数とは、回転子1が有する総磁極数である。例えば、各永久磁石11に1つの磁極が形成された場合、回転子極数は永久磁石11の数と等しく、各永久磁石11に2つの磁極が形成された場合、回転子極数は永久磁石11の数の2倍と等しく、各永久磁石11に4つの磁極が形成された場合、回転子極数は永久磁石11の数の4倍と等しい。 The stator 2 is formed by laminating a plurality of stator plates, a stator plate is formed by a plurality of fan-shaped units butted against each other, and grooves 27 and protrusions 25 are provided at both ends of the fan-shaped units, respectively. A stator plate is formed by inserting a protrusion 25 into a groove 27 at one end of an adjacent fan-shaped unit. Alternatively, the lamination unit is formed by spirally winding a belt-shaped stator teeth belt having a stator yoke 22 and a plurality of stator teeth 21. As shown in FIG. 12, the stator yoke 22 is provided with a plurality of notches 28 at intervals, and the stator teeth 21 and the notches 28 are located on opposite sides of the stator teeth 21 belt, respectively. By providing the notch 27, it becomes easy to wind the belt-shaped stator teeth belt in a spiral shape. The broken lines and solid lines in FIG. 12 each indicate two stator teeth belts. In practical applications, the purchased material for processing the stator is usually a belt-shaped press-formed plate, and the method of spirally winding such a stator teeth belt to form the stator is It is advantageous to save the material and reduce the amount of scrap from the press-formed plate, which is advantageous for cost reduction. A stator slot 25 is formed between two adjacent stator teeth 21. In one possible embodiment, the ratio between the stator slots 25 and the number of rotor poles is 3:4, and the coils 3 are wound around the stator teeth 21 to form windings. The stator teeth 21 are provided with an insulating layer (not shown) that wraps around the surfaces of the stator teeth 21. The insulating layer is an insulating thin film or a structure in which two insulating sockets are covered together, and insulates the coil 3 and the stator teeth 21. As shown in FIG. 14, the arrangement of the coils 3 on the stator teeth 21 is such that currents having phases different by 120° are applied to the windings on three stator teeth 21 adjacent in the circumferential direction of the stator yoke 22. It is passed through to form a three-phase winding. Since the ratio of the stator slots 25 to the number of rotor poles is 3:4, the number of windings in each phase is exactly one third of the number of stator teeth 21. Here, the number of rotor poles is the total number of magnetic poles that the rotor 1 has. For example, if one magnetic pole is formed on each permanent magnet 11, the number of rotor poles is equal to the number of permanent magnets 11, and when two magnetic poles are formed on each permanent magnet 11, the number of rotor poles is equal to the number of permanent magnets 11. If each permanent magnet 11 is formed with four magnetic poles, the number of rotor poles is equal to four times the number of permanent magnets 11.

回転子磁極数が多いと、隣接する磁極間の磁束漏れが増加し、電気モータ出力トルクが低下する。回転子磁極数が少ないと、永久磁石内部の異なる位置での磁区配向が大きく変化し、加工や製造が困難となる。したがって、一実施例として、固定子スロット25の数を30として、回転子磁極数を40として、ユニット電気モータ数を10とすると、コギングトルクが低く、巻線時間が短くなる。 When the number of rotor magnetic poles is large, magnetic flux leakage between adjacent magnetic poles increases and electric motor output torque decreases. When the number of rotor magnetic poles is small, the magnetic domain orientation at different positions inside the permanent magnet changes significantly, making processing and manufacturing difficult. Therefore, as an example, if the number of stator slots 25 is 30, the number of rotor poles is 40, and the number of unit electric motors is 10, the cogging torque is low and the winding time is short.

以上に述べたことは本願の好ましい実施例に過ぎず、それによって本願の特許の範囲を制限するわけではない。本願の発明構想の下で、本願の明細書及び添付図面の内容を利用してなされた均等構造変換、或いは他の関連する技術分野への直接/間接的な応用は、何れも本願の特許の保護範囲に含まれる。 What has been described above are merely preferred embodiments of the present application and do not limit the scope of the patent herein. Equivalent structural transformations made using the contents of the specification and attached drawings of the present application under the invention concept of the present application, or direct/indirect applications to other related technical fields, are all covered by the patent of the present application. Included in the scope of protection.

Claims (10)

回転子鉄心と、
前記回転子鉄心の周方向に沿って設置され、前記回転子鉄心の周方向に複数の磁極を形成する複数の永久磁石であって、隣接する2つの磁極の磁化方向が逆であり、形成された各前記磁極の磁区配向とその磁極中心線とのなす挟角をαとしたとき、前記αが0度以上且つ40度以下であり、前記磁極の中央で磁束密度が高く、円周方向の両端に向かうにつれて磁束密度が徐々に低下する磁気特性が形成される、複数の永久磁石と、
を備える電気モータ回転子。
rotor core,
A plurality of permanent magnets are installed along the circumferential direction of the rotor core and form a plurality of magnetic poles in the circumferential direction of the rotor core, the magnetization direction of two adjacent magnetic poles being opposite, When α is the included angle between the magnetic domain orientation of each magnetic pole and the magnetic pole center line, α is greater than or equal to 0 degrees and less than 40 degrees, and the magnetic flux density is high at the center of the magnetic pole, and a plurality of permanent magnets forming a magnetic characteristic in which the magnetic flux density gradually decreases toward both ends;
An electric motor rotor comprising:
各前記磁極内の磁区配向は複数あり、各前記磁極内の複数の磁区配向とその磁極中心線とのなす挟角は、前記磁極中心線に近い位置から前記磁極中心線から離れた位置に向かって徐々に大きくなる
請求項1に記載の電気モータ回転子。
There are multiple magnetic domain orientations within each magnetic pole, and the included angle between the multiple magnetic domain orientations within each magnetic pole and the magnetic pole center line increases from a position close to the magnetic pole center line to a position away from the magnetic pole center line. The electric motor rotor according to claim 1, wherein the electric motor rotor gradually increases in size.
前記磁極の数が8以上且つ20以下である場合、前記αの最大値は18度以上且つ40度以下である
請求項1又は請求項2に記載の電気モータ回転子。
The electric motor rotor according to claim 1 or 2, wherein when the number of magnetic poles is 8 or more and 20 or less, the maximum value of α is 18 degrees or more and 40 degrees or less.
前記磁極の数が20以上である場合、前記αの最大値は15度以上且つ35度以下である
請求項1又は請求項2に記載の電気モータ回転子。
The electric motor rotor according to claim 1 or 2, wherein when the number of magnetic poles is 20 or more, the maximum value of α is 15 degrees or more and 35 degrees or less.
各前記永久磁石の内面及び外面は何れも弧状である
請求項1に記載の電気モータ回転子。
The electric motor rotor according to claim 1, wherein both the inner and outer surfaces of each of the permanent magnets are arcuate.
各前記永久磁石の外面の円弧の直径は90mm~320mmの間であり、各前記永久磁石の前記回転子鉄心の軸方向に沿った高さは50mm以下であり、各前記永久磁石の前記回転子鉄心の径方向に沿った厚さは10mm以下である
請求項5に記載の電気モータ回転子。
The diameter of the circular arc on the outer surface of each permanent magnet is between 90 mm and 320 mm, the height along the axial direction of the rotor core of each permanent magnet is 50 mm or less, and the rotor of each permanent magnet is The electric motor rotor according to claim 5, wherein the thickness of the iron core along the radial direction is 10 mm or less.
複数の前記永久磁石が前記回転子鉄心の内面に貼り付けられて固定されている
請求項6に記載の電気モータ回転子。
The electric motor rotor according to claim 6, wherein the plurality of permanent magnets are affixed and fixed to the inner surface of the rotor core.
各前記永久磁石には、1つの前記磁極又は偶数個の前記磁極が形成されている
請求項1に記載の電気モータ回転子。
The electric motor rotor according to claim 1, wherein each of the permanent magnets is formed with one magnetic pole or an even number of magnetic poles.
偶数個の前記磁極は2個または4個である
請求項7に記載の電気モータ回転子。
The electric motor rotor according to claim 7, wherein the even number of magnetic poles is two or four.
電気モータであって、
固定子と、回転軸と、請求項1から請求項9の何れか一項に記載の電気モータ回転子とを備え、前記回転軸は、前記電気モータの回転する回転子鉄心に固定され、前記固定子は、前記電気モータ回転子と同心であり、前記電気モータ回転子の内側に嵌設されている
電気モータ。
An electric motor,
The electric motor rotor includes a stator, a rotating shaft, and an electric motor rotor according to any one of claims 1 to 9, wherein the rotating shaft is fixed to a rotating rotor core of the electric motor, and the rotating shaft is fixed to a rotating rotor core of the electric motor. The stator is concentric with the electric motor rotor and is fitted inside the electric motor rotor.
JP2023553440A 2021-03-15 2021-09-18 Electric motor rotor and electric motor Pending JP2024509433A (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
CN202110278645.1A CN112865370A (en) 2021-03-15 2021-03-15 Motor rotor and motor
CN202110278645.1 2021-03-15
PCT/CN2021/119322 WO2022193592A1 (en) 2021-03-15 2021-09-18 Electric motor rotor and electric motor

Publications (1)

Publication Number Publication Date
JP2024509433A true JP2024509433A (en) 2024-03-01

Family

ID=75994541

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2023553440A Pending JP2024509433A (en) 2021-03-15 2021-09-18 Electric motor rotor and electric motor

Country Status (4)

Country Link
JP (1) JP2024509433A (en)
KR (1) KR20230133912A (en)
CN (1) CN112865370A (en)
WO (1) WO2022193592A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112865370A (en) * 2021-03-15 2021-05-28 美的威灵电机技术(上海)有限公司 Motor rotor and motor

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20080036894A (en) * 2006-10-24 2008-04-29 삼성광주전자 주식회사 Bldc motor
AU2008283118A1 (en) * 2007-08-01 2009-02-05 Fisher & Paykel Appliances Limited Improved appliance, rotor and magnet element
CN105762999B (en) * 2016-04-26 2018-05-22 沈阳工业大学 A kind of p-m rotor low harmony wave magnetization method and device
WO2019219985A2 (en) * 2019-03-11 2019-11-21 Siemens Gamesa Renewable Energy A/S Permanent magnet assembly comprising three magnet devices with different magnetic domain alignment patterns
CN111834116A (en) * 2019-04-23 2020-10-27 西门子歌美飒可再生能源公司 Manufacturing sintered permanent magnets with reduced deformation
CN112865370A (en) * 2021-03-15 2021-05-28 美的威灵电机技术(上海)有限公司 Motor rotor and motor
CN113113989A (en) * 2021-03-15 2021-07-13 美的威灵电机技术(上海)有限公司 Outer rotor permanent magnet motor and washing machine

Also Published As

Publication number Publication date
WO2022193592A1 (en) 2022-09-22
KR20230133912A (en) 2023-09-19
CN112865370A (en) 2021-05-28

Similar Documents

Publication Publication Date Title
CN102377257B (en) Brushless electric machine
US9041269B2 (en) Motor
CN109274240A (en) Compound amorphous alloy axial-flux electric machine
US6211595B1 (en) Armature structure of toroidal winding type rotating electric machine
WO2015025669A1 (en) Power generator
JP2007209186A (en) Synchronous motor and manufacturing method therefor
US9577480B2 (en) Rotor for rotary electric machine
JP7017642B2 (en) Rotor structure, permanent magnet assisted synchronous reluctance motor and electric vehicle
WO2022193593A1 (en) External rotor permanent magnet motor and washing machine
WO2021056902A1 (en) Electric motor and household electrical appliance
CN108964396A (en) Stator partition type replaces pole hybrid excitation motor
CN113178961B (en) Axial modularized magnetic flux reversing motor
JP2024509433A (en) Electric motor rotor and electric motor
JP2018061379A (en) Dynamo-electric machine
CN117081280A (en) Stator assembly and motor
CN112688458A (en) Rotor structure of large-shaft-diameter built-in permanent magnet motor and motor thereof
JP2017221069A (en) Magnet motor and washing machine with the same
CN212162954U (en) Surface-mounted rotor structure and motor
CN110556995A (en) Novel high-power-density claw pole permanent magnet motor
CN113659789B (en) Internal and external stator axial magnetic field magnetic flux switching type hybrid permanent magnet motor
CN214543842U (en) Rotor structure of large-shaft-diameter built-in permanent magnet motor and motor thereof
CN113193670B (en) Modularized magnetic flux reversing motor
CN216851480U (en) Rotor of motor and motor
CN110875647B (en) Stator, synchronous motor and compressor
CN114552925B (en) Stator permanent magnet type axial and radial mixed magnetic field permanent magnet flux switching motor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20230901

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20240628

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20240709

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20240905