JP2024508104A - Laser temperature control method and machining equipment - Google Patents

Laser temperature control method and machining equipment Download PDF

Info

Publication number
JP2024508104A
JP2024508104A JP2023545737A JP2023545737A JP2024508104A JP 2024508104 A JP2024508104 A JP 2024508104A JP 2023545737 A JP2023545737 A JP 2023545737A JP 2023545737 A JP2023545737 A JP 2023545737A JP 2024508104 A JP2024508104 A JP 2024508104A
Authority
JP
Japan
Prior art keywords
laser
temperature
refrigerant
target operating
operating temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2023545737A
Other languages
Japanese (ja)
Other versions
JP7579492B2 (en
Inventor
孫思叡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shanghai Nagoya Precision Tools Co Ltd
Original Assignee
Shanghai Nagoya Precision Tools Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shanghai Nagoya Precision Tools Co Ltd filed Critical Shanghai Nagoya Precision Tools Co Ltd
Publication of JP2024508104A publication Critical patent/JP2024508104A/en
Application granted granted Critical
Publication of JP7579492B2 publication Critical patent/JP7579492B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/02Constructional details
    • H01S3/04Arrangements for thermal management
    • H01S3/0407Liquid cooling, e.g. by water
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/02Constructional details
    • H01S3/04Arrangements for thermal management
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/02Constructional details
    • H01S3/04Arrangements for thermal management
    • H01S3/0405Conductive cooling, e.g. by heat sinks or thermo-electric elements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/02Structural details or components not essential to laser action
    • H01S5/024Arrangements for thermal management
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/02Structural details or components not essential to laser action
    • H01S5/024Arrangements for thermal management
    • H01S5/02407Active cooling, e.g. the laser temperature is controlled by a thermo-electric cooler or water cooling
    • H01S5/02423Liquid cooling, e.g. a liquid cools a mount of the laser
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/02Structural details or components not essential to laser action
    • H01S5/024Arrangements for thermal management
    • H01S5/02469Passive cooling, e.g. where heat is removed by the housing as a whole or by a heat pipe without any active cooling element like a TEC

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Laser Beam Processing (AREA)
  • Control Of Temperature (AREA)
  • Lasers (AREA)

Abstract

レーザの熱負荷の変化の状況に応じて冷媒の目標動作温度を先にリアルタイムに大まかに調整し、PID制御によってレーザ自体の温度変化に基づいて冷媒の目標動作温度をリアルタイムに精細に調整し、冷媒の目標動作温度を大まかに調整及び精細に調整すると同時にPIDアルゴリズム制御によって冷媒の実際の温度を前記目標動作温度に近づけて一定にさせるレーザ温度制御方法を提供する。本発明の方法は、レーザの動作温度の安定性と応答性を大幅に向上させ、水冷却器の温度が安定しているのにレーザの温度が不安定である「偽安定」現象を回避する。レーザの出力パワーに応じて冷却能力を動的に調整し、レーザがゼロからフルパワーまでの動作範囲で動作する場合、レーザ温度の最大変動範囲を±0.25℃以下であるように保証する。【選択図】図4First, the target operating temperature of the refrigerant is roughly adjusted in real time according to the change in the heat load of the laser, and the target operating temperature of the refrigerant is finely adjusted in real time based on the temperature change of the laser itself using PID control. A laser temperature control method is provided in which the target operating temperature of a refrigerant is roughly and finely adjusted, and at the same time, the actual temperature of the refrigerant is kept close to the target operating temperature by PID algorithm control. The method of the present invention greatly improves the stability and responsiveness of the laser operating temperature and avoids the "false stability" phenomenon where the laser temperature is unstable while the water cooler temperature is stable. . Dynamically adjusts the cooling capacity according to the output power of the laser, ensuring that the maximum variation range of the laser temperature is less than ±0.25℃ when the laser operates in the operating range from zero to full power . [Selection diagram] Figure 4

Description

本発明は、温度を制御する方法に関し、特に、精密レーザ加工を実施し易くし、加工精度を向上させるレーザ温度の通知方法に関する。 The present invention relates to a method for controlling temperature, and particularly to a method for notifying laser temperature that facilitates precision laser processing and improves processing accuracy.

レーザ、特にパルスレーザは、工業生産に広く応用されており、レーザは、その特性上、動作時に多量の熱を放出し、一般にレーザの動作可能温度範囲は±5~10℃であるが、実際の動作条件下でレーザが発生する熱量(温度)はこの範囲をはるかに超えているため、温度の精密且つ一定した制御は、レーザの応用の技術的障害の1つとなっている。 Lasers, especially pulsed lasers, are widely applied in industrial production. Due to their characteristics, lasers emit a large amount of heat during operation, and generally the operating temperature range of lasers is ±5 to 10°C, but in reality Since the amount of heat (temperature) generated by lasers under operating conditions is far beyond this range, precise and constant control of temperature has become one of the technical obstacles for laser applications.

水冷却器は、広く応用されている冷却機構であり、レーザの恒温制御にも多く使用されている。レーザには、ユーザが水冷却器などの冷却装置に接続するのに便利な水冷コネクタが予め設けられている。 Water coolers are a widely used cooling mechanism and are often used for constant temperature control of lasers. The laser is pre-installed with a water cooling connector for convenient connection by the user to a cooling device such as a water cooler.

一般的に、水冷却器は、冷媒として冷却水/冷却液を使用し、そこから出た低温水がレーザの内部循環管路を流れ、熱を奪った後に水冷却器に戻り、水冷却器は、還流水の温度を監視し、冷却能力を調製し、高温の還流水の温度を設定温度付近に安定させる。一般的なレーザ加工の応用では、上記の構成で十分に使用でき、即ち、レーザの動作時、その温度は常に±5℃未満の動作範囲内に制御される。 Generally, a water cooler uses cooling water/cooling fluid as a refrigerant, and the low-temperature water that comes out of it flows through the internal circulation line of the laser, returns to the water cooler after removing heat, and then returns to the water cooler. monitors the temperature of the reflux water, adjusts the cooling capacity, and stabilizes the temperature of the hot reflux water around the set temperature. For general laser processing applications, the above configuration is sufficient, ie, when the laser is operating, its temperature is always controlled within an operating range of less than ±5°C.

精密レーザ加工は、以下の点で一般的なレーザの応用と異なる。1)精密レーザ加工では、レーザの周波数とエネルギーをリアルタイムに制御する必要があり、そのレーザの出力パワーは絶えず変化し、その発熱量は絶えず変化し、即ち、変化する熱負荷であるが、一般的レーザ加工のレーザは、スイッチング機能のみを有し、唯一の出力パワーを有し、その発熱量は変化せず、即ち、不変の熱負荷である;2)精密レーザ加工の加工精度の要求は、ミクロンからナノメートルレベルであり、レーザのわずかな温度変化が加工精度に大きな影響を与え、加工誤差が発生する。一般にレーザ加工の加工要求は、ミリメートルレベルであり、レーザの温度変化は加工精度に大きな影響を与えるほどではなく、加工誤差の許容範囲内に収まる。 Precision laser processing differs from general laser applications in the following points. 1) In precision laser processing, it is necessary to control the frequency and energy of the laser in real time, and the output power of the laser changes constantly, and its heat generation value changes constantly, that is, the heat load changes, but The laser for precision laser processing only has a switching function, has only one output power, and its calorific value does not change, that is, it is a constant heat load; 2) The processing accuracy requirements of precision laser processing are , at the micron to nanometer level, and slight temperature changes in the laser have a large impact on processing accuracy, resulting in processing errors. Generally, processing requirements for laser processing are at the millimeter level, and temperature changes of the laser do not have a large effect on processing accuracy and are within the allowable range of processing errors.

従って、現在の一般的なレーザ冷却システムは、精密レーザ加工への応用において次のような問題が存在する。1)レーザの出力パワーが変化する時、レーザの動作温度は一定に保持されることができず、少なくとも3~5℃の範囲内で変動し、その原因は、温度制御は、典型的な遅延制御システムであり、レーザパワーの変化により即時に発熱量が変化し、この熱量の変化は、中間冷却剤が昇温して水冷却器に察知されるまでに時間を要する。水冷却器は、察知した温度変化に基づいて冷却パワーを調整する場合、レーザの出力パワーは既に(複数回)変化を生じており、このように、水冷却器の冷却パワーがレーザパワーと協調できなくなり、比例積分微分制御(ProportionalIntegralDerivative、PID)パラメータの発振を招く。同様に、上記同じ理由に基づき、レーザパワーが不変の場合でも、温度が平衡に達するまでの制御は比較的遅く、通常は5分以上の時間を要する。 Therefore, the current general laser cooling system has the following problems when applied to precision laser processing. 1) When the output power of the laser changes, the operating temperature of the laser cannot be kept constant and fluctuates within the range of at least 3-5℃, which is due to the fact that the temperature control has a typical delay It is a control system, and the amount of heat generated changes instantly due to changes in laser power, and this change in amount of heat takes time until the temperature of the intercooler increases and is detected by the water cooler. If the water cooler adjusts its cooling power based on the sensed temperature change, the laser's output power has already changed (multiple times), and in this way the water cooler's cooling power coordinates with the laser power. This results in oscillation of proportional-integral-derivative (PID) parameters. Similarly, for the same reason as above, even if the laser power remains unchanged, control of the temperature to equilibrium is relatively slow, typically taking 5 minutes or more.

まとめると、精密レーザ加工に使用される一般的なレーザ冷却システムは、水冷却器の一定温度を歪め、レーザの温度変化速度と振幅は、何れも水冷却器のセンサが感知する変化よりも大幅に大きく、精密レーザ加工の安定と高精度加工の実現に極めて不利である。 In summary, typical laser cooling systems used in precision laser machining distort the constant temperature of the water cooler, and the rate and amplitude of the laser's temperature change are both significantly greater than the changes sensed by the water cooler's sensors. This is extremely disadvantageous to the stability of precision laser processing and the realization of high-precision processing.

本発明の1つの目的は、動作状態におけるレーザの実際の温度を±1℃未満の動作範囲内に維持して、レーザ加工精度を向上させるレーザ温度制御方法を提供することである。 One object of the present invention is to provide a laser temperature control method that maintains the actual temperature of the laser in operating conditions within an operating range of less than ±1° C. to improve laser processing accuracy.

本発明のもう1つの目的は、水冷却器の冷却パワーとレーザの動作パワーを互いに協調させ、PIDパラメータの発振振幅を低減し、レーザ温度を一定に維持するレーザ温度制御方法を提供することである。 Another object of the present invention is to provide a laser temperature control method that coordinates the cooling power of the water cooler and the operating power of the laser with each other, reduces the oscillation amplitude of the PID parameter, and maintains the laser temperature constant. be.

本発明のもう1つの目的は、水冷却器の冷却パワーとレーザの動作パワーを協調させ、レーザ温度制御の遅延を回避し、精密レーザ加工の実施に適したレーザ温度の制御装置を提供することである。 Another object of the present invention is to provide a laser temperature control device that coordinates the cooling power of a water cooler and the operating power of a laser, avoids delays in laser temperature control, and is suitable for precision laser processing. It is.

本発明のさらにもう1つの目的は、精密レーザ加工を実施する機械加工装置を提供することである。 Yet another object of the present invention is to provide a machining device that performs precision laser machining.

本発明の方法は、レーザの熱負荷を監視することによって、レーザの熱負荷の変化に基づいて冷媒温度をリアルタイムに動的に調整し、レーザが異なる熱負荷においても温度の一定化させる効果を実現する。即ち、レーザの熱負荷の変化の状況に応じて冷媒の目標動作温度を先にリアルタイムに大まかに調整し、PID制御によってレーザ自体の温度変化に基づいて冷媒の目標動作温度をリアルタイムに精細に調整し、冷媒の目標動作温度を大まかに調整及び精細に調整すると同時にPIDアルゴリズム制御によって冷媒の実際の温度を前記目標動作温度に近づけて一定にさせる。 By monitoring the heat load of the laser, the method of the present invention dynamically adjusts the coolant temperature in real time based on the change in the heat load of the laser, so that the laser has a constant temperature effect even under different heat loads. Realize. That is, the target operating temperature of the refrigerant is first roughly adjusted in real time according to changes in the heat load of the laser, and then the target operating temperature of the refrigerant is finely adjusted in real time based on the temperature change of the laser itself using PID control. At the same time, the target operating temperature of the refrigerant is roughly adjusted and finely adjusted, and at the same time, the actual temperature of the refrigerant is kept close to the target operating temperature using PID algorithm control.

本発明の方法は、恒温目標温度のPID制御と、冷却器自体の冷却PID制御とからなるデュアルPID制御システムを採用し、システム結合を大幅に低減し、レーザパワーの監視は、レーザパワーの監視であってもよく、レーザの制御命令の監視であってもよく、何れも効果は同じである。 The method of the present invention adopts a dual PID control system consisting of PID control of constant temperature target temperature and cooling PID control of the cooler itself, greatly reducing system coupling, and monitoring of laser power is It may also be monitoring of laser control commands, both of which have the same effect.

レーザ温度制御方法は、
熱負荷検出モジュール及び温度検出モジュールをもってレーザのリアルタイムの熱負荷及びリアルタイムの温度をそれぞれ検出し、レーザの出力パワーに変化が生じた時、予めプログラムされたレーザの現在のパワーに適合する設定温度を冷却器の冷却目標動作温度とすることと、
温度検出モジュールは、レーザを継続的に検出し、温度変化曲線を取得し、予めプログラムされたPID制御パラメータに基づいて冷却器の冷媒目標動作温度を動的に変更し、冷却器は、絶えず更新される冷媒目標動作温度及び内部PIDアルゴリズムに基づいて冷媒温度の調整を行うことと、
を含む。
The laser temperature control method is
The heat load detection module and temperature detection module detect the real-time heat load and real-time temperature of the laser, respectively, and when the output power of the laser changes, the pre-programmed set temperature can be set to match the current power of the laser. Set the cooling target operating temperature of the cooler;
The temperature detection module continuously detects the laser, obtains the temperature change curve, and dynamically changes the refrigerant target operating temperature of the cooler based on the pre-programmed PID control parameters, and the cooler is constantly updated. adjusting the refrigerant temperature based on the refrigerant target operating temperature and an internal PID algorithm;
including.

本発明の方法の具体的な実施方式は、制御システム(電力検出モジュールと温度検出モジュールを含む)を通じてレーザの熱負荷と温度を監視し、熱負荷に基づいて冷却器の冷媒目標動作温度を調整し、レーザ温度を基準とし、レーザPIDアルゴリズムに基づいて冷却器の目標動作温度を精細に調整し、即ち、レーザの現在のリアルタイムの温度がレーザの一定化目標温度よりも高い場合、冷却器の冷却目標動作温度を下げ、レーザの現在のリアルタイムの温度がレーザの一定化目標温度よりも低い場合、冷却器の冷媒目標動作温度を上げ、PIDがレーザの現在の実際の温度及びレーザの一定化目標温度の偏差の状況に応じて冷媒目標動作温度の高さを決定する。 A specific implementation method of the method of the present invention monitors the heat load and temperature of the laser through a control system (including a power detection module and a temperature detection module), and adjusts the coolant target operating temperature of the cooler based on the heat load. Then, taking the laser temperature as a reference and finely adjusting the target operating temperature of the cooler based on the laser PID algorithm, that is, if the current real-time temperature of the laser is higher than the constant target temperature of the laser, the cooler's target operating temperature is finely adjusted based on the laser PID algorithm. Decrease the cooling target operating temperature, if the current real-time temperature of the laser is lower than the laser constantization target temperature, increase the coolant target operating temperature of the cooler, so that the PID increases the current actual temperature of the laser and the constantization target temperature of the laser. The height of the refrigerant target operating temperature is determined according to the situation of the target temperature deviation.

冷却器は、自身の冷却PIDアルゴリズムに基づいて冷媒の温度を冷媒目標動作温度に維持し、即ち、冷媒の現在の実際の温度が冷媒の目標動作温度よりも高い場合、冷却し、冷媒の現在の実際の温度が冷媒目標動作温度よりも低い場合、加熱又は冷却を停止し、冷却器PIDは、冷媒の現在の実際の温度と冷媒目標動作温度の偏差の状況に応じて冷却パワーの大きさを決定する。 The cooler maintains the temperature of the refrigerant at the refrigerant target operating temperature based on its cooling PID algorithm, i.e., if the current actual temperature of the refrigerant is higher than the target operating temperature of the refrigerant, it cools and the refrigerant's current If the actual temperature of the refrigerant is lower than the refrigerant target operating temperature, it will stop heating or cooling, and the cooler PID will adjust the magnitude of the cooling power according to the situation of the deviation between the current actual temperature of the refrigerant and the refrigerant target operating temperature. Determine.

本発明の方法では、熱負荷検出モジュールは、レーザの出力パワーを取得するためのデバイス、又は出力パワー値を取得するためのソフトウェアモジュール、又はデバイスとソフトウェアモジュールの組み合わせとして理解されるべきである。 In the method of the invention, the thermal load detection module is to be understood as a device for obtaining the output power of the laser, or a software module for obtaining the output power value, or a combination of a device and a software module.

本発明の方法では、温度検出モジュールは、レーザのリアルタイムの温度を取得するデバイス、又はリアルタイムの温度値を取得するソフトウェアモジュール、又はデバイスとソフトウェアモジュールの組み合わせとして理解されるべきである。 In the method of the invention, the temperature detection module is to be understood as a device for obtaining the real-time temperature of the laser, or a software module for obtaining the real-time temperature value, or a combination of a device and a software module.

本発明の方法では、レーザ本体とレーザヘッドを独立して温度制御する。 In the method of the present invention, the temperatures of the laser body and the laser head are controlled independently.

本発明の方法は、レーザの動作温度の安定性と応答性を大幅に向上させ、水冷却器の温度が安定しているのにレーザの温度が不安定である「偽安定」現象を回避する。レーザの出力パワーに応じて冷却能力を動的に調整し、レーザがゼロからフルパワーまでの動作範囲で動作する場合、レーザ温度の最大変動範囲が±0.25℃以下であるように保証される。同時にレーザの温度調整応答性も大幅に向上し、レーザ出力が一定パワーで安定している場合、180秒以内にレーザ温度を±0.1℃以内に制御することができる。 The method of the present invention greatly improves the stability and responsiveness of the laser operating temperature and avoids the "false stability" phenomenon where the laser temperature is unstable while the water cooler temperature is stable. . Dynamically adjusts the cooling capacity according to the laser output power, ensuring that the maximum variation range of laser temperature is less than ±0.25℃ when the laser operates in the operating range from zero to full power. Ru. At the same time, the temperature control responsiveness of the laser is greatly improved, and when the laser output is stable at a constant power, the laser temperature can be controlled within ±0.1° C. within 180 seconds.

上記の方法を実施するために、本発明は、
レーザヘッドの内部温度やレーザ本体の内部温度など、レーザのリアルタイム温度データを取得するために使用される温度検出モジュールと、
入出力電圧、入出力電流及び入出力パワーなどのレーザのリアルタイムの熱負荷の関連データを取得するために使用される熱負荷検出モジュールと、
中間冷却機構、冷却機構及びPID電気制御機構等を含む冷却器と、
産業用PCや組み込み式制御器などのプログラマブルコントローラと通信モジュールを含むマスタコントローラと、
を備える。
In order to carry out the above method, the present invention comprises:
a temperature detection module used to obtain real-time temperature data of the laser, such as the internal temperature of the laser head and the internal temperature of the laser body;
a thermal load detection module used to obtain the relevant data of the real-time thermal load of the laser, such as input/output voltage, input/output current and input/output power;
A cooler including an intermediate cooling mechanism, a cooling mechanism, a PID electric control mechanism, etc.;
A master controller including a programmable controller such as an industrial PC or an embedded controller and a communication module;
Equipped with.

熱負荷検出モジュールと温度検出モジュールは、取得したデータをマスタコントローラに提供し、マスタコントローラは測定データに基づいて冷却器の冷却目標温度を調整する。 The heat load detection module and the temperature detection module provide the acquired data to the master controller, and the master controller adjusts the cooling target temperature of the cooler based on the measured data.

本発明の装置の中間冷却機構は、冷媒、監視及び循環ポンプ機構(循環ポンプ、管路及び流量センサなど)を含む。 The intercooling mechanism of the device of the invention includes refrigerant, monitoring and circulation pumping mechanisms (circulation pumps, lines and flow sensors, etc.).

本発明の装置の冷却機構は、冷却部材(半導体冷却チップやコンプレッサなど)及び熱交換装置(熱交換シート、熱交換銅管など)を含む。 The cooling mechanism of the device of the present invention includes a cooling member (semiconductor cooling chip, compressor, etc.) and a heat exchange device (heat exchange sheet, heat exchange copper tube, etc.).

本発明の装置のPID電気制御機構は、制御器(組み込み式制御器、プログラマブルコントローラ及び温度センサなど)及び電源を含む。 The PID electrical control mechanism of the device of the invention includes a controller (such as an embedded controller, a programmable controller and a temperature sensor) and a power supply.

本発明の装置では、マスタコントローラは、レーザ本体及びレーザヘッドを同時に監視し、レーザ本体及びレーザヘッドは、冷却器をそれぞれ設置し、独立して温度を調整及び制御する。 In the device of the present invention, the master controller simultaneously monitors the laser main body and the laser head, and the laser main body and the laser head are each equipped with a cooler to independently adjust and control the temperature.

本発明の方法又は本発明の装置を採用した機械加工装置は、精密レーザ加工を実現する。 A machining device employing the method of the present invention or the device of the present invention realizes precision laser machining.

定周波水冷却器を使用して温度制御するレーザの温度変化の図である。FIG. 3 is a diagram of the temperature change of a laser whose temperature is controlled using a constant frequency water cooler. 定周波水冷却器を使用して温度制御するレーザの温度変化の図である。FIG. 3 is a diagram of the temperature change of a laser whose temperature is controlled using a constant frequency water cooler. 半導体水冷却器を使用して温度制御するレーザの温度変化の図である。FIG. 3 is a diagram of the temperature variation of a laser whose temperature is controlled using a semiconductor water cooler. 本発明の方法で温度制御するレーザの温度変化の図である。FIG. 3 is a diagram of the temperature change of a laser whose temperature is controlled by the method of the present invention. 本発明の方法を実施して温度制御するための装置の一実施形態の説明図である。FIG. 1 is an explanatory diagram of an embodiment of an apparatus for carrying out the method of the present invention to control temperature.

以下では、本発明の技術案を図面と併せて詳細に説明する。本発明の実施形態は、本発明の技術案を説明するものであって、限定するものではない。好適な実施形態を参照して本発明を詳細に説明するが、当業者であれば理解できるように、発明の技術案に対して修正又は均等の置き換えをすることができ、本発明の技術案の精神及び範囲を逸脱しなければ、本発明の特許請求の範囲に含まれるべきである。 In the following, the technical solution of the present invention will be explained in detail together with the drawings. The embodiments of the present invention are intended to illustrate the technical solution of the present invention, but not to limit it. Although the present invention will be described in detail with reference to the preferred embodiments, as those skilled in the art will understand, the technical solution of the invention can be modified or equivalently replaced, and the technical solution of the present invention The invention should be included in the claims of the present invention without departing from the spirit and scope of the invention.

最大発熱量300ワットのピコ秒レーザをレーザ光源とし、レーザ用定周波冷却器(冷却能力1.5Kw、設定目標温度22℃、非PID温度制御、温度制御範囲±0.1℃)、レーザ用可変周波数水冷却器(冷却能力0.6Kw、設定目標温度22℃、PID温度制御)及びレーザ用半導体水冷却器(冷却能力0.6Kw、設定目標温度22℃、PID温度制御)を配置してレーザ温度制御案を構成し、室温25°C、設定水温が22°Cの場合、レーザは25%の出力パワーから100%の出力パワーまでの各パワーで連続して30分間出力した後に切り替え、最後に再び25%のパワーに戻して30分間出力し、冷却システムの温度制御調節能力を考察し、その結果を以下の表1に示す。 A picosecond laser with a maximum heat output of 300 watts is used as the laser light source, and a constant frequency cooler for the laser (cooling capacity 1.5Kw, set target temperature 22℃, non-PID temperature control, temperature control range ±0.1℃), for the laser A variable frequency water cooler (cooling capacity 0.6Kw, set target temperature 22℃, PID temperature control) and a semiconductor water cooler for laser (cooling capacity 0.6Kw, set target temperature 22℃, PID temperature control) are installed. Configure the laser temperature control plan, and when the room temperature is 25°C and the set water temperature is 22°C, the laser outputs continuously for 30 minutes at each power from 25% output power to 100% output power, and then switches. Finally, the power was returned to 25% and output for 30 minutes to consider the temperature control adjustment ability of the cooling system, and the results are shown in Table 1 below.

Figure 2024508104000002
Figure 2024508104000002

上記から、従来の水冷却器にレーザの冷却を応用実施する場合、レーザの変動範囲が約3℃以上であり、レーザの精密加工の必要を満たすことができないことが分かる。 From the above, it can be seen that when laser cooling is applied to a conventional water cooler, the fluctuation range of the laser is about 3° C. or more, and the need for precision laser processing cannot be met.

最大出力300ワットのピコ秒レーザをレーザ光源とし、冷却器(冷却能力0.6Kw、設定目標温度22℃、PID温度制御)及び本実施形態の方法を採用し、即ち、制御システム(パワー検出器及び温度検出器を含む)を通じてレーザの熱負荷及び温度を監視し、熱負荷の大幅な調整に基づいて冷却目標温度を調整し、並びにレーザの温度を基準とし、レーザPIDアルゴリズムに基づいて冷却器の冷却目標温度を精細に調整し、即ち、レーザの温度が冷却目標温度よりも高い場合、レイクタウンの設定温度を下げ、レーザの温度が冷却目標温度よりも低い場合、冷却器の設定温度を上げ、PIDが温度の偏差の程度に基づいて設定温度の大きさを決定する。 A picosecond laser with a maximum output of 300 watts is used as a laser light source, a cooler (cooling capacity 0.6 Kw, set target temperature 22°C, PID temperature control) and the method of this embodiment are adopted, that is, a control system (power detector monitor the laser's heat load and temperature through the laser's temperature detector), adjust the cooling target temperature based on the significant adjustment of the heat load, and adjust the cooling target temperature based on the laser's temperature and the laser PID algorithm. finely adjust the cooling target temperature of the laser, i.e., when the laser temperature is higher than the cooling target temperature, lower the lake town set temperature, and when the laser temperature is lower than the cooling target temperature, reduce the cooler set temperature. The PID determines the magnitude of the set temperature based on the degree of temperature deviation.

冷却器は、自身の冷却PIDアルゴリズムに基づいて冷却液の温度を設定温度に維持し、即ち、冷媒温度が設定温度よりも高い場合、冷却し、冷媒温度が設定温度よりも低い場合、加熱し、冷却器PIDは、温度の偏差の程度に基づいて冷却パワーの大きさを決定する。 The cooler maintains the temperature of the coolant at the set temperature based on its cooling PID algorithm, that is, it cools when the coolant temperature is higher than the set temperature, and heats when the coolant temperature is lower than the set temperature. , the cooler PID determines the amount of cooling power based on the degree of temperature deviation.

本実施形態の方法を実施するために、図5に示す装置を使用して、レーザの温度を制御することができ、その装置は、以下を含む。 To implement the method of this embodiment, the apparatus shown in FIG. 5 can be used to control the temperature of the laser, which apparatus includes:

温度検出モジュール100は、レーザヘッドの内部温度及びレーザ本体の内部温度などのレーザ500のリアルタイムの温度データを取得するために使用される。 The temperature detection module 100 is used to obtain real-time temperature data of the laser 500, such as the internal temperature of the laser head and the internal temperature of the laser body.

熱負荷検出モジュール200は、入出力電圧、入出力電流及び入出力電力などのレーザのリアルタイムの熱負荷関連データを取得するために使用される。 The thermal load detection module 200 is used to obtain real-time thermal load related data of the laser, such as input/output voltage, input/output current, and input/output power.

冷却器300は、中間冷却機構、冷却機構及びPID電気制御機構等を含む。 The cooler 300 includes an intermediate cooling mechanism, a cooling mechanism, a PID electric control mechanism, and the like.

マスタコントローラ400は、産業用PCや組み込み式制御器などのプログラマブルコントローラ及び通信モジュールを含む。 Master controller 400 includes a programmable controller, such as an industrial PC or an embedded controller, and a communication module.

冷却機構は、冷媒600、監視及び循環ポンプ機構等を含み、冷媒600は、冷却器300及びレーザ500内を流れる。 The cooling mechanism includes a refrigerant 600, a monitoring and circulation pump mechanism, etc., and the refrigerant 600 flows within the cooler 300 and the laser 500.

熱負荷検出モジュール及び温度検出モジュールは、取得したデータをマスタコントローラに提供し、マスタコントローラは、測定データに基づいて冷却器の冷却目標温度を調整する。 The heat load detection module and the temperature detection module provide the acquired data to the master controller, and the master controller adjusts the cooling target temperature of the cooler based on the measured data.

得られたレーザの温度変化の状況を図4に示し、その全段階の温度変動程度は、±0.2℃であり、安定出力段階(出力10分後)の温度変動度は、±0.1℃である。表1と比較すると、全段階の温度変動が大幅に低減されており、安定出力段階の温度変動は、わずか±0.1℃であり、レーザの温度がより一定になっている。 The state of the temperature change of the obtained laser is shown in FIG. 4, and the degree of temperature fluctuation in all stages is ±0.2°C, and the degree of temperature fluctuation in the stable output stage (after 10 minutes of output) is ±0. It is 1℃. Compared with Table 1, the temperature variation in all stages is significantly reduced, and the temperature variation in the stable output stage is only ±0.1°C, making the temperature of the laser more constant.

本実施形態の方法及び装置は、機械加工装置に応用された後、精密レーザ加工の必要を満たすことができる。 The method and apparatus of this embodiment can meet the needs of precision laser processing after being applied to a machining device.

100 温度検出モジュール
200 熱負荷検出モジュール
300 冷却器
400 マスタコントローラ
500 レーザ
600 冷媒
100 Temperature detection module 200 Heat load detection module 300 Cooler 400 Master controller 500 Laser 600 Refrigerant

Claims (5)

レーザの熱負荷の変化の状況に応じて冷媒の目標動作温度を先にリアルタイムに大まかに調整し、PID制御によってレーザ自体の温度変化に基づいて冷媒の目標動作温度をリアルタイムに精細に調整し、冷媒の目標動作温度を大まかに調整及び精細に調整すると同時にPIDアルゴリズム制御によって冷媒の実際の温度を前記目標動作温度に近づけて一定にさせることを特徴とするレーザ温度制御方法。 First, the target operating temperature of the refrigerant is roughly adjusted in real time according to the change in the heat load of the laser, and the target operating temperature of the refrigerant is finely adjusted in real time based on the temperature change of the laser itself using PID control. A laser temperature control method characterized by roughly and finely adjusting a target operating temperature of a refrigerant, and at the same time keeping the actual temperature of the refrigerant close to the target operating temperature by PID algorithm control. レーザの熱負荷を監視し、前記レーザの熱負荷の変化の状況に応じて冷媒の目標動作温度を先にリアルタイムに大まかに調整し、PID制御によってレーザ自体の温度変化に基づいて冷媒の目標動作温度をリアルタイムに精細に調整し、冷媒の目標動作温度を大まかに調整及び精細に調整すると同時にPIDアルゴリズム制御によって冷媒の実際の温度を前記目標動作温度に近づけて一定にさせることで、デュアルPID制御システムを構成し、システム結合を低減し、レーザの熱負荷の監視は、レーザの熱負荷の監視であってもよく、レーザの熱負荷を調整する制御命令の監視であってもよいことを特徴とする請求項1に記載のレーザ温度制御方法。 The heat load of the laser is monitored, and the target operating temperature of the coolant is roughly adjusted in real time according to the change in the heat load of the laser, and the target operating temperature of the coolant is adjusted based on the temperature change of the laser itself using PID control. Dual PID control is achieved by finely adjusting the temperature in real time, roughly and finely adjusting the target operating temperature of the refrigerant, and at the same time keeping the actual temperature of the refrigerant close to the target operating temperature using PID algorithm control. configuring the system and reducing system coupling, characterized in that the monitoring of the thermal load of the laser may be monitoring of the thermal load of the laser, and may be the monitoring of a control command that adjusts the thermal load of the laser. The laser temperature control method according to claim 1. 熱負荷の監視及びレーザの温度の監視は、レーザのリアルタイムの熱負荷及びリアルタイムの温度をそれぞれ測定し、レーザの熱負荷に変化が生じた時、予めプログラムされたレーザの現在の熱負荷に適合する設定温度を冷却器の冷媒目標動作温度とし、温度検出モジュールは、レーザを継続的に検出し、温度変化曲線を取得し、予めプログラムされたPID制御パラメータに基づいて冷却器の冷媒目標動作温度を動的に変更し、冷却器は、絶えず更新される冷媒目標動作温度及び内部PIDアルゴリズムに基づいて冷媒温度の調整を行うことを特徴とする請求項1に記載のレーザ温度制御方法。 Heat load monitoring and laser temperature monitoring measure the real-time heat load and real-time temperature of the laser, respectively, and adapt to the pre-programmed current heat load of the laser when a change in the laser heat load occurs. The temperature detection module continuously detects the laser, obtains the temperature change curve, and determines the refrigerant target operating temperature of the cooler based on the pre-programmed PID control parameters. 2. The method of claim 1, wherein the cooler adjusts the coolant temperature based on a continuously updated coolant target operating temperature and an internal PID algorithm. レーザ本体及びレーザヘッドに独立した温度制御を実施することを特徴とする請求項1に記載のレーザ温度制御方法。 2. The laser temperature control method according to claim 1, wherein independent temperature control is performed on the laser body and the laser head. 請求項1に記載のレーザ温度制御方法を備えたことを特徴とする機械加工装置。 A machining device comprising the laser temperature control method according to claim 1.
JP2023545737A 2021-05-20 2022-05-16 Laser temperature control method and machining device Active JP7579492B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
CN202110556119.7 2021-05-20
CN202110556119.7A CN115377777A (en) 2021-05-20 2021-05-20 Laser temperature control method and machining equipment
PCT/CN2022/093034 WO2022242591A1 (en) 2021-05-20 2022-05-16 Laser temperature control method and machining device

Publications (2)

Publication Number Publication Date
JP2024508104A true JP2024508104A (en) 2024-02-22
JP7579492B2 JP7579492B2 (en) 2024-11-08

Family

ID=

Also Published As

Publication number Publication date
WO2022242591A1 (en) 2022-11-24
CN115377777A (en) 2022-11-22

Similar Documents

Publication Publication Date Title
WO2022242591A1 (en) Laser temperature control method and machining device
CN108666856A (en) Power stability type solid state laser and control method
US20080231304A1 (en) Apparatus and method for controlling temperature in a chuck system
JP2001044176A (en) Treatment apparatus and temperature control therefor
TW201420891A (en) Fan control system, computer system, and fan controlling method thereof
CN106873663B (en) A kind of temprature control method and system
CN110881262B (en) Control method for cold source output capacity of liquid cooling system of data machine room
KR101302156B1 (en) Calorie monitoring base temperature control system for semiconductor manufacturing equipment using thermoelectric element
US20230221085A1 (en) Operation control system and method for a chiller cooling tower
KR101994570B1 (en) Heat treatment apparatus and heat treatment method
JP2016053863A (en) Temperature regulator
CN108873983A (en) The compound temperature-controlling system of semiconductor heating dish and temperature control method
JP7579492B2 (en) Laser temperature control method and machining device
JP2000353830A (en) Method and device for driving peltier element
US20210148630A1 (en) Temperature control system
JP2015059726A (en) Area-specific parameter-base controlling hybrid chiller and circulatory fluid temperature regulation method using the same
JP5685782B2 (en) Chiller linked operation method and system
CN113745949B (en) Air-cooled fiber laser
CN113703563A (en) Temperature adjusting method, device and system
CN107665006B (en) Temperature control system and control method
TWI596310B (en) A circulating cooling system capable of controlling the temperature of cooling medium precisely
CN216351986U (en) Intelligent multi-path cooling circulating liquid temperature control device
CN220709582U (en) Semiconductor temperature control device and constant fluid output control device
RU2287886C1 (en) Electric heater control process
US11973409B2 (en) Heating system and method of heating a process fluid

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20230727

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20240917

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20240926